JP2007240186A - On-vehicle lane sensor device - Google Patents

On-vehicle lane sensor device Download PDF

Info

Publication number
JP2007240186A
JP2007240186A JP2006059434A JP2006059434A JP2007240186A JP 2007240186 A JP2007240186 A JP 2007240186A JP 2006059434 A JP2006059434 A JP 2006059434A JP 2006059434 A JP2006059434 A JP 2006059434A JP 2007240186 A JP2007240186 A JP 2007240186A
Authority
JP
Japan
Prior art keywords
light
detection
rain
unit
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006059434A
Other languages
Japanese (ja)
Other versions
JP4687979B2 (en
Inventor
Atsushi Tarui
淳 樽井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006059434A priority Critical patent/JP4687979B2/en
Publication of JP2007240186A publication Critical patent/JP2007240186A/en
Application granted granted Critical
Publication of JP4687979B2 publication Critical patent/JP4687979B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an on-vehicle rain sensor having excellent rainfall determination accuracy, capable of suppressing its decline especially caused by temperature fluctuation. <P>SOLUTION: Detection is performed by a rain detection PD 3 by using light reflected by a glass surface as detection light, by a reference light quantity detection PD 4 by using a part of light emitted from an LED 2 of the on-vehicle rain sensor as reference light, and a light quantity ratio which is a ratio between the detection light and the reference light is calculated (step S106). A relation between a temperature and the light quantity ratio at a clear time is learned (step S114), and rainfall is determined by the magnitude relation between the light quantity ratio at the present clear time determined from the present temperature and the learned relation, and the light quantity ratio calculated this time (step S110). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車両に搭載されて降雨を検出し、判定する車載レインセンサ装置に関する。   The present invention relates to an in-vehicle rain sensor device that is mounted on a vehicle to detect and determine rainfall.

特許文献1は、周囲温度の変動に応じて受光手段からの信号電圧の増幅利得を変更することにより車載レインセンサの温度特性を補正することを提案している。   Patent Document 1 proposes to correct the temperature characteristics of the in-vehicle rain sensor by changing the amplification gain of the signal voltage from the light receiving means in accordance with the change in ambient temperature.

本出願人の出願になる下記の特許文献2は、あらかじめ記憶する車載レインセンサの受光素子出力と温度との関係を示す温度特性と、温度センサにより検出した現在の温度とに基づいて、受光素子出力を補正することにより受光素子出力が温度により変動するのを抑止することを提案している。   The following patent document 2 filed by the present applicant is based on a temperature characteristic indicating a relationship between a light-receiving element output of a vehicle-mounted rain sensor stored in advance and a temperature, and a current temperature detected by the temperature sensor. It has been proposed to suppress fluctuations in the light receiving element output due to temperature by correcting the output.

上記した技術を用いる場合、受光素子出力が温度により変動して降雨判定精度が低下するという問題を解消することができるはずである。ただし、これには、出荷する各車載レインセンサの受光素子出力の温度特性が互いに等しいということが前提となる。しかしながら、現実には、各車載レインセンサの受光素子出力の温度特性は各車載レインセンサごとに無視できないばらつきをもつことが知られている。   When the above-described technique is used, it should be possible to solve the problem that the light receiving element output fluctuates depending on the temperature and the rain determination accuracy decreases. However, this presupposes that the temperature characteristics of the light receiving element outputs of the respective onboard rain sensors to be shipped are equal to each other. However, in reality, it is known that the temperature characteristic of the light receiving element output of each in-vehicle rain sensor has a non-negligible variation for each in-vehicle rain sensor.

また、上記特許文献1は、エンジン始動時点で雨無し状態と判定した場合に受光素子出力(すなわち受光部の入射光量)と温度とのデータペアを記憶することにより、受光素子出力の温度特性を学習することも提案している。具体的には、晴れ時での受光素子出力(晴れ時光量)を種々の温度でメモリに記憶しておき、温度センサで検出した現在温度に一致する晴れ時光量をメモリから読み出し、この晴れ時光量と今回の受光素子出力(検出光量)とを比較して降雨判定を行う。したがって、この学習が理想的に行われれば、各車載レインセンサごとの受光素子出力の温度特性のばらつきは良好に解消されるはずである。
特開平11−326186号公報 特開2001−349961号公報
Further, in Patent Document 1, when it is determined that there is no rain at the time of starting the engine, the temperature characteristic of the light receiving element output is obtained by storing the data pair of the light receiving element output (that is, the incident light amount of the light receiving unit) and the temperature. It also proposes to learn. Specifically, the light receiving element output (light during sunny day) is stored in memory at various temperatures, and the light during sunny day that matches the current temperature detected by the temperature sensor is read from the memory. The light amount and the current light receiving element output (detected light amount) are compared to make a rain judgment. Therefore, if this learning is performed ideally, the variation in the temperature characteristic of the light receiving element output for each in-vehicle rain sensor should be satisfactorily eliminated.
JP-A-11-326186 JP 2001-349961 A

しかしながら、車載レインセンサ固有の温度特性を高精度に補償するためには、細かく区分された種々の温度ごとの受光素子出力を取得して、精細な温度特性を各車載レインセンサごとに個別に完成(学習)させる必要がある。したがって、この学習を出荷前に行う場合には、製造サイドに大きな設備、作業負担が生じて現実的でなく、また、出荷後に広い温度範囲にわたって精細な温度区分で上記学習を完全に完成するには、長期の学習期間が必要となるという問題があった。   However, in order to compensate the temperature characteristics unique to the in-vehicle rain sensor with high accuracy, the light-receiving element outputs at various temperatures are obtained and the fine temperature characteristics are individually completed for each in-vehicle rain sensor. It is necessary to (learn). Therefore, when this learning is performed before shipment, it is not realistic because of large equipment and work load on the manufacturing side, and the above learning is completely completed with fine temperature divisions over a wide temperature range after shipment. Had the problem of requiring a long learning period.

車載レインセンサを出荷前に学習させる場合について更に具体的に説明すると、実車環境を模した試験用ガラス面に車載レインセンサを装着し、種々温度を変更してデータを採取することになるが、その後に車載レインセンサが装着される実車とこの試験用ガラス面とは光学的、熱的、形状的にばらつきが存在し、そのうえ、車載レインセンサとガラス面との間の透明緩衝層の状態も異なるため、実車を用いない学習による温度補償の効果は限定的となる。   To explain more specifically about the case where the in-vehicle rain sensor is learned before shipping, the in-vehicle rain sensor is mounted on the glass surface for testing imitating the actual vehicle environment, and data is collected by changing various temperatures. The actual vehicle on which the in-vehicle rain sensor is mounted and the test glass surface have optical, thermal, and shape variations, and the state of the transparent buffer layer between the in-vehicle rain sensor and the glass surface is also present. Since they are different, the effect of temperature compensation by learning without using an actual vehicle is limited.

本発明は、上記問題点に鑑みなされたものであり、製造サイドに多大な負担を掛けることなく、しかも出荷後比較的早期に降雨判定精度を向上可能な車載レインセンサを提供することをその目的としている。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an in-vehicle rain sensor that can improve rainfall determination accuracy relatively quickly after shipment without imposing a great burden on the manufacturing side. It is said.

上記課題を解決するための第1発明の車載レインセンサは、光を車両のガラス面に照射する発光部と、温度を検出する温度検出部と、前記ガラス面から反射して検出された検出光の量である検出光を光電変換して前記検出光に相当する検出信号を出力する検出光検出部と、前記検出信号及び検出温度に基づいて降雨を判定する信号処理部とを備える車載レインセンサにおいて、前記発光量の所定割合からなる基準光を光電変換して前記基準光に相当する基準信号を出力する基準光検出部を備え、前記信号処理部は、前記基準信号及び検出信号を増幅する増幅部と、前記基準信号に対する前記検出信号の比である光量比を算出する光量比算出部と、雨無し判定時の前記光量比に相当する晴れ時光量比と前記温度との関係を記憶する記憶部と、検出温度に対応する前記晴れ時光量比を前記記憶部から読み出した後、前記光量比を前記晴れ時光量比と比較して降雨の有無を判定する判定部と、前記判定部により雨無しと判定された場合に前記検出温度及び前記光量比を前記記憶部に書き込んで前記関係を学習する学習部とを有することを特徴としている。   A vehicle-mounted rain sensor according to a first aspect of the present invention for solving the above problems includes a light emitting unit that irradiates light on a glass surface of a vehicle, a temperature detecting unit that detects temperature, and detection light that is detected by reflection from the glass surface. Vehicle-mounted rain sensor comprising: a detection light detection unit that photoelectrically converts detection light that is the amount of light and outputs a detection signal corresponding to the detection light; and a signal processing unit that determines rainfall based on the detection signal and a detection temperature A reference light detection unit that photoelectrically converts reference light having a predetermined ratio of the light emission amount and outputs a reference signal corresponding to the reference light, and the signal processing unit amplifies the reference signal and the detection signal Amplifying unit, a light amount ratio calculating unit that calculates a light amount ratio that is a ratio of the detection signal to the reference signal, and a relationship between the sunny light amount ratio corresponding to the light amount ratio at the time of no rain and the temperature Memory and After reading the sunny light amount ratio corresponding to the temperature from the storage unit, the light amount ratio is compared with the sunny light amount ratio to determine whether there is rainfall, and the determination unit determines that there is no rain. A learning unit that learns the relationship by writing the detected temperature and the light amount ratio in the storage unit.

すなわち、この発明では、発光部は、降雨を検出するべきガラス面に照射する検出光に対して一定の光量比となる基準光を所定の基準反射面に放射する。反射した基準光は基準光検出部にて光電変換されて基準信号となり、反射した検出光は検出光検出部にて光電変換されて検出信号となる。好適には、基準反射面は上記ガラス面とできるだけ近接させて配置され、両光の光路特性の差を低減させるべきである。検出光量は、ガラス面への雨滴付着により変調されるので、雨滴付着により光量比(検出光量/基準光量)は減少する。したがって、求めた光量比を、降雨判定しきい値である晴れ時光量比と比較することにより、降雨判定を行うことができる。以下、この降雨検出方式を光量比判定型降雨検出方式と称する。   That is, in this invention, a light emission part radiates | emits the reference light used as a fixed light quantity ratio with respect to the detection light irradiated to the glass surface which should detect rainfall to a predetermined | prescribed reference reflective surface. The reflected reference light is photoelectrically converted by the reference light detection unit to become a reference signal, and the reflected detection light is photoelectrically converted by the detection light detection unit to become a detection signal. Preferably, the reference reflecting surface should be placed as close as possible to the glass surface to reduce the difference in the optical path characteristics of both lights. Since the detected light amount is modulated by the raindrop adhering to the glass surface, the light amount ratio (detected light amount / reference light amount) decreases due to the raindrop adhering. Therefore, the rain determination can be performed by comparing the obtained light amount ratio with the sunny light amount ratio which is the rain determination threshold value. Hereinafter, this rain detection method is referred to as a light quantity ratio determination type rain detection method.

この光量比判定型降雨検出方式によれば、降雨検出部の温度変化による判定精度低下を格段に向上することができる。以下、この理由を説明する。降雨検出部の温度変化による検出光量の変化は、温度変化による発光部(通常はLED)の発光光量の変化と、温度変化による光路系の伝送光量の変化に起因する。ここで言う光路系の伝送光量とは、発光部から出た光が検出光検出部に入射する光量を言う。   According to this light quantity ratio determination type rain detection method, it is possible to remarkably improve the determination accuracy drop due to the temperature change of the rain detection unit. Hereinafter, the reason will be described. The change in the detected light amount due to the temperature change in the rain detection unit is caused by the change in the emitted light amount of the light emitting unit (usually LED) due to the temperature change and the change in the transmitted light amount of the optical path system due to the temperature change. Here, the transmitted light amount of the optical path system refers to the light amount that the light emitted from the light emitting unit enters the detection light detecting unit.

温度変化により発光光量が変化すると基準光量も変動するため、光量比は発光部の温度変化の影響を受けない。したがって、光量比によって降雨判定を行えば、発光部の発光量の温度影響をキャンセルして優れた降雨判定精度を達成することができる。   When the amount of emitted light changes due to a temperature change, the reference amount of light also varies, so the light amount ratio is not affected by the temperature change of the light emitting unit. Therefore, if the rain determination is performed based on the light amount ratio, it is possible to cancel the temperature effect of the light emission amount of the light emitting unit and achieve excellent rain determination accuracy.

本発明では更に、温度変化による上記光量比の変動を学習して補正する。これにより、降雨判定精度を更に向上できることが判明した。この理由を詳しく説明する。上記説明したように光量比判定型降雨検出方式では、発光部への温度影響を防止する。しかし、光路系の伝送特性への温度変化の影響はこの光量比判定方式によりキャンセルすることはできない。逆に、光量比判定方式では、発光部から基準光検出部に至る光路系への温度影響が加味される。したがって、温度変化による光路系の伝送特性変化が非常に重要となる。この知見に鑑み、本発明では、温度と晴れ時光量比との関係を学習するとともに温度を検出し、検出温度に対応する晴れ時光量比を読み出し、この晴れ時光量比と今回検出した検出光量とを実質的に比較して降雨判定を行う。これにより、光量比判定により発光部への温度影響のキャンセルに加えて、温度変化が光路系の伝送効率変動に与える影響も相殺できるため、従来に比べて格段に優れた降雨判定精度を達成することができた。   The present invention further learns and corrects the fluctuation of the light amount ratio due to temperature change. As a result, it has been found that the accuracy of rainfall determination can be further improved. The reason for this will be described in detail. As described above, the light quantity ratio determination type rain detection method prevents the temperature effect on the light emitting unit. However, the influence of temperature change on the transmission characteristics of the optical path system cannot be canceled by this light quantity ratio determination method. On the contrary, in the light quantity ratio determination method, the temperature influence on the optical path system from the light emitting unit to the reference light detecting unit is taken into consideration. Therefore, a change in transmission characteristics of the optical path system due to a temperature change is very important. In view of this knowledge, the present invention learns the relationship between the temperature and the clear light amount ratio, detects the temperature, reads the clear light amount ratio corresponding to the detected temperature, and reads the clear light amount ratio and the detected light amount detected this time. And make a rain judgment. As a result, in addition to canceling the temperature effect on the light emitting unit by light quantity ratio determination, the influence of temperature change on the transmission efficiency fluctuation of the optical path system can also be canceled, so that it is possible to achieve much better rainfall determination accuracy than conventional ones. I was able to.

好適な態様において、前記信号処理部は、車両始動直後の光量比学習のための雨判定動作である初期雨判定に雨無しと判定した場合に前記光量比の学習を行うとともに、その後の車両走行時に実施される降雨判定動作である通常雨判定に雨無しと判定した場合にも前記学習を行う。   In a preferred aspect, the signal processing unit learns the light amount ratio when it is determined that there is no rain in the initial rain determination, which is a rain determination operation for light amount ratio learning immediately after starting the vehicle, and thereafter the vehicle travels. The learning is also performed when it is determined that there is no rain in the normal rain determination, which is a rain determination operation that is sometimes performed.

すなわち、従来の温度特性学習型レインセンサが、車両始動初期に雨無し判定した際の光量を晴れ時光量としてその時の温度とともに学習するのに比べて、この態様の温度学習型車載レインセンサは、雨無しと判定した場合の光量比と温度とを学習するに加えて、その後の走行中において雨無しと判定した場合の光量比と温度とを学習する。   That is, compared with the conventional temperature characteristic learning type rain sensor that learns the amount of light when it is determined that there is no rain at the start of the vehicle as the amount of light during sunny days together with the temperature at that time, the temperature learning type in-vehicle rain sensor of this aspect is In addition to learning the light amount ratio and temperature when it is determined that there is no rain, the light amount ratio and temperature when it is determined that there is no rain during subsequent travel are learned.

このようにすれば、車両出荷から短期間にて精細な温度−光量比関係を習得することが可能となり、早期に精密な降雨判定が可能となる。言い換えれば、雨無し条件にて車両始動時に比べ、車両走行時には温度が種々変化するため、精細な温度−光量比関係を短期に取得することができるわけである。その結果、早期に良好な判定精度に達することが可能となる。   In this way, it becomes possible to acquire a detailed temperature-light quantity ratio relationship within a short period of time from vehicle shipment, and it is possible to make a precise rain determination at an early stage. In other words, since the temperature changes variously when the vehicle travels compared to when the vehicle is started in the rainless condition, a fine temperature-light quantity ratio relationship can be acquired in a short time. As a result, good determination accuracy can be reached early.

好適な態様において、前記信号処理部は、前記初期雨判定において少なくとも前記基準光量が所定範囲となるように、前記発光部の発光量をフィードバック制御する。   In a preferred aspect, the signal processing unit feedback-controls the light emission amount of the light emitting unit so that at least the reference light amount falls within a predetermined range in the initial rain determination.

すなわち、この態様によれば、車両始動直後に光量比を学習する際に、たとえば温度変化等により発光部の発光光量が変動したとしても一定の最適光量の基準光が基準光検出部に入射するため、増幅部から出力される基準光相当電圧や検出光相当電圧を最適な大きさとすることができ、増幅率の安定度を向上することができる。その結果として降雨判定精度を向上することができる。   That is, according to this aspect, when learning the light amount ratio immediately after starting the vehicle, even if the light emission amount of the light emitting unit fluctuates due to, for example, a temperature change or the like, the reference light with a certain optimal light amount enters the reference light detection unit. Therefore, the reference light equivalent voltage and the detection light equivalent voltage output from the amplifying unit can be set to an optimum magnitude, and the stability of the amplification factor can be improved. As a result, it is possible to improve the rain determination accuracy.

好適な態様において、前記信号処理部は、前記通常雨判定において前記検出光量が降雨判定に好適な大きさとなるように、前記発光部の発光量を前記初期雨判定における前記発光部の発光量よりも増大させるフィードバック制御を行う。これにより、通常の雨判定に際して検出光量を最適なレベルとすることができる。   In a preferred aspect, the signal processing unit sets the light emission amount of the light emitting unit to be greater than the light emission amount of the light emitting unit in the initial rain determination so that the detected light amount is suitable for rain determination in the normal rain determination. Feedback control is also performed. As a result, the amount of detected light can be set to an optimum level for normal rain determination.

上記課題を解決する第2発明の車載レインセンサは、光を車両のガラス面に照射する発光部と、前記ガラス面から反射して検出された検出光の量である検出光を光電変換して前記検出光に相当する検出信号を出力する検出光検出部と、前記検出信号に基づいて降雨を判定する信号処理部とを備える車載レインセンサにおいて、前記発光量の所定割合からなる基準光を光電変換して前記基準光に相当する基準信号を出力する基準光検出部を備え、前記信号処理部は、前記基準信号及び検出信号を増幅する増幅部と、前記基準信号に対する前記検出信号の比である光量比を算出する光量比算出部と、雨無し判定時の前記光量比である所定の晴れ時光量比と前記光量比とを比較して降雨の有無を判定する判定部とを有し、前記増幅部は、前記検出信号を前記基準信号よりも大きなゲインで増幅するとともに、前記検出信号を所定のオフセット量だけシフトすることにより、雨無し判定時における前記検出信号の出力電圧を前記増幅部の出力ダイナミックレンジ内にて出力することを特徴としている。   A vehicle-mounted rain sensor according to a second aspect of the present invention that solves the above-described problem is a photoelectric conversion of a light-emitting unit that irradiates light onto a glass surface of a vehicle and detection light that is the amount of detection light that is detected by reflection from the glass surface. In an in-vehicle rain sensor including a detection light detection unit that outputs a detection signal corresponding to the detection light and a signal processing unit that determines rainfall based on the detection signal, a reference light having a predetermined ratio of the light emission amount is photoelectrically detected. A reference light detection unit that converts and outputs a reference signal corresponding to the reference light; and the signal processing unit includes an amplification unit that amplifies the reference signal and the detection signal, and a ratio of the detection signal to the reference signal. A light amount ratio calculating unit that calculates a certain light amount ratio, and a determination unit that determines whether there is rainfall by comparing the light amount ratio with a predetermined sunny light amount ratio that is the light amount ratio at the time of no rain determination, The amplification unit is configured to detect the detection signal. Is output with a gain larger than that of the reference signal, and the detection signal is shifted by a predetermined offset amount so that the output voltage of the detection signal at the time of no rain detection is output within the output dynamic range of the amplification unit. It is characterized by doing.

この発明では、既述した光量比学習のための降雨判定を行うため、温度変化による発光部の発光量の変動の影響をキャンセルして、降雨判定精度を向上することができる。   In the present invention, since the rain determination for learning the light amount ratio described above is performed, it is possible to improve the rain determination accuracy by canceling the influence of the variation in the light emission amount of the light emitting unit due to the temperature change.

そのうえ、この発明は、検出光検出部からの検出信号(検出光相当)と基準光検出部からの基準信号(基準光相当)とを増幅するに際して、検出信号増幅におけるゲイン(検出光ゲインとも言う)を基準信号増幅におけるゲイン(基準光ゲインとも言う)よりも大きく設定し、更に検出信号出力電圧を減少させる方向にオフセットを与えて検出信号出力電圧を増幅部の出力ダイナミックレンジ内に収める構成を採用する。なお、ここで言う増幅部の出力ダイナミックレンジとは、増幅部の出力電圧の最小値と最大値との間の範囲を言う。このようにすれば、雨滴判定精度を向上することができる。以下、この点を更に詳しく説明する。   Moreover, the present invention amplifies the detection signal amplification (corresponding to the detection light) and the reference signal (corresponding to the reference light) from the reference light detection unit when the detection signal is amplified (also referred to as detection light gain). ) Is set larger than the gain in reference signal amplification (also referred to as reference optical gain), and further, an offset is applied in the direction of decreasing the detection signal output voltage so that the detection signal output voltage falls within the output dynamic range of the amplifier. adopt. The output dynamic range of the amplifying unit referred to here is a range between the minimum value and the maximum value of the output voltage of the amplifying unit. In this way, raindrop determination accuracy can be improved. Hereinafter, this point will be described in more detail.

雨滴判定精度を高めるには、ガラス面に付着した雨滴量変化による検出信号の変化量すなわち増幅部の出力電圧変化量を大きくすることが好適であり、このためには増幅部のゲインを増大する必要がある。ただし、増幅部のゲイン増大は、増幅部の出力電圧の増大を招き、非常に大きな出力ダイナミックレンジをもつ増幅部が必要となる。増幅部の出力ダイナミックレンジは、増幅部の電源電圧値などにより所定の限界があり、その出力ダイナミックレンジの無制限の増大は製作困難である。   In order to increase the accuracy of raindrop determination, it is preferable to increase the amount of change in the detection signal due to the amount of raindrops adhering to the glass surface, that is, the amount of change in the output voltage of the amplifier. For this purpose, the gain of the amplifier is increased. There is a need. However, an increase in gain of the amplifying unit causes an increase in output voltage of the amplifying unit, and an amplifying unit having a very large output dynamic range is required. The output dynamic range of the amplifying unit has a predetermined limit depending on the power supply voltage value of the amplifying unit and the like, and it is difficult to produce an unlimited increase in the output dynamic range.

そこで、この発明では、検出信号に対するゲインを増大するとともに増幅部の出力電圧に必要量のオフセットを与えることにより、晴れ時光量に相当する出力電圧をこの出力ダイナミックレンジ内に収める。これにより、増幅部の出力ダイナミックレンジの範囲内にて高い雨滴検出感度を得ることができる。   Therefore, in the present invention, the gain for the detection signal is increased, and a necessary amount of offset is given to the output voltage of the amplifying unit, so that the output voltage corresponding to the amount of light during sunny day falls within this output dynamic range. Thereby, high raindrop detection sensitivity can be obtained within the output dynamic range of the amplifying unit.

更に、この発明では、増幅部は基準信号に対しては相対的に小さいゲインの増幅を行う。これにより、基準信号に対しては検出信号に与えたような出力オフセット電圧範囲は生じない。したがって、晴れ時の検出光量に比べて基準光量を小さくしても基準信号に対応してそれに相当する出力電圧を出力することができる。このため、発光部の発光量を基準光量増大のために増大させる必要が無く、この基準光量増大による発光部の発熱増大、温度上昇増大を防止し、それによる発光光量変動も低減できる。   Furthermore, in the present invention, the amplifying unit performs amplification with a relatively small gain with respect to the reference signal. As a result, the output offset voltage range as given to the detection signal does not occur with respect to the reference signal. Therefore, even if the reference light amount is made smaller than the detection light amount at the time of fine weather, an output voltage corresponding to the reference signal can be output. For this reason, it is not necessary to increase the light emission amount of the light emitting unit in order to increase the reference light amount, and it is possible to prevent an increase in heat generation and temperature increase due to the increase in the reference light amount, thereby reducing fluctuations in the emitted light amount.

好適態様において、前記増幅部は、前記検出信号の出力電圧が実質的に0となる入力電圧範囲において、前記増幅器の出力ダイナミックレンジ範囲内の基準信号の出力電圧を出力する。これにより、検出信号感度を増大しつつ、基準光量を低減することができる。   In a preferred aspect, the amplifying unit outputs an output voltage of a reference signal within an output dynamic range range of the amplifier in an input voltage range in which the output voltage of the detection signal is substantially zero. Thereby, the reference light amount can be reduced while increasing the detection signal sensitivity.

好適態様において、前記増幅部は、ゲインを切り替え可能なゲイン切り替え回路と、オフセット量を切り替え可能なオフセット切り替え回路とを有する共通の増幅回路からなり、前記ゲイン切り替え回路は、検出信号増幅期間に、前記ゲインを所定割合だけ増加させ、かつ、出力電圧を前記オフセット量だけ減少させる。これにより、増幅部の回路構成を簡素化することができる。   In a preferred aspect, the amplifying unit includes a common amplifying circuit having a gain switching circuit capable of switching a gain and an offset switching circuit capable of switching an offset amount, and the gain switching circuit includes a detection signal amplification period. The gain is increased by a predetermined ratio, and the output voltage is decreased by the offset amount. Thereby, the circuit configuration of the amplifying unit can be simplified.

本発明の好適な実施形態を以下の実施形態により説明する。ただし、本発明は下記の実施形態に限定解釈されるべきではなく、本発明の技術思想を他の技術を組み合わせて実施してもよいことはもちろんである。   Preferred embodiments of the present invention will be described by the following embodiments. However, the present invention should not be construed as being limited to the following embodiments, and it goes without saying that the technical idea of the present invention may be implemented in combination with other techniques.

(回路構成)
回路構成を図1を参照して説明する。図1は、車両に搭載されたこの実施形態のレインセンサの回路構成を示すブロック回路図である。このレインセンサは、車両などのガラス面に付着した雨滴からの反射光量の変化に基づいて降雨を判定する反射光量判定方式のレインセンサである。
(Circuit configuration)
The circuit configuration will be described with reference to FIG. FIG. 1 is a block circuit diagram showing a circuit configuration of a rain sensor of this embodiment mounted on a vehicle. This rain sensor is a reflected light amount determination type rain sensor that determines rainfall based on a change in reflected light amount from raindrops attached to a glass surface of a vehicle or the like.

図1において、1はLED駆動回路、2はLED、3は雨検出用PD、4は基準光量検出用PDである。周知のように、ここで言うLEDは発光ダイオードを意味し、PDはフォトダイオードを意味している。LEDを公知のその他の電光変換素子に置換すること、又は、PDを公知のその他の光電変換素子たとえばフォトトランジスタなどに置換することは当然可能である。   In FIG. 1, 1 is an LED drive circuit, 2 is an LED, 3 is a rain detection PD, and 4 is a reference light quantity detection PD. As is well known, LED here refers to a light emitting diode and PD refers to a photodiode. It is naturally possible to replace the LED with another known electro-optic conversion element, or to replace the PD with another known photoelectric conversion element such as a phototransistor.

5は、雨検出用PD3と基準光量検出用PD4とを切り替えるための切り替えスイッチであり、アナログマルチプレクサ回路により実現される。このアナログマルチプレクサ回路は好適には、たとえばCMOSトランスファスイッチを二つ用い、一方をオンし、他方をオフすることにより簡単に実現できるが、共通エミッタ接続差動回路などのバイポーラトランジスタ回路においても簡単に実現することができる。切り替えスイッチ5は、雨検出用PD3の出力信号と基準光量検出用PD4の出力信号とのどちらかを選択して後述するアンプ6に入力する。   Reference numeral 5 denotes a changeover switch for switching between the rain detection PD3 and the reference light quantity detection PD4, which is realized by an analog multiplexer circuit. This analog multiplexer circuit can be easily realized by using two CMOS transfer switches, for example, by turning on one and turning off the other, but it can also be easily applied to a bipolar transistor circuit such as a common emitter-connected differential circuit. Can be realized. The change-over switch 5 selects either the output signal of the rain detection PD 3 or the output signal of the reference light amount detection PD 4 and inputs the selected signal to the amplifier 6 described later.

6は、切り替えスイッチ5を通じて雨検出用PD3又は基準光量検出用PD4からの入力信号を電圧増幅するアンプであり、アンプ6が電圧増幅の他に必要な電力増幅を行うことは当然である。アンプ6は、好適には通常のオペアンプ電圧増幅回路により構成される。好適には、雨検出用PD3及び基準光量検出用PD4の出力信号は、受光光量に比例する光電流であり、これらの光電流は、切り替えスイッチ5を通じてアンプ6の入力抵抗による電圧降下により信号電圧に変換される。その他の形式のオペアンプ回路を採用してもよい。アンプ6は、外部からのゲイン切り替え指令によりゲインGを切り替える機能と、外部からのオフセット切り替え指令により入力オフセット電圧(単にオフセットとも称する)を切り替える機能とを装備している。たとえば、オペアンプ電圧増幅回路のゲイン切り替えはその入力抵抗又は帰還抵抗の切り替えにより行うことができ、オフセットの切り替えも+入力端に入力するオフセット電圧の切り替えにより行うことができる。オペアンプ電圧増幅回路のゲインやオフセットの切り替え自体は慣用技術であるため、これ以上の説明を省略する。   Reference numeral 6 denotes an amplifier that amplifies the voltage of the input signal from the rain detection PD 3 or the reference light amount detection PD 4 through the changeover switch 5, and it is natural that the amplifier 6 performs necessary power amplification in addition to voltage amplification. The amplifier 6 is preferably composed of a normal operational amplifier voltage amplifier circuit. Preferably, the output signals of the rain detection PD 3 and the reference light amount detection PD 4 are photocurrents proportional to the received light amount, and these photocurrents are signal voltages due to a voltage drop due to the input resistance of the amplifier 6 through the changeover switch 5. Is converted to Other types of operational amplifier circuits may be employed. The amplifier 6 has a function of switching the gain G by an external gain switching command and a function of switching an input offset voltage (also simply referred to as an offset) by an external offset switching command. For example, the gain switching of the operational amplifier voltage amplification circuit can be performed by switching the input resistance or the feedback resistance, and the offset switching can also be performed by switching the offset voltage input to the + input terminal. Since the switching of the gain and offset of the operational amplifier voltage amplification circuit itself is a conventional technique, further explanation is omitted.

7は、温度検知回路であり、たとえば回路基板に実装された温度センサである。温度検知回路7は、使用温度範囲にて温度に対して略直線的に変化する出力電圧を出力する。この種の温度検知回路7は、たとえば回路基板に実装されたサーミスタ式温度センサとして広く実用されている。   Reference numeral 7 denotes a temperature detection circuit, for example, a temperature sensor mounted on a circuit board. The temperature detection circuit 7 outputs an output voltage that changes substantially linearly with respect to temperature in the operating temperature range. This type of temperature detection circuit 7 is widely used, for example, as a thermistor type temperature sensor mounted on a circuit board.

8は、EEPROM9とともにマイクロコンピュータを構成するCPUである。CPU8は、EEPROM9又は自己内のメモリ領域に格納されたプログラムに基づいて、降雨判定のための学習動作ルーチンとこの学習結果に基づく降雨判定ルーチン動作とを含む降雨検出動作を行う。学習動作ルーチンにおいて、CPU8は、温度検知回路7から入力される温度信号と、アンプ6からの出力電圧に基づいて学習を行う。この学習動作の詳細については後述する。10は、アンプ6の出力電圧をデジタル信号に変換してCPU8に入力するA/Dコンバータである。   Reference numeral 8 denotes a CPU that constitutes a microcomputer together with the EEPROM 9. The CPU 8 performs a rain detection operation including a learning operation routine for rain determination and a rain determination routine operation based on the learning result based on a program stored in the EEPROM 9 or a memory area within itself. In the learning operation routine, the CPU 8 performs learning based on the temperature signal input from the temperature detection circuit 7 and the output voltage from the amplifier 6. Details of this learning operation will be described later. Reference numeral 10 denotes an A / D converter that converts the output voltage of the amplifier 6 into a digital signal and inputs the digital signal to the CPU 8.

(変形態様)
上記実施例では、切り替えスイッチ5を用いることにより、雨検出用PD3の出力信号と基準光量検出用PD4の出力信号とを一定インタバルにて切り替えることによりアンプ6を共通化したが、これに限定されず、雨検出用PD3専用のアンプと基準光量検出用PD4専用のアンプとを併用してもよい。
(Modification)
In the above-described embodiment, the amplifier 6 is shared by switching the output signal of the rain detection PD 3 and the output signal of the reference light amount detection PD 4 at a constant interval by using the changeover switch 5. However, the present invention is not limited to this. Alternatively, an amplifier dedicated to the rain detection PD3 and an amplifier dedicated to the reference light quantity detection PD4 may be used in combination.

(変形態様)
なお、外乱光除去などのためにLED2が所定周波数で発光し、アンプ6がこの周波数を含む狭帯域を通過させる帯域フィルタを有するようにしてもよい。この場合には、この帯域フィルタを通過した信号電圧を検波してからゲイン及びオフセットの切り替えを行ってもよく、あるいは帯域フィルタの手前でそれらを行ってもよい。
(Modification)
In order to remove disturbance light, the LED 2 may emit light at a predetermined frequency, and the amplifier 6 may have a band filter that passes a narrow band including this frequency. In this case, the gain and offset may be switched after detecting the signal voltage that has passed through the band filter, or they may be performed before the band filter.

図1のレインセンサの基本的な動作を以下に説明する。   The basic operation of the rain sensor of FIG. 1 will be described below.

CPU8は、イグニッションスイッチのオンにより起動され、LED駆動回路1に所定の発光量での発光を指令し、LED駆動回路1はLED2をこの発光量にて発光させる。この発光量は、通常の降雨条件にて、アンプ6が出力する雨検出用PD3の出力信号電圧が晴れ時に最適な電圧(約3V)となるように設定されている。   The CPU 8 is activated when the ignition switch is turned on, and instructs the LED drive circuit 1 to emit light at a predetermined light emission amount. The LED drive circuit 1 causes the LED 2 to emit light at this light emission amount. This light emission amount is set so that the output signal voltage of the rain detection PD 3 output from the amplifier 6 becomes an optimum voltage (about 3 V) when the rain is normal under normal rain conditions.

このレインセンサは、車両用のフロントガラス(図示省略)の内側表面に接着固定されたハウジングを有し、このハウジングにはLED2、雨検出用PD3及び基準光量検出用PD4及びプリズムが固定されている。LED2はプリズムを通じてフロントガラスへ向けて斜めに赤外光を照射する。LED2は、出力する赤外光がフロントガラスの外表面にて全反射するように配置されている。フロントガラス外表面に雨滴が付着すると、その付着部分では光は全反射せず外部へ透過するため、フロントガラスで反射しプリズムを通じて雨検出用PD3に入射する検出光が減少する。基準光量検出用PD4はハウジングの所定の反射面から反射する光を受光する位置に配置されている。同じく、LED2から照射された赤外光は、プリズムの所定の反射面で反射して基準光量検出用PD4に入射される。したがって、基準光量検出用PD4の出力電圧は降雨の影響をまったく受けない。   This rain sensor has a housing bonded and fixed to the inner surface of a vehicle windshield (not shown), and an LED 2, a rain detection PD 3, a reference light amount detection PD 4, and a prism are fixed to the housing. . The LED 2 irradiates infrared light obliquely toward the windshield through the prism. LED2 is arrange | positioned so that the infrared light to output may be totally reflected in the outer surface of a windshield. When raindrops adhere to the outer surface of the windshield, light is not totally reflected at the adhered portion but is transmitted to the outside, so that the detection light reflected by the windshield and incident on the rain detection PD 3 through the prism is reduced. The reference light quantity detection PD 4 is arranged at a position for receiving light reflected from a predetermined reflecting surface of the housing. Similarly, the infrared light emitted from the LED 2 is reflected by a predetermined reflecting surface of the prism and is incident on the reference light amount detection PD 4. Therefore, the output voltage of the reference light quantity detection PD 4 is not affected by rainfall at all.

雨検出用PD3は入射光量(検出光量)に相当する電流(検出信号)を、基準光量検出用PD4は入射光量(基準光量)に相当する電流(基準信号)をアンプ6へ入力し、アンプ6はこれらの信号を交互に増幅する。アンプ6の出力電圧はA/Dコンバータ10でデジタル信号に変換されてCPU8へ入力される。   The rain detection PD 3 inputs a current (detection signal) corresponding to the incident light amount (detection light amount), and the reference light amount detection PD 4 inputs a current (reference signal) corresponding to the incident light amount (reference light amount) to the amplifier 6. Alternately amplifies these signals. The output voltage of the amplifier 6 is converted into a digital signal by the A / D converter 10 and input to the CPU 8.

降雨検出動作の好適な具体例を図2に示すフローチャートを参照して具体的に説明する。   A preferred specific example of the rain detection operation will be specifically described with reference to the flowchart shown in FIG.

まず、温度を検出し(S100)、検出温度に対応する晴れ時光量比をEEPROM9から読み出す(S102)。なお、EEPROM9には出荷時に基本的な温度ー晴れ時光量比の関係が書き込まれており、出荷直後でも晴れ時光量比を読み出すことができるものとする。   First, the temperature is detected (S100), and the clear light amount ratio corresponding to the detected temperature is read from the EEPROM 9 (S102). Note that the EEPROM 9 is written with a basic temperature-clear light quantity ratio relationship at the time of shipment, and the clear light quantity ratio can be read immediately after shipment.

次のステップS104では、基準信号及び検出信号に対するアンプのゲインを初期光量比取得用ゲインG1に切り替えるとともに、基準信号及び晴れ時検出信号に対してアンプ6の出力電圧がそれぞれ好適値となるように、LED2の発光量をフィードバック制御する。この実施形態では、基準信号、晴れ時検出信号ともに、約1から4Vの出力電圧が出力されるようにLED2の発光量をフィードバック制御している。また、1種類のゲインで、基準信号、晴れ時検出信号をともに、好適な範囲に制御することが困難な場合は、アンプ6のゲインを多段に制御可能とし、基準信号、晴れ時検出信号のゲインを独立に制御することも可能である。なお、この種のLEDのフィードバック制御自体は周知事項であり、詳細な説明は省略する。これにより、検出信号に対するアンプ6の出力電圧も基準信号に対する出力電圧もアンプ6の好適な出力ダイナミックレンジの範囲内に収めることができる。なお、この好適な出力ダイナミックレンジとは、アンプ6の出力電圧をデジタル信号に変換するA/Dコンバータ10の好適な入力ダイナミックレンジでもある。   In the next step S104, the gain of the amplifier with respect to the reference signal and the detection signal is switched to the initial light quantity ratio acquisition gain G1, and the output voltage of the amplifier 6 becomes a suitable value with respect to the reference signal and the sunny detection signal, respectively. The amount of light emitted from the LED 2 is feedback-controlled. In this embodiment, the light emission amount of the LED 2 is feedback-controlled so that an output voltage of about 1 to 4 V is output for both the reference signal and the sunny time detection signal. When it is difficult to control both the reference signal and the sunny detection signal within a suitable range with one type of gain, the gain of the amplifier 6 can be controlled in multiple stages, and the reference signal and the sunny detection signal It is also possible to control the gain independently. This type of LED feedback control itself is a well-known matter and will not be described in detail. Thereby, the output voltage of the amplifier 6 with respect to the detection signal and the output voltage with respect to the reference signal can be within the preferable output dynamic range of the amplifier 6. The preferable output dynamic range is also a preferable input dynamic range of the A / D converter 10 that converts the output voltage of the amplifier 6 into a digital signal.

(変形態様)
上記実施形態では、LED2の発光量をフィードバック制御したが、想定した所定の発光量となるように、LED駆動回路1に所定の発光量指令を与えるオープン制御を採用してもよい。
(Modification)
In the above embodiment, the light emission amount of the LED 2 is feedback-controlled. However, an open control that gives a predetermined light emission amount command to the LED drive circuit 1 may be adopted so that the predetermined light emission amount is assumed.

次に、アンプ6からA/Dコンバータ10を通じて、検出信号に対する出力電圧と、基準信号に対する出力電圧とを出力する(S106)。当然、この時、切り替えスイッチ5により雨検出用PD3と基準光量検出用PD4とが切り替える制御が行われる。   Next, the amplifier 6 outputs the output voltage for the detection signal and the output voltage for the reference signal through the A / D converter 10 (S106). Of course, at this time, the changeover switch 5 performs control to switch between the rain detection PD3 and the reference light quantity detection PD4.

次に、求めた検出信号に対する出力電圧と基準信号に対する出力電圧から、アンプ特性を逆算して、アンプへの入力電圧を計算し、入力電圧の比すなわち検出光量と基準光量との比である光量比を算出する(S108)。   Next, from the output voltage for the detected signal and the output voltage for the reference signal, the amplifier characteristics are calculated back to calculate the input voltage to the amplifier, and the ratio of the input voltage, that is, the ratio of the detected light amount to the reference light amount The ratio is calculated (S108).

次に、算出した光量比とステップS100にて読み出した晴れ時光量比とを比較し(S110)、算出した光量比が晴れ時光量比以上であれば雨無しと判定し(S112)、算出した光量比と温度との関係を新しい学習データとして利用して温度−光量比マップの修正演算を行い(S114)、この修正したマップをEEPROM9に書き込む(S116)。ステップS110にて、算出光量比が晴れ時光量比未満であれば雨有りと判定し(S118)、ワイパー作動を指令してステップS120に進む。   Next, the calculated light amount ratio is compared with the sunny light amount ratio read in step S100 (S110). If the calculated light amount ratio is equal to or greater than the sunny light amount ratio, it is determined that there is no rain (S112). Using the relationship between the light quantity ratio and the temperature as new learning data, the temperature-light quantity ratio map is corrected (S114), and the corrected map is written into the EEPROM 9 (S116). In step S110, if the calculated light quantity ratio is less than the sunny light quantity ratio, it is determined that there is rain (S118), the wiper operation is commanded, and the process proceeds to step S120.

すなわち、ステップS100〜S118では、晴れと仮定してそれに適したゲインを基準信号増幅時も検出信号増幅時もアンプ6に与え、かつ、それに適した発光量をLED2に与えて初期雨判定を行い、雨無し判定時に温度と光量比との関係の学習を行う。   That is, in steps S100 to S118, assuming that it is clear, a gain suitable for it is given to the amplifier 6 both when the reference signal is amplified and when the detection signal is amplified, and an appropriate light emission amount is given to the LED 2 to perform initial rain determination. The relationship between the temperature and the light quantity ratio is learned when it is determined that there is no rain.

その後の走行中では、後述するように上記とは異なり、雨判定に最適な条件にて雨判定を行う(通常雨判定と称する)。これは、通常雨判定の精度を優先するためである。しかし、この通常雨判定においても雨無しと判定した場合には、温度と光量比との関係の学習をあえて行って上記マップの学習促進を図る。この通常雨判定の制御を以下に詳しく説明する。   During the subsequent running, as described later, unlike the above, rain determination is performed under conditions optimal for rain determination (referred to as normal rain determination). This is because priority is given to the accuracy of normal rain determination. However, if it is determined that there is no rain even in this normal rain determination, learning of the relationship between the temperature and the light quantity ratio is performed to promote learning of the map. This normal rain determination control will be described in detail below.

まず、ステップS120にて、LED2の発光量を後述する通常雨判定に最適な発光量にフィードバック制御する。更に、この発光量に対してアンプ6の出力電圧が通常雨判定において最適値(この実施例では約3V)となるように、アンプ6のゲインを通常雨判定用ゲインG2に切り替える。この時、アンプ6にオフセットΔVを与えることによりアンプ6の出力電圧をA/D入力の好適範囲に調整し、高感度の降雨の有無判定を行う。更に説明すると、このステップS120では、晴れ時において入力される検出信号に対するアンプ6の出力電圧が、アンプ6及びその後段のA/Dコンバータ10において最も高精度となる電圧範囲(ここでは3V近傍)となり、かつ、検出信号の変化に対するアンプ6のゲインが大きくなるように、LED2の発光量をフィードバック制御する。なお、フィードバック制御の代わりに単なる切り替え制御としてもよい。   First, in step S120, the light emission amount of the LED 2 is feedback-controlled to an optimum light emission amount for normal rain determination described later. Further, the gain of the amplifier 6 is switched to the normal rain determination gain G2 so that the output voltage of the amplifier 6 becomes an optimum value (about 3 V in this embodiment) in the normal rain determination with respect to the light emission amount. At this time, an offset ΔV is applied to the amplifier 6 to adjust the output voltage of the amplifier 6 to a suitable range of A / D input, and the presence / absence of rainfall with high sensitivity is determined. More specifically, in this step S120, the output voltage of the amplifier 6 with respect to the detection signal input in the fine weather is the voltage range in which the amplifier 6 and the A / D converter 10 at the subsequent stage have the highest accuracy (here, around 3V). In addition, the light emission amount of the LED 2 is feedback-controlled so that the gain of the amplifier 6 with respect to the change of the detection signal becomes large. Note that simple switching control may be used instead of feedback control.

(変形態様)
なお、この場合も、フィードバック制御の代わりに、この発光量を発光させるようにLED駆動回路1に発光指令を与えるオープン制御を採用してもよい。
(Modification)
Also in this case, instead of feedback control, open control that gives a light emission command to the LED drive circuit 1 so as to emit this light emission amount may be adopted.

次のステップS122では、雨検出用PD3からアンプ6に検出信号を与え、この検出信号に対応する出力電圧をアンプ6からA/Dコンバータ10を通じてCPU8に与え、CPU8にて入力された出力電圧を利用して通常雨判定のための信号である通常雨判定用信号を創成する。なお、この実施例では、この通常雨判定用信号は、雨検出用PD3にて検出した光量である検出光量を平均化処理した信号である。   In the next step S122, a detection signal is given from the rain detection PD 3 to the amplifier 6, an output voltage corresponding to this detection signal is given from the amplifier 6 to the CPU 8 through the A / D converter 10, and the output voltage input by the CPU 8 is obtained. A normal rain determination signal, which is a signal for determining normal rain, is created by using the normal rain determination signal. In this embodiment, the normal rain determination signal is a signal obtained by averaging the detected light amount detected by the rain detection PD 3.

次のステップS124では、通常雨判定用信号をあらかじめ記憶する通常雨判定用しきい値と比較し、通常雨判定用信号が示す検出光量が通常雨判定用しきい値に相当するしきい値光量未満であれば、雨あり判定してワイパー作動を要求し(S126)、検出光量がしきい値光量以上であれば雨無しと判定してステップS128に進む。   In the next step S124, the normal rain determination signal is compared with a normal rain determination threshold value stored in advance, and the detected light amount indicated by the normal rain determination signal corresponds to the normal rain determination threshold value. If it is less, it is determined that there is rain and a wiper operation is requested (S126). If the detected light quantity is equal to or greater than the threshold light quantity, it is determined that there is no rain and the process proceeds to step S128.

次に、通常雨判定用ゲインG2とオフセットΔVを用いて、雨検出用PD3の出力信号である検出信号に相当する検出光量を読み込む(S128)。   Next, using the normal rain determination gain G2 and the offset ΔV, a detected light amount corresponding to a detection signal that is an output signal of the rain detection PD3 is read (S128).

次に、アンプ6のオフセットを無くし、ゲインを基準光検出用ゲインG3に切り替えて基準光量検出用PD4の出力電圧である基準信号をアンプ6に入力し、基準光量を読み込む(S130)。なお、基準光量及び検出光量の算出に際して、アンプ6のゲインが異なることを加味して演算を行うことはもちろんである。   Next, the offset of the amplifier 6 is eliminated, the gain is switched to the reference light detection gain G3, the reference signal that is the output voltage of the reference light quantity detection PD4 is input to the amplifier 6, and the reference light quantity is read (S130). In addition, when calculating the reference light amount and the detected light amount, it goes without saying that the calculation is performed in consideration of the fact that the gain of the amplifier 6 is different.

次に、検出した検出光量と基準光量との比である光量比(検出光量/基準光量)を晴れ時光量比として算出し(S132)、温度を読み込み(S134)、この温度と晴れ時光量比とのデータペアを用いてEEPROM9に記憶している温度ー晴れ時光量比のマップの修正処理を行い(S136)、修正したマップをEEPROM9に書き込み(S138)、ステップS122にリターンする。   Next, a light amount ratio (detected light amount / reference light amount), which is a ratio between the detected detected light amount and the reference light amount, is calculated as a clear light amount ratio (S132), the temperature is read (S134), and the temperature and clear light amount ratio is read. The temperature-clear light quantity ratio map stored in the EEPROM 9 is corrected using the data pair (S136), the corrected map is written in the EEPROM 9 (S138), and the process returns to step S122.

(ゲイン設定の説明)
なお、この実施形態では、上記した光量データ取得時(S106)において用いるゲインG1は、通常雨判定後の光量比取得のための基準光量検出において用いるゲインG3と等しくしている。また、上記した通常雨判定(S124)のために検出光量を検出するステップ(S122)で用いるゲインG2及びオフセット電圧ΔVを、通常雨判定後の光量比取得のための検出光量検出において用いるゲインG2及びオフセット電圧ΔVと等しくしている。これにより、アンプ6のゲイン切り替え回路及びオフセット切り替え回路を簡素化することができる。もちろん、これらゲイン切り替え段数やオフセット切り替え段数を更に多数とすれば、上記ゲイン共通化は必須ではない。
(Explanation of gain setting)
In this embodiment, the gain G1 used at the time of acquiring the light amount data (S106) is equal to the gain G3 used in detecting the reference light amount for acquiring the light amount ratio after the normal rain determination. In addition, the gain G2 and the offset voltage ΔV used in the step (S122) of detecting the detected light amount for the above-described normal rain determination (S124) are used in the detected light amount detection for acquiring the light amount ratio after the normal rain determination. And the offset voltage ΔV. Thereby, the gain switching circuit and the offset switching circuit of the amplifier 6 can be simplified. Of course, if the number of gain switching stages and the number of offset switching stages are further increased, the gain sharing is not essential.

各光量取得時のアンプ6の入出力特性を図4に示す。通常雨判定に際して晴れ時検出光量に相当するアンプ6の出力電圧を約3Vとに設定すると、多少の雨滴付着により低下した検出信号に相当する出力電圧Vdは2〜3V程度となり、アンプ6やA/Dコンバータ10のSN比やリニアリティが高い範囲を用いるため、高精度の検出光量の検出が可能となる。   FIG. 4 shows input / output characteristics of the amplifier 6 at the time of obtaining each light quantity. When the output voltage of the amplifier 6 corresponding to the amount of light detected during sunny weather is set to about 3V in the case of normal rain determination, the output voltage Vd corresponding to the detection signal decreased due to some raindrop adhesion is about 2 to 3V. Since the / D converter 10 uses a range where the SN ratio and linearity are high, the detection light quantity can be detected with high accuracy.

CPU8にてその比率(光量比)が演算され、この比率が所定の雨判定用しきい値と比較されて降雨判定がなされる。これにより、LED2の発光量に対する温度変化の影響がキャンセルされる。しかしながら、基準光光路系及び雨検出用光路系の伝送効率は温度変化の影響を受けて変動し、温度変化により光量比が変動する。   The CPU 8 calculates the ratio (light quantity ratio), compares this ratio with a predetermined rain determination threshold value, and makes a rain determination. Thereby, the influence of the temperature change with respect to the emitted light amount of LED2 is canceled. However, the transmission efficiency of the reference optical path system and the rain detection optical path system fluctuates due to the influence of the temperature change, and the light amount ratio fluctuates due to the temperature change.

そこで、この実施形態では、光路系に対する上記温度影響を排除するため、温度変化に対する光量比の変化特性を学習し、これを利用して検出した光量比による降雨判定に用いる。   Therefore, in this embodiment, in order to eliminate the temperature influence on the optical path system, the change characteristic of the light quantity ratio with respect to the temperature change is learned and used for the rain determination based on the light quantity ratio detected using this.

本発明の車載レインセンサのブロック回路図である。It is a block circuit diagram of the in-vehicle rain sensor of the present invention. 図1の車載レインセンサの降雨検出動作を示すフローチャートである。It is a flowchart which shows the rain detection operation | movement of the vehicle-mounted rain sensor of FIG. 図1の車載レインセンサの降雨検出動作を示すフローチャートである。It is a flowchart which shows the rain detection operation | movement of the vehicle-mounted rain sensor of FIG. 各ステップでのアンプの入出力特性を示す特性図である。It is a characteristic view which shows the input / output characteristic of the amplifier in each step.

符号の説明Explanation of symbols

1 LED駆動回路(発光部)
2 LED(発光部)
3 雨検出用PD(検出光検出部)
4 基準光量検出用PD(基準光検出部)
5 切り替えスイッチ(信号処理部)
6 アンプ(信号処理部)
7 温度検知回路(温度検出部)
8 CPU(信号処理部)
9 EEPROM(記憶部)
10 A/Dコンバータ(信号処理部)
ステップS108、S132(光量比算出部)
ステップS110(判定部)
ステップS114、S136(学習部)
1 LED drive circuit (light emitting part)
2 LED (light emitting part)
3 PD for rain detection (detection light detector)
4 Reference light quantity detection PD (reference light detector)
5 changeover switch (signal processor)
6 Amplifier (Signal processing unit)
7 Temperature detection circuit (temperature detection unit)
8 CPU (signal processor)
9 EEPROM (storage unit)
10 A / D converter (signal processor)
Steps S108 and S132 (light quantity ratio calculation unit)
Step S110 (determination unit)
Steps S114 and S136 (learning unit)

Claims (7)

光を車両のガラス面に照射する発光部と、
温度を検出する温度検出部と、
前記ガラス面から反射して検出された検出光の量である検出光を光電変換して前記検出光に相当する検出信号を出力する検出光検出部と、
前記検出信号及び検出温度に基づいて降雨を判定する信号処理部と、
を備える車載レインセンサにおいて、
前記発光量の所定割合からなる基準光を光電変換して前記基準光に相当する基準信号を出力する基準光検出部を備え、
前記信号処理部は、
前記基準信号及び検出信号を増幅する増幅部と、
前記基準信号に対する前記検出信号の比である光量比を算出する光量比算出部と、
雨無し判定時の前記光量比に相当する晴れ時光量比と前記温度との関係を記憶する記憶部と、
検出温度に対応する前記晴れ時光量比を前記記憶部から読み出した後、前記光量比を前記晴れ時光量比と比較して降雨の有無を判定する判定部と、
前記判定部により雨無しと判定された場合に前記検出温度及び前記光量比を前記記憶部に書き込んで前記関係を学習する学習部と、
を有することを特徴とする車載レインセンサ。
A light emitting unit for irradiating the glass surface of the vehicle with light;
A temperature detector for detecting the temperature;
A detection light detector that photoelectrically converts detection light that is the amount of detection light detected by reflection from the glass surface and outputs a detection signal corresponding to the detection light;
A signal processing unit for determining rainfall based on the detection signal and the detection temperature;
In-vehicle rain sensor comprising
A reference light detection unit that photoelectrically converts reference light having a predetermined ratio of the light emission amount and outputs a reference signal corresponding to the reference light;
The signal processing unit
An amplifier for amplifying the reference signal and the detection signal;
A light amount ratio calculating unit that calculates a light amount ratio that is a ratio of the detection signal to the reference signal;
A storage unit for storing a relationship between the light amount ratio in sunny time corresponding to the light amount ratio at the time of no rain determination and the temperature;
A determination unit that reads out the sunny light amount ratio corresponding to the detected temperature from the storage unit, and compares the light amount ratio with the sunny light amount ratio to determine whether there is rainfall;
A learning unit that writes the detected temperature and the light amount ratio in the storage unit and learns the relationship when the determination unit determines that there is no rain;
An in-vehicle rain sensor comprising:
請求項1記載の車載レインセンサにおいて、
前記信号処理部は、
車両始動直後の光量比学習のための雨判定動作である初期雨判定において雨無しと判定した場合に前記光量比の学習を行うとともに、その後の車両走行時に実施される降雨判定動作である通常雨判定において雨無しと判定した場合にも前記学習を行う車載レインセンサ。
In-vehicle rain sensor according to claim 1,
The signal processing unit
Normal rain, which is a rain determination operation performed when the vehicle travels after learning the light ratio when it is determined that there is no rain in the initial rain determination, which is a rain determination operation for learning the light ratio immediately after the vehicle is started. An in-vehicle rain sensor that performs the learning even when it is determined that there is no rain.
請求項2記載の車載レインセンサにおいて、
前記信号処理部は、
前記初期雨判定において少なくとも前記基準光量が所定範囲となるように前記発光部の発光量をフィードバック制御する車載レインセンサ。
In-vehicle rain sensor according to claim 2,
The signal processing unit
An in-vehicle rain sensor that feedback-controls the light emission amount of the light emitting unit so that at least the reference light amount falls within a predetermined range in the initial rain determination.
請求項3記載の車載レインセンサにおいて、
前記信号処理部は、
前記通常雨判定において前記検出光量が降雨判定に好適な大きさとなるように前記発光部の発光量を前記初期雨判定における前記発光部の発光量よりも増大させるフィードバック制御を行う車載レインセンサ。
In-vehicle rain sensor according to claim 3,
The signal processing unit
An in-vehicle rain sensor that performs feedback control to increase the light emission amount of the light emitting unit to be larger than the light emission amount of the light emitting unit in the initial rain determination so that the detected light amount is suitable for rain determination in the normal rain determination.
光を車両のガラス面に照射する発光部と、
前記ガラス面から反射して検出された検出光の量である検出光を光電変換して前記検出光に相当する検出信号を出力する検出光検出部と、
前記検出信号に基づいて降雨を判定する信号処理部と、
を備える車載レインセンサにおいて、
前記発光量の所定割合からなる基準光を光電変換して前記基準光に相当する基準信号を出力する基準光検出部を備え、
前記信号処理部は、
前記基準信号及び検出信号を増幅する増幅部と、
前記基準信号に対する前記検出信号の比である光量比を算出する光量比算出部と、
雨無し判定時の前記光量比である所定の晴れ時光量比と前記光量比とを比較して降雨の有無を判定する判定部と、
を有し、
前記増幅部は、
前記検出信号を前記基準信号よりも大きなゲインで増幅するとともに、前記検出信号を所定のオフセット量だけシフトすることにより雨無し判定時における前記検出信号の出力電圧を前記増幅部の出力ダイナミックレンジ内にて出力することを特徴とする車載レインセンサ。
A light emitting unit for irradiating the glass surface of the vehicle with light;
A detection light detector that photoelectrically converts detection light that is the amount of detection light detected by reflection from the glass surface and outputs a detection signal corresponding to the detection light;
A signal processing unit for determining rainfall based on the detection signal;
In-vehicle rain sensor comprising
A reference light detection unit that photoelectrically converts reference light having a predetermined ratio of the light emission amount and outputs a reference signal corresponding to the reference light;
The signal processing unit
An amplifier for amplifying the reference signal and the detection signal;
A light amount ratio calculating unit that calculates a light amount ratio that is a ratio of the detection signal to the reference signal;
A determination unit that determines the presence or absence of rain by comparing the light amount ratio with a predetermined sunny light amount ratio that is the light amount ratio at the time of no rain determination;
Have
The amplification unit is
The detection signal is amplified with a gain larger than that of the reference signal, and the detection signal is shifted by a predetermined offset amount so that the output voltage of the detection signal at the time of no rain determination is within the output dynamic range of the amplification unit. An in-vehicle rain sensor characterized by
請求項5記載の車載レインセンサにおいて、
前記増幅部は、
雨無し判定時における前記検出信号の出力電圧を前記増幅部の出力ダイナミックレンジの35〜65%の範囲内にて出力する車載レインセンサ。
In-vehicle rain sensor according to claim 5,
The amplification unit is
An in-vehicle rain sensor that outputs an output voltage of the detection signal at the time of rainless determination within a range of 35 to 65% of an output dynamic range of the amplification unit.
請求項5記載の車載レインセンサにおいて、
前記増幅部は、
ゲインを切り替え可能なゲイン切り替え回路と、オフセット量を切り替え可能なオフセット切り替え回路とを有する共通の増幅回路からなり、
前記ゲイン切り替え回路は、検出信号増幅期間に、前記ゲインを所定割合だけ増加させ、かつ、出力電圧を前記オフセット量だけ減少させる車載レインセンサ。
In-vehicle rain sensor according to claim 5,
The amplification unit is
It consists of a common amplifier circuit having a gain switching circuit capable of switching the gain and an offset switching circuit capable of switching the offset amount,
The gain switching circuit is an in-vehicle rain sensor that increases the gain by a predetermined ratio and decreases the output voltage by the offset amount during a detection signal amplification period.
JP2006059434A 2006-03-06 2006-03-06 In-vehicle rain sensor device Expired - Fee Related JP4687979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006059434A JP4687979B2 (en) 2006-03-06 2006-03-06 In-vehicle rain sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006059434A JP4687979B2 (en) 2006-03-06 2006-03-06 In-vehicle rain sensor device

Publications (2)

Publication Number Publication Date
JP2007240186A true JP2007240186A (en) 2007-09-20
JP4687979B2 JP4687979B2 (en) 2011-05-25

Family

ID=38585878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006059434A Expired - Fee Related JP4687979B2 (en) 2006-03-06 2006-03-06 In-vehicle rain sensor device

Country Status (1)

Country Link
JP (1) JP4687979B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128902A (en) * 2006-11-22 2008-06-05 Denso Corp Device and method for detecting rain drop
JP2011183838A (en) * 2010-03-04 2011-09-22 Denso Corp Wiper control system and wiper control device
KR20160112142A (en) * 2015-03-18 2016-09-28 주식회사 지파랑 Sensing System Using Positive Feedback
CN112849161A (en) * 2021-03-28 2021-05-28 重庆长安汽车股份有限公司 Meteorological condition prediction method and device for automatic driving vehicle, automobile and controller

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102630549B1 (en) * 2018-03-23 2024-01-30 현대자동차주식회사 Optical sensor, rain sensor and vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183941A (en) * 1984-10-02 1986-04-28 Fujitsu Ten Ltd Rain drops detector
JPH08247933A (en) * 1995-03-09 1996-09-27 Nippondenso Co Ltd Detection device of particle concentration in liquid
JPH11326186A (en) * 1998-05-14 1999-11-26 Nippon Sheet Glass Co Ltd Method for correcting temperature characteristic of rain sensor
JP2001349961A (en) * 2000-06-09 2001-12-21 Denso Corp Rain droplet detection method and device therefor
JP2003121559A (en) * 2001-08-09 2003-04-23 Denso Corp Rain sensor
JP2005195566A (en) * 2003-08-12 2005-07-21 Hitachi Ltd Image processing system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183941A (en) * 1984-10-02 1986-04-28 Fujitsu Ten Ltd Rain drops detector
JPH08247933A (en) * 1995-03-09 1996-09-27 Nippondenso Co Ltd Detection device of particle concentration in liquid
JPH11326186A (en) * 1998-05-14 1999-11-26 Nippon Sheet Glass Co Ltd Method for correcting temperature characteristic of rain sensor
JP2001349961A (en) * 2000-06-09 2001-12-21 Denso Corp Rain droplet detection method and device therefor
JP2003121559A (en) * 2001-08-09 2003-04-23 Denso Corp Rain sensor
JP2005195566A (en) * 2003-08-12 2005-07-21 Hitachi Ltd Image processing system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128902A (en) * 2006-11-22 2008-06-05 Denso Corp Device and method for detecting rain drop
JP2011183838A (en) * 2010-03-04 2011-09-22 Denso Corp Wiper control system and wiper control device
KR20160112142A (en) * 2015-03-18 2016-09-28 주식회사 지파랑 Sensing System Using Positive Feedback
KR101671400B1 (en) 2015-03-18 2016-11-02 주식회사 지파랑 Sensing System Using Positive Feedback
CN112849161A (en) * 2021-03-28 2021-05-28 重庆长安汽车股份有限公司 Meteorological condition prediction method and device for automatic driving vehicle, automobile and controller

Also Published As

Publication number Publication date
JP4687979B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
US7385216B2 (en) Sensor device and wiper controller having sensor device
JP4687979B2 (en) In-vehicle rain sensor device
US20030160158A1 (en) Raindrop/light beam detecting sensor and auto-wiper device
US20070280702A1 (en) Optical transmitter, optical communication system and method for adjusting optical transmitter
JP4211199B2 (en) Raindrop detection method and apparatus
US20050030529A1 (en) Sensor for detecting filth and/or humidity on the outer side of a glass pane
JPH1030960A (en) Optical sensor
JP2007278711A (en) Raindrop sensor
JP2000171295A (en) Apd bias circuit
US6765631B2 (en) Vehicle windshield rain sensor
JP2007163511A (en) Raindrop detecting apparatus
JPH1151861A (en) Apparatus for measuring concentration of liquid
JPS62887A (en) Detecting device for state of road surface
JP2003344266A (en) Light source for analyzer
JP2006119032A (en) Drift correcting method of optical raindrop sensor
JP2007312356A (en) Photoelectric sensor with temperature compensation
JP2007327837A (en) Scanner apparatus
JPH07162597A (en) Device for making light quantity constant in image input device or the like
JPS6217642A (en) Apparatus for detecting cloudiness of windowpane of automobile
KR20090020914A (en) Defogging system using light emitting device for a vehicle and control method thereof
JPH11326186A (en) Method for correcting temperature characteristic of rain sensor
JP2002286629A (en) Raindrop detecting device and method thereof
JPH11304451A (en) Paper sheet confirmation device
JP4692651B2 (en) Raindrop detection device and wiper automatic control device having the same
JPS6338058A (en) Controller for windshield wiper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110202

R151 Written notification of patent or utility model registration

Ref document number: 4687979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees