JP2007234338A - Secondary battery's positive electrode material, its manufacturing method and secondary battery - Google Patents

Secondary battery's positive electrode material, its manufacturing method and secondary battery Download PDF

Info

Publication number
JP2007234338A
JP2007234338A JP2006053195A JP2006053195A JP2007234338A JP 2007234338 A JP2007234338 A JP 2007234338A JP 2006053195 A JP2006053195 A JP 2006053195A JP 2006053195 A JP2006053195 A JP 2006053195A JP 2007234338 A JP2007234338 A JP 2007234338A
Authority
JP
Japan
Prior art keywords
secondary battery
positive electrode
electrode material
sulfur
containing compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006053195A
Other languages
Japanese (ja)
Other versions
JP5099299B2 (en
Inventor
Satoshi Miyagi
慧 宮城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2006053195A priority Critical patent/JP5099299B2/en
Publication of JP2007234338A publication Critical patent/JP2007234338A/en
Application granted granted Critical
Publication of JP5099299B2 publication Critical patent/JP5099299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide secondary battery's positive electrode materials having a large electric chargeable quantity and causing less capacity deterioration due to repeat of charge and discharge in a battery which employs a sulfur contained compound causing a redox reaction through cleavage-recombination in a disulfide linkage as an electrode active material, its manufacturing method and a secondary battery using them. <P>SOLUTION: The secondary battery's positive electrode material includes sulfur contained compounds (for example, 2, 5-dimercapto-1, 3, 4-thiadiazole) 1a, 1b in the pores of a single layer carbon nano-tube 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、二次電池用正極材料、その製造方法、及びそれらを利用した二次電池に関し、さらに詳しくは、電極活物質としてジスルフィド結合の開裂−再結合によってレドックス反応を行う含イオウ化合物を利用した二次電池用正極材料、その製造方法、及びそれを利用した二次電池に関する。   The present invention relates to a positive electrode material for a secondary battery, a method for producing the same, and a secondary battery using them, and more specifically, a sulfur-containing compound that performs a redox reaction by cleavage-recombination of disulfide bonds as an electrode active material. The present invention relates to a positive electrode material for a secondary battery, a method for producing the same, and a secondary battery using the same.

近年、単体硫黄や有機ジスルフィド化合物などのジスルフィド結合を有する物質が、二次電池用の電極活物質として注目されている。これらの物質は、ジスルフィド結合の開裂−再結合によってレドックス反応を行うことができるため、充電及び放電を繰り返すことができる。また、こうしたジスルフィド結合を有する化合物は、理論容量密度が極めて高いため、大きな充電容量を有する二次電池を製造できるとして注目を集めている。   In recent years, substances having a disulfide bond such as elemental sulfur and organic disulfide compounds have attracted attention as electrode active materials for secondary batteries. Since these substances can perform a redox reaction by cleavage-recombination of disulfide bonds, charging and discharging can be repeated. Further, such a compound having a disulfide bond has attracted attention because it can produce a secondary battery having a large charge capacity because of its extremely high theoretical capacity density.

しかし、これらジスルフィド結合を有する物質は導電性に劣るため、レドックス反応を行うためには、いかに電子伝導パスを形成するかが問題となる。また、ジスルフィド結合の開裂反応によって低分子量の化学種が発生し、この化学種が電極の沖合いに拡散してしまうため、可逆的なレドックスサイクルが困難となる。このため、単にジスルフィド化合物とアセチレンブラックなどの炭素粉末とを混合しただけでは、円滑なレドックスサイクルを行わせることができず、現実の充電容量は理論容量密度から計算される値よりもはるかに低い値しか得られていない。   However, since these substances having a disulfide bond are inferior in conductivity, it is a problem how to form an electron conduction path in order to perform a redox reaction. Moreover, a low molecular weight chemical species is generated by the cleavage reaction of the disulfide bond, and this chemical species diffuses offshore of the electrode, so that a reversible redox cycle becomes difficult. For this reason, simply mixing a disulfide compound and carbon powder such as acetylene black cannot cause a smooth redox cycle, and the actual charge capacity is much lower than the value calculated from the theoretical capacity density. Only the value is obtained.

こうした問題を解決すべく、ジスルフィド化合物としての単体イオウを多層カーボンナノチューブと物理的に混合した二次電池用正極材料が提案されている(非特許文献1)。この二次電池用正極材料では、導電性に優れた多層カーボンナノチューブが絡み合って3次元ネットワークが構築され、そのネットワークの中に存在する単体イオウが多層カーボンナノチューブとの間で比較的円滑な電子のやり取りを行うことができる。このため、単に単体イオウをアセチレンブラックと物理的に混合しただけの二次電池用正極材料と比較して、導電性に優れ、容量の大きい二次電池とすることができる。   In order to solve such a problem, a positive electrode material for a secondary battery in which simple sulfur as a disulfide compound is physically mixed with multi-walled carbon nanotubes has been proposed (Non-Patent Document 1). In this positive electrode material for a secondary battery, multi-walled carbon nanotubes with excellent conductivity are intertwined to form a three-dimensional network, and single sulfur existing in the network allows relatively smooth electrons to flow between the multi-walled carbon nanotubes. Can communicate. For this reason, it can be set as the secondary battery which is excellent in electroconductivity and large capacity | capacitance compared with the positive electrode material for secondary batteries which only mixed simple sulfur with acetylene black.

一方、正極材料として2,5−ジメルカプト-1,3,4−チアジアゾール(以下「DMcT」と略す)を用いたリチウム二次電池についても報告がなされている(非特許文献2〜4)。この化合物は、下式(1)に示すように、DMcTの多量体ポリマーであるDMcTが電解還元されて開裂してDMcT2−となり、さらにDMcT2−が電解酸化されて元の多量体ポリマーに戻ることができる。
すなわち、ジスルフィド結合の開裂−再結合によって可逆的なレドックス反応を行うことができる。また、この電気化学反応について、サイクリックボルタンメトリーによる詳細な研究がなされており、レドックス反応によって生ずる化学種も比較的安定であり、二次電池の正極材料として好適であることが分かっている(非特許文献5)。
On the other hand, a lithium secondary battery using 2,5-dimercapto-1,3,4-thiadiazole (hereinafter abbreviated as “DMcT”) as a positive electrode material has also been reported (Non-Patent Documents 2 to 4). In this compound, as shown in the following formula (1), DMcT n which is a DMcT multimeric polymer is electrolytically reduced to cleave to DMcT 2- , and DMcT 2- is electrolytically oxidized to form the original multimeric polymer. You can return to
That is, a reversible redox reaction can be performed by cleavage-recombination of disulfide bonds. In addition, this electrochemical reaction has been studied in detail by cyclic voltammetry, and the chemical species generated by the redox reaction is relatively stable, and it is known that it is suitable as a positive electrode material for a secondary battery (non- Patent Document 5).

Journal of the Electrochemical Society,150(7)A889-A893Journal of the Electrochemical Society, 150 (7) A889-A893 Mol.Cryst.Liq.Cryst.,190(1990)185Mol.Cryst.Liq.Cryst., 190 (1990) 185 Journal of Electroanalytical Chemistry,139(1992)1808Journal of Electroanalytical Chemistry, 139 (1992) 1808 Journal of Electroanalytical Chemistry,139(1992)2077Journal of Electroanalytical Chemistry, 139 (1992) 2077 Journal of Electroanalytical Chemistry,408(1996)53-60Journal of Electroanalytical Chemistry, 408 (1996) 53-60

しかし、上記非特許文献1に記載された、単体イオウをカーボンナノチューブと混合した二次電池用正極材料では、多層のカーボンナノチューブを用いているため、単層カーボンナノチューブに比べてチューブを形成している壁が厚く、そのため管状の細孔部分の体積が小さい。このため、単体イオウは細孔外部に存在するものが多くなり、細孔内部に閉じ込められた単体イオウ分は少なくなる。このため、単体イオウの還元体が沖合いに溶出しやすくなり、可逆的なレドックス反応が困難となり、ひいては二次電池として用いた場合に、充放電の繰り返しによる容量の低下が著しくなる。   However, the positive electrode material for a secondary battery in which simple sulfur is mixed with carbon nanotubes described in Non-Patent Document 1 uses multi-walled carbon nanotubes, so that a tube is formed as compared with single-walled carbon nanotubes. The wall is thick, so the volume of the tubular pore portion is small. For this reason, the amount of simple sulfur that exists outside the pores increases, and the content of simple sulfur trapped inside the pores decreases. For this reason, the reductant of simple sulfur is likely to elute offshore, making reversible redox reaction difficult, and as a result, when used as a secondary battery, the capacity is significantly reduced due to repeated charge and discharge.

また、上記非特許文献2〜5に記載されたDMcT用いたリチウム二次電池では、多量体ポリマーのDMcTが還元されて生じたDMcT2−は溶解しやすいため、電極であるカーボン粒子の表面近傍から沖合いに溶出してしまい、可逆的なレドックス反応が困難となる。このため、二次電池として用いた場合に、充放電の繰り返しによる容量の低下が顕著となる。 Further, in the lithium secondary battery using DMcT described in Non-Patent Documents 2 to 5, DMcT 2- produced by reducing DMcT n of the multimeric polymer is easily dissolved, so that the surface of the carbon particle as the electrode It elutes offshore from the vicinity, making reversible redox reaction difficult. For this reason, when it uses as a secondary battery, the fall of the capacity | capacitance by repetition of charging / discharging becomes remarkable.

本発明は、上記従来の実情に鑑みなされたものであり、ジスルフィド結合の開裂−再結合によってレドックス反応を行う含イオウ化合物を電極活物質として用いており、充電可能な電気量が大きく、充放電の繰り返しによる容量低下の少ない二次電池用正極材料、その製造方法、及びそれらを利用した二次電池を提供することを解決すべき課題としている。   The present invention has been made in view of the above-described conventional situation, and uses a sulfur-containing compound that performs a redox reaction by cleavage-recombination of disulfide bonds as an electrode active material, and has a large amount of chargeable charge and charge / discharge. It is an object to be solved to provide a positive electrode material for a secondary battery with a small capacity drop due to repetition of the above, a manufacturing method thereof, and a secondary battery using them.

第1発明の二次電池用正極材料は、ジスルフィド結合の開裂−再結合によってレドックス反応を行う含イオウ化合物と、カーボンとを含んだ二次電池用正極材料であって、前記カーボンは単層カーボンナノチューブであることを特徴とする。   The positive electrode material for a secondary battery of the first invention is a positive electrode material for a secondary battery containing a sulfur-containing compound that performs a redox reaction by cleavage-recombination of disulfide bonds and carbon, and the carbon is a single-layer carbon It is a nanotube.

第1発明の二次電池用正極材料は、電極活物質としてジスルフィド結合の開裂−再結合によってレドックス反応を行う含イオウ化合物を用いているため、理論容量密度が極めて高くなる。
また、電極材料として伝導性に優れたカーボンナノチューブを用いており、その細長い分子が互いに絡み合って3次元ネットワークを構築するため、緻密な電子伝導パスが形成され、含イオウ化合物の電極反応を円滑に行うことができる。
さらに、カーボンナノチューブは細長い管状の細孔を有しており、含イオウ化合物がカーボンナノチューブの細長い管状の細孔に封じ込められ、沖合いへの溶出が阻止される。また、狭い管状の細孔というナノサイズの領域に含イオウ化合物を存在させることができるため、可逆的なレドックス反応が迅速に進行することとなる。
さらに、カーボンナノチューブの中でも特に単層カーボンナノチューブを用いているため、その管状の分子構造における壁が薄く、相対的に管状の細孔の占める体積割合が大きくなることから、多層カーボンナノチューブを用いた場合よりも、多くの含イオウ化合物を細孔内部に入れることができ、電気容量が大きくなる。
したがって、第1発明の二次電池用正極材料は、充電可能な電気量が大きく、充放電の繰り返しによる容量低下の少ない二次電池を構築することができる。
Since the positive electrode material for a secondary battery according to the first invention uses a sulfur-containing compound that performs a redox reaction by cleavage-recombination of disulfide bonds as an electrode active material, the theoretical capacity density becomes extremely high.
In addition, carbon nanotubes with excellent conductivity are used as the electrode material, and the elongated molecules are intertwined with each other to form a three-dimensional network, so that a dense electron conduction path is formed, and the electrode reaction of sulfur-containing compounds is facilitated. It can be carried out.
Further, the carbon nanotube has elongated tubular pores, and the sulfur-containing compound is confined in the elongated tubular pores of the carbon nanotube, and elution to the offshore is prevented. Further, since the sulfur-containing compound can be present in a nano-sized region called a narrow tubular pore, a reversible redox reaction proceeds rapidly.
Furthermore, since single-walled carbon nanotubes are used among carbon nanotubes, the wall in the tubular molecular structure is thin, and the volume ratio occupied by tubular pores is relatively large. More sulfur-containing compounds can be put inside the pores than in the case, and the electric capacity is increased.
Therefore, the positive electrode material for the secondary battery according to the first aspect of the present invention can construct a secondary battery that has a large chargeable amount of electricity and a small capacity decrease due to repeated charge and discharge.

含イオウ化合物は単層カーボンナノチューブの管状の細孔内に存在させることが好ましい。こうであれば、含イオウ化合物がカーボンナノチューブ内に留められるため、含イオウ化合物の溶出を防ぐことができ、円滑に可逆的なレドックス反応を行うことができる。このため、充放電の繰り返しによる容量低下が少なくなる。   The sulfur-containing compound is preferably present in the tubular pores of the single-walled carbon nanotube. In this case, since the sulfur-containing compound is retained in the carbon nanotube, elution of the sulfur-containing compound can be prevented and a reversible redox reaction can be performed smoothly. For this reason, the capacity | capacitance reduction by repetition of charging / discharging decreases.

含イオウ化合物は有機ジスルフィド、カーボンスルフィド、ポリスルフィド及びそれらの還元体の少なくとも一種とすることができる。これらの化合物は、ジスルフィド結合の開裂−再結合によってレドックス反応を行うことができる。有機ジスルフィドとしては、
例えば下記化学式(a)〜(h)に示すものが挙げられる。
また、カーボンスルフィドとしては、例えば下記化学式(i)〜(k)に示すものが挙げられる。
さらに、ポリスルフィドとしては、例えば下記化学式(l)に示す単体イオウが挙げられる。
特に、含イオウ化合物として2以上のチオール基若しくはその塩を有する複素環式化合物又はそれらの多量体は、含イオウ化合物の中でも良好な可逆的レドックスサイクル性能を示し、比較的速い電極反応速度を示すことから、二次電池の正極物質として好適である。
その中でも、五員環の複素環式化合物は特に良い効率でレドックスサイクルが実現される。発明者らの試験結果によれば、最も好ましい含イオウ化合物はジメルカプトチアジアゾール若しくはそのリチウム塩又はそれらの多量体である。
The sulfur-containing compound can be at least one of organic disulfides, carbon sulfides, polysulfides, and their reduced forms. These compounds can undergo a redox reaction by cleavage-recombination of disulfide bonds. As organic disulfide,
Examples thereof include those represented by the following chemical formulas (a) to (h).
Examples of the carbon sulfide include those represented by the following chemical formulas (i) to (k).
Furthermore, examples of the polysulfide include simple sulfur represented by the following chemical formula (l).
In particular, a heterocyclic compound having two or more thiol groups or salts thereof as a sulfur-containing compound or a multimer thereof exhibits a good reversible redox cycle performance among sulfur-containing compounds and a relatively fast electrode reaction rate. Therefore, it is suitable as a positive electrode material for a secondary battery.
Among them, a 5-membered heterocyclic compound can realize a redox cycle with particularly good efficiency. According to the test results of the inventors, the most preferred sulfur-containing compound is dimercaptothiadiazole or a lithium salt thereof or a multimer thereof.

第2発明の二次電池用正極材料は、ジスルフィド結合の開裂−再結合によってレドックス反応を行う含イオウ化合物と、カーボンと、を含んだ二次電池用正極材料であって、含イオウ化合物は2以上のチオール基若しくはその塩を有する複素環式化合物又はそれらの多量体であり、前記カーボンはカーボンナノチューブであることを特徴とする。   A positive electrode material for a secondary battery according to a second invention is a positive electrode material for a secondary battery containing a sulfur-containing compound that performs a redox reaction by cleavage-recombination of disulfide bonds and carbon, and the sulfur-containing compound is 2 A heterocyclic compound having a thiol group or a salt thereof or a multimer thereof, wherein the carbon is a carbon nanotube.

第2発明の二次電池用正極材料は、第1発明と同様、電極活物質としてジスルフィド結合の開裂−再結合によってレドックス反応を行う含イオウ化合物を用いているため、理論容量密度が極めて高くなる。
また、電極材料として伝導性に優れたカーボンナノチューブを用いており、その細長い分子が互いに絡み合って3次元ネットワークを構築するため、緻密な電子伝導パスが形成され、含イオウ化合物の電極反応を円滑に行うことができる。
さらに、カーボンナノチューブは細長い管状の細孔を有しており、含イオウ化合物がカーボンナノチューブの細長い管状の細孔に封じ込められ、沖合いへの溶出が阻止される。
また、狭い管状の細孔というナノサイズの領域に含イオウ化合物を存在させることができるため、可逆的なレドックス反応が迅速に進行することとなる。
したがって、第2発明の二次電池用正極材料は、充電可能な電気量が大きく、充放電の繰り返しによる容量低下の少ない二次電池を構築することができる。
As in the first invention, the positive electrode material for a secondary battery according to the second invention uses a sulfur-containing compound that performs a redox reaction by cleavage-recombination of disulfide bonds as an electrode active material, and therefore has a very high theoretical capacity density. .
In addition, carbon nanotubes with excellent conductivity are used as the electrode material, and the elongated molecules are intertwined with each other to form a three-dimensional network, so that a dense electron conduction path is formed, and the electrode reaction of sulfur-containing compounds is facilitated. It can be carried out.
Further, the carbon nanotube has elongated tubular pores, and the sulfur-containing compound is confined in the elongated tubular pores of the carbon nanotube, and elution to the offshore is prevented.
Further, since the sulfur-containing compound can be present in a nano-sized region called a narrow tubular pore, a reversible redox reaction proceeds rapidly.
Therefore, the positive electrode material for the secondary battery of the second invention can construct a secondary battery having a large chargeable amount of electricity and a small capacity decrease due to repeated charge and discharge.

カーボンナノチューブは、単層カーボンナノチューブであることが好ましい。単層カーボンナノチューブは、その管状の分子構造における壁が薄く、相対的に管状の細孔の占める体積割合が大きくなることから、多層カーボンナノチューブを用いた場合よりも、多くの含イオウ化合物を細孔内部に入れることができ、電気容量が大きくなる。   The carbon nanotube is preferably a single-walled carbon nanotube. Single-walled carbon nanotubes have a thin wall in the tubular molecular structure, and the volume ratio occupied by tubular pores is relatively large, so that more sulfur-containing compounds are finer than those using multi-walled carbon nanotubes. It can be put inside the hole, increasing the electric capacity.

含イオウ化合物は単層カーボンナノチューブの管状の細孔内に存在させることが好ましい。こうであれば、含イオウ化合物がカーボンナノチューブ内に留められるため、含イオウ化合物の溶出を防ぐことができ、円滑に可逆的なレドックス反応を行わせることができる。このため、充放電の繰り返しによる容量低下が少なくなる。   The sulfur-containing compound is preferably present in the tubular pores of the single-walled carbon nanotube. In this case, since the sulfur-containing compound is retained in the carbon nanotube, elution of the sulfur-containing compound can be prevented, and a reversible redox reaction can be performed smoothly. For this reason, the capacity | capacitance reduction by repetition of charging / discharging decreases.

2以上のチオール基若しくはその塩を有する複素環式化合物の中でも五員環の複素環式化合物は特に良い効率でレドックスサイクルが実現される。発明者らの試験結果によれば、もっとも好ましい含イオウ化合物はジメルカプトチアジアゾール又はそれらの多量体である。   Among the heterocyclic compounds having two or more thiol groups or salts thereof, a five-membered heterocyclic compound realizes a redox cycle with particularly good efficiency. According to the test results of the inventors, the most preferred sulfur-containing compound is dimercaptothiadiazole or a multimer thereof.

第1発明及び第2発明の二次電池用正極材料は、次のように製造することができる。
すなわち、本発明の二次電池用正極材料の製造方法は、ジスルフィド結合の開裂−再結合によってレドックス反応を行う含イオウ化合物の溶液とカーボンナノチューブとを混合する混合工程と、該混合工程によって得られた混合液を固液分離して含イオウ化合物を含むカーボンナノチューブを得る分離工程と、分離工程によって得られた含イオウ化合物を含むカーボンナノチューブを洗浄する洗浄工程と、を備えることを特徴とする。
The positive electrode material for a secondary battery according to the first and second inventions can be manufactured as follows.
That is, the method for producing a positive electrode material for a secondary battery according to the present invention is obtained by mixing a solution of a sulfur-containing compound that performs a redox reaction by cleavage-recombination of disulfide bonds and a carbon nanotube, and the mixing step. And a separation step of obtaining a carbon nanotube containing a sulfur-containing compound by solid-liquid separation of the mixed liquid, and a washing step of washing the carbon nanotube containing a sulfur-containing compound obtained by the separation step.

また、第1発明及び第2発明の二次電池用正極材料は、セパレータをはさんで負極材料と組み合わせることによって、二次電池とすることができる。こうして組み立てた二次電池は、充電可能な電気量が大きく、充放電の繰り返しによる容量低下も少ない。   Moreover, the positive electrode material for secondary batteries of 1st invention and 2nd invention can be made into a secondary battery by combining with a negative electrode material on both sides of a separator. The secondary battery assembled in this way has a large amount of electricity that can be charged, and has a small capacity drop due to repeated charge and discharge.

以下、本発明を具体化した実施例について図面を参照しつつ説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the drawings.

( 実施例 )
二次電池用電池材料の調製
実施例では、含イオウ化合物として下記に示す2,5−ジメルカプト-1,3,4−チアジアゾール(DMcT)を用い、これを単層ナノチューブの細孔に吸着させて二次電池用正極材料とした。以下、その製造方法について詳述する。
(混合工程)
アルゴン雰囲気下のグローブボックス内にてDMcT2.0gをはかりとり、無水エタノール500mlに加えて分散溶解させた。そして、DMcTのチオール基の当量と同当量の水酸化リチウム/無水エタノール溶液を加えてリチウム塩溶液とした。さらに、キャップを除去した単層カーボンナノチューブ500mgを加えて撹拌した後、50℃で5時間静置させた。以上の操作は、すべてアルゴン雰囲気下で行った。
(分離工程)
そして、混合工程で得られた混合物をろ過した。
(洗浄工程)
さらに、無水エタノールで洗浄した。こうして単層カーボンナノチューブの細孔内にDMcTリチウム塩が内包されたDMcTリチウム塩含有カーボンナノチューブを得た。
( Example )
In the example of preparing the battery material for the secondary battery, the following 2,5-dimercapto-1,3,4-thiadiazole (DMcT) was used as the sulfur-containing compound, and this was adsorbed to the pores of the single-walled nanotube. A positive electrode material for a secondary battery was obtained. Hereinafter, the manufacturing method will be described in detail.
(Mixing process)
In a glove box under an argon atmosphere, 2.0 g of DMcT was weighed and added to 500 ml of absolute ethanol to be dispersed and dissolved. Then, a lithium hydroxide / anhydrous ethanol solution having the same equivalent as the equivalent of the thiol group of DMcT was added to obtain a lithium salt solution. Further, 500 mg of single-walled carbon nanotubes from which the cap was removed was added and stirred, and then allowed to stand at 50 ° C. for 5 hours. All the above operations were performed under an argon atmosphere.
(Separation process)
And the mixture obtained at the mixing process was filtered.
(Washing process)
Furthermore, it was washed with absolute ethanol. Thus, DMcT lithium salt-containing carbon nanotubes in which DMcT lithium salt was encapsulated in the pores of single-walled carbon nanotubes were obtained.

二次電池用正極の調製
上記のようにして得た実施例のDMcTリチウム塩含有カーボンナノチューブ500mg
をPVdF(ポリビニリデンフルオライド)50mgのNMP(N-メチル-2-ピロリドン)分散液に加え、スラリーとする。このスラリーをアルミ箔に塗布した後、16mmの円盤型に打ち抜いて二次電池用正極を調製した。この電極にはDMcTが24mg、単層カーボンナノチューブが102mg、PVdFが10mg含まれている。
Preparation of positive electrode for secondary battery 500 mg of DMcT lithium salt-containing carbon nanotubes of Examples obtained as described above
Is added to a dispersion of 50 mg of PVdF (polyvinylidene fluoride) in NMP (N-methyl-2-pyrrolidone) to form a slurry. This slurry was applied to an aluminum foil, and then punched into a 16 mm disk shape to prepare a positive electrode for a secondary battery. This electrode contains 24 mg of DMcT, 102 mg of single-walled carbon nanotubes, and 10 mg of PVdF.

二次電池用負極の調製
銅箔に人造黒鉛(10μm)を塗布し、16mmの円盤型に打ち抜き、電位走査を数サイクル行って二次電池用負極とした。面積あたりの活物質量は70mg/cm2であった。
Preparation of negative electrode for secondary battery Artificial graphite (10 μm) was applied to a copper foil, punched into a 16 mm disk, and subjected to several cycles of potential scanning to obtain a negative electrode for a secondary battery. The amount of active material per area was 70 mg / cm 2 .

二次電池の組み立て
上記のようにして得られた二次電池用正極及び二次電池用負極をセル組みする前に、脱水工程として170℃で8時間の加熱を行った。電解液は1MのLiPF6/(エチレンカーボネート+ジエチルカーボネート)を用い、密閉式のコイン型ステンレス製容器に二次電池用正極、電解液で湿らせたポリプロピレン製セパレータ、二次電池用負極の順でセットし、ステンレス製の蓋を取り付けて二次電池とした。
Assembly of Secondary Battery Before assembling the positive electrode for secondary battery and the negative electrode for secondary battery obtained as described above, heating was performed at 170 ° C. for 8 hours as a dehydration step. The electrolyte used was 1M LiPF 6 / (ethylene carbonate + diethyl carbonate). The positive electrode for the secondary battery, the polypropylene separator moistened with the electrolyte, and the negative electrode for the secondary battery in a sealed coin-type stainless steel container. A secondary battery was made by attaching a stainless steel lid.

<評 価>
以上のように構成され実施例の二次電池について、放電容量−電圧曲線を測定した。測定は2極式により、10mA/cm2の定電流密度条件下で行った。結果を図1に示す。試験当初において、DMcT当たりの容量は185mAh/gで、利用率は52%であり、充電可能な電気量が大きいことがわかった。また、1000サイクルの電位走査を行った後においても、容量の減少は僅か8%であり、充放電の繰り返しによる容量低下も少ないことがわかった。
これらの結果は、次のように説明される。すなわち、実施例の二次電池では、正極材料として理論容量密度の大きなDMcTを用いており、図2に示すように、DMcTリチウム塩1が伝導性に優れた単層カーボンナノチューブ2の細孔内部に内包されている。このため、DMcTリチウム塩1aの溶出が阻止されることなく、狭い管状の細孔というナノサイズの領域において酸化(充電)されてDMcTリチウム塩二量体1bとなる。さらに、還元(放電)工程ではDMcTリチウム塩二量体1bが還元されてDMcTリチウム塩1aとなる。こうして、単層カーボンナノチューブ2という、狭い管状の細孔というナノサイズの領域でDMcT化合物が、可逆的なレドックス反応を円滑に行うことができる。さらに、カーボンナノチューブの中でも特に単層カーボンナノチューブ2を用いているため、その管状の分子構造における壁が薄く、相対的に管状の細孔の占める体積割合が大きくなることから、多層カーボンナノチューブを用いた場合よりも、多くのDMcT化合物を細孔内部に入れることができ、電気容量が大きくなるのである。
<Evaluation>
About the secondary battery of the Example comprised as mentioned above, the discharge capacity-voltage curve was measured. The measurement was performed by a bipolar method under a constant current density condition of 10 mA / cm 2 . The results are shown in FIG. At the beginning of the test, the capacity per DMcT was 185 mAh / g, the utilization rate was 52%, and it was found that the amount of electricity that can be charged was large. Further, it was found that even after 1000 cycles of potential scanning, the capacity decrease was only 8%, and the capacity decrease due to repeated charge and discharge was small.
These results are explained as follows. That is, in the secondary battery of the example, DMcT having a large theoretical capacity density is used as the positive electrode material. As shown in FIG. 2, the DMcT lithium salt 1 has an excellent conductivity inside the pores of the single-walled carbon nanotube 2. Is included. For this reason, the elution of DMcT lithium salt 1a is not inhibited, and it is oxidized (charged) in a nano-sized region of narrow tubular pores to form DMcT lithium salt dimer 1b. Further, in the reduction (discharge) step, DMcT lithium salt dimer 1b is reduced to DMcT lithium salt 1a. Thus, the DMcT compound can smoothly perform a reversible redox reaction in the nano-sized region of single-walled carbon nanotubes 2 such as narrow tubular pores. Furthermore, since the single-walled carbon nanotube 2 is used among the carbon nanotubes, the wall in the tubular molecular structure is thin, and the volume ratio occupied by the tubular pores is relatively large. More DMcT compounds can be put inside the pores than in the case of increasing the electric capacity.

実施例の二次電池における作製当初及び電位走査1000サイクル後の放電容量−電圧曲線である。It is the discharge capacity-voltage curve after the manufacture initial stage and potential scanning 1000 cycles in the secondary battery of an Example. 実施例の二次電池用正極におけるレドックス反応の模式図である。It is a schematic diagram of the redox reaction in the positive electrode for secondary batteries of an Example.

符号の説明Explanation of symbols

1a…DMcTリチウム塩(含イオウ化合物)
1b…DMcTリチウム塩二量体(含イオウ化合物)
2…単層カーボンナノチューブ
1a ... DMcT lithium salt (sulfur-containing compound)
1b ... DMcT lithium salt dimer (sulfur-containing compound)
2 ... Single-walled carbon nanotube

Claims (13)

ジスルフィド結合の開裂−再結合によってレドックス反応を行う含イオウ化合物と、カーボンと、を含んだ二次電池用正極材料であって、
前記カーボンは単層カーボンナノチューブであることを特徴とする二次電池用正極材料。
A positive electrode material for a secondary battery containing a sulfur-containing compound that performs a redox reaction by cleavage-recombination of disulfide bonds and carbon,
The positive electrode material for a secondary battery, wherein the carbon is a single-walled carbon nanotube.
前記含イオウ化合物は単層カーボンナノチューブの管状の細孔内に存在することを特徴とする請求項1記載の二次電池用正極材料。   The positive electrode material for a secondary battery according to claim 1, wherein the sulfur-containing compound is present in the tubular pores of the single-walled carbon nanotube. 前記含イオウ化合物は有機ジスルフィド、カーボンスルフィド、ポリスルフィド及びそれらの還元体の少なくとも一種であることを特徴とする請求項1又は2記載の二次電池用正極材料。   3. The positive electrode material for a secondary battery according to claim 1, wherein the sulfur-containing compound is at least one of organic disulfide, carbon sulfide, polysulfide, and a reduced form thereof. 前記含イオウ化合物は2以上のチオール基若しくはその塩を有する複素環式化合物又はそれらの多量体であることを特徴とする請求項3記載の二次電池用正極材料。   4. The positive electrode material for a secondary battery according to claim 3, wherein the sulfur-containing compound is a heterocyclic compound having two or more thiol groups or salts thereof, or a multimer thereof. 前記複素環式化合物は、五員環の複素環式化合物であることを特徴と請求項4記載のする二次電池用正極材料。   5. The positive electrode material for a secondary battery according to claim 4, wherein the heterocyclic compound is a five-membered heterocyclic compound. 前記複素環式化合物は、ジメルカプトチアジアゾール又はそれらの多量体であることを特徴とする請求項5記載の二次電池用正極材料。   6. The positive electrode material for a secondary battery according to claim 5, wherein the heterocyclic compound is dimercaptothiadiazole or a multimer thereof. ジスルフィド結合の開裂−再結合によってレドックス反応を行う含イオウ化合物と、カーボンと、を含んだ二次電池用正極材料であって、
前記含イオウ化合物は2以上のチオール基若しくはその塩を有する複素環式化合物又はそれらの多量体であり、前記カーボンはカーボンナノチューブであることを特徴とする二次電池用正極材料。
A positive electrode material for a secondary battery containing a sulfur-containing compound that performs a redox reaction by cleavage-recombination of disulfide bonds and carbon,
The positive electrode material for a secondary battery, wherein the sulfur-containing compound is a heterocyclic compound having two or more thiol groups or a salt thereof or a multimer thereof, and the carbon is a carbon nanotube.
前記カーボンナノチューブは、単層カーボンナノチューブであることを特徴とする請求項7記載の二次電池用正極材料。   The positive electrode material for a secondary battery according to claim 7, wherein the carbon nanotube is a single-walled carbon nanotube. 前記含イオウ化合物は前記カーボンナノチューブの管状の細孔内に存在することを特徴とする請求項7記載の二次電池用正極材料。   The positive electrode material for a secondary battery according to claim 7, wherein the sulfur-containing compound is present in tubular pores of the carbon nanotube. 前記2以上のチオール基若しくはその塩を有する複素環式化合物は、五員環の複素環式化合物であることを特徴と請求項7記載の二次電池用正極材料。   The positive electrode material for a secondary battery according to claim 7, wherein the heterocyclic compound having two or more thiol groups or a salt thereof is a five-membered heterocyclic compound. 五員環の複素環式化合物はジメルカプトチアジアゾール又はそれらの多量体であることを特徴とする請求項10記載の二次電池用正極材料。   The positive electrode material for a secondary battery according to claim 10, wherein the five-membered heterocyclic compound is dimercaptothiadiazole or a multimer thereof. ジスルフィド結合の開裂−再結合によってレドックス反応を行う含イオウ化合物の溶液とカーボンナノチューブとを混合する混合工程と、
該混合工程によって得られた混合液を固液分離して含イオウ化合物を含むカーボンナノチューブを得る分離工程と、
該分離工程によって得られた含イオウ化合物を含むカーボンナノチューブを洗浄する洗浄工程と、を備えることを特徴とする二次電池用正極材料の製造方法。
A mixing step of mixing a carbon nanotube with a solution of a sulfur-containing compound that performs a redox reaction by cleavage-recombination of disulfide bonds;
A separation step of obtaining a carbon nanotube containing a sulfur-containing compound by solid-liquid separation of the mixed solution obtained by the mixing step;
And a washing step of washing the carbon nanotubes containing the sulfur-containing compound obtained by the separation step. A method for producing a positive electrode material for a secondary battery, comprising:
請求項1〜11のいずれかに記載の二次電池用正極材料をセパレータをはさんで負極材料と組み合わせた二次電池。   The secondary battery which combined the positive electrode material for secondary batteries in any one of Claims 1-11 with the negative electrode material on both sides of the separator.
JP2006053195A 2006-02-28 2006-02-28 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery Active JP5099299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006053195A JP5099299B2 (en) 2006-02-28 2006-02-28 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006053195A JP5099299B2 (en) 2006-02-28 2006-02-28 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2007234338A true JP2007234338A (en) 2007-09-13
JP5099299B2 JP5099299B2 (en) 2012-12-19

Family

ID=38554729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006053195A Active JP5099299B2 (en) 2006-02-28 2006-02-28 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5099299B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009114314A3 (en) * 2008-03-12 2009-11-26 Toyota Motor Engineering & Manufacturing North America, Inc. Sulfur-carbon material
WO2011031297A3 (en) * 2009-08-28 2011-07-21 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
CN102263257A (en) * 2011-06-28 2011-11-30 中国科学院金属研究所 High energy flexible electrode material and preparation method thereof and application thereof in storage battery
US8173302B2 (en) 2008-06-11 2012-05-08 Toyota Motor Engineering & Manufacturing North America, Inc. Sulfur-carbon material
JP2013137981A (en) * 2011-12-27 2013-07-11 Winston Chung Nanometer-sulfur composite positive electrode material for rare earth lithium-sulfur battery and method for manufacturing the same
JP2013197595A (en) * 2012-03-22 2013-09-30 Boeing Co:The Redox polymer energy storage system
WO2014080974A1 (en) * 2012-11-21 2014-05-30 国立大学法人信州大学 Carbon nanotube and method for producing same
US8936870B2 (en) 2011-10-13 2015-01-20 Sion Power Corporation Electrode structure and method for making the same
US9034421B2 (en) 2008-01-08 2015-05-19 Sion Power Corporation Method of forming electrodes comprising sulfur and porous material comprising carbon
US9077041B2 (en) 2012-02-14 2015-07-07 Sion Power Corporation Electrode structure for electrochemical cell
JP2016535716A (en) * 2013-10-18 2016-11-17 エルジー・ケム・リミテッド Carbon nanotube-sulfur composite containing carbon nanotube aggregate and method for producing the same
US9548492B2 (en) 2011-06-17 2017-01-17 Sion Power Corporation Plating technique for electrode
US9577267B2 (en) 2012-12-19 2017-02-21 Sion Power Corporation Electrode structure and method for making same
JP2018503945A (en) * 2014-12-22 2018-02-08 アルケマ フランス Active electrode material for Li-S battery
EP3218949B1 (en) * 2014-11-10 2019-02-13 Robert Bosch GmbH Electrochemically active material and an electrode comprising said electrochemically active material
US10319988B2 (en) 2014-05-01 2019-06-11 Sion Power Corporation Electrode fabrication methods and associated systems and articles
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329413A (en) * 1998-03-31 1999-11-30 Aventis Res & Technol Gmbh & Co Kg Lithium battery and electrode
JPH11329414A (en) * 1998-03-31 1999-11-30 Aventis Res & Technol Gmbh & Co Kg Lithium battery and electrode
JP2002510842A (en) * 1998-03-31 2002-04-09 セラニーズ・ヴェンチャーズ・ゲーエムベーハー Lithium batteries and electrodes
JP2002334697A (en) * 2001-05-08 2002-11-22 Hitachi Maxell Ltd Non-aqueous secondary battery
JP2005050669A (en) * 2003-07-28 2005-02-24 Tdk Corp Electrode and electrochemical element using it
JP2005158305A (en) * 2003-11-20 2005-06-16 Fukuda Metal Foil & Powder Co Ltd Negative electrode material for lithium secondary battery, and its manufacturing method
JP2007153682A (en) * 2005-12-06 2007-06-21 Nagoya Institute Of Technology Lithium ion storage body and lithium ion storage method
JP2007525787A (en) * 2003-05-20 2007-09-06 フェニックス イノベーション,インク. New carbon nanotube lithium battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329413A (en) * 1998-03-31 1999-11-30 Aventis Res & Technol Gmbh & Co Kg Lithium battery and electrode
JPH11329414A (en) * 1998-03-31 1999-11-30 Aventis Res & Technol Gmbh & Co Kg Lithium battery and electrode
JP2002510842A (en) * 1998-03-31 2002-04-09 セラニーズ・ヴェンチャーズ・ゲーエムベーハー Lithium batteries and electrodes
JP2002334697A (en) * 2001-05-08 2002-11-22 Hitachi Maxell Ltd Non-aqueous secondary battery
JP2007525787A (en) * 2003-05-20 2007-09-06 フェニックス イノベーション,インク. New carbon nanotube lithium battery
JP2005050669A (en) * 2003-07-28 2005-02-24 Tdk Corp Electrode and electrochemical element using it
JP2005158305A (en) * 2003-11-20 2005-06-16 Fukuda Metal Foil & Powder Co Ltd Negative electrode material for lithium secondary battery, and its manufacturing method
JP2007153682A (en) * 2005-12-06 2007-06-21 Nagoya Institute Of Technology Lithium ion storage body and lithium ion storage method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034421B2 (en) 2008-01-08 2015-05-19 Sion Power Corporation Method of forming electrodes comprising sulfur and porous material comprising carbon
JP2013118191A (en) * 2008-03-12 2013-06-13 Toyota Motor Engineering & Manufacturing North America Inc Sulfur-carbon material
WO2009114314A3 (en) * 2008-03-12 2009-11-26 Toyota Motor Engineering & Manufacturing North America, Inc. Sulfur-carbon material
JP2011518743A (en) * 2008-03-12 2011-06-30 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Sulfur-carbon material
US8173302B2 (en) 2008-06-11 2012-05-08 Toyota Motor Engineering & Manufacturing North America, Inc. Sulfur-carbon material
US10629947B2 (en) 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
WO2011031297A3 (en) * 2009-08-28 2011-07-21 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
US9005809B2 (en) 2009-08-28 2015-04-14 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
CN102598364A (en) * 2009-08-28 2012-07-18 赛昂能源有限公司 Electrochemical cells comprising porous structures comprising sulfur
US9419274B2 (en) 2009-08-28 2016-08-16 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
US9548492B2 (en) 2011-06-17 2017-01-17 Sion Power Corporation Plating technique for electrode
US11456459B2 (en) 2011-06-17 2022-09-27 Sion Power Corporation Plating technique for electrode
CN102263257A (en) * 2011-06-28 2011-11-30 中国科学院金属研究所 High energy flexible electrode material and preparation method thereof and application thereof in storage battery
US9040197B2 (en) 2011-10-13 2015-05-26 Sion Power Corporation Electrode structure and method for making the same
US8936870B2 (en) 2011-10-13 2015-01-20 Sion Power Corporation Electrode structure and method for making the same
JP2013137981A (en) * 2011-12-27 2013-07-11 Winston Chung Nanometer-sulfur composite positive electrode material for rare earth lithium-sulfur battery and method for manufacturing the same
US9077041B2 (en) 2012-02-14 2015-07-07 Sion Power Corporation Electrode structure for electrochemical cell
JP2013197595A (en) * 2012-03-22 2013-09-30 Boeing Co:The Redox polymer energy storage system
US9728346B2 (en) 2012-03-22 2017-08-08 The Boeing Company Redox polymer energy storage system
JPWO2014080974A1 (en) * 2012-11-21 2017-01-05 国立大学法人信州大学 Carbon nanotube and method for producing the same
WO2014080974A1 (en) * 2012-11-21 2014-05-30 国立大学法人信州大学 Carbon nanotube and method for producing same
US9577267B2 (en) 2012-12-19 2017-02-21 Sion Power Corporation Electrode structure and method for making same
US9911975B2 (en) 2013-10-18 2018-03-06 Lg Chem, Ltd. Carbon nanotube-sulfur composite comprising carbon nanotube aggregates, and method for preparing same
JP2016535716A (en) * 2013-10-18 2016-11-17 エルジー・ケム・リミテッド Carbon nanotube-sulfur composite containing carbon nanotube aggregate and method for producing the same
US10319988B2 (en) 2014-05-01 2019-06-11 Sion Power Corporation Electrode fabrication methods and associated systems and articles
EP3218949B1 (en) * 2014-11-10 2019-02-13 Robert Bosch GmbH Electrochemically active material and an electrode comprising said electrochemically active material
JP2018503945A (en) * 2014-12-22 2018-02-08 アルケマ フランス Active electrode material for Li-S battery

Also Published As

Publication number Publication date
JP5099299B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5099299B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
Wang et al. 3D carbon foam-supported WS 2 nanosheets for cable-shaped flexible sodium ion batteries
JP6423453B2 (en) Aqueous electrolyte for power storage device and power storage device including the aqueous electrolyte
He et al. Three-dimensional hierarchical reduced graphene oxide/tellurium nanowires: a high-performance freestanding cathode for Li–Te batteries
Sahoo et al. Facile electrochemical synthesis of porous manganese-cobalt-sulfide based ternary transition metal sulfide nanosheets architectures for high performance energy storage applications
Wei et al. CNT/Co3S4@ NiCo LDH ternary nanocomposites as battery-type electrode materials for hybrid supercapacitors
Xu et al. Structural and chemical synergistic effect of NiCo2S4 nanoparticles and carbon cloth for high performance binder-free asymmetric supercapacitors
CN108370024A (en) High surface area porous carbon material as electrode
Zhang et al. An integrated hybrid interlayer for polysulfides/selenides regulation toward advanced Li–SeS2 batteries
Iqbal et al. Exploring the synergetic electrochemical performance of cobalt sulfide/cobalt phosphate composites for supercapattery devices with high-energy and rate capability
Chen et al. Graphene quantum dots modified nanoporous SiAl composite as an advanced anode for lithium storage
Wu et al. Encapsulation of sulfur cathodes by sericin-derived carbon/Co3O4 hollow microspheres for the long-term cyclability of lithium-sulfur batteries
Zhang et al. Hollow carbon nanocages toward long cycle lifespan lithium/sodium-ion half/full batteries
Wu et al. Dual-functional interlayer based on radially oriented ultrathin MoS2 nanosheets for high-performance lithium–sulfur batteries
JP2011028948A (en) Power storage device, and manufacturing method for electrode active material
Fan et al. Inorganic mediator toward organosulfide active material: anchoring and electrocatalysis
Raghavendra et al. Hydrothermal synthesis of CuS/CoS nano composite as an efficient electrode for the supercapattery applications
Zhang et al. NiCo2Se4 hierarchical microflowers of nanosheets and nanorods as pseudocapacitive Mg-storage materials
Lu et al. Enhancing the cycle life of Li-S batteries by designing a free-standing cathode with excellent flexible, conductive, and catalytic properties
Iqbal et al. Cobalt manganese phosphate and sulfide electrode materials for potential applications of battery-supercapacitor hybrid devices
Wu et al. Scalable production of the cobaltous hydroxide nanosheet electrode for ultrahigh-energy and stable aqueous cobalt–zinc batteries
Xu et al. General synthesis of M x S (M= Co, Cu) hollow spheres with enhanced sodium-ion storage property in ether-based electrolyte
Yang et al. Construction of core-shell Ni@ Ni3S2@ NiCo2O4 nanoflakes as advanced electrodes for high-performance hybrid supercapacitors
Li et al. A copper tetrathiovanadate anode for ultra-stable potassium-ion storage
Zhang et al. Enhanced electrocatalytic performance of Co3O4/Ketjen-black cathodes for Li–O2 batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5099299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250