JP2007240469A - Glass bottle inspection device - Google Patents

Glass bottle inspection device Download PDF

Info

Publication number
JP2007240469A
JP2007240469A JP2006066922A JP2006066922A JP2007240469A JP 2007240469 A JP2007240469 A JP 2007240469A JP 2006066922 A JP2006066922 A JP 2006066922A JP 2006066922 A JP2006066922 A JP 2006066922A JP 2007240469 A JP2007240469 A JP 2007240469A
Authority
JP
Japan
Prior art keywords
glass bottle
bottle
skirt
mouth
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006066922A
Other languages
Japanese (ja)
Other versions
JP4328333B2 (en
Inventor
Takashi Harada
崇 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Glass Co Ltd
Original Assignee
Toyo Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Glass Co Ltd filed Critical Toyo Glass Co Ltd
Priority to JP2006066922A priority Critical patent/JP4328333B2/en
Publication of JP2007240469A publication Critical patent/JP2007240469A/en
Application granted granted Critical
Publication of JP4328333B2 publication Critical patent/JP4328333B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass bottle inspection device capable of inspecting easily and quickly a defective bottle port of a glass bottle. <P>SOLUTION: This glass bottle inspection device 1 has a light source 13 for irradiating the bottle port 3c of the glass bottle 3 with light, and a camera 17 for photographing the bottle port 3c irradiated with the light from the light source 13, and determines quality of the glass bottle 3, based on a photographed image by the camera 17. The glass bottle inspection device 1 detects measuring points P3a, P3b of two points on a top face 3e of the bottle port 3c, based on the photographed image, and calculates a Y-axis direction difference ▵Y between the respective measuring points P3a, P3b to detect a top face inclination. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ガラス瓶の瓶口の検査技術に係り、特に、ガラス瓶の瓶口形状に関する各種検査を高速に行うための技術に関する。   The present invention relates to a technique for inspecting a glass bottle mouth, and more particularly, to a technique for performing various tests relating to the mouth shape of a glass bottle at high speed.

一般に、ガラス瓶の製造工程においては、製瓶機で製造されたガラス瓶がガラス瓶検査装置に導かれ、当該ガラス瓶検査装置にて欠陥の有無が検査され、所定の欠陥を有するガラス瓶が不良品として排除される。この種のガラス瓶検査装置としては、瓶口の天面の傾斜(以下、「天傾斜」と言う)を検査する天面検査装置が知られており、ガラス瓶検査装置にて天傾斜が大きいガラス瓶を排除することで、内容物の液漏れやキャッピング時のトラブルが未然に防止される(例えば、特許文献1参照)。
特開昭64−49906号公報
In general, in a glass bottle manufacturing process, a glass bottle manufactured by a bottle making machine is guided to a glass bottle inspection device, and the glass bottle inspection device is inspected for defects, and a glass bottle having a predetermined defect is excluded as a defective product. The As this type of glass bottle inspection device, there is known a top surface inspection device that inspects the inclination of the top surface of the bottle mouth (hereinafter referred to as “top inclination”). By eliminating the liquid leakage of the contents and trouble at the time of capping can be prevented beforehand (see, for example, Patent Document 1).
JP-A 64-49906

しかしながら、従来のガラス瓶検査装置は、瓶口の天面に板材を当接させ、その板材の傾きを板材上の複数の点と測定子や電極との距離から検出するなど、複数の測定子やセンサが必要であり、検査装置の構成が複雑であると共に、測定に時間を要するといった問題があった。
本発明は、上述した事情に鑑みてなされたものであり、ガラス瓶の瓶口の不良を簡単に、かつ、高速に検査することができるガラス瓶検査装置を提供することを目的とする。
However, the conventional glass bottle inspection apparatus has a plurality of measuring elements such as a plate material abutting on the top surface of the bottle mouth, and the inclination of the plate material is detected from the distance between the plurality of points on the plate material and the measuring elements and electrodes. There is a problem that a sensor is required, the configuration of the inspection apparatus is complicated, and time is required for measurement.
This invention is made | formed in view of the situation mentioned above, and it aims at providing the glass bottle test | inspection apparatus which can test | inspect the defect of the bottle mouth of a glass bottle simply and at high speed.

上記目的を達成するために、本発明は、ガラス瓶の瓶口に光を照射する光照射手段と、前記光照射手段により光が照射されている瓶口を撮影する撮影手段とを有し、前記撮影手段による撮影画像に基づいて前記ガラス瓶の良否を判定するガラス瓶検査装置であって、前記撮影画像に基づいて、前記瓶口の天面上の2点を検出し、当該2点間の垂直方向の差を算出して、天傾斜を検出することを特徴とする。   In order to achieve the above object, the present invention comprises a light irradiation means for irradiating light to a bottle mouth of a glass bottle, and a photographing means for photographing the bottle mouth irradiated with light by the light irradiation means, A glass bottle inspection apparatus that determines the quality of the glass bottle based on a photographed image by a photographing means, and detects two points on the top surface of the bottle mouth based on the photographed image, and a vertical direction between the two points It is characterized by calculating the difference between the above and detecting the sky tilt.

また本発明は、上記発明において、前記ガラス瓶を瓶軸を中心に回転させる回転手段を更に備え、前記回転手段により回転されているガラス瓶の瓶口を前記撮影手段が撮影して複数の静止画の撮影画像を出力し、前記撮影画像ごとに、前記瓶口の天面上の2点を検出して当該2点間の垂直方向の差を算出し、各撮影画像の算出結果の平均値を算出して天傾斜を検出することを特徴とする。   Further, the present invention is the above invention, further comprising a rotating means for rotating the glass bottle around a bottle axis, wherein the photographing means photographs the bottle mouth of the glass bottle rotated by the rotating means, and a plurality of still images are taken. Output a captured image, and for each captured image, detect two points on the top of the bottle mouth, calculate a vertical difference between the two points, and calculate an average value of the calculation results of each captured image And detecting the inclination of the sky.

また上記目的を達成するために、本発明は、ガラス瓶の瓶口に光を照射する光照射手段と、前記光照射手段により光が照射されている瓶口を撮影する撮影手段とを有し、前記撮影手段による撮影画像に基づいて前記ガラス瓶の良否を判定するガラス瓶検査装置であって、前記撮影画像に基づいて、前記瓶口に形成されたスカート部の下端部の形状を検出して、スカート出不良を検出することを特徴とする。   In order to achieve the above object, the present invention has a light irradiation means for irradiating light to a bottle mouth of a glass bottle, and a photographing means for photographing the bottle mouth irradiated with light by the light irradiation means, A glass bottle inspection device that determines the quality of the glass bottle based on a photographed image by the photographing means, and detects a shape of a lower end portion of a skirt portion formed in the bottle mouth based on the photographed image, and a skirt It is characterized by detecting an output failure.

また本発明は、上記発明において、前記スカート部の側面上を延びる第1直線及び下面上を延びる第2直線を検出し、前記第1及び第2直線の交点を頂点とし、かつ、当該頂点から前記第2直線に沿って延びる底辺を有する矩形の検出窓を形成し、前記ガラス瓶のスカート部以外の領域が前記検出窓の領域に占める割合に基づいて、前記スカート出不良を検出することを特徴とする。   Further, the present invention is the above invention, wherein the first straight line extending on the side surface of the skirt portion and the second straight line extending on the lower surface are detected, the intersection of the first and second straight lines is set as a vertex, and from the vertex A rectangular detection window having a bottom extending along the second straight line is formed, and the defective skirt protrusion is detected based on a ratio of an area other than the skirt portion of the glass bottle to the area of the detection window. And

本発明によれば、ガラス瓶の瓶口の撮影画像に基づいて、瓶口の天面上の2点を検出し、当該2点間の垂直方向の差を算出して天傾斜を検出するため、複数の測定子やセンサが必要がなく、簡単かつ高速に天傾斜を検出することができる。   According to the present invention, based on a photographed image of the bottle mouth of the glass bottle, two points on the top of the bottle mouth are detected, and the vertical difference between the two points is calculated to detect the top slope. There is no need for a plurality of measuring elements or sensors, and it is possible to detect the sky tilt easily and at high speed.

以下、図面を参照して本発明の実施の形態について説明する。
図1は、本実施形態に係るガラス瓶検査装置1の概略構成を示す図である。この図において、スライドプレート2は、ガラス瓶3の瓶底3aを案内し、このスライドプレート2の案内面2aには穴5があけられ、この穴5には下方から一対のローラ7が臨み、このローラ7によりガラス瓶3の瓶底3aが回転自在に支持されている。スライドプレート2の案内面2a上(測定ステーションS)にガラス瓶3が案内されると、このガラス瓶3は一対のフリーローラ9とドライブホイール11間に保持されて、このドライブホイール11の駆動力によりガラス瓶3が回転される。これにより、ガラス瓶3が瓶軸Gを回転軸として回転される。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a schematic configuration of a glass bottle inspection apparatus 1 according to the present embodiment. In this figure, the slide plate 2 guides the bottle bottom 3a of the glass bottle 3, a hole 5 is formed in the guide surface 2a of the slide plate 2, and a pair of rollers 7 faces the hole 5 from below. A bottle bottom 3 a of the glass bottle 3 is rotatably supported by the roller 7. When the glass bottle 3 is guided onto the guide surface 2a (measurement station S) of the slide plate 2, the glass bottle 3 is held between the pair of free rollers 9 and the drive wheel 11, and the glass bottle is driven by the driving force of the drive wheel 11. 3 is rotated. As a result, the glass bottle 3 is rotated about the bottle axis G as the rotation axis.

測定ステーションSでは、ガラス瓶3の瓶口3cを挟んで光源13と、像倍率が変化しないテレセントリックレンズ15が装着された高速エリアセンサカメラ(以下、単に「カメラ」と言う)17とが略同一直線上に対向配置され、光源13からの光に照らされた瓶口3cの像がカメラ17により撮影される。このとき、カメラ17(テレセントリックレンズ15)の光軸Kは水平軸Hよりも角度αだけ上方に傾けられており、瓶口3cをやや下側から撮影するようになっている。これにより、カメラ17からみて奥側の瓶口3cの縁がカメラ17に撮影されてしまうのを防止する。また、上記光源13は、青色光を照射する青色LEDがマトリクス状に配列されて構成されている。   In the measurement station S, the light source 13 and the high-speed area sensor camera (hereinafter simply referred to as “camera”) 17 to which the telecentric lens 15 whose image magnification does not change is sandwiched between the bottle mouth 3c of the glass bottle 3 are substantially identical. The camera 17 captures an image of the bottle mouth 3 c that is opposed to the line and is illuminated by light from the light source 13. At this time, the optical axis K of the camera 17 (telecentric lens 15) is tilted upward by an angle α with respect to the horizontal axis H, and the bottle mouth 3c is photographed from a slightly lower side. This prevents the camera 17 from taking a picture of the edge of the bottle mouth 3 c on the back side when viewed from the camera 17. The light source 13 is configured by arranging blue LEDs that emit blue light in a matrix.

制御回路100には、モータ23が接続され、このモータ23が制御回路100の制御の下、上記ドライブホイール11を駆動する。このドライブホイール11の回転角はエンコーダ27により検出され制御回路100に出力される。更に、制御回路100には、磁気式変位センサ29が接続されており、この磁気式変位センサ29は、ガラス瓶3の瓶底3aを支持するローラ7の上下位置を検出する。検査回路101には、制御回路100とカメラコントローラ21とが接続され、瓶3が回転している間には、カメラ17からの撮影信号が入力され、所定の時間間隔で静止画の撮影画像を生成し、パーソナルコンピュータ(以下、「パソコン」と言う)PCに出力する。パソコンPCは、ディスプレイ110Aを有し、撮影画像に基づいて瓶口3cの複数部位の形状の良否を同時に判定するものであり、本実施形態では、瓶口3cの天傾斜及びスカート部の出不良(以下、「スカート出不良」と言う)を判定する。   A motor 23 is connected to the control circuit 100, and the motor 23 drives the drive wheel 11 under the control of the control circuit 100. The rotation angle of the drive wheel 11 is detected by the encoder 27 and output to the control circuit 100. Further, a magnetic displacement sensor 29 is connected to the control circuit 100, and this magnetic displacement sensor 29 detects the vertical position of the roller 7 that supports the bottle bottom 3 a of the glass bottle 3. The control circuit 100 and the camera controller 21 are connected to the inspection circuit 101. While the bottle 3 is rotating, a shooting signal is input from the camera 17, and a still image is captured at predetermined time intervals. It is generated and output to a personal computer (hereinafter referred to as “personal computer”) PC. The personal computer PC has a display 110A, and simultaneously determines the quality of the shape of the plurality of parts of the bottle mouth 3c based on the photographed image. In this embodiment, the ceiling inclination of the bottle mouth 3c and the skirt portion protrusion failure (Hereinafter referred to as “skirt defect”).

つぎに、ガラス瓶検査装置の検査動作を説明する。
ガラス瓶3が測定ステーションSに入ると、このガラス瓶3は、ドライブホイール11に駆動されて瓶軸G回りに回転する。この回転はガラス瓶3の胴部3fが基準(=保持)となるので、仮に、ガラス瓶3の瓶底3aに傾斜があれば、瓶底3aの低くなった部分に当たるローラ7が押し下げられて、このローラ7は鉛直方向下方に変位する。
ガラス瓶3が瓶軸G回りに回転する間に、カメラ17は、ガラス瓶3の瓶口3cを常に撮影し、この瓶口3cの撮影画像はカメラコントローラ21及び検査回路101を介してパソコンPCに順次取り込まれる。そして、当該パソコンPCが各撮影画像に対して画像処理を施し、天傾斜及びスカート出不良を判定する。
Next, the inspection operation of the glass bottle inspection apparatus will be described.
When the glass bottle 3 enters the measuring station S, the glass bottle 3 is driven by the drive wheel 11 and rotates around the bottle axis G. Since this rotation is based on the body part 3f of the glass bottle 3 (= holding), if the bottle bottom 3a of the glass bottle 3 is inclined, the roller 7 hitting the lowered part of the bottle bottom 3a is pushed down. The roller 7 is displaced downward in the vertical direction.
While the glass bottle 3 rotates around the bottle axis G, the camera 17 always photographs the bottle mouth 3c of the glass bottle 3, and the photographed images of the bottle mouth 3c are sequentially transferred to the personal computer PC via the camera controller 21 and the inspection circuit 101. It is captured. Then, the personal computer PC performs image processing on each photographed image, and determines whether there is a ceiling inclination or a defective skirt.

図2はガラス瓶の瓶口を模式的に示す図である。この図に示すように、ガラス瓶3の瓶口3cは胴部3fよりも縮径し、その外周には、図示せぬキャップをねじ込むためのねじ部3dが形成され、その下方には封緘用のスカート部3dが形成されている。瓶口3cの天面3eは、良品にあっては、実線で示すように略水平に延びるものの、不良品にあっては、仮想線で示すように傾斜する。また、スカート部3dは、良品にあっては、その下端部50が角張った形状となり、不良品にあっては、仮想線で示すように、角が取れて丸みを帯びた形状となる。本ガラス瓶検査装置1は、撮影画像に基づいて、天面3eの傾斜及びスカート部3dの丸みのそれぞれの度合いを検出しガラス瓶3の不良品を選別する。   FIG. 2 is a view schematically showing a bottle mouth of a glass bottle. As shown in this figure, the bottle mouth 3c of the glass bottle 3 has a diameter smaller than that of the body portion 3f, and a screw portion 3d for screwing a cap (not shown) is formed on the outer periphery, and a sealing portion is formed below the screw portion 3d. A skirt portion 3d is formed. The top surface 3e of the bottle mouth 3c extends substantially horizontally as shown by a solid line in a non-defective product, but inclines as shown by a virtual line in a defective product. Further, the skirt portion 3d has a shape in which the lower end portion 50 is angular when it is a non-defective product, and has a rounded shape with rounded corners as indicated by an imaginary line when it is a defective product. The present glass bottle inspection device 1 detects the respective degrees of the inclination of the top surface 3e and the roundness of the skirt portion 3d based on the photographed image, and sorts out defective products of the glass bottle 3.

天傾斜の検出について詳述すると、パソコンPCは、瓶口3cについて1枚の撮影画像を取り込む毎に次のような画像処理を実行する。すなわち、図3に示すように、パソコンPCは1枚の撮影画像を取り込むと、瓶軸Gと瓶口3cの天面3eとの交点である中心天面エッジ位置P1のY軸座標値Yp1を検出する。次いで、パソコンPCは、中心天面エッジ位置P1から下方にY軸に沿って所定距離Yc1だけずらした点P1AのY軸座標値Yp1Aを決定し、この点P1Aを通る水平線L1と瓶口3cの両端の交点から側面位置P2a、P2bのX軸座標値Xp2a、Xp2bを求める。なお、上記所定距離Yc1は天面3eからねじ部3bまでの最短距離Caよりも小さい値とされており、側面位置P2a、P2bがねじ部3bに位置するのが防止されている。また、瓶口3cの側面位置P2a、P2bを求めるために、瓶軸Gと天面3eとの交点である中心天面エッジ位置P1を最初に求めたが、必ずしも天面3eの中心でなくとも天面3eのいずれかの位置が最初に特定されれば十分である。すなわち、撮影画像の略中央に瓶口3cが位置する場合には、撮影画像の略中央の点を通る垂直線と、瓶口3cの上端が交差する点を中心天面エッジ位置P1とすれば良い。   Describing in detail the detection of the top inclination, the personal computer PC executes the following image processing every time one captured image is captured for the bottle mouth 3c. That is, as shown in FIG. 3, when the personal computer PC captures one photographed image, the Y-axis coordinate value Yp1 of the center top surface edge position P1, which is the intersection of the bottle axis G and the top surface 3e of the bottle mouth 3c, is obtained. To detect. Next, the personal computer PC determines the Y-axis coordinate value Yp1A of the point P1A shifted downward from the center top surface edge position P1 by the predetermined distance Yc1 along the Y axis, and the horizontal line L1 passing through this point P1A and the bottle mouth 3c. X-axis coordinate values Xp2a and Xp2b of the side surface positions P2a and P2b are obtained from the intersections of both ends. The predetermined distance Yc1 is set to a value smaller than the shortest distance Ca from the top surface 3e to the screw portion 3b, and the side surface positions P2a and P2b are prevented from being positioned on the screw portion 3b. In addition, in order to obtain the side positions P2a and P2b of the bottle mouth 3c, the center top face edge position P1 that is the intersection of the bottle axis G and the top face 3e was first obtained, but not necessarily the center of the top face 3e. It is sufficient if any position of the top surface 3e is identified first. That is, when the bottle mouth 3c is located at the approximate center of the photographed image, the point where the vertical line passing through the substantially central point of the photographed image and the upper end of the bottle mouth 3c intersect is defined as the center top surface edge position P1. good.

