JP2007263904A - Device and method for measuring three-dimensional shape - Google Patents

Device and method for measuring three-dimensional shape Download PDF

Info

Publication number
JP2007263904A
JP2007263904A JP2006092645A JP2006092645A JP2007263904A JP 2007263904 A JP2007263904 A JP 2007263904A JP 2006092645 A JP2006092645 A JP 2006092645A JP 2006092645 A JP2006092645 A JP 2006092645A JP 2007263904 A JP2007263904 A JP 2007263904A
Authority
JP
Japan
Prior art keywords
optical path
light
path length
measurement
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006092645A
Other languages
Japanese (ja)
Other versions
JP4180084B2 (en
Inventor
Masaya Sugai
雅也 菅井
Toshiyuki Matsuoka
利幸 松岡
Eiji Tsujimura
映治 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2006092645A priority Critical patent/JP4180084B2/en
Publication of JP2007263904A publication Critical patent/JP2007263904A/en
Application granted granted Critical
Publication of JP4180084B2 publication Critical patent/JP4180084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three dimensionally measuring apparatus which detects wide band light and coherent light and can perform abnormality self-diagnosis. <P>SOLUTION: In an optical system, which combines white light and a laser beam, and makes the result incident on a reference optical path and a measurement path and they are irradiated by a beam splitter 5, carries out a wave combining of returning light from a reference mirror, measures the returning light from an object of measurement, and outputs them; an optical path length of the measurement path is changed by a variable optical path means 8, a camera 10 images output from the beam splitter 5, and acquires data of an interference pattern. In a constitution which seeks the optical path length of the measurement path which interference pattern by the white light produces with the variations in the interference pattern by the laser beam to the variation of the optical path length to be a scale with the data, a self-diagnosis provides a laser photodetection means 31 and a wide-band photodetection means 32, and decides on the abnormalities of an He-Ne laser 11 and an optical source 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数のスペクトラム(以下、波長で説明する。)を有する広帯域光(例えば、白色光)による干渉現象を用いて被測定物の形状を立体的に測定する三次元形状測定装置及び測定方法に関する。特に、広帯域光の一方を遠端に参照鏡を有する参照光路に入射し、広帯域光の他方を遠端に被測定物を有する測定光路へ入射し、参照鏡(反射鏡)及び被測定物からの各戻り光による干渉を生じさせる干渉部(干渉計)において、参照光路又は測定光路のいずれかの光路長を変化して得られた干渉縞が生ずる光路長をコヒーレント光に基づいてスケーリング(値付け)することによって、スケーリングされた光路長を基に干渉縞光源被測定物の形状を測定する三次元形状測定装置であって、コヒーレント光及び広帯域光の各光源の故障に係る自己診断を行う技術に関する。   The present invention relates to a three-dimensional shape measurement apparatus and measurement that three-dimensionally measures the shape of an object to be measured using an interference phenomenon caused by broadband light (for example, white light) having a plurality of spectra (hereinafter, described by wavelengths). Regarding the method. In particular, one of the broadband light is incident on a reference optical path having a reference mirror at the far end, and the other of the broadband light is incident on a measurement optical path having an object to be measured at the far end, from the reference mirror (reflecting mirror) and the object to be measured. In the interferometer (interferometer) that causes interference due to each return light, the optical path length generated by the interference fringe obtained by changing the optical path length of either the reference optical path or the measurement optical path is scaled based on the coherent light (value) Is a three-dimensional shape measuring apparatus for measuring the shape of the interference fringe light source object to be measured based on the scaled optical path length, and performs self-diagnosis relating to failure of each light source of coherent light and broadband light Regarding technology.

一般的に、上記の干渉現象を用いた形状測定装置においては、参照光路と測定光路の双方の光路長が等しくなったときに、干渉縞が最大の輝度を示すことを利用している。つまり、参照光路又は測定光路のいずれかの光路長を変化させ(以下、参照光路の光路長を固定とし、測定光路の光路長を変化させるとして説明する。)、そのとき生じる干渉縞が最大の輝度を示す位置の光路長(光路長の変化量)を、光路長の変化方向における被測定物の変位として測定している(特許文献1、2)。   In general, the shape measuring apparatus using the above interference phenomenon utilizes the fact that interference fringes exhibit the maximum luminance when the optical path lengths of both the reference optical path and the measurement optical path are equal. That is, the optical path length of either the reference optical path or the measurement optical path is changed (hereinafter, the optical path length of the reference optical path is fixed and the optical path length of the measurement optical path is changed), and the interference fringes generated at that time are the largest. The optical path length (change amount of the optical path length) at the position indicating the luminance is measured as the displacement of the object to be measured in the optical path length change direction (Patent Documents 1 and 2).

特許文献1においては、ピエゾアクチュエータにより(ピエゾを電圧駆動することにより)測定光路の光路長を変化させるとともに、撮像手段により被測定物のある測定点における光路長の変化に対応する干渉縞を撮像する。そして、その撮像データから干渉縞の最大輝度となる点のピエゾ駆動電圧という電気量を検出することで、そのときの測定光路の光路長を検出している。   In Patent Document 1, the optical path length of the measurement optical path is changed by piezo actuators (by driving the piezo voltage), and the interference fringes corresponding to the change in the optical path length at a certain measurement point of the object to be measured are imaged by the imaging means. To do. And the optical path length of the measurement optical path at that time is detected by detecting the electric quantity called the piezo drive voltage at the point where the maximum brightness of the interference fringes is detected from the imaging data.

特許文献1の方法によれば、簡単であるが、信頼性に乏しい恐れがある。つまり、ピエゾ等の素子の特性がそのまま測定確度等に影響する恐れがある。したがって、周囲環境、経年変化等によってその影響を受けやすい。この影響を防止しようとすると、校正手段(方法)が必要になる。   According to the method of Patent Document 1, although it is simple, there is a fear that the reliability is poor. That is, the characteristics of elements such as piezos may directly affect the measurement accuracy. Therefore, it is easily affected by the surrounding environment, secular change and the like. In order to prevent this influence, a calibration means (method) is required.

特許文献2の方法によれば、白色光を参照光路と測定光路に分岐して入力させ、その参照光路の参照鏡からの戻り光から所定の波長の光を光学的狭帯域フィルタで抽出し、抽出した光の繰り返しで、干渉縞のピークが現れる測定光路の光路長を求めている。この場合は、確度が改善されるが、光の領域で狭帯域フィルタで抽出するため、規模的に大きくなる問題がある。   According to the method of Patent Document 2, white light is branched and input to a reference optical path and a measurement optical path, and light of a predetermined wavelength is extracted from the return light from the reference mirror in the reference optical path by an optical narrowband filter. The optical path length of the measurement optical path in which the peak of the interference fringe appears is obtained by repeating the extracted light. In this case, the accuracy is improved, but there is a problem that it becomes large in scale because it is extracted by a narrow band filter in the light region.

特開2000−310518号公報JP 2000-310518 A USP662894号公報USP 662894

上記問題を解決するために、本出願人は、先の出願(特願2006−006729)において、ほぼ単一な波長のコヒーレント光の干渉縞は、そのコヒーレント光の波長により一義的に決まることに着眼し、測定光路の光路長を変化させたときの複数波長を含む広帯域光の干渉縞とほぼ単一な波長のコヒーレント光の干渉縞を撮像し、広帯域光の干渉縞が生じる光路長(例えば、干渉縞のピーク等の特徴が生ずる光路長)をコヒーレント光の干渉縞をスケールとしてスケーリング(値付け)する構成とした。広帯域光による干渉縞が生じる光路長は、測定光路の光路長をある基準位置から変化させたときの変化量(移動量)で表すことができる。   In order to solve the above problem, in the previous application (Japanese Patent Application No. 2006-006729), the present applicant has determined that the interference fringes of coherent light having a substantially single wavelength are uniquely determined by the wavelength of the coherent light. Focus on and capture the interference pattern of broadband light including multiple wavelengths and the interference pattern of coherent light of almost single wavelength when the optical path length of the measurement optical path is changed. The optical path length in which features such as peaks of interference fringes occur) is scaled (valued) using the interference fringes of coherent light as a scale. The optical path length in which the interference fringes due to the broadband light are generated can be expressed by a change amount (movement amount) when the optical path length of the measurement optical path is changed from a certain reference position.

ところが、この構成によれば、光学的処理をした撮像後に広帯域光による干渉縞とコヒーレント光による干渉縞のデータを処理することにより測定していること、コヒーレント光と広帯域光とは帯域が重なること等により、何れかの光源に異常があった場合でも誤った測定値が出力される恐れがある。また、光源が内部にある場合、内部構造を分解しないと異常箇所が把握できない恐れがある。   However, according to this configuration, measurement is performed by processing data of interference fringes by broadband light and coherent light after optically processed imaging, and the bands of coherent light and broadband light overlap. For example, an erroneous measurement value may be output even if any one of the light sources is abnormal. Further, when the light source is inside, there is a possibility that the abnormal part cannot be grasped unless the internal structure is disassembled.

