JP2007238963A - Method for producing epoxy resin - Google Patents

Method for producing epoxy resin Download PDF

Info

Publication number
JP2007238963A
JP2007238963A JP2007166323A JP2007166323A JP2007238963A JP 2007238963 A JP2007238963 A JP 2007238963A JP 2007166323 A JP2007166323 A JP 2007166323A JP 2007166323 A JP2007166323 A JP 2007166323A JP 2007238963 A JP2007238963 A JP 2007238963A
Authority
JP
Japan
Prior art keywords
epoxy resin
hydroxyl group
phenolic hydroxyl
compound
epihalohydrin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007166323A
Other languages
Japanese (ja)
Inventor
Masahiro Hamaguchi
昌弘 浜口
Hiromi Morita
博美 森田
Nobuo Takahashi
信雄 高橋
Hideyasu Tsunetomo
秀泰 常友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2007166323A priority Critical patent/JP2007238963A/en
Publication of JP2007238963A publication Critical patent/JP2007238963A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extremely valuable method from the commercial view point for producing an epoxy resin being reduced in the contents of readily hydrolyzable chlorine and hydrolyzable chlorine. <P>SOLUTION: The method for producing the epoxy resin is comprises the steps wherein (1) a compound having a phenolic hydroxyl group is reacted with an epihalohydrin, while a solid alkali metallic hydroxide is added step by step in the presence of an aprotic polar solvent, and then the epihalohydrin and the aprotic polar solvent are removed from the solvent containing the resultant epoxy resin at the temperature of ≤140°C under a reduced pressure, (2) an organic solvent is added, the resultant ed epoxy resin is then dissolved into the organic solvent, and insoluble substances present in the reaction system are removed, and (3) after the insoluble substances in the organic solvent are removed, the alkali metallic hydroxide is added and the epoxy resin is treated therein at a temperature of 50-90°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高い信頼性が要求される電気・電子部品の分野、特に電子部品の封止剤、積層板等の材料として有用な易加水分解性塩素及び加水分解性塩素の低いエポキシ樹脂の製造法に関する。 The present invention relates to the field of electrical and electronic components that require high reliability, particularly the production of epoxy resins with low hydrolyzable chlorine and hydrolyzable chlorine useful as materials for electronic component sealants, laminates, etc. Regarding the law.

エポキシ樹脂は、耐熱性、電気特性、力学特性等に優れているため、各種の電気、電子部品用に使用されている。特に、トランジスター、IC、LSI、VLSI等の半導体素子の封止材料としては、大部分エポキシ樹脂が使用されている。近年半導体素子の高集積化に伴う配線の微細化により、配線の腐食がより起こり易くなり、その原因となる腐食性イオン、とりわけ加水分解性塩素量を低減したエポキシ樹脂が望まれている。このため、加水分解性塩素を低減するための方法が多く提案されている。 Epoxy resins are excellent in heat resistance, electrical properties, mechanical properties, etc., and are therefore used for various electrical and electronic components. In particular, most epoxy resins are used as sealing materials for semiconductor elements such as transistors, ICs, LSIs, VLSIs, and the like. In recent years, with the miniaturization of wiring accompanying higher integration of semiconductor elements, corrosion of wiring is more likely to occur, and an epoxy resin having a reduced amount of corrosive ions, particularly hydrolyzable chlorine, which causes the wiring is desired. For this reason, many methods for reducing hydrolyzable chlorine have been proposed.

例えば、特許文献1、特許文献2にフェノール類とエピクロルヒドリンをアルカリ金属水酸化物および非プロトン性極性溶媒の存在下で反応させる方法が提案されている。しかし、特許文献1、特許文献2に開示されたいずれの方法も、アルカリ金属水酸化物として、その水溶液を使用しており、特許文献1においては系内から水を除去せずに、フェノール類とエピクロルヒドリンとが反応しているため、加水分解性塩素の低減は充分ではない。一方、特許文献2においては減圧下、エピクロルヒドリンと水との共沸により系内から水を除去し、系内の水の量を調整しながら、フェノール類とエピクロルヒドリンと反応している。このため、反応中、圧力を調整するための煩雑さが伴い、さらに凝縮器、トラップに低温を要する等経済的経費がかさむ不利がある。また、特許文献3には、フェノールとサリチルアルデヒドの縮合物とエピクロルヒドリンとをアルカリ金属水酸化物および非プロトン性極性溶媒の存在下でエポキシ化を行い、続いて得られた粗製エポキシ樹脂を有機溶媒中でアルカリ性物質で処理する製造方法が提案されている。しかし、特許文献3でも、特許文献2と同様にエポキシ化は減圧下、エピクロルヒドリンと水の共沸により、系内の水を除去しながらエポキシ化反応を行っている。更に、非プロトン性極性溶媒を水洗により除去しているため、非プロトン性極性溶媒を再使用する場合、困難が伴う。また、特許文献4には、エピクロロヒドリンとフェノール性水酸基を有する化合物を非プロトン性極性溶媒及びアルカリの存在下エポキシ化反応を行い、未反応のエピクロロヒドリンと非プロトン性極性溶媒を減圧下、140℃以下の温度で回収し、続いて、有機溶媒中、副生アルカリ塩の存在下で、アルカリ処理する方法が提案されている。しかしながら特許文献4では、副生アルカリ塩の存在下で、アルカリ処理を行うため、易加水分解性塩素がやや多い欠点があった。加水分解性塩素量が同じでも、易加水分解性塩素が多いと、硬化時の初期トラブルの原因及び穏和な条件での信頼性に問題が生じる可能性がある。このため、加水分解性塩素量が低く、加水分解性塩素中の易加水分解性塩素の占める割合が低いエポキシ樹脂が望まれている。 For example, Patent Documents 1 and 2 propose a method in which phenols and epichlorohydrin are reacted in the presence of an alkali metal hydroxide and an aprotic polar solvent. However, each of the methods disclosed in Patent Document 1 and Patent Document 2 uses an aqueous solution thereof as an alkali metal hydroxide. In Patent Document 1, phenols are used without removing water from the system. And epichlorohydrin are reacted, the reduction of hydrolyzable chlorine is not sufficient. On the other hand, in Patent Document 2, under the reduced pressure, water is removed from the system by azeotropy of epichlorohydrin and water, and the phenols and epichlorohydrin are reacted while adjusting the amount of water in the system. For this reason, there is a disadvantage in that it is complicated to adjust the pressure during the reaction, and further, economical costs such as a low temperature are required for the condenser and the trap. Patent Document 3 discloses epoxidation of a condensate of phenol and salicylaldehyde and epichlorohydrin in the presence of an alkali metal hydroxide and an aprotic polar solvent, and the resulting crude epoxy resin is then used as an organic solvent. Among them, a production method for treating with an alkaline substance has been proposed. However, also in Patent Document 3, as in Patent Document 2, epoxidation is carried out while removing water in the system by azeotropic distillation of epichlorohydrin and water under reduced pressure. Furthermore, since the aprotic polar solvent is removed by washing with water, it is difficult to reuse the aprotic polar solvent. In Patent Document 4, an epoxidation reaction is performed on a compound having epichlorohydrin and a phenolic hydroxyl group in the presence of an aprotic polar solvent and an alkali, and unreacted epichlorohydrin and an aprotic polar solvent are added. A method of recovering at a temperature of 140 ° C. or lower under reduced pressure and subsequently subjecting to an alkali treatment in an organic solvent in the presence of a by-product alkali salt has been proposed. However, in patent document 4, since alkali treatment was performed in the presence of a by-product alkali salt, there was a drawback that the amount of easily hydrolyzable chlorine was somewhat large. Even if the amount of hydrolyzable chlorine is the same, if there is a large amount of easily hydrolyzable chlorine, there may be a problem in the cause of initial troubles during curing and reliability under mild conditions. For this reason, an epoxy resin having a low hydrolyzable chlorine content and a low proportion of easily hydrolyzable chlorine in hydrolyzable chlorine is desired.

東独153882East Germany 153882 特開平6−7309号公報Japanese Patent Laid-Open No. 6-7309 特開平1−252624号公報JP-A-1-252624 特開平5−155978号公報JP-A-5-155978

本発明は、易加水分解性塩素を低減し、なおかつ工業的に価値が大きい加水分解性塩素の低いエポキシ樹脂の製造法を提供するものである。 The present invention provides a process for producing an epoxy resin with low hydrolyzable chlorine, which reduces easily hydrolyzable chlorine and is industrially valuable.

本発明者らは、前述の目的を達成するために検討した結果、フェノール性水酸基を有する化合物とエピハロヒドリンを、固形のアルカリ金属水酸化物と非プロトン性極性溶媒の存在下で反応させ、反応後、未反応のエピハロヒドリンと非プロトン性極性溶媒を特定の条件で一気に除去し、有機溶媒に残留樹脂を溶解させ、有機溶媒不溶物を除去した後、アルカリ金属水酸化物で50〜90℃の温度で処理することにより、易加水分解性塩素が低減され、かつ塩素含有量の少ないエポキシ樹脂が得られ、工業的価値も大きい方法であることを見い出し本発明に至った。 As a result of investigations to achieve the above-mentioned object, the present inventors have reacted a compound having a phenolic hydroxyl group with epihalohydrin in the presence of a solid alkali metal hydroxide and an aprotic polar solvent, and after the reaction. The unreacted epihalohydrin and the aprotic polar solvent are removed at a stretch under specific conditions, the residual resin is dissolved in the organic solvent, the organic solvent insoluble matter is removed, and the temperature of the alkali metal hydroxide is 50 to 90 ° C. As a result, it was found that the easily hydrolyzable chlorine was reduced and an epoxy resin having a low chlorine content was obtained, and that the industrial value was high.

すなわち、本発明は
1)フェノール性水酸基を有する化合物とエピハロヒドリンを、非プロトン性極性溶媒の存在下に、反応系中に固形のアルカリ金属水酸化物を分割添加し反応させ、得られたエポキシ樹脂を含有する溶液から、減圧下、140℃以下の温度で、エピハロヒドリンおよび非プロトン性極性溶媒を同時に除去し、2)次いで、有機溶媒を加え、得られたエポキシ樹脂を有機溶媒に溶解し、系中に存在する有機溶媒不溶物を除去し、3)有機溶媒不溶物を除去した後、系中にアルカリ金属水酸化物を添加し、50〜90℃でエポキシ樹脂を処理することを特徴とする、エポキシ樹脂の製造法、
2.フェノール性水酸基を有する化合物とエピハロヒドリンとの反応を0〜80℃の温度で行う上記1.に記載のエポキシ樹脂の製造法、
3.フェノール性水酸基を有する化合物とエピハロヒドリンを反応させる際、アルカリ金属水酸化物として固形の水酸化ナトリウム及び/または水酸化カリウムを、フェノール性水酸基を有する化合物のフェノール性水酸基1当量に対して0.9〜1.1モル使用する上記1.または2.に記載のエポキシ樹脂の製造法、
4.エピハロヒドリンがエピクロルヒドリンであり、フェノール性水酸基を有する化合物のフェノール性水酸基1当量に対してエピクロルヒドリンを2〜10モル使用する上記1.、2.、及び3.のいずれか1項に記載のエポキシ樹脂の製造法、
5.非プロトン性極性溶媒がジメチルスルホキシド、ジメチルホルムアミド及び1,3−ジメチル−2−イミダゾリジノンから選ばれる1種以上であり、非プロトン性極性溶媒をフェノール性水酸基を有する化合物100重量部に対し30〜300重量部使用する上記1.、2.、3.及び4.のいずれか1項に記載のエポキシ樹脂の製造法、6.フェノール性水酸基を有する化合物がフェノール類及び/またはナフトール類とアルデヒド類の縮合物、フェノール類及び/またはナフトール類とジシクロペンタジエンとの反応物、フェノール類及び/またはナフトール類とビフェニル系縮合剤との縮合物、ビスフェノール類及びビフェノール類から選ばれる1種以上である上記1.、2.、3.、4.及び5.のいずれか1項に記載のエポキシ樹脂の製造法に関する。
That is, the present invention relates to 1) an epoxy resin obtained by reacting a compound having a phenolic hydroxyl group and epihalohydrin by separately adding a solid alkali metal hydroxide to the reaction system in the presence of an aprotic polar solvent. The epihalohydrin and the aprotic polar solvent are simultaneously removed from the solution containing 1 at a temperature of 140 ° C. or lower under reduced pressure. 2) Then, an organic solvent is added, and the obtained epoxy resin is dissolved in the organic solvent. The organic solvent insoluble matter present in the organic solvent is removed, 3) the organic solvent insoluble matter is removed, an alkali metal hydroxide is added to the system, and the epoxy resin is treated at 50 to 90 ° C. , Epoxy resin production method,
2. The above 1. in which the reaction between a compound having a phenolic hydroxyl group and epihalohydrin is carried out at a temperature of 0 to 80 ° C. A process for producing an epoxy resin according to claim 1,
3. When the compound having a phenolic hydroxyl group is reacted with epihalohydrin, solid sodium hydroxide and / or potassium hydroxide is used as an alkali metal hydroxide in an amount of 0.9 with respect to 1 equivalent of the phenolic hydroxyl group of the compound having a phenolic hydroxyl group. -1.1 moles used above. Or 2. A process for producing an epoxy resin according to claim 1,
4). Epihalohydrin is epichlorohydrin, and 2 to 10 moles of epichlorohydrin is used per 1 equivalent of phenolic hydroxyl group of a compound having a phenolic hydroxyl group. 2. And 3. The manufacturing method of the epoxy resin of any one of these,
5). The aprotic polar solvent is at least one selected from dimethyl sulfoxide, dimethylformamide, and 1,3-dimethyl-2-imidazolidinone, and the aprotic polar solvent is 30 parts per 100 parts by weight of the compound having a phenolic hydroxyl group. -300 parts by weight of the above 1. 2. 3. And 4. 5. A method for producing an epoxy resin according to any one of A compound having a phenolic hydroxyl group is a condensate of phenols and / or naphthols and aldehydes, a reaction product of phenols and / or naphthols and dicyclopentadiene, phenols and / or naphthols and a biphenyl condensing agent 1 or more selected from condensates, bisphenols and biphenols. 2. 3. 4. And 5. The manufacturing method of the epoxy resin of any one of these.

本発明の製造法によれば,易加水分解性塩素、加水分解性塩素が大幅に低減しさらに、エポキシ当量も理論値に近い値の物が得られる。又、高価な非プロトン性極性溶媒の再使用が容易で、工業的にも有益な製造法である。 According to the production method of the present invention, easily hydrolyzable chlorine and hydrolyzable chlorine are greatly reduced, and further, an epoxy equivalent having a value close to the theoretical value can be obtained. Further, it is an industrially useful production method in which an expensive aprotic polar solvent can be easily reused.

本発明において得られるエポキシ樹脂は、易加水分解性塩素の含有量が低いエポキシ樹脂である。ここで、易加水分解性塩素とは樹脂をトルエンに溶解させ、0.1規定のKOH−メタノールを加え、室温で30分間処理により脱離する塩素量である。易加水分解性塩素は、非常に穏和な条件でエポキシ樹脂より脱離可能な塩素である。以下、本発明で規定している加水分解性塩素は易加水分解性塩素及び更に厳しい条件で脱離する塩素の和である。 The epoxy resin obtained in the present invention is an epoxy resin having a low content of easily hydrolyzable chlorine. Here, the easily hydrolyzable chlorine is the amount of chlorine which is dissolved by dissolving the resin in toluene, adding 0.1 N KOH-methanol, and treating at room temperature for 30 minutes. Easily hydrolyzable chlorine is chlorine that can be removed from the epoxy resin under very mild conditions. Hereinafter, the hydrolyzable chlorine defined in the present invention is the sum of easily hydrolyzable chlorine and chlorine desorbed under more severe conditions.

本発明に使用されるフェノール性水酸基を有する化合物は、特に限定されず、エポキシ化可能なものであれば使用できる。具体例としては、フェノール類及び/またはナフトール類とアルデヒド類との縮合物、フェノール類及び/またはナフトール類とキシリレングリコールとの縮合物、フェノール類とイソプロペニルアセトフェノンとの縮合物、フェノール類及び/またはナフトール類とジシクロペンタジエンの反応物、フェノール類及び/またはナフトール類とビフェニル系縮合剤との縮合物、ビスフェノール類、ビフェノール類等が挙げられる。これらは、公知の方法により得ることが出来る。これらフェノール性水酸基を有する化合物のうちフェノール類及び/またはナフトール類とアルデヒド化合物の縮合物、フェノール類及び/またはナフトール類とジシクロペンタジエンとの反応物、フェノール類及び/またはナフトール類とビフェニル系縮合剤との縮合物、ビスフェノール類、ビフェノール類が好ましい。 The compound having a phenolic hydroxyl group used in the present invention is not particularly limited, and any compound that can be epoxidized can be used. Specific examples include condensates of phenols and / or naphthols and aldehydes, condensates of phenols and / or naphthols and xylylene glycol, condensates of phenols and isopropenyl acetophenone, phenols and And / or reaction products of naphthols and dicyclopentadiene, phenols and / or condensates of naphthols and biphenyl condensing agents, bisphenols, biphenols and the like. These can be obtained by known methods. Among these compounds having a phenolic hydroxyl group, a condensate of phenols and / or naphthols and an aldehyde compound, a reaction product of phenols and / or naphthols and dicyclopentadiene, a phenol and / or naphthols and a biphenyl condensation product Condensates with agents, bisphenols and biphenols are preferred.

上記の、フェノール類としては、フェノール、クレゾール、キシレノール、ブチルフェノール、アミルフェノール、ノニルフェノール、ブチルメチルフェノール、トリメチルフェノールカテコール、レゾルシノール、メチルレゾルシノール、ハイドロキノン、フェニルフェノール、ビスフェノールA、ビスフェノールF、ビスフェノールK、ビスフェノールS、ビフェノール、テトラメチルビフェノール等が例示される。 The above phenols include phenol, cresol, xylenol, butylphenol, amylphenol, nonylphenol, butylmethylphenol, trimethylphenolcatechol, resorcinol, methylresorcinol, hydroquinone, phenylphenol, bisphenol A, bisphenol F, bisphenol K, bisphenol S. , Biphenol, tetramethylbiphenol and the like.

又、ナフトール類としては、1−ナフトール、2−ナフトール、ジヒドロキシナフタレン、ジヒドロキシメチルナフタレン、ジヒドロキシジメチルナフタレン、トリヒドロキシナフタレン等が例示される。これら、フェノール類、ナフトール類は1種あるいは2種以上使用しても差し支えない。 Examples of naphthols include 1-naphthol, 2-naphthol, dihydroxynaphthalene, dihydroxymethylnaphthalene, dihydroxydimethylnaphthalene, trihydroxynaphthalene and the like. These phenols and naphthols may be used alone or in combination of two or more.

更に、アルデヒド類としては、ホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、バレルアルデヒド、カプロンアルデヒド、ベンズアルデヒド、クロルベンズアルデヒド、ブロムベンズアルデヒド、グリオキザール、マロンアルデヒド、スクシンアルデヒド、グルタルアルデヒド、アジピンアルデヒド、ピメリンアルデヒド、セバシンアルデヒド、アクロレイン、クロトンアルデヒド、サリチルアルデヒド、フタルアルデヒド、ヒドロキシベンズアルデヒド等が例示される。 Furthermore, as aldehydes, formaldehyde, acetaldehyde, propyl aldehyde, butyraldehyde, valeraldehyde, capronaldehyde, benzaldehyde, chlorbenzaldehyde, bromobenzaldehyde, glyoxal, malonaldehyde, succinaldehyde, glutaraldehyde, adipine aldehyde, pimelin aldehyde, Examples are sebacinaldehyde, acrolein, crotonaldehyde, salicylaldehyde, phthalaldehyde, hydroxybenzaldehyde and the like.

ビフェニル系縮合剤の具体例としては、ビス(メチロール)ビフェニル、ビス(メトキシメチル)ビフェニル、ビス(エトキシメチル)ビフェニル、ビス(クロロメチル)ビフェニル等が例示される。 Specific examples of the biphenyl condensing agent include bis (methylol) biphenyl, bis (methoxymethyl) biphenyl, bis (ethoxymethyl) biphenyl, bis (chloromethyl) biphenyl, and the like.

ビスフェノール類の具体例としては、ビスフェノールA、ビスフェノールF、ビスフェノールK、ビスフェノールS等が例示される。ビフェノール類としては、ビフェノール、テトラメチルビフェノール等が例示される。 Specific examples of bisphenols include bisphenol A, bisphenol F, bisphenol K, bisphenol S and the like. Examples of biphenols include biphenol and tetramethyl biphenol.

この様な、フェノール性水酸基を有する化合物をエポキシ化するために用いるエピハロヒドリンとしては、エピクロルヒドリン、エピブロムヒドリン等が例示される。エピハロヒドリンは、フェノール性水酸基を有する化合物のフェノール性水酸基1当量に対して2〜10モル使用するのが好ましい。より好ましくは、3〜6モル使用する。エピハロヒドリンの量が少なすぎるとエポキシ当量が高くなったり、ゲルが発生しやすくなる。又、多すぎると体積効率が悪くなる等工業的に不利となる。 Examples of the epihalohydrin used for epoxidizing such a compound having a phenolic hydroxyl group include epichlorohydrin and epibromohydrin. The epihalohydrin is preferably used in an amount of 2 to 10 mol based on 1 equivalent of the phenolic hydroxyl group of the compound having a phenolic hydroxyl group. More preferably, 3 to 6 moles are used. If the amount of epihalohydrin is too small, the epoxy equivalent becomes high or gel tends to be generated. On the other hand, if the amount is too large, the volumetric efficiency is deteriorated, which is industrially disadvantageous.

非プロトン性極性溶媒としては、ジメチルスルホキシド、ジメチルホルムアミド、1、3−ジメチル−イミダゾリジノン等が挙げられる。これらは、フェノール性水酸基を有する化合物100重量部に対し30〜300重量部使用するのが好ましい。非プロトン性極性溶媒の使用量が少ないと加水分解性塩素の低減の効果が顕著でない。多くても、低減効果が顕著でなく、容積効率の低下をきたし不利である。 Examples of the aprotic polar solvent include dimethyl sulfoxide, dimethylformamide, 1,3-dimethyl-imidazolidinone and the like. These are preferably used in an amount of 30 to 300 parts by weight per 100 parts by weight of the compound having a phenolic hydroxyl group. When the amount of the aprotic polar solvent used is small, the effect of reducing hydrolyzable chlorine is not remarkable. Even at most, the reduction effect is not remarkable, and the volumetric efficiency is lowered, which is disadvantageous.

フェノール性水酸基を有する化合物とエピハロヒドリンを反応させる際に用いる固形のアルカリ金属水酸化物としては水酸化ナトリウム、水酸化カリウム等が挙げられる。これらは1種のみまたは組み合わせて用いることが出来、分割または連続的に系内に添加される。通常、フェノール性水酸基を有する化合物とエピハロヒドリンを反応させる際にアルカリ金属水酸化物の水溶液が用いられるが、この場合、アルカリ金属水酸化物の水溶液から持ち込まれる水が多くなり、中間体であるハロヒドリンエーテルの閉環を充分行わせるために、反応中、系内から水を、減圧下、エピハロヒドリンとの共沸により除去する必要があり、操作が煩雑になり工業的に不利である。固形のアルカリ金属水酸化物は、フェノール性水酸基を有する化合物のフェノール性水酸基1当量に対して0.9〜1.1モル使用するのが好ましい。アルカリ水酸化金属物の量が少ないと、エポキシ化が充分進まず、加水分解性塩素の増加をもたらす。多いと、エポキシ当量の増加、ゲルの発生等が起こり好ましくない。 Examples of the solid alkali metal hydroxide used when the compound having a phenolic hydroxyl group and epihalohydrin are reacted include sodium hydroxide and potassium hydroxide. These can be used alone or in combination, and are added into the system in divided or continuously. Usually, when reacting a compound having a phenolic hydroxyl group with epihalohydrin, an aqueous solution of an alkali metal hydroxide is used. In this case, more water is brought in from the aqueous solution of the alkali metal hydroxide, and the intermediate halo. In order to perform sufficient ring closure of the hydrin ether, it is necessary to remove water from the system by azeotropy with epihalohydrin under reduced pressure during the reaction, which makes the operation complicated and disadvantageous industrially. The solid alkali metal hydroxide is preferably used in an amount of 0.9 to 1.1 mol based on 1 equivalent of the phenolic hydroxyl group of the compound having a phenolic hydroxyl group. If the amount of the alkali metal hydroxide is small, epoxidation does not proceed sufficiently, resulting in an increase in hydrolyzable chlorine. When the amount is large, an increase in epoxy equivalent, generation of gel, and the like occur, which is not preferable.

フェノール性水酸基を有する化合物とエピハロヒドリンを反応させる際の温度は0〜80℃が好ましく、常圧で反応を実施できる。加水分解性塩素を低減するためには、温度が低い方がこのましいが反応時間が長くなる。実用的には20〜70℃で反応を行うのが好ましい。反応時間は、3〜7時間行えば充分である。 The temperature for reacting the compound having a phenolic hydroxyl group with epihalohydrin is preferably 0 to 80 ° C., and the reaction can be carried out at normal pressure. In order to reduce hydrolyzable chlorine, the lower the temperature, the better, but the reaction time becomes longer. Practically, the reaction is preferably performed at 20 to 70 ° C. A reaction time of 3 to 7 hours is sufficient.

反応終了後、エポキシ樹脂を含有する溶液から、減圧下に140℃以下、好ましくは135℃以下の温度でエピハロヒドリン及び非プロトン性極性溶媒を同時に蒸留等により除去することにより、粗製エポキシ樹脂と副生アルカリ塩等が残留物として得られる。 After completion of the reaction, by removing epihalohydrin and aprotic polar solvent from the solution containing the epoxy resin under reduced pressure at a temperature of 140 ° C. or less, preferably 135 ° C. or less by distillation or the like at the same time, a crude epoxy resin and a by-product are removed. An alkali salt or the like is obtained as a residue.

この様にして得られた粗製エポキシ樹脂と副生アルカリ塩等を含む残留物にメチルエチルケトン、メチルイソブチルケトン、トルエン、キシレン等の有機溶媒を加え、粗製エポキシ樹脂を溶解する。この溶液から、有機溶媒不溶物を濾過、水洗、遠心分離等で除去する。副生アルカリ塩等有機溶媒不溶物が残存したままアルカリ金属水酸化物で粗製エポキシ樹脂を処理すると、副生アルカリ塩等有機溶媒不溶物の影響で、強い条件で測定する加水分解性塩素、例えば、エポキシ樹脂をジオキサンに溶解し、1N−KOH/エタノール溶液を加え、30分間煮沸還流で測定されるような加水分解性塩素は低減するが、穏和な条件で測定される易加水分解性塩素の低減は充分でない。 An organic solvent such as methyl ethyl ketone, methyl isobutyl ketone, toluene, and xylene is added to the residue containing the crude epoxy resin and by-product alkali salt thus obtained to dissolve the crude epoxy resin. From this solution, insolubles in the organic solvent are removed by filtration, washing with water, centrifugation and the like. When the crude epoxy resin is treated with an alkali metal hydroxide with organic solvent insolubles such as by-product alkali salts remaining, hydrolyzable chlorine measured under strong conditions due to the influence of organic solvent insolubles such as by-product alkali salts, for example Dissolve epoxy resin in dioxane, add 1N-KOH / ethanol solution and reduce hydrolyzable chlorine as measured by boiling for 30 minutes, but reduce easily hydrolyzable chlorine measured under mild conditions. Reduction is not enough.

副生アルカリ塩等有機溶媒不溶物を除去した溶液に、アルカリ金属水酸化物を加え、好ましくは50〜90℃で、1〜3時間処理する。処理温度が50℃未満の場合、その処理効果が小さく、加水分解性塩素、易加水分解性塩素の低減が充分でない。一方、温度が90℃を越えると、加水分解性塩素は低減するが、エポキシ当量の上昇が起こり好ましくない。この際用いるアルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウム等が挙げられ、固形または水溶液の状態で添加することが出来る。その使用量はエポキシ化に用いたフェノール性水酸化物のフェノール性水酸基1当量に対して0.01〜0.2モルが好ましい。 An alkali metal hydroxide is added to the solution from which organic solvent insolubles such as by-product alkali salts have been removed, and the mixture is preferably treated at 50 to 90 ° C. for 1 to 3 hours. When processing temperature is less than 50 degreeC, the processing effect is small and reduction of hydrolysable chlorine and easily hydrolysable chlorine is not enough. On the other hand, when the temperature exceeds 90 ° C., hydrolyzable chlorine is reduced, but an increase in the epoxy equivalent is unfavorable. Examples of the alkali metal hydroxide used at this time include sodium hydroxide and potassium hydroxide, which can be added in a solid or aqueous solution state. The amount used is preferably 0.01 to 0.2 mol with respect to 1 equivalent of the phenolic hydroxyl group of the phenolic hydroxide used for epoxidation.

このようにアルカリ金属水酸化物で処理して得た溶液を分離した水相が中性になるまで水洗を繰り返す。続いて、有機溶媒を減圧下で除去することにより、易加水分解性塩素及び加水分解性塩素のきわめて少ないエポキシ樹脂が得られる。 Washing with water is repeated until the aqueous phase from which the solution obtained by treating with the alkali metal hydroxide is separated becomes neutral. Subsequently, by removing the organic solvent under reduced pressure, an easily hydrolyzable chlorine and an epoxy resin with very little hydrolyzable chlorine can be obtained.

従来提案されているエポキシ樹脂の製造法においては、使用されるアルカリ金属水酸化物が水溶液の形で使用される。又、アルカリ金属水酸化物の存在下で、フェノール性水酸基を有する化合物とエピハロヒドリンとの反応はエピクロルヒドリンと水との共沸を利用して、水を系外へ除去しながら行われる。更に、加水分解性塩素の低いエポキシ樹脂を得るためには、反応温度を低くする必要があり、このため共沸温度を下げるために、減圧下でおこなわれる。 In the conventionally proposed method for producing an epoxy resin, the alkali metal hydroxide used is used in the form of an aqueous solution. In the presence of an alkali metal hydroxide, the reaction between the compound having a phenolic hydroxyl group and epihalohydrin is carried out while removing water out of the system by using azeotropic boiling of epichlorohydrin and water. Furthermore, in order to obtain an epoxy resin having low hydrolyzable chlorine, it is necessary to lower the reaction temperature. For this reason, in order to lower the azeotropic temperature, the reaction is carried out under reduced pressure.

一方、本発明においては、常圧で、系の沸点以下の温度で、系外への水の除去を必要としないで行うことが出来る。このため、合成プロセスも圧力等の煩雑な調整も必要とせず、更にエネルギー的にも有利となる。これは、固形のアルカリ金属水酸化物、非プロトン性極性溶媒の存在下で、フェノール性水酸基を有する化合物とエピハロヒドリンを反応させることにより達成されたものである。反応終了後、減圧下、140℃以下、更に望ましくは135℃以下で非プロトン性極性溶媒と過剰のエピハロヒドリンを蒸留等により、同時に除去、回収する。従来、非プロトン性極性溶媒は水洗により除去されていたが、本発明では、蒸留等により回収できるため、再使用が容易となる。 On the other hand, in the present invention, it can be carried out at normal pressure and at a temperature not higher than the boiling point of the system, without requiring removal of water outside the system. For this reason, neither a synthesis process nor complicated adjustments such as pressure are required, which is advantageous in terms of energy. This is achieved by reacting a compound having a phenolic hydroxyl group with an epihalohydrin in the presence of a solid alkali metal hydroxide and an aprotic polar solvent. After completion of the reaction, the aprotic polar solvent and excess epihalohydrin are simultaneously removed and recovered by distillation or the like at 140 ° C. or lower, more preferably 135 ° C. or lower under reduced pressure. Conventionally, the aprotic polar solvent has been removed by washing with water, but in the present invention, it can be recovered by distillation or the like, so that it can be easily reused.

続いて、残った粗製エポキシ樹脂をメチルイソブチルケトン、トルエン等の有機溶媒に溶解し、副生アルカリ塩等、有機溶媒に不溶成分を濾過、遠心分離、水洗により除去する。副生アルカリ塩等有機溶媒に不溶成分の除去は、、次のアルカリ金属水酸化物で粗製エポキシ樹脂を処理するエポキシ樹脂の精製工程で、易加水分解性塩素の低減のために重要である。副生アルカリ塩等有機溶媒に不溶成分を含んだまま、精製反応を行うと、易加水分解性塩素の低減が充分でない。また、非プロトン性極性溶媒とアルカリ金属水酸化物の存在下でフェノール性水酸基を有する化合物とエピハロヒドリンとを反応させる工程を経ないと、副生アルカリ塩等を除去した後、アルカリ金属水酸化物で処理しても、加水分解性塩素の低減されたエポキシ樹脂を得ることはかなり難しい。 Subsequently, the remaining crude epoxy resin is dissolved in an organic solvent such as methyl isobutyl ketone and toluene, and components insoluble in the organic solvent such as by-product alkali salts are removed by filtration, centrifugation and washing with water. Removal of components insoluble in organic solvents such as by-product alkali salts is important for the reduction of readily hydrolyzable chlorine in the purification step of the epoxy resin in which the crude epoxy resin is treated with the next alkali metal hydroxide. If the purification reaction is carried out with an insoluble component contained in an organic solvent such as a by-product alkali salt, the reduction of readily hydrolyzable chlorine is not sufficient. In addition, after the step of reacting a compound having a phenolic hydroxyl group and epihalohydrin in the presence of an aprotic polar solvent and an alkali metal hydroxide, the by-product alkali salt and the like are removed, and then the alkali metal hydroxide is removed. It is quite difficult to obtain an epoxy resin with reduced hydrolyzable chlorine even if it is treated with.

これらの一連の操作を行うことにより、易加水分解性塩素、加水分解性塩素が著しく低減されたエポキシ樹脂が得られる。さらに、本発明は工業的に非常に価値のあるエポキシ樹脂の製造法である。こうして得られたエポキシ樹脂は、通常用いられる硬化剤及び必要により効果促進剤、充填材等と混合されエポキシ樹脂組成物とし、硬化させることにより半導体の封止材料、成形材料、注型材料、積層材料、塗料、接着剤、レジスト等に使用することができる。 By performing a series of these operations, an easily hydrolyzable chlorine and an epoxy resin with significantly reduced hydrolyzable chlorine can be obtained. Furthermore, the present invention is an industrially highly valuable process for producing epoxy resins. The epoxy resin thus obtained is mixed with a normally used curing agent and, if necessary, an effect accelerator, a filler, etc. to form an epoxy resin composition, and cured to encapsulate a semiconductor sealing material, molding material, casting material, laminate It can be used for materials, paints, adhesives, resists and the like.

以下に、実施例により、本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

合成例1
温度計、撹拌器、冷却管を備えたフラスコに、フェノール235g(2.5モル)、サリチルアルデヒド49g(0.4モル)及びパラトルエンスルホン酸1gを仕込み、窒素を吹き込みながら80℃で3時間、更に100℃で2時間反応させた。冷却後、メチルイソブチルケトン300mlを加え、洗浄水が中性になるまで水洗した。有機相から減圧下に未反応原料及び溶媒を除去し、樹脂(A)を得た。
Synthesis example 1
A flask equipped with a thermometer, a stirrer, and a condenser tube was charged with 235 g (2.5 mol) of phenol, 49 g (0.4 mol) of salicylaldehyde and 1 g of paratoluenesulfonic acid, and at 80 ° C. for 3 hours while blowing nitrogen. The mixture was further reacted at 100 ° C. for 2 hours. After cooling, 300 ml of methyl isobutyl ketone was added and washed with water until the washing water became neutral. Unreacted raw materials and solvent were removed from the organic phase under reduced pressure to obtain Resin (A).

合成例2
温度計、滴下ロート、冷却管、分溜管、撹拌器を備えたフラスコに、ビス(メチロール)ビフェニル107g(0.5モル)、フェノール113g(1.2モル)、パラトルエンスルホン酸0.5gを仕込み、120℃まで加熱し、分溜管を用いて、生成する水を抜き出した後、更に5時間反応させ、冷却後、メチルイソブチルケトン500mlを加え、洗浄水が中性になるまで水洗した。有機相から、減圧下に未反応物及び溶媒を除去し、樹脂(B)を得た。
Synthesis example 2
In a flask equipped with a thermometer, dropping funnel, condenser, fractionator, and stirrer, 107 g (0.5 mol) of bis (methylol) biphenyl, 113 g (1.2 mol) of phenol, 0.5 g of paratoluenesulfonic acid The mixture was heated to 120 ° C., and the produced water was extracted using a distillation tube. The mixture was further reacted for 5 hours. After cooling, 500 ml of methyl isobutyl ketone was added and washed with water until the washing water became neutral. . Unreacted substances and the solvent were removed from the organic phase under reduced pressure to obtain a resin (B).

実施例1〜9
合成例1、2で得られた樹脂(A)、(B)及び下記の樹脂(C)〜(H)をそれぞれ表1に示す量使用し、ジメチルスルホキシド(表1中DMSO)、エピクロルヒドリン(表1中ECH)を温度計、撹拌器、冷却管を備えたフラスコに表1に示す量仕込み、窒素を吹き込みながら溶解した。
Examples 1-9
The resins (A) and (B) obtained in Synthesis Examples 1 and 2 and the following resins (C) to (H) were used in the amounts shown in Table 1, respectively, and dimethyl sulfoxide (DMSO in Table 1) and epichlorohydrin (Table ECH in 1) was charged into a flask equipped with a thermometer, a stirrer, and a cooling tube, and dissolved in an amount of the amount shown in Table 1 while blowing nitrogen.

溶解後、表1に示す反応温度(反応温度T1 )に保ち、固形の水酸化ナトリウムを表1示す量を10回に分け、100分で添加した、水酸化ナトリウム添加終了後、更に表1に示す反応温度(反応温度T2 )に上げ、2時間保持し、反応を終了させた。反応終了後、フラスコを表1に示す温度に加熱し、表1に示す圧力に達するまで、過剰のエピクロルヒドリン、ジメチルスルホキシドを同時に回収した。 After dissolution, the reaction temperature shown in Table 1 (reaction temperature T1) was maintained and the amount of solid sodium hydroxide shown in Table 1 was divided into 10 portions and added in 100 minutes. The reaction temperature was raised to the indicated reaction temperature (reaction temperature T2) and held for 2 hours to complete the reaction. After completion of the reaction, the flask was heated to the temperature shown in Table 1, and excess epichlorohydrin and dimethyl sulfoxide were simultaneously recovered until the pressure shown in Table 1 was reached.

回収後、メチルイソブチルケトンを400gを加え、樹脂分を溶解した。溶解後、温水100gを加え、副生塩等のメチルイソブチルケトンに不溶解物を水相と共に水洗分離した。 After recovery, 400 g of methyl isobutyl ketone was added to dissolve the resin component. After dissolution, 100 g of warm water was added, and the insoluble matter in methyl isobutyl ketone such as by-product salt was washed and separated together with the aqueous phase.

有機相に20%水酸化ナトリウム水溶液20gを添加し、70℃で2時間反応した。反応後、水相が中性を示すまで、水洗を繰り返した。水洗後、減圧下でメチルイソブチルケトンを留去してエポキシ樹脂を得た。得られたエポキシ樹脂について、下記の方法に従って易加水分解生塩素、加水分解性塩素、エポキシ当量を求めた。その結果を表1に示す。 20 g of a 20% aqueous sodium hydroxide solution was added to the organic phase and reacted at 70 ° C. for 2 hours. After the reaction, washing with water was repeated until the aqueous phase became neutral. After washing with water, methyl isobutyl ketone was distilled off under reduced pressure to obtain an epoxy resin. About the obtained epoxy resin, the easily hydrolyzed raw chlorine, hydrolyzable chlorine, and epoxy equivalent were calculated | required according to the following method. The results are shown in Table 1.

(易加水分解性塩素)約0.5gのエポキシ樹脂を精秤し、トルエン20mlを加え、樹脂を溶解する。0.1N−KOHメタノール溶液2mlを加え、室温で30分間マグネティックスターラーで撹拌する。その後、100mlのアセトンを加え、更に硝酸1mlを加え、0.001−N硝酸銀イソプロピルアルコールで滴定し定量した。 (Easily hydrolyzable chlorine) About 0.5 g of epoxy resin is precisely weighed, and 20 ml of toluene is added to dissolve the resin. Add 2 ml of 0.1N KOH methanol solution and stir with a magnetic stirrer at room temperature for 30 minutes. Then, 100 ml of acetone was added, 1 ml of nitric acid was further added, and titration was performed with 0.001-N silver nitrate isopropyl alcohol.

(加水分解性塩素)約0.5gのエポキシ樹脂を100mlの共栓付フラスコに精秤し、ジオキサン30mlを加え、樹脂を溶解する。溶解後、1N−KOHエタノール溶液5mlを加え、30分間煮沸還流する。その後、この溶液を完全に200mlのビーカーに移し、80wt%のアセトン水溶液100mlを加え、更に、濃硝酸2mlを加え硝酸銀水溶液にて電位差滴定を行い定量した。 (Hydrolyzable chlorine) About 0.5 g of epoxy resin is precisely weighed into a 100 ml stoppered flask, and 30 ml of dioxane is added to dissolve the resin. After dissolution, add 5 ml of 1N-KOH ethanol solution and boil reflux for 30 minutes. Thereafter, this solution was completely transferred to a 200 ml beaker, 100 ml of an 80 wt% aqueous acetone solution was added, and further 2 ml of concentrated nitric acid was added, followed by potentiometric titration with an aqueous silver nitrate solution for quantification.

(エポキシ当量)JIS K7236に準拠して、測定した。 (Epoxy equivalent) Measured according to JIS K7236.

樹脂(A)、(B)以外の使用したフェノール性水酸基を持つ化合物樹脂(C):オルトクレゾールノボラック(水酸基当量120g/eq.、日本化薬(株)製)
樹脂(D):クレゾール・ナフトール・ホルムアルデヒド共縮合物(カヤハードNHN、水酸基当量140g/eq.、日本化薬(株)製)
樹脂(E):フェノール・ジシクロペンタジエン反応物(DPP−600M、水酸基当量170g/eq.、日本石油化学(株)製)
樹脂(F):ビスフェノールA(水酸基当量114g/eq.、本州化学工業(株)製)
樹脂(G):ビスフェノールF(水酸基当量100g/eq.、本州化学工業(株)製)
樹脂(H):テトラメチルビフェノール(水酸基当量121g/eq.、本州化学工業(株)製)
Compound resins having phenolic hydroxyl groups other than resins (A) and (B) (C): orthocresol novolak (hydroxyl equivalent 120 g / eq., Manufactured by Nippon Kayaku Co., Ltd.)
Resin (D): Cresol / naphthol / formaldehyde cocondensate (Kayahard NHN, hydroxyl group equivalent 140 g / eq., Manufactured by Nippon Kayaku Co., Ltd.)
Resin (E): Phenol / dicyclopentadiene reactant (DPP-600M, hydroxyl group equivalent 170 g / eq., Manufactured by Nippon Petrochemical Co., Ltd.)
Resin (F): Bisphenol A (hydroxyl equivalent: 114 g / eq., Manufactured by Honshu Chemical Industry Co., Ltd.)
Resin (G): Bisphenol F (hydroxyl equivalent: 100 g / eq., Manufactured by Honshu Chemical Industry Co., Ltd.)
Resin (H): Tetramethylbiphenol (hydroxyl equivalent 121 g / eq., Manufactured by Honshu Chemical Industry Co., Ltd.)

比較例1
実施例3と同様のオルトクレゾールノボラック樹脂120gを用い、表1に示す量のジメチルスルホキシド、エピクロルヒドリン及び固形の水酸化ナトリウムを用いて、メチルイソブチルケトンに粗製エポキシ樹脂を溶解した後、溶媒に不溶解物を除去せずに、20%水酸化ナトリウム水溶液で処理した以外は,実施例1と同様の操作を実施し、エポキシ樹脂を得た。得られたエポキシ樹脂の物性を表1に示す。
Comparative Example 1
Using 120 g of ortho-cresol novolak resin similar to Example 3, using the amounts of dimethyl sulfoxide, epichlorohydrin and solid sodium hydroxide shown in Table 1 to dissolve the crude epoxy resin in methyl isobutyl ketone, then insoluble in the solvent An epoxy resin was obtained in the same manner as in Example 1 except that the product was treated with a 20% aqueous sodium hydroxide solution without removing the product. Table 1 shows the physical properties of the obtained epoxy resin.

比較例2
実施例3と同様のオルトクレゾールノボラック樹脂120gを用い、温度計、撹拌器、滴下ロート、生成水分離装置を備えた、装置に仕込み、エピクロルヒドリン509gを添加し、窒素を吹き込みながら、樹脂を溶解した。溶解後、反応温度50℃、圧力50〜100mmHgの条件下で、48%水酸化ナトリウム水溶液85gを100分かけて滴下した。このあいだ、水酸化ナトリウム水溶液から持ち込まれる水及び反応により生成する水をエピクロルヒドリンと共沸により連続的に反応系外へ除去し、エピクロルヒドリンは系内に戻し、系内の水分を1〜2%に調整した。滴下終了後、70℃で系外に水を除去しながら、2時間更に反応させた。
Comparative Example 2
Using 120 g of ortho-cresol novolak resin similar to that in Example 3, charged with a thermometer, a stirrer, a dropping funnel, and a generated water separator, 509 g of epichlorohydrin was added, and the resin was dissolved while blowing nitrogen. . After dissolution, 85 g of a 48% aqueous sodium hydroxide solution was added dropwise over 100 minutes under the conditions of a reaction temperature of 50 ° C. and a pressure of 50 to 100 mmHg. During this time, water brought in from the sodium hydroxide aqueous solution and water produced by the reaction are continuously removed from the reaction system by azeotropy with epichlorohydrin, and epichlorohydrin is returned to the system to adjust the water content in the system to 1 to 2%. did. After completion of dropping, the reaction was further allowed to proceed for 2 hours while removing water outside the system at 70 ° C.

続いて、容器を表1に示す温度に加熱し、表1の圧力に達するまで、過剰のエピクロルヒドリンを回収した。メチルイソブチルケトン500ml加え、残存樹脂を溶解した。温水100mlをこの溶液に加え、溶剤不溶解物を、水洗分離し、有機相に20%水酸化ナトリウム水溶液20gを加え、70℃で2時間反応した。反応終了後、洗浄水が中性を示すまで、洗浄を繰り返した。ついで、有機相からメチルイソブチルケトンを減圧下除去し、エポキシ樹脂を得た。得られたエポキシ樹脂の物性を表1に示す。 Subsequently, the vessel was heated to the temperature shown in Table 1 and excess epichlorohydrin was recovered until the pressure in Table 1 was reached. 500 ml of methyl isobutyl ketone was added to dissolve the remaining resin. 100 ml of warm water was added to this solution, the solvent-insoluble matter was separated by washing with water, 20 g of 20% aqueous sodium hydroxide solution was added to the organic phase, and the mixture was reacted at 70 ° C. for 2 hours. After completion of the reaction, washing was repeated until the washing water became neutral. Subsequently, methyl isobutyl ketone was removed from the organic phase under reduced pressure to obtain an epoxy resin. Table 1 shows the physical properties of the obtained epoxy resin.

比較例3
実施例3と同様のオルトクレゾールノボラック樹脂を120g用い、メチルイソブチルケトンに溶解後、20%の水酸化ナトリウム水溶液で粗製エポキシ樹脂を処理しなかった以外は、実施例1と同様の方法で行いエポキシ樹脂を得た。得られたエポキシ樹脂の物性を表1に示す。
Comparative Example 3
Epoxy was prepared in the same manner as in Example 1 except that 120 g of the ortho-cresol novolak resin similar to Example 3 was used and dissolved in methyl isobutyl ketone, and then the crude epoxy resin was not treated with a 20% aqueous sodium hydroxide solution. A resin was obtained. Table 1 shows the physical properties of the obtained epoxy resin.

比較例4
実施例3と同様のオルトクレゾールノボラック樹脂を120g用い、エピクロルヒドリンとジメチルスルホキシドを回収する時の条件を表1に示す条件(回収温度155℃、回収圧力10mmHg)に変えた以外は、実施例1と同様の操作を行いエポキシ樹脂を得た。得られたエポキシ樹脂の物性を表1に示す。
Comparative Example 4
Example 1 except that 120 g of ortho-cresol novolak resin similar to Example 3 was used and the conditions for recovering epichlorohydrin and dimethyl sulfoxide were changed to the conditions shown in Table 1 (recovery temperature 155 ° C., recovery pressure 10 mmHg). The same operation was performed to obtain an epoxy resin. Table 1 shows the physical properties of the obtained epoxy resin.

比較例5
実施例3と同様のオルトクレゾールノボラック樹脂を120g用い、メチルイソブチルケトンに不溶解物を除去した後、20%水酸化ナトリウムで処理するときの温度を100℃に変えた以外は、実施例1と同様にしてエポキシ樹脂を得た。得られたエポキシ樹脂の物性を表1に示す。
Comparative Example 5
Example 1 except that 120 g of ortho-cresol novolak resin similar to Example 3 was used, insolubles were removed in methyl isobutyl ketone, and then the temperature when treated with 20% sodium hydroxide was changed to 100 ° C. Similarly, an epoxy resin was obtained. Table 1 shows the physical properties of the obtained epoxy resin.

比較例6
実施例3と同様のオルトクレゾールノボラック樹脂を120g用い、メチルイソブチルケトンに不溶解物を除去した後、20%水酸化ナトリウムで処理するときの温度を30℃に変えた以外は、実施例1と同様にしてエポキシ樹脂を得た。得られたエポキシ樹脂の物性を表1に示す。
Comparative Example 6
Example 1 except that 120 g of ortho-cresol novolak resin similar to Example 3 was used, insolubles were removed in methyl isobutyl ketone, and then the temperature when treated with 20% sodium hydroxide was changed to 30 ° C. Similarly, an epoxy resin was obtained. Table 1 shows the physical properties of the obtained epoxy resin.

Figure 2007238963
Figure 2007238963

Figure 2007238963
Figure 2007238963

Figure 2007238963
Figure 2007238963

Claims (6)

1)フェノール性水酸基を有する化合物とエピハロヒドリンを、非プロトン性極性溶媒の存在下に、反応系中に固形のアルカリ金属水酸化物を分割添加し反応させ、得られたエポキシ樹脂を含有する溶液から、減圧下、140℃以下の温度で、エピハロヒドリンおよび非プロトン性極性溶媒を同時に除去し、2)次いで、有機溶媒を加え、得られたエポキシ樹脂を有機溶媒に溶解し、系中に存在する有機溶媒不溶物を除去し、3)有機溶媒不溶物を除去した後、系中にアルカリ金属水酸化物を添加し、50〜90℃でエポキシ樹脂を処理することを特徴とする、エポキシ樹脂の製造法。 1) A compound having a phenolic hydroxyl group and epihalohydrin are reacted in the presence of an aprotic polar solvent by separately adding solid alkali metal hydroxide to the reaction system, and the resulting solution containing an epoxy resin is used. The epihalohydrin and the aprotic polar solvent are simultaneously removed under reduced pressure at a temperature of 140 ° C. or less. 2) Then, an organic solvent is added, and the resulting epoxy resin is dissolved in the organic solvent. Solvent insolubles are removed, 3) Organic solvent insolubles are removed, alkali metal hydroxide is added to the system, and the epoxy resin is treated at 50 to 90 ° C. Law. フェノール性水酸基を有する化合物とエピハロヒドリンとの反応を0〜80℃の温度で行う請求項1に記載のエポキシ樹脂の製造法。 The method for producing an epoxy resin according to claim 1, wherein the reaction between the compound having a phenolic hydroxyl group and epihalohydrin is carried out at a temperature of 0 to 80 ° C. フェノール性水酸基を有する化合物とエピハロヒドリンを反応させる際、アルカリ金属水酸化物として固形の水酸化ナトリウム及び/または水酸化カリウムをフェノール性水酸基を有する化合物のフェノール性水酸基1当量に対して0.9〜1.1モル使用する請求項1または2に記載のエポキシ樹脂の製造法。 When the compound having a phenolic hydroxyl group is reacted with epihalohydrin, solid sodium hydroxide and / or potassium hydroxide is used as an alkali metal hydroxide in an amount of 0.9 to 1 equivalent of the phenolic hydroxyl group of the compound having a phenolic hydroxyl group. The method for producing an epoxy resin according to claim 1, wherein 1.1 mol is used. エピハロヒドリンがエピクロルヒドリンであり、フェノール性水酸基を有する化合物のフェノール性水酸基1当量に対してエピクロルヒドリンを2〜10モル使用する請求項1、2、及び3のいずれか1項に記載のエポキシ樹脂の製造法。 The method for producing an epoxy resin according to any one of claims 1, 2, and 3, wherein the epihalohydrin is epichlorohydrin, and 2 to 10 mol of epichlorohydrin is used per 1 equivalent of the phenolic hydroxyl group of the compound having a phenolic hydroxyl group. . 非プロトン性極性溶媒がジメチルスルホキシド、ジメチルホルムアミド及び1,3−ジメチル−2−イミダゾリジノンから選ばれる1種以上であり、非プロトン性極性溶媒をフェノール性水酸基を有する化合物100重量部に対し30〜300重量部使用する請求項1、2、3及び4のいずれか1項に記載のエポキシ樹脂の製造法。 The aprotic polar solvent is at least one selected from dimethyl sulfoxide, dimethylformamide, and 1,3-dimethyl-2-imidazolidinone, and the aprotic polar solvent is 30 parts per 100 parts by weight of the compound having a phenolic hydroxyl group. The manufacturing method of the epoxy resin of any one of Claim 1, 2, 3, and 4 used -300 weight part. フェノール性水酸基を有する化合物がフェノール類及び/またはナフトール類とアルデヒド類の縮合物、フェノール類及び/またはナフトール類とジシクロペンタジエンとの反応物、フェノール類及び/またはナフトール類とビフェニル系縮合剤との縮合物、ビスフェノール類及びビフェノール類から選ばれる1種以上である請求項1、2、3、4及び5のいずれか1項に記載のエポキシ樹脂の製造法。 A compound having a phenolic hydroxyl group is a condensate of phenols and / or naphthols and aldehydes, a reaction product of phenols and / or naphthols and dicyclopentadiene, phenols and / or naphthols and a biphenyl condensing agent The method for producing an epoxy resin according to any one of claims 1, 2, 3, 4 and 5, wherein the epoxy resin is one or more selected from the condensates of bisphenols and biphenols.
JP2007166323A 2007-06-25 2007-06-25 Method for producing epoxy resin Pending JP2007238963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007166323A JP2007238963A (en) 2007-06-25 2007-06-25 Method for producing epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166323A JP2007238963A (en) 2007-06-25 2007-06-25 Method for producing epoxy resin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP28763197A Division JPH11106472A (en) 1997-10-06 1997-10-06 Production of epoxy resin

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011169928A Division JP5306427B2 (en) 2011-08-03 2011-08-03 Production method of epoxy resin

Publications (1)

Publication Number Publication Date
JP2007238963A true JP2007238963A (en) 2007-09-20

Family

ID=38584789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166323A Pending JP2007238963A (en) 2007-06-25 2007-06-25 Method for producing epoxy resin

Country Status (1)

Country Link
JP (1) JP2007238963A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338657A (en) * 2001-05-14 2002-11-27 Toto Kasei Co Ltd Method of manufacturing high-purity epoxy resin
JP2012121961A (en) * 2010-12-07 2012-06-28 Nippon Kayaku Co Ltd Epoxy resin composition, prepreg, and cured product of the same
JP2012121971A (en) * 2010-12-07 2012-06-28 Nippon Kayaku Co Ltd Epoxy resin composition, prepreg, and cured product of the same
JP2012121962A (en) * 2010-12-07 2012-06-28 Nippon Kayaku Co Ltd Epoxy resin composition, prepreg, and cured product of the same
US9499113B2 (en) 2013-11-21 2016-11-22 Ford Global Technologies, Llc Luminescent grille bar assembly
US9810401B2 (en) 2013-11-21 2017-11-07 Ford Global Technologies, Llc Luminescent trim light assembly
WO2019117077A1 (en) * 2017-12-12 2019-06-20 三菱ケミカル株式会社 Epoxy resin compositions, cured object, and electrical/electronic component
CN114507333A (en) * 2021-12-27 2022-05-17 烟台信友新材料有限公司 High-toughness and high-weather-resistance photo-thermal dual-curing resin, preparation method and application thereof, and epoxy adhesive containing dual-curing resin
CN115010856A (en) * 2022-07-20 2022-09-06 杜彪 Preparation method of dechlorinating agent, dechlorinating agent and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252624A (en) * 1987-12-16 1989-10-09 Sumitomo Chem Co Ltd Production of polyphenol glycidyl ether
JPH0517463A (en) * 1991-07-08 1993-01-26 Toto Kasei Kk Production of highly pure epoxy resin
JPH05155978A (en) * 1991-12-06 1993-06-22 Nippon Kayaku Co Ltd Production of high-purity epoxy resin
JPH07109328A (en) * 1993-10-15 1995-04-25 Nippon Steel Chem Co Ltd High-purity and low-viscosity solid epoxy resin and production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252624A (en) * 1987-12-16 1989-10-09 Sumitomo Chem Co Ltd Production of polyphenol glycidyl ether
JPH0517463A (en) * 1991-07-08 1993-01-26 Toto Kasei Kk Production of highly pure epoxy resin
JPH05155978A (en) * 1991-12-06 1993-06-22 Nippon Kayaku Co Ltd Production of high-purity epoxy resin
JPH07109328A (en) * 1993-10-15 1995-04-25 Nippon Steel Chem Co Ltd High-purity and low-viscosity solid epoxy resin and production thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338657A (en) * 2001-05-14 2002-11-27 Toto Kasei Co Ltd Method of manufacturing high-purity epoxy resin
JP4675500B2 (en) * 2001-05-14 2011-04-20 新日鐵化学株式会社 Manufacturing method of high purity epoxy resin
JP2012121961A (en) * 2010-12-07 2012-06-28 Nippon Kayaku Co Ltd Epoxy resin composition, prepreg, and cured product of the same
JP2012121971A (en) * 2010-12-07 2012-06-28 Nippon Kayaku Co Ltd Epoxy resin composition, prepreg, and cured product of the same
JP2012121962A (en) * 2010-12-07 2012-06-28 Nippon Kayaku Co Ltd Epoxy resin composition, prepreg, and cured product of the same
US9499113B2 (en) 2013-11-21 2016-11-22 Ford Global Technologies, Llc Luminescent grille bar assembly
US9810401B2 (en) 2013-11-21 2017-11-07 Ford Global Technologies, Llc Luminescent trim light assembly
WO2019117077A1 (en) * 2017-12-12 2019-06-20 三菱ケミカル株式会社 Epoxy resin compositions, cured object, and electrical/electronic component
US11299620B2 (en) 2017-12-12 2022-04-12 Mitsubishi Chemical Corporation Epoxy resin composition, cured product, and electrical or electronic component
CN114507333A (en) * 2021-12-27 2022-05-17 烟台信友新材料有限公司 High-toughness and high-weather-resistance photo-thermal dual-curing resin, preparation method and application thereof, and epoxy adhesive containing dual-curing resin
CN114507333B (en) * 2021-12-27 2024-02-23 烟台信友新材料有限公司 High-toughness high-weather-resistance photo-thermal dual-curing resin, preparation method and application thereof, and epoxy adhesive containing dual-curing resin
CN115010856A (en) * 2022-07-20 2022-09-06 杜彪 Preparation method of dechlorinating agent, dechlorinating agent and application thereof

Similar Documents

Publication Publication Date Title
JP2007238963A (en) Method for producing epoxy resin
US6794478B2 (en) Preparing epoxy resin by distilling two fractions to recover and reuse epihalohydrin without glycidol
JP4348013B2 (en) Phenol novolac resin with improved optical properties
TWI465488B (en) Novolac resin and method for producing the same
US7268192B2 (en) Process for producing high-purity epoxy resin and epoxy resin composition
JP5130728B2 (en) Epoxy resin purification method
JP3315436B2 (en) Method for producing epoxy resin containing biphenol skeleton
JP2002542389A (en) Phenol-novolak with improved optical properties
WO1990015832A1 (en) Phenolic novolac resin, product of curing thereof, and method of production thereof
TWI466965B (en) Method for producing novolak resin and novolak resin
JP5306427B2 (en) Production method of epoxy resin
JPH11106472A (en) Production of epoxy resin
JP2011099083A (en) Epoxy resin
JP2732162B2 (en) Manufacturing method of high purity epoxy resin
JP3458465B2 (en) Manufacturing method of high purity epoxy resin
JP2001040065A (en) Production of high-purity epoxy resin
JP2874547B2 (en) Manufacturing method of epoxy resin
JP2663103B2 (en) Method for producing glycidyl ether of novolak resin
JP2887213B2 (en) New compounds, resins, resin compositions and cured products
JP4383593B2 (en) Production method of epoxy resin
JP4196627B2 (en) Production method of epoxy resin
JP4874494B2 (en) Production method of epoxy resin
JP2005350523A (en) Naphthol resin, method for producing the same, epoxy resin, epoxy resin composition, and cured product of the same
JPH04275317A (en) New novolak type resin and its production
JP3127397B2 (en) Epoxy resin and resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070626

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Effective date: 20101101

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110525