次いで、天面3eの2点の測定ポイントP3a、P3bを決定すべく、パソコンPCは、側面位置P2a、P2bから瓶口3cの中心に向けてX軸に沿って所定距離Xc1だけずらした点P4A、P4BのX軸座標値Xp4A、Xp4Bを決定し、点P4Aを通る垂直線L2Aと天面3eの交点、及び、点P4Bを通る垂直線L2Bと天面3eの交点を測定ポイントP3a、P3bとして求める。このように、側面位置P2a、P2bを基準とし、瓶口3cの中心に向けて所定距離Xc1だけずらした点P3a、P3bを測定ポイントP3a、P3bとすることで、瓶軸G(瓶口3cの中心)が正確に検出されなくとも、測定ポイントP3a、P3bを常に同じ位置にすることができる。   Next, in order to determine the two measurement points P3a and P3b on the top surface 3e, the personal computer PC shifts the point P4A shifted from the side surface positions P2a and P2b by a predetermined distance Xc1 along the X axis toward the center of the bottle mouth 3c. , P4B X-axis coordinate values Xp4A and Xp4B are determined, and the intersection of the vertical line L2A passing through the point P4A and the top surface 3e and the intersection of the vertical line L2B passing through the point P4B and the top surface 3e are defined as measurement points P3a and P3b. Ask. Thus, by setting the points P3a and P3b shifted by the predetermined distance Xc1 toward the center of the bottle mouth 3c with respect to the side surface positions P2a and P2b as the measurement points P3a and P3b, the bottle shaft G (the bottle mouth 3c Even if the center) is not accurately detected, the measurement points P3a and P3b can always be at the same position.

次いで、パソコンPCは、測定ポイントP3a、P3bのY軸座標値Yp3a、Yp3bの差分の絶対値であるΔY=|Yp3a−Yp3b|を算出し、これにより当該撮影画像における天傾斜が求められる。なお、このときのΔYの値は画素数である。パソコンPCは、1つのガラス瓶3について撮影画像が取り込まれるごとに、各撮影画像におけるΔYを算出し、撮影画像の取り込みが終了した場合に、各撮影画像におけるΔYを用いて次式(1)に基づいて当該ガラス瓶3の天傾斜を算出する。   Next, the personal computer PC calculates ΔY = | Yp3a−Yp3b |, which is the absolute value of the difference between the Y-axis coordinate values Yp3a and Yp3b of the measurement points P3a and P3b, thereby obtaining the sky inclination in the captured image. Note that the value of ΔY at this time is the number of pixels. Each time a captured image is captured for one glass bottle 3, the personal computer PC calculates ΔY in each captured image, and when capturing of the captured image is completed, the ΔY in each captured image is used to obtain the following equation (1). Based on this, the ceiling inclination of the glass bottle 3 is calculated.

天傾斜=ΣΔY×(n/N)×Ca (1)
ただし、nは今回の撮影画像枚数、Nは検査中の最大撮影画像枚数、Caは変換定数である。
Ceiling = ΣΔY × (n / N) × Ca (1)
Here, n is the number of currently captured images, N is the maximum number of captured images under examination, and Ca is a conversion constant.

上式(1)においては、ΣΔYによって撮影画像ごとのΔYが加算され、変換定数Caによって、ΣΔYの値が画素数から距離の単位に変換される。このとき、ガラス瓶3の回転速度や、カメラ17による撮影タイミングの変動等に起因して、1つのガラス瓶3に対する検査ごとに撮影画像枚数が変動した場合には、ガラス瓶ごとにΣΔYの値が大きくずれてしまう。そこで、1つのガラス瓶3に対する撮影画像枚数(測定サンプリング回数)の変動によるΣΔYのばらつきを吸収すべく、ΣΔYに対して、(撮影画像枚数n/最大の撮影画像枚数N)を乗ずることとしている。
以上の処理により、ガラス瓶3の天傾斜が検出され、この天傾斜が所定値以上の場合には、排除決定されることとなる。
In the above equation (1), ΔY for each captured image is added by ΣΔY, and the value of ΣΔY is converted from the number of pixels to a unit of distance by a conversion constant Ca. At this time, when the number of photographed images varies for each inspection of one glass bottle 3 due to the rotation speed of the glass bottle 3 or the variation of the photographing timing by the camera 17, the value of ΣΔY greatly deviates for each glass bottle. End up. Therefore, in order to absorb variations in ΣΔY due to fluctuations in the number of photographed images (number of measurement samplings) for one glass bottle 3, ΣΔY is multiplied by (number of photographed images n / maximum number of photographed images N).
Through the above processing, the top inclination of the glass bottle 3 is detected, and when this top inclination is equal to or greater than a predetermined value, exclusion is determined.

さて、パソコンPCは、上記天傾斜の検出と共に、スカート出不良も検出している。このスカート出不良について詳細には、パソコンPCは、瓶口3cについて1枚の撮影画像を取り込む毎に次のような画像処理を実行する。すなわち、図4に示すように、パソコンPCは1枚の撮影画像を取り込むと、スカート部3dの側面52上の2点であるスカート側面位置P10A、P10Bを検出する。これら2点のスカート側面位置P10A、P10Bを結ぶ直線L10がスカート部3dの側面52となる。なお、これらのスカート側面位置P10A、P10Bとしては、スカート部51の上方(スカート部51の高さ寸法の上半分)を検出するのが望ましい。   Now, the personal computer PC detects not only the skirt inclination but also the skirt protrusion defect. In detail, the personal computer PC executes the following image processing every time a captured image is taken in the bottle mouth 3c. That is, as shown in FIG. 4, when the personal computer PC captures one photographed image, it detects skirt side positions P10A and P10B that are two points on the side surface 52 of the skirt portion 3d. A straight line L10 connecting these two skirt side surface positions P10A and P10B becomes the side surface 52 of the skirt portion 3d. In addition, as these skirt side surface positions P10A and P10B, it is desirable to detect the upper part of the skirt part 51 (the upper half of the height dimension of the skirt part 51).

次いで、パソコンPCは、各スカート側面位置P10A、P10Bを瓶口3cの中心に向かってX軸に沿って所定距離Xc2だけずらした点P11A、P11Bを求め、これらの点P11A、P11Bを通過する直線L11と、スカート部3dの下面51との交点であるスカート下面位置P12を求める。このスカート下面位置P12を通る水平線L12がスカート部3dの下面51上を延びる線となる。次に、パソコンPCは、この水平線L12(スカート部3dの下面51上を延びる線)と、上記直線L10(スカート部3dの側面52上を延びる線)との交点からスカート下端部位置P13を求める。そして、パソコンPCは、スカート下面位置P12及びスカート下端部位置P13を底辺とし、所定の高さYc2を有する矩形の検出窓Wを生成し、この検出窓Wの中の画像を2値化(例えば白黒化)し、ガラス瓶3の画素数(例えば黒色の画素数)と背景の画素数(例えば白色の画素数)の比率を算出する。   Next, the personal computer PC obtains points P11A and P11B obtained by shifting the skirt side positions P10A and P10B by a predetermined distance Xc2 along the X axis toward the center of the bottle mouth 3c, and straight lines passing through these points P11A and P11B. A skirt lower surface position P12 that is an intersection of L11 and the lower surface 51 of the skirt portion 3d is obtained. A horizontal line L12 passing through the skirt lower surface position P12 is a line extending on the lower surface 51 of the skirt portion 3d. Next, the personal computer PC obtains the skirt lower end position P13 from the intersection of the horizontal line L12 (line extending on the lower surface 51 of the skirt part 3d) and the straight line L10 (line extending on the side surface 52 of the skirt part 3d). . The personal computer PC generates a rectangular detection window W having a predetermined height Yc2 with the skirt lower surface position P12 and the skirt lower end position P13 as the base, and binarizes the image in the detection window W (for example, The ratio of the number of pixels in the glass bottle 3 (for example, the number of black pixels) and the number of pixels in the background (for example, the number of white pixels) is calculated.

詳述すると、検出窓Wにおいては、図5に示すように、スカート部3dの下端部50が全く丸みを帯びていない場合、スカート部3dの側面52が実線にて示すようにスカート下端部位置P13まで延び、当該検出窓Wにおけるガラス瓶画素部分60Aと、背景画素部分60Bとが図示のようになる。これに対して、スカート部3dの下端部50が仮想線にて示すように丸みを帯びるほど、ガラス瓶画素部分60Aに含まれていた領域が背景画素部分60Bに含まれるようになり、当該検出窓Wにおいて背景画素部分60Bが増大する。そこで、パソコンPCは、検出窓Wに占める背景画素部分60Bの画素数の割合である背景比率を算出し、背景比率が所定値以上である場合には、スカート出不良として排除決定する。なお、パソコンPCは、1つのガラス瓶3について撮影画像が取り込まれるごとに各撮影画像に対して上記背景比率を算出し、この背景比率が一度でも所定値以上となった場合には排除決定する。なお、各撮影画像ごとに得られた背景比率の平均値に基づいて排除決定しても良いことは勿論である。   More specifically, in the detection window W, as shown in FIG. 5, when the lower end 50 of the skirt 3d is not rounded at all, the skirt lower end position is such that the side surface 52 of the skirt 3d is indicated by a solid line. The glass pixel portion 60A and the background pixel portion 60B in the detection window W are extended as shown in FIG. On the other hand, as the lower end portion 50 of the skirt portion 3d is rounded as indicated by a virtual line, the region included in the glass bottle pixel portion 60A is included in the background pixel portion 60B, and the detection window In W, the background pixel portion 60B increases. Therefore, the personal computer PC calculates a background ratio, which is a ratio of the number of pixels of the background pixel portion 60B in the detection window W, and determines that it is excluded as a skirt out defect when the background ratio is equal to or greater than a predetermined value. The personal computer PC calculates the background ratio for each photographed image every time a photographed image is captured for one glass bottle 3, and determines that the background ratio is equal to or greater than a predetermined value even once. Of course, the exclusion may be determined based on the average value of the background ratio obtained for each captured image.

さて、上記天傾斜検出及びスカート出不良検出の過程は、図6に示すように、パソコンPCのディスプレイに検査画面200として表示される。この検査画面200には、天傾斜として排除する閾値や、スカート出不良として排除する背景比率の閾値といった各種設定値を入力設定するための検査パラメータ設定ボタン200Aが設けられ、また、検査したガラス瓶の本数及び検査結果に関する情報を表示するためのインフォメーション窓200Bが設けられている。このインフォメーション窓200Bには、現時点までに検査したガラス瓶3の総検査本数、排除決定したガラス瓶3の総排除本数、排除率、天傾斜不良によって排除した天傾斜排除本数、スカート出不良によって排除したスカート排除本数等が表示され、ガラス瓶3がどういった欠陥によってどの程度排除されたかを認識できるようになっている。   Now, the process of the above-mentioned top inclination detection and skirt protrusion defect detection is displayed as an inspection screen 200 on the display of the personal computer PC as shown in FIG. The inspection screen 200 is provided with an inspection parameter setting button 200A for inputting and setting various setting values such as a threshold value to be excluded as a ceiling inclination and a background ratio threshold value to be excluded as a defective skirt. An information window 200B for displaying information on the number and inspection results is provided. In this information window 200B, the total number of glass bottles 3 inspected up to the present time, the total number of glass bottles 3 to be excluded, the rejection rate, the number of heavenly slopes excluded due to defective ceiling inclination, and the skirt excluded due to defective skirting The number of exclusions and the like are displayed, and it is possible to recognize how much the glass bottle 3 has been eliminated by what kind of defect.

さらに、検査画面200には、現在の検査対象となっているガラス瓶3の撮影画像210が順次切り替え表示され、その下方には、各撮影画像210に対する検査結果として上記ΔY及び上記背景比率が履歴表示される。また、撮影画像210の隣には、最後に排除したガラス瓶3の撮影画像210Aが表示される。さらに、この撮影画像210Aには、排除の理由となった箇所が枠212で囲まれて表示されており、例えば天傾斜によって排除決定された場合には、天面3eが枠212で囲まれ、また、スカート出不良によって排除決定された場合には、スカート部3dの下端部50が枠212で囲まれる。そして、この撮影画像210Aの下方には、天傾斜及び背景比率が表示され、これにより、どの程度の欠陥がガラス瓶3の瓶口3cのどこに生じたかが視覚的に速やかに認識できるようになっている。   Further, on the inspection screen 200, the captured images 210 of the glass bottles 3 that are currently inspected are sequentially switched and displayed, and below that, ΔY and the background ratio are displayed as a history as an inspection result for each captured image 210. Is done. Next to the photographed image 210, a photographed image 210A of the glass bottle 3 that is finally excluded is displayed. Further, in the captured image 210A, the location that is the reason for the exclusion is displayed surrounded by a frame 212. For example, when it is determined to be excluded by a ceiling inclination, the top surface 3e is surrounded by the frame 212, In addition, when it is determined to be excluded due to defective skirt protrusion, the lower end portion 50 of the skirt portion 3d is surrounded by the frame 212. Below the captured image 210A, the sky inclination and the background ratio are displayed, so that it is possible to quickly and visually recognize how much defect has occurred in the bottle mouth 3c of the glass bottle 3. .

以上のように、本実施形態によれば、ガラス瓶3の瓶口3cの撮影画像に基づいて、瓶口3の天面3e上の測定ポイントP3a、P3bを検出し、これらの測定ポイントP3a、P3b間のY軸方向(垂直方向)の差であるΔYを算出して天傾斜を検出するため、複数の測定子やセンサが必要なく、簡単かつ高速に天傾斜を検出することができる。
特に、本実施形態によれば、ガラス瓶3を回転させながら瓶口3cを撮影して複数の静止画の撮影画像を取得し、これらの撮影画像ごとに、瓶口3cの測定ポイントP3a、P3b間の差であるΔYを算出し、各ΔYの平均値を算出して天傾斜を検出するため、回転や振動、天面3eの凹凸などに起因して各撮影画像のΔYに含まれる誤差を打ち消すことができる。
なお、ガラス瓶3に対して複数枚の撮影画像を撮影する場合には、検査対象のガラス瓶3ごとの撮影画像枚数の変動による誤差を打ち消すべく、今回の撮影画像枚数と、1回の検査で撮影可能な最大撮影画像枚数とに基づいて上記天傾斜の検出値を補正することが望ましい。
As described above, according to the present embodiment, the measurement points P3a and P3b on the top surface 3e of the bottle mouth 3 are detected based on the photographed image of the bottle mouth 3c of the glass bottle 3, and these measurement points P3a and P3b are detected. Since ΔY, which is the difference in the Y-axis direction (vertical direction), is detected to detect the sky tilt, the sky tilt can be detected easily and quickly without the need for a plurality of measuring elements or sensors.
In particular, according to the present embodiment, the bottle 3c is photographed while rotating the glass bottle 3 to obtain a plurality of still image photographed images, and the measurement points P3a and P3b of the bottle mouth 3c are obtained for each of these photographed images. ΔY is calculated, and the average value of each ΔY is calculated to detect the ceiling tilt, so that the error included in ΔY of each captured image is canceled due to rotation, vibration, unevenness of the top surface 3e, etc. be able to.
When a plurality of photographed images are photographed on the glass bottle 3, the number of the photographed images is taken at this time and one inspection is performed in order to cancel out the error caused by the variation in the number of photographed images for each glass bottle 3 to be inspected. It is desirable to correct the detection value of the above-mentioned ceiling inclination based on the maximum number of captured images.

また、本実施形態によれば、ガラス瓶3の瓶口3cの撮影画像に基づいて、瓶口3cに形成されたスカート部3dの下端部50の形状を検出して、スカート出不良を検出するため、複数の測定子やセンサを用いることなく、簡単な装置構成により高速にスカート出不良を検出することができる。
特に、本実施形態によれば、スカート部3dの側面52上を延びる直線L10及び下面51上を延びる直線L12の交点を頂点(スカート下端部位置P13)とし、当該頂点から上記直線L12に沿って延びる底辺を有する矩形の検出窓Wを形成し、ガラス瓶3のスカート部3d以外の領域(背景画素部分)が検出窓Wの領域に占める割合に基づいて、スカート出不良を検出するため、スカート部3dの下端部50の形状(特に角度)を正確に検出せずとも、簡単にスカート出不良を判定することができる。
Moreover, according to this embodiment, in order to detect the skirt out defect by detecting the shape of the lower end part 50 of the skirt part 3d formed in the bottle mouth 3c based on the photographed image of the bottle mouth 3c of the glass bottle 3. Without using a plurality of measuring elements or sensors, it is possible to detect a skirt out defect at high speed with a simple apparatus configuration.
In particular, according to the present embodiment, the intersection of the straight line L10 extending on the side surface 52 of the skirt portion 3d and the straight line L12 extending on the lower surface 51 is defined as a vertex (skirt lower end portion position P13), and along the straight line L12 from the vertex. A rectangular detection window W having an extending bottom is formed, and the skirt portion is detected in order to detect a skirt protrusion defect based on the ratio of the area (background pixel portion) other than the skirt part 3d of the glass bottle 3 to the area of the detection window W. Even if the shape (particularly the angle) of the lower end portion 3d of 3d is not accurately detected, it is possible to easily determine whether the skirt is defective.

また、本実施形態によれば、カメラ17によって瓶口3cを撮影し、撮影画像に基づいて、瓶口3cの天傾斜及びスカート出不良といった複数部位の良否を同時に判定するため、ガラス瓶3の検査が高速化され、製造スループットを向上させることができる。さらに、ガラス瓶検査装置1が複数部位を同時に検査するため、各部位ごとに検査装置を設置する必要がなく、コストを抑えることができる。   Further, according to the present embodiment, the bottle 3c is photographed by the camera 17, and the glass bottle 3 is inspected in order to simultaneously determine the quality of a plurality of parts such as the top inclination of the bottle mouth 3c and defective skirt out based on the photographed image. Can be speeded up and manufacturing throughput can be improved. Furthermore, since the glass bottle inspection apparatus 1 simultaneously inspects a plurality of parts, it is not necessary to install an inspection apparatus for each part, and costs can be reduced.

なお、上述した実施の形態は、あくまでも本発明の一態様を示すものであり、本発明の範囲内で任意に変形および応用が可能であることは勿論である。   It should be noted that the above-described embodiment is merely an aspect of the present invention, and can be arbitrarily modified and applied within the scope of the present invention.

本発明の実施形態に係るガラス瓶検査装置の構成図。The block diagram of the glass bottle inspection apparatus which concerns on embodiment of this invention. ガラス瓶の瓶口の構成図。The block diagram of the bottle mouth of a glass bottle. 天面の傾斜の検出を説明するための図。The figure for demonstrating the detection of the inclination of a top | upper surface. スカート部の出不良検出を説明するための図。The figure for demonstrating the defect detection of a skirt part. スカート部の出不良を説明するための図。The figure for demonstrating the defective appearance of a skirt part. 検査画面の一態様を模式的に示す図。The figure which shows typically the one aspect | mode of a test | inspection screen.

符号の説明Explanation of symbols

1 ガラス瓶検査装置
3 ガラス瓶
3b ねじ部
3c 瓶口
3d スカート部
3e 天面
3f 胴部
11 ドライブホイール
13 光源
17 カメラ
G 瓶軸
PC パーソナルコンピュータ(パソコン)
W 検出窓
DESCRIPTION OF SYMBOLS 1 Glass bottle inspection apparatus 3 Glass bottle 3b Screw part 3c Bottle opening 3d Skirt part 3e Top surface 3f Body 11 Drive wheel 13 Light source 17 Camera G Bottle axis PC Personal computer (personal computer)
W detection window

Claims (4)

ガラス瓶の瓶口に光を照射する光照射手段と、前記光照射手段により光が照射されている瓶口を撮影する撮影手段とを有し、前記撮影手段による撮影画像に基づいて前記ガラス瓶の良否を判定するガラス瓶検査装置であって、
前記撮影画像に基づいて、前記瓶口の天面上の2点を検出し、当該2点間の垂直方向の差を算出して、天傾斜を検出することを特徴とするガラス瓶検査装置。
A light irradiating means for irradiating light to the bottle mouth of the glass bottle; and a photographing means for photographing the bottle mouth irradiated with light by the light irradiating means, and whether the glass bottle is good or bad based on a photographed image by the photographing means. A glass bottle inspection device for determining
2. A glass bottle inspection apparatus that detects two points on the top surface of the bottle mouth based on the photographed image, calculates a vertical difference between the two points, and detects a top inclination.
請求項1に記載のガラス瓶検査装置において、
前記ガラス瓶を瓶軸を中心に回転させる回転手段を更に備え、
前記回転手段により回転されているガラス瓶の瓶口を前記撮影手段が撮影して複数の静止画の撮影画像を出力し、
前記撮影画像ごとに、前記瓶口の天面上の2点を検出して当該2点間の垂直方向の差を算出し、各撮影画像の算出結果の平均値を算出して天傾斜を検出する
ことを特徴とするガラス瓶検査装置。
In the glass bottle inspection device according to claim 1,
Rotating means for rotating the glass bottle around the bottle axis,
The photographing means photographs the mouth of the glass bottle being rotated by the rotating means and outputs a plurality of still image photographed images,
For each captured image, two points on the top of the bottle mouth are detected to calculate the vertical difference between the two points, and the average value of the calculation results of each captured image is calculated to detect the top inclination. A glass bottle inspection device characterized by:
ガラス瓶の瓶口に光を照射する光照射手段と、前記光照射手段により光が照射されている瓶口を撮影する撮影手段とを有し、前記撮影手段による撮影画像に基づいて前記ガラス瓶の良否を判定するガラス瓶検査装置であって、
前記撮影画像に基づいて、前記瓶口に形成されたスカート部の下端部の形状を検出して、スカート出不良を検出することを特徴とするガラス瓶検査装置。
A light irradiating means for irradiating light to the bottle mouth of the glass bottle; and a photographing means for photographing the bottle mouth irradiated with light by the light irradiating means, and whether the glass bottle is good or bad based on a photographed image by the photographing means. A glass bottle inspection device for determining
An apparatus for inspecting a glass bottle, wherein a shape of a lower end portion of a skirt portion formed in the bottle mouth is detected based on the photographed image to detect a defective skirt protrusion.
請求項3に記載のガラス瓶検査装置において、
前記スカート部の側面上を延びる第1直線及び下面上を延びる第2直線を検出し、
前記第1及び第2直線の交点を頂点とし、かつ、当該頂点から前記第2直線に沿って延びる底辺を有する矩形の検出窓を形成し、
前記ガラス瓶のスカート部以外の領域が前記検出窓の領域に占める割合に基づいて、前記スカート出不良を検出することを特徴とするガラス瓶検査装置。
In the glass bottle inspection apparatus according to claim 3,
Detecting a first straight line extending on the side surface of the skirt portion and a second straight line extending on the lower surface;
Forming a rectangular detection window having an intersection of the first and second straight lines as a vertex and a bottom extending from the vertex along the second straight line;
The glass bottle inspection apparatus that detects the skirt protrusion defect based on a ratio of an area other than the skirt portion of the glass bottle to an area of the detection window.
JP2006066922A 2006-03-13 2006-03-13 Glass bottle inspection equipment Active JP4328333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006066922A JP4328333B2 (en) 2006-03-13 2006-03-13 Glass bottle inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006066922A JP4328333B2 (en) 2006-03-13 2006-03-13 Glass bottle inspection equipment

Publications (2)

Publication Number Publication Date
JP2007240469A true JP2007240469A (en) 2007-09-20
JP4328333B2 JP4328333B2 (en) 2009-09-09

Family

ID=38586141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006066922A Active JP4328333B2 (en) 2006-03-13 2006-03-13 Glass bottle inspection equipment

Country Status (1)

Country Link
JP (1) JP4328333B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876201B1 (en) * 2011-03-09 2012-02-15 東洋ガラス株式会社 Glass bottle inspection device and telecentric lens unit
WO2012042583A1 (en) 2010-09-27 2012-04-05 東洋ガラス株式会社 Glass bottle inspection device
WO2012042582A1 (en) * 2010-09-27 2012-04-05 東洋ガラス株式会社 Glass bottle inspection device
WO2017068295A1 (en) * 2015-10-21 2017-04-27 Tiama Method and apparatus for optically inspecting the profile of containers, the profile including the bottom
CN110779925A (en) * 2018-07-30 2020-02-11 基立福环球运营有限公司 Method and apparatus for detecting defects in closures for closed vials
JP2020085818A (en) * 2018-11-30 2020-06-04 キョーラク株式会社 Container inspection method
CN112179316A (en) * 2019-07-03 2021-01-05 株式会社大福 Inspection system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884722B (en) * 2012-12-20 2016-04-13 山东新华医疗器械股份有限公司 The bottle inlet bottle anti-tilting device of automatic lamp-checking machine

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101440306B1 (en) * 2010-09-27 2014-09-15 도요 가라스 가부시키가이샤 Glass bottle inspection device
KR101440302B1 (en) * 2010-09-27 2014-09-15 도요 가라스 가부시키가이샤 Glass bottle inspection device
CN103119395B (en) * 2010-09-27 2016-05-11 东洋玻璃株式会社 Vial testing fixture
EP2584307A4 (en) * 2010-09-27 2017-11-15 Toyo Glass Co., Ltd. Glass bottle inspection device
CN103052863A (en) * 2010-09-27 2013-04-17 东洋玻璃株式会社 Glass bottle inspection device
CN103119395A (en) * 2010-09-27 2013-05-22 东洋玻璃株式会社 Glass bottle inspection device
JP5294427B2 (en) * 2010-09-27 2013-09-18 東洋ガラス株式会社 Glass bottle inspection equipment
EP2623928A4 (en) * 2010-09-27 2017-11-15 Toyo Glass Co., Ltd. Glass bottle inspection device
WO2012042582A1 (en) * 2010-09-27 2012-04-05 東洋ガラス株式会社 Glass bottle inspection device
WO2012042583A1 (en) 2010-09-27 2012-04-05 東洋ガラス株式会社 Glass bottle inspection device
WO2012120662A1 (en) 2011-03-09 2012-09-13 東洋ガラス株式会社 Glass bottle inspection device and telecentric lens unit
JP4876201B1 (en) * 2011-03-09 2012-02-15 東洋ガラス株式会社 Glass bottle inspection device and telecentric lens unit
US10845316B2 (en) 2015-10-21 2020-11-24 Tiama Method and apparatus for optically inspecting the profile of containers, the profile including the bottom
WO2017068295A1 (en) * 2015-10-21 2017-04-27 Tiama Method and apparatus for optically inspecting the profile of containers, the profile including the bottom
CN110779925B (en) * 2018-07-30 2023-11-07 基立福环球运营有限公司 Method and apparatus for detecting defects in a closure of a packaged vial
CN110779925A (en) * 2018-07-30 2020-02-11 基立福环球运营有限公司 Method and apparatus for detecting defects in closures for closed vials
JP2020085818A (en) * 2018-11-30 2020-06-04 キョーラク株式会社 Container inspection method
JP7185819B2 (en) 2018-11-30 2022-12-08 キョーラク株式会社 Container inspection method
CN112179316A (en) * 2019-07-03 2021-01-05 株式会社大福 Inspection system

Also Published As

Publication number Publication date
JP4328333B2 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
JP4328333B2 (en) Glass bottle inspection equipment
US7308157B2 (en) Method and apparatus for optical inspection of a display
TWI414780B (en) Inspection system
JP5294427B2 (en) Glass bottle inspection equipment
JP5014003B2 (en) Inspection apparatus and method
JPH04166751A (en) Method and apparatus for inspecting defect in bottle and the like
JP4566769B2 (en) Defect information detection device
WO2012120662A1 (en) Glass bottle inspection device and telecentric lens unit
JP4309405B2 (en) Glass bottle inspection equipment
CN109932369A (en) A kind of abnormity display panel testing method and device
KR20060056942A (en) Edge normal process
JP5509465B2 (en) Glass bottle inspection equipment
TW201441604A (en) System and method for detecting shape flaw
JP2864993B2 (en) Surface profile measuring device
JPH11132720A (en) Point defect detecting device and method therefor
JP3343445B2 (en) LCD panel image quality inspection system
KR100691433B1 (en) Electronic part vision inspection method
JP2009300287A (en) Surface defect inspection device
JPH08220014A (en) Lcd-panel inspecting apparatus, and lcd-panel inspecting method using the apparatus
JP3604974B2 (en) Screen inspection method
JP2004028729A (en) Signature panel inspection method for card
JP2701872B2 (en) Surface inspection system
JP2004289571A (en) Pixel defect masking method for imaging device
JPH1138537A (en) Shutter inspection device
JP2003185528A (en) Method and device for inspecting liquid crystal display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4328333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350