本発明は、広帯域光とコヒーレント光を検出して異常であるかどうかの自己診断を行える三次元測定装置を提供することを目的とする。   It is an object of the present invention to provide a three-dimensional measuring apparatus capable of performing self-diagnosis of whether or not an abnormality is detected by detecting broadband light and coherent light.

上記目的を達成するために、請求項1に記載の発明は、広帯域光を出力する広帯域光源(1)と、コヒーレント光を出力するコヒーレント光源(11)と、それぞれ遠端に、参照鏡を配置した参照光路と被測定物を配置した測定光路の双方に入射させ、前記参照鏡からの反射光と前記被測定物からの反射光とを合波して出力する光路形成部(5)と、前記参照光路又は前記測定光路のいずれか一方の光路長を変化させる光路長可変手段(8)と、該光路形成部が出力する反射波の合波を基に、前記広帯域光による干渉縞が生ずる光路長を、前記コヒーレント光による干渉縞の変化を基に求める光路長検出手段(14)と、を備え、求めた光路長から三次元の形状を測定する三次元形状測定装置であって、
前記広帯域光の少なくとも一部を検出する広帯域光検出手段(32)と、前記コヒーレント光の少なくとも一部を検出するコヒーレント光検出手段(31)と、前記コヒーレント光検出手段の出力及び前記広帯域光検出手段の出力を受けてそれぞれの出力の良否判定を行う制御部(30)とを備えた。
To achieve the above object, according to the present invention, a broadband light source (1) that outputs broadband light, a coherent light source (11) that outputs coherent light, and a reference mirror are arranged at the far ends, respectively. An optical path forming unit (5) that is incident on both the reference optical path and the measurement optical path in which the object to be measured is arranged, and combines and outputs the reflected light from the reference mirror and the reflected light from the object to be measured; Based on the optical path length varying means (8) for changing the optical path length of either the reference optical path or the measurement optical path, and the reflected wave output from the optical path forming unit, interference fringes due to the broadband light are generated. An optical path length detecting means (14) for determining an optical path length based on a change in interference fringes due to the coherent light, and a three-dimensional shape measuring apparatus for measuring a three-dimensional shape from the determined optical path length,
Broadband light detection means (32) for detecting at least a part of the broadband light, coherent light detection means (31) for detecting at least a part of the coherent light, an output of the coherent light detection means, and the broadband light detection And a control unit (30) that receives the outputs of the means and determines the quality of each output.

請求項2に記載の発明は、請求項1に記載の発明において、前記制御部は、前記良否判定の結果、前記それぞれの出力のいずれかを否と判定したときは少なくとも、アラームを出力し、もしくは前記広帯域光源と前記コヒーレント光源をオフにする構成とした。   The invention according to claim 2 is the invention according to claim 1, wherein the control unit outputs at least an alarm when it is determined as one of the respective outputs as a result of the quality determination, Alternatively, the broadband light source and the coherent light source are turned off.

請求項3に記載の発明は、制御部(30)が自己診断モードを設定する段階と、広帯域光源(1)が出力する広帯域光の少なくとも一部、及びコヒーレント光源(11)が出力するコヒーレント光の少なくとも一部をそれぞれ検出する検出段階と、前記検出段階で検出した前記広帯域光の一部及びコヒーレント光の一部を基にそれぞれの光量の大きさの良否判定を行い、少なくともいずれか一つを否と判定したときは少なくとも、アラームを出力し、もしくは前記広帯域光源と前記コヒーレント光源をオフにする判定段階と、前記判定段階で良と判断された後に、前記制御部が測定モードを設定する段階と、光路形成部(5)が、それぞれ遠端に、参照鏡を配置した参照光路と被測定物を配置した測定光路の双方に前記広帯域光源からの広帯域光及び前記コヒーレント光源からのコヒーレント光を入射させ、前記参照鏡からの反射光と前記被測定物からの各反射光とを合波して出力する干渉段階と、光路長可変手段(8)が、前記参照光路又は前記測定光路のいずれか一方の光路長を変化させる段階と、光路長検出手段(14)が、前記干渉段階で出力される反射波の合波を基に、前記広帯域光による干渉縞が生ずる光路長を、前記コヒーレント光による干渉縞の変化を基に求める段階と、を備え、求めた光路長から三次元の形状を測定する構成とした。   According to the third aspect of the present invention, the controller (30) sets the self-diagnosis mode, at least part of the broadband light output from the broadband light source (1), and the coherent light output from the coherent light source (11). Detecting at least a part of each, and determining the quality of each light quantity based on a part of the broadband light and a part of coherent light detected in the detection stage, and at least one of them If it is determined as NO, at least the alarm is output, or the control unit sets the measurement mode after it is determined that the broadband light source and the coherent light source are turned off, and the determination step determines good. A broad band from the broadband light source in both the stage and the optical path forming unit (5) at each of the reference optical path where the reference mirror is arranged and the measurement optical path where the object to be measured is arranged at the far end An interference stage for making light and coherent light from the coherent light source incident, combining the reflected light from the reference mirror and each reflected light from the object to be measured, and an optical path length varying means (8); The step of changing the optical path length of either the reference optical path or the measurement optical path, and the optical path length detection means (14) is based on the broadband light based on the combined wave of the reflected waves output in the interference stage. And determining the optical path length in which the interference fringes occur based on the change of the interference fringes due to the coherent light, and measuring the three-dimensional shape from the obtained optical path length.

本発明によれば、各光源の異常を把握して測定出来る構成であるから、信頼性のよい測定が行える。また、光源による故障の有無を容易に知ることができる。   According to the present invention, since the configuration is such that the abnormality of each light source can be grasped and measured, a reliable measurement can be performed. In addition, it is possible to easily know whether there is a failure due to the light source.

本発明に係る実施形態を、図を用いて説明する。図1は、本発明に係る実施形態の機能構成を示す図である。図2は、その変形例である。図3は、図1の光路長検出手段を説明するための図である。図4は、図1の分波手段を説明するための図である。   Embodiments according to the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a functional configuration of an embodiment according to the present invention. FIG. 2 shows a modification thereof. FIG. 3 is a diagram for explaining the optical path length detection means of FIG. FIG. 4 is a diagram for explaining the branching means of FIG.

以下、本発明の説明にあたっては、[1.光源とその自己診断構成]、[2.実施形態の測定構成] [3.自己診断から測定までの一連の動作]の順で説明する。   In the following description of the present invention, [1. Light source and its self-diagnosis configuration], [2. Measurement Configuration of Embodiment] [3. A series of operations from self-diagnosis to measurement will be described in this order.

[1.光源とその自己診断構成]
この実施形態での自己診断の対象とするのは、図1における光源1とHe−Neレーザー11の二つの光源である。それぞれの光源について「1.1 広帯域光(白色光)による干渉縞を生成する光学系の構成] [1.2 レーザー光(コヒーレント光)による干渉縞を生成する光学系の構成]で説明後、「1.3自己診断」を説明する。
[1. Light source and its self-diagnosis configuration]
The target of self-diagnosis in this embodiment is the two light sources of the light source 1 and the He—Ne laser 11 in FIG. For each light source, “1.1 Configuration of optical system for generating interference fringes by broadband light (white light)” [1.2 Configuration of optical system for generating interference fringes by laser light (coherent light)] “1.3 Self-diagnosis” will be explained.

「1.1 広帯域光(白色光)による干渉縞を生成する光学系の構成]
図1の光源1は、広帯域に亘る多数の波長成分を有しコヒーレンシーの低い広帯域光を出射する光源であって、ここでは、例えば、白色光源を用いる。コリメータレンズ2は、光源1からの白色光(広帯域光)を集光してビームスプリッター3へ送る。ビームスプリッター3は、白色光の方向を変換して対物レンズ4へ送る。対物レンズ4は、白色光を平行光にしてビームスプリッター5(光路形成部)へ送る。ビームスプリッター5は、対物レンズ4から受けた白色光を2方向へ分岐し、一つは測定光として被測定物7へ送り(ビームスプリッター5から被測定物7への光路を測定光路とする。)、他の一つは参照光として参照鏡6へ送る(ビームスプリッター5から参照鏡6への光路を参照光路とする。)。この例では、ビームスプリッター5と参照鏡6との間は固定、つまり参照光路の光路長は一定の固定長さとされている。ビームスプリッター5の代わりに、ハーフミラーで構成することともできる。
"1.1 Configuration of optical system for generating interference fringes by broadband light (white light)"
The light source 1 in FIG. 1 is a light source that emits broadband light having a large number of wavelength components over a wide band and low coherency. Here, for example, a white light source is used. The collimator lens 2 collects the white light (broadband light) from the light source 1 and sends it to the beam splitter 3. The beam splitter 3 converts the direction of white light and sends it to the objective lens 4. The objective lens 4 converts white light into parallel light and sends it to the beam splitter 5 (optical path forming unit). The beam splitter 5 branches the white light received from the objective lens 4 in two directions, and one is sent as measurement light to the measurement object 7 (the optical path from the beam splitter 5 to the measurement object 7 is used as a measurement optical path). The other one is sent to the reference mirror 6 as reference light (the optical path from the beam splitter 5 to the reference mirror 6 is taken as the reference optical path). In this example, the distance between the beam splitter 5 and the reference mirror 6 is fixed, that is, the optical path length of the reference optical path is fixed. Instead of the beam splitter 5, a half mirror may be used.

なお、測定光路は、被測定物7の表面上の測定したい所望の照射範囲を同時に白色光で照射される構成にされている。   The measurement optical path is configured so that a desired irradiation range to be measured on the surface of the DUT 7 is simultaneously irradiated with white light.

また、光源1は、白色光源としてハロゲンランプ等を用いることができる。広帯域光検出手段32は、ハロゲンランプの一部の光を受光して電気に変換して出力する。この広帯域光検出手段32の出力は制御部30により、自己診断に用いられる。さらに光源1は、電源によって駆動されているので、電源をオンオフされることにより白色光の出力をオンオフされる。また、図1で光源1とコリメータレンズ2の直前までの間はファイバで光路構成されていてもよい。   The light source 1 can use a halogen lamp or the like as a white light source. The broadband light detecting means 32 receives a part of the light from the halogen lamp, converts it into electricity, and outputs it. The output of the broadband light detecting means 32 is used by the control unit 30 for self-diagnosis. Further, since the light source 1 is driven by a power source, the output of white light is turned on and off by turning the power source on and off. Further, in FIG. 1, the optical path may be constituted by a fiber between the light source 1 and the collimator lens 2 immediately before.

[1.2 レーザー光(コヒーレント光)による干渉縞を生成する光学系の構成]
図1において、He−Neレーザー11は、ほぼ単一波長を有する光源である。つまり、「ほぼ単一波長」とは、ピエゾ8により変化させた光路長の範囲において、コヒーレンシーを確保できるほどの波長成分(スペクトル)であることを言う。このHe−Neレーザー11からのレーザー光は、ビームスプリッター12により、白色光と同一の光路へ導入される。そして白色光と同様に、参照光路及び測定光路へ入る。レーザー光は、被測定物7へ向けて集光される。図1では、レーザー光(粗い点線で示す。)は、被測定物7の測定範囲の中心からズレた位置にあるが、何処にあっても、固定した位置であれば校正できるので測定範囲の中心であっても良い。
[1.2 Configuration of optical system for generating interference fringes by laser light (coherent light)]
In FIG. 1, a He—Ne laser 11 is a light source having a substantially single wavelength. That is, “substantially single wavelength” means a wavelength component (spectrum) that can ensure coherency in the range of the optical path length changed by the piezo 8. The laser light from the He—Ne laser 11 is introduced into the same optical path as the white light by the beam splitter 12. Then, like the white light, the light enters the reference optical path and the measurement optical path. The laser beam is condensed toward the object 7 to be measured. In FIG. 1, the laser beam (indicated by a rough dotted line) is at a position shifted from the center of the measurement range of the object 7 to be measured. It may be the center.

また、He−Neレーザー11からのレーザー光が入射された反対側に、そのレーザーが通過した一部を受けて、電気に変換して出力するレーザー光検出手段31を備えている。このレーザー光検出手段31の出力は制御部30により、自己診断に用いられる。さらにHe−Neレーザー11は、電源によって駆動されているので、電源をオンオフされることによりレーザー光の出力をオンオフされる。また、図1の構成では、光源1をオフにされたときにレーザー光検出手段31によりレーザー光を検出することが望ましい。図1でHe−Neレーザー11とビームスプリッター12の直前までの間はファイバで光路構成されていてもよい。   Further, on the opposite side to which the laser beam from the He-Ne laser 11 is incident, there is provided a laser beam detecting means 31 that receives a part of the laser beam, converts it into electricity, and outputs it. The output of the laser light detecting means 31 is used by the control unit 30 for self-diagnosis. Further, since the He-Ne laser 11 is driven by a power source, the output of the laser beam is turned on and off by turning on and off the power source. In the configuration of FIG. 1, it is desirable that the laser light is detected by the laser light detection means 31 when the light source 1 is turned off. In FIG. 1, the optical path may be constituted by a fiber between the He—Ne laser 11 and the beam splitter 12.

「1.3自己診断」
図1の制御部30は、全体と統一した制御を行うとともに、上記のように広帯域光検出手段32の出力及びの出力を受けて自己診断を行う。自己診断を行うタイミングは、先ず測定を行わないときである。例えば、(a)全体の電源がオンされて測定する前の段階、(b)測定を終了し次の被測定物を測定する迄の被測定物交換時期である。つまり制御部30は、上記(a)及び(b)のときは自己診断モードとして、その他の測定時期は測定モードとして各部を制御する。自己診断モードは、ユーザインタフェース18で指定されても良いし、全体装置の電源オン後に最初に自動で設定される構成でも、被測定物の交換時に設定される構成であっても良い。
“1.3 Self-diagnosis”
The control unit 30 in FIG. 1 performs control that is unified with the whole, and performs self-diagnosis by receiving the output of the broadband light detection means 32 as described above. The timing for performing the self-diagnosis is when the measurement is not performed first. For example, (a) a stage before the entire power source is turned on and measurement is performed, and (b) a measurement object replacement time from the end of the measurement to the measurement of the next measurement object. That is, the control unit 30 controls each unit as the self-diagnosis mode in the cases (a) and (b) and as the measurement mode at other measurement periods. The self-diagnosis mode may be specified by the user interface 18, or may be configured to be automatically set first after the entire apparatus is turned on, or may be set when the object to be measured is replaced.

被測定物の交換は、直接に次の被測定物を搬送してきて測定済みの被測定物と取り替える、或いは図1の点線で囲まれた範囲の各構成要素(ビームスプリッター3、5,12、カメラ10等を含む)を搭載したステージ40を次の被測定物が設定されている場所へ移動して取り替える何れかの方法がある。ステージ40は、駆動部(不図示)により移動可能にされている。いずれの方法であっても制御部30は、現在の被測定物の測定終了を検知して、測定終了を出し、次の測定開始指令を受けるまでは各構成要素に対して測定を停止させ自己診断モードとする。   For the replacement of the object to be measured, the next object to be measured is directly transported and replaced with the measured object to be measured, or each component (beam splitters 3, 5, 12,. There is any method in which the stage 40 on which the camera 10 and the like are mounted is moved to the place where the next object to be measured is set and replaced. The stage 40 is movable by a drive unit (not shown). Regardless of the method, the control unit 30 detects the measurement end of the current object to be measured, issues the measurement end, and stops the measurement for each component until receiving the next measurement start command. Enter diagnostic mode.

制御部30は、判定手段30aを有する。判定手段30aは、自己診断モード中に、広帯域光検出手段32の出力(光量の大きさ又は強さ)と第1の閾値とを比較し、前者が第1の閾値以下であれば光源1が異常、第1の閾値以上であれば光源1が正常と判断する。また制御部30は自己診断モード中に光源1をオフにし、そのとき、判定手段30aは、レーザー光検出手段31の出力(光量の大きさ又は強さ)と第2の閾値とを比較し、前者が第2の閾値以下であればHe−Neレーザー11が異常、第2の閾値以上であればHe−Neレーザー11が正常と判断する。そして判定手段30aは、光源1又はHe−Neレーザー11のいずれか一方がもしくは双方が異常の場合は、故障と判断し、双方が正常な場合に限り正常と判断する。制御部30は、異常の判断結果を受けて、ユーザインタフェース18の表示部への表示で、ブザーで又は/及び音声で「故障」の旨のアラームを出力する。また、これらのアラームを出力するとともに又は単独で、光源1及びHe−Neレーザー11をオフにする。   The control unit 30 includes a determination unit 30a. During the self-diagnosis mode, the determination unit 30a compares the output (the magnitude or intensity of the light amount) of the broadband light detection unit 32 with the first threshold value. If the former is equal to or less than the first threshold value, the light source 1 If it is abnormal or greater than the first threshold, it is determined that the light source 1 is normal. In addition, the control unit 30 turns off the light source 1 during the self-diagnosis mode, and at that time, the determination unit 30a compares the output (the magnitude or intensity of the light amount) of the laser light detection unit 31 with the second threshold value, If the former is equal to or less than the second threshold value, the He-Ne laser 11 is determined to be abnormal, and if it is equal to or greater than the second threshold value, the He-Ne laser 11 is determined to be normal. The determination unit 30a determines that a failure occurs when either one of the light source 1 or the He—Ne laser 11 or both are abnormal, and determines that it is normal only when both are normal. In response to the abnormality determination result, the control unit 30 outputs an alarm indicating “failure” with a buzzer or / and by voice on a display on the display unit of the user interface 18. In addition to outputting these alarms or independently, the light source 1 and the He—Ne laser 11 are turned off.

上記第1の閾値又は第2の閾値のそれぞれは、ノイズレベル以上であって、光源1又はHe−Neレーザー11の単独の規格値に相当する値、或いは測定上必要とされる精度又は確度を満たすための値を基に、予め制御部30に設定され、又は記憶されている。また、第1の閾値又は第2の閾値のそれぞれと比較されるのは、光源1の出力又はレーザー光検出手段31の出力は、それぞれの全部との対応関係が既知であればそれぞれの一部であっても良い。   Each of the first threshold value or the second threshold value is equal to or higher than the noise level and corresponds to a single standard value of the light source 1 or the He—Ne laser 11, or an accuracy or accuracy required for measurement. Based on the value to satisfy, it is set or stored in the control unit 30 in advance. Further, the first threshold value or the second threshold value is compared with each of the output of the light source 1 or the output of the laser light detection means 31 if the corresponding relationship with all of them is known. It may be.

制御部30は、以上の自己診断モードで正常と判断されたときのみ、次に説明するような測定モードへ移行できるので、測定値の信頼性が確保できる。   Only when it is determined to be normal in the above self-diagnosis mode, the control unit 30 can shift to a measurement mode as described below, so that the reliability of the measurement value can be ensured.

「1.5 変形例」
図2は、図1の変形例であって、He−Neレーザー11をハーフミラー33で一部を反射させてビームスプリッター12へ入射させる構成にし、そのハーフミラーから出力される他の一部のレーザー光をレーザー光検出手段31が検出できる構成にした。この場合は、光源1をオフにしなくとも常時、検出できる。図2のその他の構成及び動作は図1と同じである。ただし、図2でHe−Neレーザー11とハーフミラー33の直前までの間はファイバで光路構成されていてもよい。図1は、測定のための光路構成を優先した構成なので、図2に比べ、ハーフミラー33が不要であり、干渉系のビームスプリッター3に入るレーザー光のロスを少なくできる。なお、ハーフミラー33の代わりにビームスプリッターを用いても良い。
"1.5 Modifications"
FIG. 2 is a modification of FIG. 1, in which the He-Ne laser 11 is partially reflected by the half mirror 33 and incident on the beam splitter 12, and another part of the output from the half mirror is shown. The laser light detecting means 31 can detect the laser light. In this case, detection is always possible without turning off the light source 1. Other configurations and operations in FIG. 2 are the same as those in FIG. However, in FIG. 2, the optical path may be configured with a fiber between the He—Ne laser 11 and the half mirror 33. Since FIG. 1 gives priority to the optical path configuration for measurement, the half mirror 33 is unnecessary and the loss of laser light entering the beam splitter 3 of the interference system can be reduced compared to FIG. A beam splitter may be used instead of the half mirror 33.

[2.実施形態の測定構成]
[2.1.測定構成の概要]
実施形態では、上記したように、白色光(広帯域光)とレーザー光(コヒーレント光)の双方によるそれぞれの干渉縞を撮像手段10で撮像して、撮像手段10から得られるそれぞれの干渉縞のデータを基に白色光による干渉縞が生ずる光路長(光路長を干渉縞が生ずるまでに光路長を変化させたときの変化量でも良い。)を、レーザー光による干渉縞の変化を参照して求める構成である。
以下の説明で、測定光路の光路長を変化させたときに、干渉縞が生ずる光路長(光路長を干渉縞が生ずるまでに光路長を変化させたときの変化量)を「特定光路長」と言うことがある。
[2. Measurement Configuration of Embodiment]
[2.1. Overview of measurement configuration]
In the embodiment, as described above, the interference fringes due to both white light (broadband light) and laser light (coherent light) are imaged by the imaging means 10, and the data of the respective interference fringes obtained from the imaging means 10. Based on the above, the optical path length in which interference fringes due to white light are generated (the optical path length may be the amount of change when the optical path length is changed before the interference fringes are generated) is obtained with reference to the change in interference fringes due to laser light. It is a configuration.
In the following description, when the optical path length of the measurement optical path is changed, the optical path length in which the interference fringe is generated (the change amount when the optical path length is changed before the interference fringe is generated) is referred to as “specific optical path length”. There are times.

実施形態は、大きく分けて、レーザー光による干渉縞をカメラ10(撮像手段)で撮像して、その干渉縞の繰り返しからスケールを生成する場合と、白色光による干渉縞が生ずる光路長(特定光路長)を、レーザー光による干渉縞の変化(スケール)を参照して求める場合の二つがある。これらの動作はほぼ同時でも良いし、又は先にスケールを生成して、その後に光路長を求める動作であっても良い。前者の同時動作は、動作に時間差が殆ど無いので、環境変化、測定条件の違いの影響を受けることが少ない。後者の時系列的な動作であっても、短時間の時間差であるから室内等で同じ条件で測定している分には、ほぼ前者と同様に信頼性の良い結果が得られる。   The embodiment is broadly divided into a case where an interference fringe due to laser light is imaged by the camera 10 (imaging means), and a scale is generated from repetition of the interference fringe, and an optical path length (specific optical path) in which the interference fringe due to white light occurs There are two cases in which the length) is obtained with reference to the change (scale) of interference fringes caused by laser light. These operations may be performed almost simultaneously, or may be an operation in which a scale is generated first and an optical path length is obtained thereafter. Since the former simultaneous operation has almost no time difference in operation, it is less affected by environmental changes and differences in measurement conditions. Even in the latter time-series operation, since the time difference is a short time, a reliable result can be obtained in the same manner as in the former if the measurement is performed under the same conditions in a room or the like.

[2.2 白色光及びレーザー光による干渉縞検出までの共通の光学系及び処理の構成]
上記[1.1]及び[1.2]の光源1及びHe−Neレーザー11の説明を基礎に干渉系の構成と動作について説明する。
[2.2 Common optical system and processing configuration until interference fringe detection by white light and laser light]
The configuration and operation of the interference system will be described based on the description of the light source 1 and the He—Ne laser 11 in the above [1.1] and [1.2].

以下の説明において、白色光とレーザー光との区別をすること無く、単に「戻り光」「干渉縞」等と言う表現をしたときは、白色光及びレーザー光に共通するものとする。   In the following description, when the expressions “return light”, “interference fringes”, etc. are simply used without distinguishing between white light and laser light, they are common to white light and laser light.

被測定物7は、ピエゾ8の上に搭載されている。ピエゾ8は、圧電素子で構成され、光路長制御手段16からの指示により、連続的に、被測定物7をXY平面(図1の紙面に直交する面)に対してZ軸方向(図1の紙面の上下方向)へ変位(移動)させることにより測定光路の光路長を所定速度で可変制御する。   The DUT 7 is mounted on the piezo 8. The piezo 8 is composed of a piezoelectric element, and in accordance with an instruction from the optical path length control means 16, the object to be measured 7 is continuously moved in the Z-axis direction (FIG. 1) with respect to the XY plane (surface orthogonal to the paper surface of FIG. 1). The optical path length of the measurement optical path is variably controlled at a predetermined speed by being displaced (moved) in the vertical direction of the paper surface.

なお、ここでは、本発明における光路長を変化させる可変方法としては、連続的な可変であり、可変速度を一定として、説明するが、後記するように可変方法は、ステップ状に可変しても良いし、可変速度もサイン関数等の所定関数状に変化しても良い。   Here, the variable method for changing the optical path length in the present invention will be described as being continuously variable and having a constant variable speed. However, as will be described later, the variable method may be changed stepwise. The variable speed may be changed to a predetermined function such as a sine function.

ピエゾ8は、光路長制御手段16の制御によって、ビームスプリッター5の固定位置に対して測定光路の光路長を変化させる手段(光路長可変手段)である。なお、ここでは、参照光路の光路長を固定、測定光路の光路長を変化させることで説明するが、干渉縞を生成するには、ピエゾ8を参照鏡6へ取り付け、測定光路を固定とし、参照光路の光路長を可変する構成にしても可能である。   The piezo 8 is means (optical path length variable means) that changes the optical path length of the measurement optical path with respect to the fixed position of the beam splitter 5 under the control of the optical path length control means 16. Here, the description will be given by fixing the optical path length of the reference optical path and changing the optical path length of the measurement optical path. However, in order to generate interference fringes, the piezo 8 is attached to the reference mirror 6, the measurement optical path is fixed, A configuration in which the optical path length of the reference optical path is variable is also possible.

参照鏡6及び被測定物7から反射されてきた各白色光及び各レーザー光(以下、区別する場合は「戻り白色光」「戻りレーザー光」と言い、区別無く纏めて「戻り光」と言うことがある。)は、ビームスプリッター5で合波(合成)され、さらに対物レンズ4で集光される。戻り白色光は、ビームスプリッター3を通過して結像レンズ9により平行光にされてカメラ10へ入力される。戻りレーザー光は、ビームスプリッター3を通過して結像レンズ9により集光にされてカメラ10へ入力される。   Each white light and each laser light reflected from the reference mirror 6 and the object 7 to be measured (hereinafter referred to as “return white light” and “return laser light” when distinguished, and collectively referred to as “return light”). Are combined (combined) by the beam splitter 5 and further condensed by the objective lens 4. The returned white light passes through the beam splitter 3, is converted into parallel light by the imaging lens 9, and is input to the camera 10. The return laser light passes through the beam splitter 3, is condensed by the imaging lens 9, and is input to the camera 10.

このとき、光路長制御手段16からの指示で、ピエゾ8が測定光路の光路長を変化させる距離(或いは変化させるときの時間間隔)に応じて、カメラ10が戻り光を撮像することにより、戻り光(戻り白色光、戻りレーザー光を含む)による干渉縞が撮像される(実際は、撮像は、戻り白色光及び戻りレーザー光を撮像しているだけであるが、後に撮像データを展開したときに現れる戻り白色光及び戻りレーザー光による干渉縞含むので、「干渉縞を撮像」と表現している。)。撮像された干渉縞は、メモリ13に記憶される。このとき、測定光路は、上記のように被測定物7の所望の照射範囲を白色光により同時に照射する構成にされているので、照射範囲の各照射位置、つまり測定したい位置(以下、「測定位置」と言う。)からの戻り白色光に対応する干渉縞が撮像される。   At this time, in response to an instruction from the optical path length control means 16, the camera 10 captures the return light according to the distance (or the time interval at which the piezo 8 changes the optical path length of the measurement optical path). Interference fringes due to light (including return white light and return laser light) are imaged (actually, the imaging is merely imaging the return white light and the return laser light, but when the image data is developed later (Including interference fringes due to return white light and return laser light appearing, and therefore, "interference fringes are imaged"). The captured interference fringes are stored in the memory 13. At this time, since the measurement optical path is configured to simultaneously irradiate the desired irradiation range of the DUT 7 with white light as described above, each irradiation position of the irradiation range, that is, a position to be measured (hereinafter referred to as “measurement”). An interference fringe corresponding to the returning white light from the “position” is imaged.

なお、図1の光学系の変形としては、対物レンズ4の代わりに測定光路と参照光路のそれぞれに対物レンズを配置する光学系を構成することもできるので、本発明は、図1の光学系に限らない。以下の説明は、図1に沿って説明する。   As a modification of the optical system of FIG. 1, an optical system in which an objective lens is arranged in each of the measurement optical path and the reference optical path instead of the objective lens 4 can be configured. Not limited to. The following description will be given with reference to FIG.

メモリ13は、光路長制御手段16が所定時間間隔のタイミング信号を生成してピエゾ8へ時間間隔に応じて光路長を可変指示するので、そのタイミング信号のタイミングで戻り光の撮像データ(戻り光の輝度を示す輝度データになる。)を取り込み、記憶する。例えば、光路長が時間的に直線的に連続して可変されるのであれば、タイミング信号の時間間隔をアドレスとして撮像データを記憶する。これらのタイミング進行方向(つまりアドレス方向)が、Z軸方向を表すことになる。そのとき、その撮像データを測定位置(Xm、Yp)と合わせて記憶する。測定位置(Xm、Yp)の情報は、カメラ10の撮像素子の位置に対応したXY方向の画素の位置である。このようにメモリ13に記憶されているので、例えば、後記するようにそのメモリ13から、このアドレス順に撮像データを取り出して再現すれば、図3(A)のような干渉縞のデータが得られる。   In the memory 13, since the optical path length control means 16 generates a timing signal at a predetermined time interval and instructs the piezo 8 to variably specify the optical path length according to the time interval, imaging data (return light) of the return light at the timing of the timing signal. Is acquired and stored. For example, if the optical path length is continuously variable linearly in time, the imaging data is stored using the time interval of the timing signal as an address. These timing advance directions (that is, address directions) represent the Z-axis direction. At that time, the imaging data is stored together with the measurement position (Xm, Yp). The information on the measurement position (Xm, Yp) is the position of the pixel in the XY direction corresponding to the position of the image sensor of the camera 10. Since the data is stored in the memory 13 as described above, for example, if the imaging data is extracted from the memory 13 in the order of the addresses and reproduced as described later, the interference fringe data as shown in FIG. 3A is obtained. .

信号処理手段20は、光路長検出手段14と変位演算手段15とを備えている。
光路長検出手段14は、図1のように、分波手段14a、レーザー光路長参照手段14b及び白色光干渉縞光路検出手段14cを備えている。分波手段14aは、メモリ13からの撮像データ、例えば、測定位置(Xm、Yp)のデータを受けて、レーザー光による干渉縞を分離して取り出す。白色光による干渉縞は分波して取り出しても良いし、この場合は、コヒーレント光による干渉縞と重なったままでも良い(理由は後記する。)。分波手段14aは、メモリ13からの所定時間間隔に対する撮像データを、フーリエ変換等により時間領域データを周波数(波長)領域のデータに変換して、周波数(波長)フィルタにより分離して取り出し、取り出したレーザー光のデータを再び時間領域のデータに再変換し、コヒーレント光路長参照手段14bへ入力される。その再変換された波形を図3(B)に示す。一方、白色光の干渉縞とレーザー光の干渉縞が分離されないで、又は分離されて白色光による白色光干渉縞光路長検出手段14cに送られる(分離された各色光による干渉縞が図3(A)である。)。
The signal processing means 20 includes an optical path length detection means 14 and a displacement calculation means 15.
As shown in FIG. 1, the optical path length detection means 14 includes a demultiplexing means 14a, a laser optical path length reference means 14b, and a white light interference fringe optical path detection means 14c. The demultiplexing unit 14a receives imaging data from the memory 13, for example, data of measurement positions (Xm, Yp), and separates and extracts interference fringes due to laser light. The interference fringes due to the white light may be separated and taken out. In this case, the interference fringes due to the coherent light may remain overlapped (the reason will be described later). The demultiplexing unit 14a converts the imaging data for a predetermined time interval from the memory 13 into data in the frequency (wavelength) domain by Fourier transform or the like, and separates and extracts the data by a frequency (wavelength) filter. The converted laser beam data is converted again into time domain data and input to the coherent optical path length reference means 14b. The reconverted waveform is shown in FIG. On the other hand, the interference fringes of white light and the interference fringes of laser light are not separated or separated and sent to the white light interference fringe optical path length detecting means 14c by white light (the interference fringes by the separated color lights are shown in FIG. A).).

図3(A)は、横軸が光路長が変化する時間で縦軸が輝度(振幅)を示す座標上に展開した白色光による干渉縞の波形である。この白色光による干渉縞のほぼ中央のピーク位置が、参照光路の光路長と測定光路の光路長が同一になった場合である。また、白色光による干渉縞の波長は、ほぼ白色光(広帯域光)の要素となる各波長の合成で作られ、それらの帯域のほぼ中央の波長λの1/2になる。また、図3(A)の白色光による干渉縞の光路長方向への広がりは、白色光のコヒーレンシーの程度による。コヒーレンシーが低いほど広がり幅は、狭くなる。   FIG. 3A is a waveform of interference fringes due to white light developed on coordinates where the horizontal axis represents the time when the optical path length changes and the vertical axis represents luminance (amplitude). The peak position at the approximate center of the interference fringes due to white light is when the optical path length of the reference optical path is the same as the optical path length of the measurement optical path. Further, the wavelength of the interference fringes due to the white light is made by synthesizing each wavelength which is an element of almost white light (broadband light), and becomes half of the wavelength λ at the center of those bands. Further, the spread of the interference fringes in the optical path length direction due to the white light in FIG. 3A depends on the degree of coherency of the white light. The lower the coherency, the narrower the spread.

なお「ピーク位置」(或いは、「ピークの位置」)とは、白色光による干渉縞の輝度(振幅)が最大(以下、「ピーク」と言う。)となる横軸上の位置であって、横軸は、測定光路の光路長方向(Z軸方向:図1の紙面の上下方向)であり、また光路長可変するときの時間軸方向(カメラ10により所定時間間隔で撮像されるときの時間軸方向)である。   The “peak position” (or “peak position”) is a position on the horizontal axis where the luminance (amplitude) of interference fringes due to white light is maximum (hereinafter referred to as “peak”). The horizontal axis is the optical path length direction of the measurement optical path (Z-axis direction: the vertical direction of the paper in FIG. 1), and the time axis direction when the optical path length is variable (time when images are taken at predetermined time intervals by the camera 10) Axial direction).

図3(B)は、レーザー光による干渉縞の変化を、輝度(振幅)と位相とで、白色光の干渉縞と同じ時間軸上に表した図である。図3(B)の横軸は時間でもあるが、基準位置(光路長を可変する前の位置、例えば、これをゼロとする。)からの測定光路の光路長の変化量でもある。レーザー光による干渉縞の変化の繰り返しは、レーザー光の波長の1/2と同じ繰り返しになる。位相の変化(量)は、基準位置における位相に対する変化(量)である(相対的な変化量である。)。したがって、レーザー光による干渉縞の変化をレーザー光の波長で刻まれたスケールとして使用することができる。   FIG. 3B is a diagram showing changes in interference fringes due to laser light in terms of luminance (amplitude) and phase on the same time axis as white light interference fringes. The horizontal axis in FIG. 3B is time, but is also the amount of change in the optical path length of the measurement optical path from the reference position (position before changing the optical path length, for example, this is zero). The repetition of the interference fringe change by the laser light is the same as the half of the wavelength of the laser light. The change (amount) of the phase is a change (amount) with respect to the phase at the reference position (a relative change amount). Therefore, the change of the interference fringes due to the laser beam can be used as a scale carved with the wavelength of the laser beam.

ここで、分波手段14aによる白色光による干渉縞とのレーザー光による干渉縞の分離について説明する。白色光干渉縞光路長検出手段14cは、白色光の干渉縞の位置を特定するためのピーク(特徴点)を求める。一方、図4(A)に白色光による干渉縞の波形、図4(B)にレーザー光による干渉縞の波形、及び図4(C)に白色光及びレーザー光による干渉縞の波形を示すが、図4(C)のように、レーザー光の干渉縞の大きさが適切な大きさであれば、分離されなくて重なっていても、白色光の干渉縞のピーク位置を抽出できる。レーザー光の干渉縞の大きさは、He−Neレーザー11からのレーザー光の強さを調整する事により適切にすることできる。大凡では、レーザー光の干渉縞の大きさは、白色光の干渉縞の大きさ以下が望ましい。   Here, separation of interference fringes by laser light from interference fringes by white light by the demultiplexing unit 14a will be described. The white light interference fringe optical path length detection means 14c obtains a peak (characteristic point) for specifying the position of the white light interference fringe. On the other hand, FIG. 4A shows a waveform of interference fringes caused by white light, FIG. 4B shows a waveform of interference fringes caused by laser light, and FIG. 4C shows a waveform of interference fringes caused by white light and laser light. As shown in FIG. 4C, if the size of the interference fringe of the laser beam is an appropriate size, the peak position of the interference fringe of white light can be extracted even if they are not separated and overlapped. The size of the interference fringes of the laser beam can be made appropriate by adjusting the intensity of the laser beam from the He—Ne laser 11. In general, it is desirable that the size of the interference fringes of the laser light be less than the size of the interference fringes of the white light.

また、メモリ13に記憶される撮像データは、上記時間間隔で記憶される(図3(A)は、それらを結んで連続的に表現したものである。)ので、撮像データとしては離散的になる。この時間間隔(タイミング)が、図3(A)の干渉縞の周期(縞の振幅間の間隔)に対して無視できる程度の細かさであれば、白色光干渉縞光路長検出手段14cは、それら撮像データ(輝度データ)の極大点のうち最大値を示す点をピーク位置として求めて求めても良いし、極大点を結んで得られる包絡線のピーク位置を演算で求めても良い。離散的なため、極大点と包絡線のピーク位置が一致しないため、包絡線を結べないことがあるが、滑らかな特性であるから前後の極大点から補間演算により求めても良い。また、撮像データの時間間隔と干渉縞の周期に関わらず、信号処理手段20は、特開平9−318329号公報に記載のように、離散的処理で求めてもよい。   In addition, since the imaging data stored in the memory 13 is stored at the above time interval (FIG. 3A is a continuous representation by connecting them), the imaging data is discretely obtained. Become. If this time interval (timing) is fine enough to be ignored with respect to the interference fringe period (interval between fringe amplitudes) in FIG. 3A, the white light interference fringe optical path length detection means 14c The point indicating the maximum value among the maximum points of the imaging data (luminance data) may be obtained as a peak position, or the peak position of the envelope obtained by connecting the maximum points may be obtained by calculation. Since it is discrete, the maximum point and the peak position of the envelope do not match, and the envelope may not be connected. However, since it is a smooth characteristic, it may be obtained by interpolation calculation from the front and rear maximum points. Regardless of the time interval of the imaging data and the period of the interference fringes, the signal processing means 20 may be obtained by discrete processing as described in JP-A-9-318329.

さらに、離散的な撮像データから干渉縞のピークを求める方法としては、光路長を段階的に変化させ、その変化した所定の光路長毎に撮像した離散的な撮像データを基に次ぎの処理を行う技術がある。撮像データから得られる干渉縞のデータからデジタル・ハイパスフィルタにより直流成分を除外する。交流成分となったデータを二乗して整流する。整流された繰り返し成分に比べ低い繰り返し成分を通過させるデジタル・ローパスフィルタを通して積分し、干渉縞の包絡線データを算出する。このとき、ピーク位置の細かさの要求に応じて、整流された繰り返し成分の間を例えば二乗特性で補間し、補間された繰り返し成分を積分して包絡線データを求める。この包絡線データのピークとなる位置を求める。これらは撮像データが時間間隔で取得されているので、時間軸上でピーク位置が計算されるが、最終的には、光路長にスケーリングされる。上記算出は、白色光干渉縞光路長検出手段14cで行われ、コヒーレント路長参照手段14bでスケーリングすることができる。   Furthermore, as a method for obtaining the peak of interference fringes from discrete imaging data, the optical path length is changed stepwise, and the next processing is performed based on the discrete imaging data taken for each of the changed predetermined optical path lengths. There is technology to do. A direct current component is excluded from the interference fringe data obtained from the imaging data by a digital high-pass filter. The AC component is squared and rectified. Integration is performed through a digital low-pass filter that passes a repetitive component lower than the rectified repetitive component, and envelope data of interference fringes is calculated. At this time, according to a request for the fineness of the peak position, the rectified repetitive components are interpolated with, for example, a square characteristic, and the interpolated repetitive components are integrated to obtain envelope data. The position that becomes the peak of the envelope data is obtained. In these cases, since the imaging data is acquired at time intervals, the peak position is calculated on the time axis, but is finally scaled to the optical path length. The above calculation is performed by the white light interference fringe optical path length detection unit 14c, and can be scaled by the coherent path length reference unit 14b.

[2.3 スケーリング及び形状測定]
光路長検出手段14は、上記のように、メモリ13から、例えば測定位置(Xm、Yp)における撮像データをアドレス順に読み出して、図3(B)のレーザー光による干渉縞と図3(A)に示すような白色光の干渉縞を得る。白色光干渉縞光路検出手段14cがその白色光の干渉縞のピーク位置を検出する。そして、レーザー光路長参照手段14bが白色光の干渉縞の時間軸と同じ時間軸に展開されたレーザー光による干渉縞の変化をそのレーザー光の波長で刻んだスケールとして、そのピークが現れる位置を位置Z1sとして特定する。同様に、基準測定位置(Xs、Ys)の撮像データからも白色光の干渉縞のピークの位置Zss(光路長の変化量)を特定する。つまり、光路長(その変化量)に値付け、スケーリングをする。スケーリングされた光路長を基に画像としてユーザインターフェース18に表示させても良い。各数値と測定位置を対応付けて表示させても良い。
[2.3 Scaling and shape measurement]
As described above, the optical path length detection unit 14 reads out, for example, the imaging data at the measurement position (Xm, Yp) from the memory 13 in the order of addresses, and the interference fringes due to the laser light in FIG. 3B and FIG. To obtain white light interference fringes. The white light interference fringe optical path detection means 14c detects the peak position of the white light interference fringe. Then, the laser light path length reference means 14b sets the position where the peak appears as a scale in which the change of the interference fringe due to the laser light developed on the same time axis as that of the white light interference fringe is engraved with the wavelength of the laser light. The position is specified as Z1s. Similarly, the peak position Zss (amount of change in the optical path length) of the interference fringes of white light is also identified from the imaging data at the reference measurement position (Xs, Ys). That is, the optical path length (the amount of change) is valued and scaled. The image may be displayed on the user interface 18 as an image based on the scaled optical path length. Each numerical value and measurement position may be displayed in association with each other.

そして、変位演算手段15が、それらの差Zss−Z1sを求めることにより、測定位置(Xm、YP)の基準測定位置(Xs、Ys)に対する変位、つまり高さとなる。同様に、各測定位置について処理を行えば、被測定物7の全面について高さ(Z軸方向の距離)が測定できる。このように測定位置間での特定光路長間の差をとることによって、相対的な高さ方向の変位を得るので、カメラ10の応答遅れがあってもうち消すことができる。   And the displacement calculating means 15 calculates | requires those differences Zss-Z1s, and becomes the displacement with respect to the reference | standard measurement position (Xs, Ys) of a measurement position (Xm, YP), ie, height. Similarly, if processing is performed for each measurement position, the height (distance in the Z-axis direction) can be measured for the entire surface of the DUT 7. Since the relative displacement in the height direction is obtained by taking the difference between the specific optical path lengths between the measurement positions in this way, even if there is a response delay of the camera 10, it can be eliminated.

また、上記のように、光路長制御手段16による測定光路の光路長の変化及びカメラ10による撮影データの取得は、時間に対応しているが、上記スケーリングは、時間に関係ないのが特徴である。したがって、光路長制御手段16による測定光路の光路長の変化の速度が変化し一定でなくなったとしても、それに起因した白色光による干渉縞の歪みとスケール(つまり、レーザー光による干渉縞)の歪みとは同じになり、かつスケールの刻み(レーザー光による干渉縞の間隔)はレーザー光の波長で決定されるので、対応関係が明確であり、速度の変化の影響を防止して測定できる。   Further, as described above, the change in the optical path length of the measurement optical path by the optical path length control means 16 and the acquisition of the photographing data by the camera 10 correspond to time, but the scaling is not related to time. is there. Therefore, even if the speed of change of the optical path length of the measurement optical path by the optical path length control means 16 changes and becomes non-constant, the distortion of interference fringes due to white light and the distortion of scales (that is, interference fringes due to laser light) are caused. Since the step of the scale (interference fringe spacing by the laser beam) is determined by the wavelength of the laser beam, the correspondence is clear and measurement can be performed while preventing the influence of the speed change.

上記構成のうち、制御手段30、信号処理手段20及び光路長制御手段16は,CPU及びメモリで構成することができる。   Among the above-described configurations, the control unit 30, the signal processing unit 20, and the optical path length control unit 16 can be configured by a CPU and a memory.

[3.自己診断から測定までの一連の動作]
制御部30が自己診断モード及び測定モードを設定して次のような各ステップを各部に実行させる。下記の一部は、上記説明と重なる。
ステップ1:制御部30が自己診断モードを設定する。
ステップ2:光源1が制御部30によってオンにされ、出力する白色光の少なくとも一部を広帯域光検出手段32によって検出され、さらに、He−Neレーザー11がオンにされ、出力するレーザー光の少なくとも一部がレーザー光検出手段31によって検出される。
ステップ3:判定手段30aが、検出された白色光の一部及びレーザー光の一部を、第1及び第2の閾値と大きさを比較し、それぞれの大きさの良否判定を行い、広帯域光源1と前記He−Neレーザー11をオフにして、操作者にアラームを出して修理を促す。
ステップ4:制御手段30は、良と判断したときは、或いは終了後に良と判断されたとき、自己診断モードから測定モードに切り換え、各部を制御して測定を実行させる。
ステップ5:光路形成部5が、広帯域光源1からの白色光及びHe−Neレーザー11からのレーザー光を、上記したように参照光路と測定光路の双方に入射させ、参照鏡6からの反射光と被測定物7からの各反射光とを合波してカメラ10側へ出力し、撮像させる。
ステップ6:一方、光路長可変手段8が、参照光路又は測定光路のいずれか一方の光路長を変化させる。
ステップ7:光路長検出手段14が、出力される反射波の合波を撮像したカメラ10の出力を基に、白色光による干渉縞が生ずる光路長を、レーザー光による干渉縞の変化を基に求める。
そして、求めた光路長から被測定物7の三次元の形状を測定する。
[3. A series of operations from self-diagnosis to measurement]
The control unit 30 sets the self-diagnosis mode and the measurement mode, and causes each unit to execute the following steps. The following part overlaps with the above description.
Step 1: The control unit 30 sets a self-diagnosis mode.
Step 2: The light source 1 is turned on by the control unit 30, and at least a part of the white light to be output is detected by the broadband light detection means 32. Further, the He-Ne laser 11 is turned on and at least the laser light to be output is output. A part is detected by the laser light detection means 31.
Step 3: The determination means 30a compares the detected white light part and part of the laser light with the first and second threshold values, determines the quality of each, and determines the broadband light source. 1 and the He-Ne laser 11 are turned off, and an alarm is given to the operator to prompt repair.
Step 4: The control means 30 switches from the self-diagnosis mode to the measurement mode when it is determined to be good, or when it is determined to be good after completion, and controls each part to execute measurement.
Step 5: The optical path forming unit 5 causes the white light from the broadband light source 1 and the laser light from the He-Ne laser 11 to enter both the reference optical path and the measurement optical path as described above, and the reflected light from the reference mirror 6 And the reflected light from the object to be measured 7 are combined and output to the camera 10 side to be imaged.
Step 6: On the other hand, the optical path length varying means 8 changes the optical path length of either the reference optical path or the measurement optical path.
Step 7: Based on the output of the camera 10 in which the optical path length detection means 14 images the combined reflected waves to be output, the optical path length in which the interference fringes due to white light are generated is determined based on the change in the interference fringes due to the laser light. Ask.
Then, the three-dimensional shape of the DUT 7 is measured from the obtained optical path length.

これらの動作の流れに応じたプログラムを記憶し、CPU実行させることができる。   A program corresponding to the flow of these operations can be stored and executed by the CPU.

本発明に係る実施形態の機能構成を示す図である。It is a figure which shows the function structure of embodiment which concerns on this invention. 図1の変形例を示す図ある。It is a figure which shows the modification of FIG. 図1の光路長検出手段を説明するための図である。It is a figure for demonstrating the optical path length detection means of FIG. 図1の分波手段を説明するための図である。It is a figure for demonstrating the branching means of FIG.

符号の説明Explanation of symbols

1 光源
2 コリメータレンズ
3 ビームスプリッター
4 対物レンズ
5 ビームスプリッター
6 参照鏡
7 被測定物
8 ピエゾ
9 結像レンズ
10 カメラ
11 He−Neレーザー
12 ビームスプリッター
13 メモリ
14 光路長検出手段
14a 分波手段
14b コヒーレント光路長参照手段
14c 白色光干渉縞光路長検出手段
15 変位演算手段
16 光路長制御手段
18 ユーザインタフェース
20 信号処理手段
30 制御部
30a 判定手段
31 レーザー光検出手段
32 広帯域光検出手段
33 ハーフミラー
40 ステージ
DESCRIPTION OF SYMBOLS 1 Light source 2 Collimator lens 3 Beam splitter 4 Objective lens 5 Beam splitter 6 Reference mirror 7 Measured object 8 Piezo 9 Imaging lens 10 Camera 11 He-Ne laser 12 Beam splitter 13 Memory 14 Optical path length detection means 14a Demultiplexing means 14b Coherent Optical path length reference means 14c White light interference fringe optical path length detection means 15 Displacement calculation means 16 Optical path length control means 18 User interface 20 Signal processing means 30 Control unit 30a Determination means 31 Laser light detection means 32 Broadband light detection means 33 Half mirror 40 Stage

Claims (3)

広帯域光を出力する広帯域光源(1)と、コヒーレント光を出力するコヒーレント光源(11)と、それぞれ遠端に、参照鏡を配置した参照光路と被測定物を配置した測定光路の双方に該広帯域光及びコヒーレント光を入射させ、前記参照鏡からの反射光と前記被測定物からの反射光とを合波して出力する光路形成部(5)と、前記参照光路又は前記測定光路のいずれか一方の光路長を変化させる光路長可変手段(8)と、該光路形成部が出力する反射波の合波を基に、前記広帯域光による干渉縞が生ずる光路長を、前記コヒーレント光による干渉縞の変化を基に求める光路長検出手段(14)と、を備え、求めた光路長から三次元の形状を測定する三次元形状測定装置であって、
前記広帯域光の少なくとも一部を検出する広帯域光検出手段(32)と、前記コヒーレント光の少なくとも一部を検出するコヒーレント光検出手段(31)と、前記コヒーレント光検出手段の出力及び前記広帯域光検出手段の出力を受けてそれぞれの出力の良否判定を行う制御部(30)とを備えたことを特徴とする三次元形状測定装置。
The broadband light source (1) that outputs broadband light, the coherent light source (11) that outputs coherent light, and the broadband light source both on the reference optical path in which the reference mirror is arranged on the far end and on the measurement optical path on which the object to be measured is arranged. An optical path forming unit (5) that makes light and coherent light incident, combines the reflected light from the reference mirror and the reflected light from the object to be measured, and outputs either the reference light path or the measurement light path Based on the optical path length varying means (8) for changing one optical path length and the reflected wave output from the optical path forming section, the optical path length in which the interference fringes due to the broadband light are generated is set as the interference fringes due to the coherent light. An optical path length detecting means (14) to be obtained based on the change of the three-dimensional shape measuring device for measuring a three-dimensional shape from the obtained optical path length,
Broadband light detection means (32) for detecting at least a part of the broadband light, coherent light detection means (31) for detecting at least a part of the coherent light, an output of the coherent light detection means, and the broadband light detection A three-dimensional shape measuring apparatus comprising: a control unit (30) that receives the output of the means and determines whether each output is good or bad.
前記制御部は、前記良否判定の結果、前記それぞれの出力のいずれかを否と判定したときは少なくとも、アラームを出力し、もしくは前記広帯域光源と前記コヒーレント光源をオフにすることを特徴とする請求項1に記載の三次元形状測定装置。   The control unit outputs at least an alarm, or turns off the broadband light source and the coherent light source when it determines that any of the respective outputs is negative as a result of the quality determination. Item 3. The three-dimensional shape measuring apparatus according to Item 1. 制御部(30)が自己診断モードを設定する段階と、
広帯域光源(1)が出力する広帯域光の少なくとも一部、及びコヒーレント光源(11)が出力するコヒーレント光の少なくとも一部をそれぞれ検出する検出段階と、
前記検出段階で検出した前記広帯域光の一部及びコヒーレント光の一部を基にそれぞれの光量の大きさの良否判定を行い、少なくともいずれか一つを否と判定したときは少なくとも、アラームを出力し、もしくは前記広帯域光源と前記コヒーレント光源をオフにする判定段階と、
前記判定段階で良と判断された後に、前記制御部が測定モードを設定する段階と、
光路形成部(5)が、それぞれ遠端に、参照鏡を配置した参照光路と被測定物を配置した測定光路の双方に前記広帯域光源からの広帯域光及び前記コヒーレント光源からのコヒーレント光を入射させ、前記参照鏡からの反射光と前記被測定物からの各反射光とを合波して出力する干渉段階と、
光路長可変手段(8)が、前記参照光路又は前記測定光路のいずれか一方の光路長を変化させる段階と、
光路長検出手段(14)が、前記干渉段階で出力される反射波の合波を基に、前記広帯域光による干渉縞が生ずる光路長を、前記コヒーレント光による干渉縞の変化を基に求める段階と、を備え、
求めた光路長から三次元の形状を測定する三次元形状測定方法。








The control unit (30) sets the self-diagnosis mode;
A detection stage for detecting at least part of the broadband light output from the broadband light source (1) and at least part of the coherent light output from the coherent light source (11), respectively;
Based on a part of the broadband light and a part of the coherent light detected in the detection step, the quality of each light quantity is judged to be good, and if at least one of them is judged to be negative, at least an alarm is output Or determining to turn off the broadband light source and the coherent light source;
After the determination in the determination step is good, the control unit sets a measurement mode;
The optical path forming unit (5) causes the broadband light from the broadband light source and the coherent light from the coherent light source to enter both the reference optical path in which the reference mirror is disposed and the measurement optical path in which the object to be measured is disposed at the far ends. An interference stage for combining and outputting the reflected light from the reference mirror and the reflected light from the object to be measured;
An optical path length varying means (8) changing the optical path length of either the reference optical path or the measurement optical path;
A step in which an optical path length detecting means (14) obtains an optical path length in which an interference fringe caused by the broadband light is generated based on a change in the interference fringe caused by the coherent light, based on a combination of reflected waves output in the interference step; And comprising
A three-dimensional shape measuring method for measuring a three-dimensional shape from the obtained optical path length.








JP2006092645A 2006-03-30 2006-03-30 Three-dimensional shape measuring apparatus and measuring method Expired - Fee Related JP4180084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092645A JP4180084B2 (en) 2006-03-30 2006-03-30 Three-dimensional shape measuring apparatus and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092645A JP4180084B2 (en) 2006-03-30 2006-03-30 Three-dimensional shape measuring apparatus and measuring method

Publications (2)

Publication Number Publication Date
JP2007263904A true JP2007263904A (en) 2007-10-11
JP4180084B2 JP4180084B2 (en) 2008-11-12

Family

ID=38637025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092645A Expired - Fee Related JP4180084B2 (en) 2006-03-30 2006-03-30 Three-dimensional shape measuring apparatus and measuring method

Country Status (1)

Country Link
JP (1) JP4180084B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121828A (en) * 2007-11-12 2009-06-04 Anritsu Corp Three-dimensional shape measuring device
CN106767500A (en) * 2016-11-25 2017-05-31 天津大学 For the light path system of topography measurement
CN111201427A (en) * 2018-04-03 2020-05-26 株式会社奥谱通 Reflected light measuring device
CN117006971A (en) * 2023-09-25 2023-11-07 板石智能科技(深圳)有限公司 Three-dimensional morphology measurement system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221923A (en) * 1985-03-28 1986-10-02 Toshiba Corp Perspective type inputting device
JPH043305U (en) * 1990-04-25 1992-01-13
JPH10141926A (en) * 1996-11-13 1998-05-29 Olympus Optical Co Ltd Method and equipment for measuring shape
JPH1163973A (en) * 1997-08-12 1999-03-05 Hamamatsu Photonics Kk Range finding module
JP2000146517A (en) * 1998-11-17 2000-05-26 Mitsutoyo Corp Light wave interferometer and length measuring method using light wave interferometer
JP2000213931A (en) * 1999-01-21 2000-08-04 Hamamatsu Photonics Kk Range finding module
JP2000241142A (en) * 1999-02-25 2000-09-08 Toyota Central Res & Dev Lab Inc Circuit part-inspecting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221923A (en) * 1985-03-28 1986-10-02 Toshiba Corp Perspective type inputting device
JPH043305U (en) * 1990-04-25 1992-01-13
JPH10141926A (en) * 1996-11-13 1998-05-29 Olympus Optical Co Ltd Method and equipment for measuring shape
JPH1163973A (en) * 1997-08-12 1999-03-05 Hamamatsu Photonics Kk Range finding module
JP2000146517A (en) * 1998-11-17 2000-05-26 Mitsutoyo Corp Light wave interferometer and length measuring method using light wave interferometer
JP2000213931A (en) * 1999-01-21 2000-08-04 Hamamatsu Photonics Kk Range finding module
JP2000241142A (en) * 1999-02-25 2000-09-08 Toyota Central Res & Dev Lab Inc Circuit part-inspecting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121828A (en) * 2007-11-12 2009-06-04 Anritsu Corp Three-dimensional shape measuring device
CN106767500A (en) * 2016-11-25 2017-05-31 天津大学 For the light path system of topography measurement
CN111201427A (en) * 2018-04-03 2020-05-26 株式会社奥谱通 Reflected light measuring device
CN111201427B (en) * 2018-04-03 2022-08-19 株式会社奥谱通 Reflected light measuring device
CN117006971A (en) * 2023-09-25 2023-11-07 板石智能科技(深圳)有限公司 Three-dimensional morphology measurement system

Also Published As

Publication number Publication date
JP4180084B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
US10612913B2 (en) Apparatus and methods for performing tomography and/or topography measurements on an object
US10267618B2 (en) Defect detection method and defect detection apparatus
US10254252B2 (en) Surface and subsurface detection sensor
CN109416346B (en) Defect inspection apparatus and method
JP5607392B2 (en) Optical interference measurement device
JP5637730B2 (en) Imaging apparatus and imaging method thereof
US8155483B2 (en) Apparatus for and method of measuring image
JP4090860B2 (en) 3D shape measuring device
JP4388113B2 (en) 3D shape measuring device
JP7175982B2 (en) Optical measurement device and sample observation method
JP4180084B2 (en) Three-dimensional shape measuring apparatus and measuring method
JP2008292296A (en) Method for measuring film thickness of transparency film and its apparatus
JP4761817B2 (en) Interferometer, Fourier spectrometer
JP4756024B2 (en) 3D shape measuring device
JP2005351871A (en) Object information input system and object information generating system
JP4218809B2 (en) 3D shape measuring device
JP2007278849A (en) Optical measuring device and optical measuring method
KR20180041168A (en) Method and apparatus for deriving a topography of a target surface
JP2010025864A (en) Interference measuring apparatus
JP2007187623A (en) Method and apparatus for measuring three-dimensional shape
JP5454769B2 (en) Spectroscopic solid shape measuring apparatus and spectral solid shape measuring method
JP2007071817A (en) Two-light flux interferometer and method for measuring shape of object to be measured using interferometer
JP2006208632A (en) Optical measuring instrument
JP2014002026A (en) Lens shape measuring device, and lens shape measuring method
JP2005345288A (en) Mach-zehnder interferometer and inspection method of optical element by mach-zehnder interferometer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees