JP2007227718A - Electronic component having resistive element and manufacturing method thereof - Google Patents

Electronic component having resistive element and manufacturing method thereof Download PDF

Info

Publication number
JP2007227718A
JP2007227718A JP2006048087A JP2006048087A JP2007227718A JP 2007227718 A JP2007227718 A JP 2007227718A JP 2006048087 A JP2006048087 A JP 2006048087A JP 2006048087 A JP2006048087 A JP 2006048087A JP 2007227718 A JP2007227718 A JP 2007227718A
Authority
JP
Japan
Prior art keywords
insulating substrate
face
resistor
heat
heat radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006048087A
Other languages
Japanese (ja)
Inventor
Katsuhide Nishizawa
克秀 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2006048087A priority Critical patent/JP2007227718A/en
Priority to CN2007100057870A priority patent/CN101026028B/en
Publication of JP2007227718A publication Critical patent/JP2007227718A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Details Of Resistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable to suppress peeling of a heat radiating member and to sufficiently form a low melting point metal film such as solder on the surface of the heat radiating member. <P>SOLUTION: An electronic component has a resistive element having surface terminal electrodes 3A to be paired provided on end side regions of an insulating substrate 2, and a resistor 4 arranged on one surface of the insulating substrate 2 and connected to both the surface terminal electrodes 3A; and a heat radiating member 9 arranged on the other surface of the insulating substrate 2 so as not to contact the terminal electrodes 3 and used for heat radiation of the resistive element. The heat radiating member 9 has end face reaching portions 9A1, 9A2 (end face contacting portions) extending up to a second end face 2B which is different from two first end faces 2A of the insulating substrate 2 opposite to an arrangement direction of the terminal electrodes 3 and is arranged to connect the two first end faces 2A; and an end face non-reaching portion 9B (end face non-contacting portion) having a distance between itself and the second end face 2B without extending. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、抵抗素子を有する電子部品およびその製造法に関する。   The present invention relates to an electronic component having a resistance element and a method for manufacturing the same.

抵抗素子に通電することにより、ジュール熱が発生する。この熱が過剰に発生すると所望の抵抗素子特性を得られなくなる場合がある。そこで、この熱を実装回路板へと逃がす放熱技術が提案されている。その技術は図7に示すように、抵抗器21となる電子部品は、絶縁基板22を有しており、実装状態で回路板(図示省略)と対向する面(図7(A)(B)(C)(D)の下面)に放熱部材23が形成され、回路板と放熱部材23とが接続されるものである(特許文献1および2参照)。
実開昭64−6006号公報 特開平2−317824号公報
When the resistance element is energized, Joule heat is generated. If this heat is excessively generated, desired resistance element characteristics may not be obtained. In view of this, a heat dissipation technique for releasing this heat to the mounting circuit board has been proposed. In the technique, as shown in FIG. 7, the electronic component that becomes the resistor 21 has an insulating substrate 22, and faces the circuit board (not shown) in a mounted state (FIGS. 7A and 7B). (C) The heat radiating member 23 is formed on the lower surface of (D), and the circuit board and the heat radiating member 23 are connected (see Patent Documents 1 and 2).
Japanese Utility Model Publication No. 64-6006 JP-A-2-317824

図7(A)は、抵抗器21の断面図を示している。この抵抗器21の実装面(裏面)の例を図7(E)および図7(F)に示している。図7(E)のように放熱部材23が絶縁基板22の端辺に接する構成にすると、量産性向上のために、縦横に分割用溝を形成した大型絶縁基板の分割溝を跨いで放熱部材23を形成し、その後、分割溝を開くように応力付与して大型絶縁基板を分割して個々の抵抗器21とする際に、放熱部材23が端辺部分22aで剥がれ易くなる。   FIG. 7A shows a cross-sectional view of the resistor 21. An example of the mounting surface (back surface) of the resistor 21 is shown in FIGS. 7E and 7F. When the heat dissipating member 23 is in contact with the edge of the insulating substrate 22 as shown in FIG. 7E, the heat dissipating member straddles the dividing grooves of the large insulating substrate in which the dividing grooves are formed vertically and horizontally in order to improve mass productivity. Then, when the large insulating substrate is divided into individual resistors 21 by applying stress so as to open the dividing grooves, the heat radiating member 23 is easily peeled off at the end portion 22a.

図7(F)の構成は、その剥がれを防止できる構成である。しかし、この構成にすると、量産性向上のために端子電極24の表面および放熱部材23の表面にバレルめっき法によりはんだを被着させる場合、放熱部材23の端面23aが絶縁基板22の端辺部分22aまで伸びていないのでダミーボール(めっき用の電極)が当接し難い。このため、放熱部材23の表面にはんだが殆ど被着しない。   The structure in FIG. 7F can prevent the peeling. However, with this configuration, when solder is applied to the surface of the terminal electrode 24 and the surface of the heat dissipation member 23 by barrel plating in order to improve mass productivity, the end surface 23a of the heat dissipation member 23 is the end portion of the insulating substrate 22. Since it does not extend to 22a, it is difficult for the dummy ball (electrode for plating) to contact. For this reason, solder hardly adheres to the surface of the heat dissipation member 23.

図7(B)は、他の抵抗器21Aの断面図を示し、この抵抗器21Aの実装面の例を図7(G)に示している。このように端子電極24と放熱部材23とを一体とすれば、放熱部材23の表面にはんだを十分に被着させることができる。しかし、左右の端子電極24の面積が違いすぎるため、抵抗器21Aを回路板へ表面実装しようとする場合の溶融状態のはんだの表面張力に差が生じ、面積の小さな方の端子電極24と回路板との固着を担うはんだが、溶断することがある。   FIG. 7B shows a cross-sectional view of another resistor 21A, and FIG. 7G shows an example of a mounting surface of the resistor 21A. Thus, if the terminal electrode 24 and the heat radiating member 23 are integrated, the solder can be sufficiently applied to the surface of the heat radiating member 23. However, since the areas of the left and right terminal electrodes 24 are too different, there is a difference in the surface tension of the molten solder when the resistor 21A is to be surface-mounted on the circuit board. The solder responsible for adhering to the board may melt.

図7(C)は、さらに他の抵抗器21Bの断面図を示し、この抵抗器21Bの実装面の例を図7(H)に示している。また図7(D)は、さらに他の抵抗器21Cの断面図を示し、この抵抗器21Cの実装面の例を図7(I)に示している。これらの構成を採用すると、表面実装しようとする場合のはんだの溶断を抑制できる。しかし、絶縁基板22を介した抵抗器21B,21Cの少なくとも最大発熱領域との対向領域に、放熱部材23が配置されないため、十分な放熱効果が得られ難い。たとえば抵抗体25が厚膜、薄膜または金属板等からなり、抵抗値調整のためのトリミング溝を形成する工程を経た場合、抵抗器21の最大発熱領域は、そのトリミング溝の終端部となる。この終端部は、予めどの位置になるかは予測できない。よって、図7(H)および図7(I)の構成のように、絶縁基板22を介した抵抗体25との対向領域に、放熱部材23が配置されない部分がある可能性のある構成とすると、十分な放熱効果が得られ難い場合がある。   FIG. 7C shows a cross-sectional view of still another resistor 21B, and FIG. 7H shows an example of a mounting surface of the resistor 21B. FIG. 7D shows a cross-sectional view of still another resistor 21C, and FIG. 7I shows an example of a mounting surface of the resistor 21C. When these structures are employed, it is possible to suppress melting of the solder when attempting to mount on the surface. However, since the heat radiating member 23 is not disposed in at least the region facing the maximum heat generating region of the resistors 21B and 21C via the insulating substrate 22, it is difficult to obtain a sufficient heat radiating effect. For example, when the resistor 25 is formed of a thick film, a thin film, a metal plate, or the like and undergoes a process of forming a trimming groove for adjusting the resistance value, the maximum heat generation region of the resistor 21 is an end portion of the trimming groove. The terminal end can not be predicted or be previously any position. Therefore, as in the configurations of FIGS. 7H and 7I, a configuration in which there is a possibility that there is a portion where the heat dissipation member 23 is not disposed in a region facing the resistor 25 with the insulating substrate 22 interposed therebetween. In some cases, it is difficult to obtain a sufficient heat dissipation effect.

そこで本発明が解決しようとする課題は、放熱部材の剥がれを抑制でき、放熱部材の表面へはんだ等の低融点金属膜を十分に形成することが可能な抵抗素子を有する電子部品およびその製造法を提供することである。   Therefore, the problem to be solved by the present invention is that an electronic component having a resistance element that can suppress peeling of the heat dissipation member and can sufficiently form a low melting point metal film such as solder on the surface of the heat dissipation member, and a manufacturing method thereof Is to provide.

上記課題を解決するため、本発明の抵抗素子を有する電子部品は、絶縁基板の端辺領域に設けられる対となる端子電極および絶縁基板の一方の面に配置され、端子電極の双方に接続される抵抗体を有する抵抗素子と、絶縁基板の他方の面に端子電極と接触しないように配置された、抵抗素子の放熱のための放熱部材と、を有し、放熱部材は、端子電極の配置方向に対向する絶縁基板の2つの第1の端面とは異なる第2の端面であって、2つの第1の端面を結ぶように配置された第2の端面まで伸ばされた端面到達部分(端面接触部)と、伸ばされずに第2の端面との間に距離を設けられた端面非到達部分(端面非接触部)とを有している。   In order to solve the above problems, an electronic component having a resistance element according to the present invention is disposed on one surface of a pair of terminal electrodes and an insulating substrate provided in an edge region of the insulating substrate, and is connected to both of the terminal electrodes. And a heat radiating member for radiating heat of the resistance element, which is disposed so as not to contact the terminal electrode on the other surface of the insulating substrate, and the heat radiating member is disposed on the terminal electrode. An end surface reaching portion (end surface) that is a second end surface that is different from the two first end surfaces of the insulating substrate facing in the direction, and extends to the second end surface that is arranged so as to connect the two first end surfaces Contact portion) and an end surface non-reaching portion (end surface non-contact portion) that is not stretched and is provided with a distance from the second end surface.

この発明によれば、大型絶縁基板の分割の際に第2の端面が露出し、放熱部材の一部がその分割の際に破断する場合でも、端面非到達部分は第2の端面との間に距離を有しているために分割の際に破断しない。その場合には放熱部材の剥がれを抑制できる。また、放熱部材の一部となる延長部が第2の端面まで伸ばされているため、第2の端面に放熱部材の厚み方向の断面が露出している。そのため、バレルめっきを行う場合には、ダミーボールと接触する確率が高まり、放熱部材の表面へはんだ等の低融点金属膜を十分に形成することが可能となる。また、絶縁基板が大型絶縁基板を分割しないで形成されるものであっても、バレルめっき等の際、放熱部材が第2の端面に露出している部分から剥がれるという現象が生じがちであるが、この構成ではそのような場合でも剥がれが生じ難くなる。   According to the present invention, even when the second end face is exposed when the large insulating substrate is divided and a part of the heat dissipation member is broken during the division, the end face non-reaching portion is between the second end face. Since it has a distance, it does not break when dividing. In that case, peeling of the heat dissipation member can be suppressed. Moreover, since the extension part used as a part of heat radiating member is extended to the 2nd end surface, the cross section of the thickness direction of a heat radiating member is exposed to the 2nd end surface. Therefore, when barrel plating is performed, the probability of contact with the dummy ball is increased, and a low melting point metal film such as solder can be sufficiently formed on the surface of the heat dissipation member. In addition, even when the insulating substrate is formed without dividing the large insulating substrate, there is a tendency that the heat radiating member is peeled off from the portion exposed at the second end face during barrel plating or the like. In this configuration, peeling is unlikely to occur even in such a case.

他の発明は、上述の抵抗素子を有する電子部品の発明に加え、絶縁基板は、直方体とされ、対向する2つの第2の端面を有し、放熱部材は、2つの第2の端面の双方にまで伸ばされた端面到達部分を有している。この構成を採用することにより、直方体の両端となる2つの第2の端面に放熱部材の厚み方向の断面が露出することとなる。そのため、バレルめっきを行う場合には、ダミーボールと接触する確率がさらに高まり、放熱部材の表面へのはんだ等の低融点金属膜を十分に形成可能となる。   In another invention, in addition to the invention of the electronic component having the above-described resistance element, the insulating substrate is a rectangular parallelepiped, has two second end faces facing each other, and the heat dissipation member has both of the two second end faces. It has an end face reaching portion extended to. By adopting this configuration, the cross section in the thickness direction of the heat radiating member is exposed at the two second end faces which are both ends of the rectangular parallelepiped. Therefore, when barrel plating is performed, the probability of contact with the dummy ball is further increased, and a low melting point metal film such as solder on the surface of the heat dissipation member can be sufficiently formed.

他の発明は、上述の抵抗素子を有する電子部品の発明に加え、第2の端面に伸びた放熱部材の端面側部分には、第2の端面にまで伸ばされた第1端面到達部分と、伸ばさずに第2の端面との間に距離を設けた端面非到達部分と、第2の端面にまで伸ばされた第1端面到達部分とが第2の端面に沿ってこの順に配置されている。この構成を採用することにより、第2の端面に放熱部材の厚み方向の断面を広範囲に露出させることができる。そのため、バレルめっきを行う場合には、ダミーボールと接触する確率が高まり、放熱部材の表面へはんだ等の低融点金属膜を十分に形成することが可能となる。さらに、端面到達部分が、2つの延長部(第1、第2の延長部)に分かれるため、分割の際の放熱部材の個々の破断面が小さくなり、それぞれを小さな力で破断することができる。よって破断に際して絶縁基板面との剥離を生じさせる方向の力が発生しても、剥離に至る前に破断が完了し易くなると考えられる。   In another aspect of the invention, in addition to the invention of the electronic component having the above-described resistance element, the end surface side portion of the heat dissipation member extending to the second end surface includes a first end surface reaching portion extended to the second end surface, An end face non-reaching portion that is not stretched and has a distance between the second end face and a first end face reaching portion that is extended to the second end face are arranged in this order along the second end face. . By adopting this configuration, the cross section in the thickness direction of the heat radiating member can be exposed over a wide range on the second end surface. Therefore, when barrel plating is performed, the probability of contact with the dummy ball is increased, and a low melting point metal film such as solder can be sufficiently formed on the surface of the heat dissipation member. Furthermore, since the end surface reaching portion is divided into two extension portions (first and second extension portions), the individual fracture surface of the heat dissipation member at the time of division becomes small, and each can be broken with a small force. . Therefore, even if a force in a direction causing separation from the insulating substrate surface is generated at the time of breaking, it is considered that the breaking is easily completed before peeling.

他の発明は、上述の抵抗素子を有する電子部品の発明に加え、放熱部材が、第2の端面に沿った方向の直線であって、絶縁基板の他方の面の中心領域を通る直線を対称軸とする線対称の形状をしている。この構成を採用することにより、放熱部材が実装回路板へはんだにより接続される、いわゆるリフロー工程を経た場合にもセルフアライメント効果を害することがなくなる。ここでセルフアライメントとは、はんだの表面張力によって電子部品が実装基板のパターン上の正確な位置に移動することを言う。   In another aspect of the invention, in addition to the invention of the electronic component having the above-described resistance element, the heat dissipation member is a straight line in a direction along the second end face, and is symmetric with respect to a straight line passing through the central region of the other face of the insulating substrate. It has a line-symmetric shape about the axis. By adopting this configuration, the self-alignment effect is not adversely affected even after a so-called reflow process in which the heat dissipation member is connected to the mounting circuit board by solder. Here, the self-alignment means that the electronic component moves to an accurate position on the pattern of the mounting board by the surface tension of the solder.

また、上記課題を解決するため、本発明の抵抗素子を有する電子部品の製造法は、表面に縦横に交差する線状分割部を有する大型絶縁基板の、線状分割部で囲われる一単位の絶縁基板(以下、単位絶縁基板という)の各々に少なくとも抵抗素子を含む一つまたは複数の回路素子を形成する工程(以下、第1の工程という。)と、抵抗素子の放熱のための導電性の放熱部材を、抵抗素子との導通をしないように、線状分割部を跨ぐ部分および跨がない部分を有するように形成する工程(以下、第2の工程という。)と、第1の工程および第2の工程の後に線状分割部に沿って大型絶縁基板を個々の単位絶縁基板へと分割する工程(以下、第3の工程という。)と、その後、抵抗素子と接触し、端子を構成する端子電極の表面および放熱部材の表面にバレルめっき法により低融点金属膜を被着する工程(以下、第4の工程という。)とを有する。   In order to solve the above problems, a method for manufacturing an electronic component having a resistance element according to the present invention includes a unit of a large-sized insulating substrate having a linear divided portion that intersects a surface vertically and horizontally and surrounded by the linear divided portion. A step (hereinafter referred to as a first step) of forming one or a plurality of circuit elements including at least a resistive element on each of the insulating substrates (hereinafter referred to as unit insulating substrates), and conductivity for heat dissipation of the resistive elements. The heat radiation member is formed so as to have a portion straddling the linear divided portion and a portion not straddling so as not to conduct with the resistance element (hereinafter referred to as a second step), and a first step. And a step of dividing the large insulating substrate into individual unit insulating substrates along the linear dividing portion after the second step (hereinafter, referred to as a third step), and then contacting the resistance element to connect the terminals. Table of surface of terminal electrode and heat dissipation member The step of depositing a low-melting metal film by a barrel plating method, and a (hereinafter. Referred to as a fourth step).

この発明によれば、放熱部材の一部が、大型絶縁基板の分割の際に破断しない部分(線状分割部を跨がない部分)を有している。そのため、分割の際の放熱部材の剥がれを抑制できる。また、放熱部材の一部が、大型絶縁基板の分割の際に破断する部分(線状分割部を跨ぐ部分)を有しているから、単位絶縁基板の端面に放熱部材の厚み方向の断面が露出することとなる。そのため、バレルめっきを行う場合には、ダミーボールと接触する確率が高まり、放熱部材の表面へはんだ等の低融点金属膜を十分に形成することが可能となる。   According to this invention, a part of the heat radiating member has a portion that does not break when dividing the large insulating substrate (a portion that does not straddle the linear divided portion). Therefore, peeling of the heat dissipation member at the time of division can be suppressed. In addition, since a part of the heat radiating member has a portion that breaks when the large insulating substrate is divided (a portion that straddles the linear divided portion), a cross section in the thickness direction of the heat radiating member is formed on the end surface of the unit insulating substrate. It will be exposed. Therefore, when barrel plating is performed, the probability of contact with the dummy ball is increased, and a low melting point metal film such as solder can be sufficiently formed on the surface of the heat dissipation member.

他の発明は、上述の抵抗素子を有する電子部品の製造法の発明に加え、第4の工程において、端子電極の表面および放熱部材の表面に被着される低融点金属膜の厚みが、ともに3μm以上12μm以下であることとしている。低融点金属膜の厚みを3μm以上とすることにより、十分なはんだ濡れ性を確保できる。また、低融点金属膜の厚みを12μm以下とすることにより、過剰な低融点金属の被着とならず、一般の電子部品の外形寸法精度への影響を小さくできる。   In another invention, in addition to the invention of the method for manufacturing an electronic component having a resistance element as described above, in the fourth step, the thicknesses of the low melting point metal films deposited on the surface of the terminal electrode and the surface of the heat dissipation member are both 3 μm or more and 12 μm or less. By setting the thickness of the low melting point metal film to 3 μm or more, sufficient solder wettability can be secured. Further, by setting the thickness of the low melting point metal film to 12 μm or less, it is possible to reduce the influence on the external dimension accuracy of a general electronic component without excessive deposition of the low melting point metal.

本発明により、大型絶縁基板の分割によっても放熱部材の剥がれを抑制でき、放熱部材の表面へのはんだ等の低融点金属膜を十分に形成可能な抵抗素子を有する電子部品およびその製造法を提供することができる。   According to the present invention, an electronic component having a resistance element that can suppress peeling of a heat dissipation member even by dividing a large insulating substrate and can sufficiently form a low melting point metal film such as solder on the surface of the heat dissipation member, and a method for manufacturing the same can do.

図1(A)は、本発明の実施の形態に係る抵抗素子を有する電子部品の一例である、表面実装型の抵抗器1の断面図であり、図1(B)は、この抵抗器1の実装面(裏面)であって、図1(A)に示すニッケルめっき層7および錫めっき層8を省略した図を示している。抵抗器1は、直方体の絶縁基板2と、絶縁基板2の一方の面の端辺領域に設けられる対となる表面端子電極3Aと、表面端子電極3Aの配置方向に対向して設けられる、絶縁基板2の2つの第1の端面2Aの表面に形成された対となる端面端子電極3Bと、絶縁基板2の他方の面の端辺領域(絶縁基板2を介した表面端子電極3Aとの対向位置)に設けられる対となる裏面端子電極3Cとを有している。そして表面端子電極3Aと端面端子電極3B、および端面端子電極3Bと裏面端子電極3Cとは電気的に接続しており、表面端子電極3A、端面端子電極3Bおよび裏面端子電極3Cが一体となって、端子電極3を構成している。この端子電極3が、それぞれの第1の端面2Aを覆うようにして形成され、対となる端子電極3が形成されることとなる。   FIG. 1A is a cross-sectional view of a surface-mounted resistor 1, which is an example of an electronic component having a resistive element according to an embodiment of the present invention. FIG. FIG. 2 shows a mounting surface (rear surface) in which the nickel plating layer 7 and the tin plating layer 8 shown in FIG. 1A are omitted. The resistor 1 is an insulating substrate provided in a rectangular parallelepiped insulating substrate 2, a pair of surface terminal electrodes 3A provided in an edge region of one surface of the insulating substrate 2, and facing the arrangement direction of the surface terminal electrodes 3A. A pair of end surface terminal electrodes 3B formed on the surfaces of the two first end surfaces 2A of the substrate 2 and an end region of the other surface of the insulating substrate 2 (opposing the surface terminal electrodes 3A through the insulating substrate 2) A pair of back surface terminal electrodes 3C provided at a position). The surface terminal electrode 3A and the end surface terminal electrode 3B, and the end surface terminal electrode 3B and the back surface terminal electrode 3C are electrically connected, and the surface terminal electrode 3A, the end surface terminal electrode 3B, and the back surface terminal electrode 3C are integrated. The terminal electrode 3 is configured. The terminal electrodes 3 are formed so as to cover the respective first end faces 2A, and the paired terminal electrodes 3 are formed.

また抵抗器1は、対となる表面端子電極3Aの双方に接続される抵抗体4を有し、この抵抗体4および端子電極3とで抵抗素子が形成されている。抵抗体4は、第1のガラス皮膜5により被覆され、さらに第1のガラス皮膜5は第2のガラス皮膜6により被覆されている。また対となる端子電極3は、ニッケルめっき層7で被覆され、そのニッケルめっき層7は低融点金属層となる錫めっき層8で被覆されている。   The resistor 1 has a resistor 4 connected to both the pair of surface terminal electrodes 3 </ b> A, and the resistor 4 and the terminal electrode 3 form a resistance element. The resistor 4 is covered with a first glass film 5, and the first glass film 5 is further covered with a second glass film 6. The pair of terminal electrodes 3 is covered with a nickel plating layer 7, and the nickel plating layer 7 is covered with a tin plating layer 8 serving as a low melting point metal layer.

さらに抵抗器1は、図1(B)に示すように、絶縁基板2の他方の面(裏面)に配置され、端子電極3との接触をしないように配置され、抵抗素子が発するジュール熱を移動させる放熱部材9を有している。この放熱部材9は、端子電極3の配置方向に対向して設けられる2つの第1の端面2A(端面端子電極3Bが形成される端面)とは異なる端面であって、第1の端面2Aを結ぶ第2の端面2Bまで伸ばされた端面到達部分9A(第1端面到達部9A1、第2端面到達部9A2)と、伸ばされずに第2の端面2Bとの間に距離を設けた端面非到達部分9Bとを有している。放熱部材9は、端子電極3と同様にニッケルめっき層7で被覆され、そのニッケルめっき層7は錫めっき層8で被覆されている。   Further, as shown in FIG. 1B, the resistor 1 is disposed on the other surface (back surface) of the insulating substrate 2 so as not to come into contact with the terminal electrode 3, and generates Joule heat generated by the resistance element. It has a heat dissipating member 9 to be moved. The heat dissipating member 9 is an end face different from the two first end faces 2A (the end face on which the end face terminal electrode 3B is formed) provided to face the arrangement direction of the terminal electrode 3, and the first end face 2A is End face non-reaching provided with a distance between the end face reaching portion 9A (first end face reaching section 9A1, second end face reaching section 9A2) extended to the second end face 2B to be connected and the second end face 2B without being stretched Part 9B. The heat radiating member 9 is covered with a nickel plating layer 7 similarly to the terminal electrode 3, and the nickel plating layer 7 is covered with a tin plating layer 8.

図2は、抵抗器1が実装回路板10に実装されている状態を示している。抵抗器1における抵抗素子が発するジュール熱の多くは、絶縁基板2、放熱部材9、放熱部材9を覆うニッケルめっき層7、およびそのニッケルめっき層7を覆う錫めっき層8を経由し、さらに、その錫めっき層と接触するはんだ11を経由して、ランド16および実装回路板10へと移動する。よって、ジュール熱が過剰に発生しても、そのジュール熱の多くを実装回路板10へ逃がすことができるため、所望の抵抗素子特性を維持することができる。また、放熱部材9が対となる端子電極3の双方と接触をしないように配置されることにより、対となる端子電極3に接触する溶融時の双方のはんだ11の表面張力に大きな差が生じ難くなり、リフロー工程時の溶融はんだの溶断といった事態が生じ難くなる。   FIG. 2 shows a state in which the resistor 1 is mounted on the mounting circuit board 10. Most of the Joule heat generated by the resistance element in the resistor 1 passes through the insulating substrate 2, the heat dissipation member 9, the nickel plating layer 7 covering the heat dissipation member 9, and the tin plating layer 8 covering the nickel plating layer 7, It moves to the land 16 and the mounting circuit board 10 via the solder 11 in contact with the tin plating layer. Therefore, even if Joule heat is excessively generated, most of the Joule heat can be released to the mounting circuit board 10, so that desired resistance element characteristics can be maintained. Further, by disposing the heat dissipating member 9 so as not to contact both of the paired terminal electrodes 3, a large difference occurs in the surface tension of both solders 11 at the time of melting that contacts the paired terminal electrodes 3. This makes it difficult to cause a situation such as melting of the molten solder during the reflow process.

ここで、絶縁基板2の他方の面に設けられた放熱部材9は、対となり対向する第1の端面2A(端面端子電極3Bが形成されている。)を結ぶ2つの対向する第2の端面2Bの双方にまで伸ばして配置した端面到達部分9Aと、伸ばさずに第2の端面との間に距離を設けた端面非到達部分9Bとを有している。また、第2の端面2B側の放熱部材9は、第1端面到達部分9A1と、端面非到達部分9Bと、第2端面到達部分9A2がこの順に配置されており、平面図(図1(B))では外観がH字状の形状をなしている。よって、大型絶縁基板を分割して個々の単位絶縁基板(絶縁基板2)とする際に、第2の端面2Bを露出させるとともに、放熱部材9の一部がその分割の際に破断して、端面到達部分9Aが形成される場合でも、端面非到達部分9Bは、第2の端面2Bとの間に距離を有しているために分割の際に破断しない。そのため、その破断しない部分の絶縁基板2の他の面との固着力は、その破断による衝撃をそれほど受けないため、絶縁基板2の他の面からの放熱部材9の剥がれを抑制できる。   Here, the heat dissipating member 9 provided on the other surface of the insulating substrate 2 has two opposing second end surfaces connecting the first end surface 2A (the end surface terminal electrode 3B is formed) facing each other as a pair. 2B, and an end surface reaching portion 9A that extends to both sides, and an end surface non-reaching portion 9B that is not stretched and is spaced from the second end surface. The heat radiating member 9 on the second end face 2B side has a first end face reaching portion 9A1, an end face non-reaching portion 9B, and a second end face reaching portion 9A2 arranged in this order, and a plan view (FIG. 1B )), The appearance is H-shaped. Therefore, when dividing the large insulating substrate into individual unit insulating substrates (insulating substrate 2), the second end face 2B is exposed, and a part of the heat radiating member 9 is broken during the division, Even when the end face reaching portion 9A is formed, the end face non-reaching portion 9B has a distance from the second end face 2B and therefore does not break during the division. For this reason, the fixing force of the unbroken portion to the other surface of the insulating substrate 2 does not receive much impact due to the breakage, and therefore the peeling of the heat radiation member 9 from the other surface of the insulating substrate 2 can be suppressed.

他方、分割の際の放熱部材9の破断面は、第2の端面2Bに露出している。そのため、バレルめっきを行う場合には、放熱部材9とダミーボールとが接触する確率が高まり、放熱部材9の表面へのはんだ等の低融点金属膜を十分に形成することが可能となる。また放熱部材9は、そのH字状の形状の四隅にその破断面を有しているため、その破断面を広範囲に露出させることとなる。さらに、端面到達部分9Aが、2つの延長部(第1、第2の端面到達部分9A1,9A2)に分かれるため、分割の際の放熱部材9の個々の破断面が小さくなり、それぞれを小さな力で破断することができる。よって破断に際して絶縁基板2面との剥離を生じさせる方向の力が発生しても、剥離に至る前に破断が完了し易くなると考えられる。   On the other hand, the fracture surface of the heat dissipation member 9 at the time of division is exposed at the second end face 2B. Therefore, when barrel plating is performed, the probability that the heat radiating member 9 and the dummy ball are in contact with each other increases, and a low melting point metal film such as solder on the surface of the heat radiating member 9 can be sufficiently formed. Moreover, since the heat radiating member 9 has the torn surface in the four corners of the H-shaped shape, the torn surface is exposed over a wide range. Furthermore, since the end surface reaching portion 9A is divided into two extending portions (first and second end surface reaching portions 9A1, 9A2), the individual fracture surfaces of the heat radiation member 9 at the time of division become small, and each of them has a small force. Can be broken. Therefore, even if a force in a direction causing separation from the surface of the insulating substrate 2 is generated at the time of breaking, it is considered that the breaking is easily completed before peeling.

また放熱部材9のH字状の形状は、放熱部材9が、第2の端面2Bに沿った方向の線であって、絶縁基板2の他方の面の中心領域を通る直線Lを対称軸とする線対称の形状をしている。ここで抵抗素子の最大発熱領域は、通常、抵抗素子を構成する抵抗体4の電流流路のうち、最も狭い部分である。抵抗体4が厚膜、薄膜または金属板で構成される場合は、抵抗値調整のためのトリミング溝を形成する工程を経ることが多い。この工程を経た場合、抵抗素子の最大発熱領域が、そのトリミング溝の終端部となる。この終端部は、予めどの位置になるかは予測できない。しかしながら、通常、トリミング溝は、抵抗体4の電流流路と直交する方向に、かつ抵抗体4端部から中心部に向かうよう、すなわち、電流流路を狭くするように形成される。よって、図1(B)に示す放熱部材9は、絶縁基板2を介して少なくとも抵抗体4の中間領域に対向し、絶縁基板2の他の面を概ね覆うように形成されている。そのため放熱部材9は、抵抗素子の最大発熱領域の絶縁基板2を介した対向部分に存している。そのため、ジュール熱の多くを放熱部材9を通じて実装回路板10へと移動できる。   The H-shaped shape of the heat radiating member 9 is such that the heat radiating member 9 is a line in the direction along the second end surface 2B, and a straight line L passing through the central region of the other surface of the insulating substrate 2 is a symmetry axis. It has a line-symmetric shape. Here, the maximum heat generation region of the resistance element is usually the narrowest portion of the current flow path of the resistor 4 constituting the resistance element. When the resistor 4 is formed of a thick film, a thin film, or a metal plate, a process of forming a trimming groove for adjusting a resistance value is often performed. When this step is performed, the maximum heat generation region of the resistance element becomes the end portion of the trimming groove. The terminal end can not be predicted or be previously any position. However, the trimming groove is usually formed in a direction perpendicular to the current flow path of the resistor 4 and from the end of the resistor 4 toward the center, that is, to narrow the current flow path. Therefore, the heat radiating member 9 shown in FIG. 1B is formed so as to face at least the intermediate region of the resistor 4 with the insulating substrate 2 interposed therebetween and to cover the other surface of the insulating substrate 2 in general. Therefore, the heat radiating member 9 exists in the opposing part through the insulating substrate 2 of the maximum heat generating area of the resistance element. Therefore, most of the Joule heat can be transferred to the mounting circuit board 10 through the heat radiating member 9.

また放熱部材9を、第2の端面2Bに沿った方向の線であって、絶縁基板2の他方の面の中心領域を通る直線Lを対称軸とする線対称のH型の形状としている。そのことにより、放熱部材9が実装回路板10へ、はんだ11により接続される、いわゆるリフロー工程を経た場合に、はんだ11の表面張力が偏らない。よって電子部品となる抵抗器1が実装回路板10のパターン(ランド16)上の正確な位置に移動する、いわゆるセルフアライメント、の効果を害しない。   Further, the heat dissipating member 9 has a line-symmetrical H shape that is a line in the direction along the second end surface 2B and that has a straight line L passing through the central region of the other surface of the insulating substrate 2 as an axis of symmetry. As a result, when the heat radiating member 9 is connected to the mounting circuit board 10 by the solder 11, the surface tension of the solder 11 is not biased through a so-called reflow process. Therefore, the effect of so-called self-alignment, in which the resistor 1 serving as an electronic component moves to an accurate position on the pattern (land 16) of the mounted circuit board 10, is not impaired.

図3には、本発明の実施の形態に係る抵抗素子を有する電子部品(ここでは抵抗器1)の製造法の一例を示している。以下、順を追って抵抗器1を製造する過程を図面を参照しながら説明する。   FIG. 3 shows an example of a method for manufacturing an electronic component (here, resistor 1) having the resistance element according to the embodiment of the present invention. Hereinafter, the process of manufacturing the resistor 1 will be described in order with reference to the drawings.

図3(A)は、アルミナ製の大型絶縁基板12を示している。大型絶縁基板12の一方の面は、表面に縦横に交差する線状の分割用溝13を有している。図3(B)は、裏面端子電極3Cと放熱部材9の形成を示す図である。この図3(B)は、大型絶縁基板12の一方の面とは逆側の面(他方の面)に、Agを主構成材料とするメタルグレーズ系導電ペーストをスクリーン印刷法により所定位置に配置させた状態を示している。この所定位置の一つは、後の工程で分割用溝13に沿って分割を行い、単位絶縁基板(絶縁基板2)としたときに、絶縁基板2の一方の面とは逆側の面(他方の面)の端辺領域に設けられる対となる裏面端子電極3Cとなる位置である。スクリーン印刷の際のパターンを大きくして、パターン設計を容易にする観点および印刷精度の安定化の観点から、隣接する絶縁基板2の端辺領域には、大型絶縁基板12の一方の面の分割用溝13を跨いで隣接する裏面端子電極3Cを一体として形成している。この裏面端子電極3Cの形成により、第1の工程の一部が終了する。   FIG. 3A shows a large insulating substrate 12 made of alumina. One surface of the large insulating substrate 12 has a linear dividing groove 13 that intersects the surface vertically and horizontally. FIG. 3B is a diagram illustrating the formation of the back surface terminal electrode 3 </ b> C and the heat dissipation member 9. In FIG. 3B, a metal glaze type conductive paste containing Ag as a main constituent material is arranged at a predetermined position on the surface opposite to one surface (the other surface) of the large insulating substrate 12 by screen printing. It shows the state that was made to. One of the predetermined positions is divided along the dividing groove 13 in a later step to form a unit insulating substrate (insulating substrate 2), which is a surface opposite to one surface of the insulating substrate 2 ( This is a position to be a pair of back surface terminal electrodes 3C provided in the edge region of the other surface. From the viewpoint of enlarging the pattern at the time of screen printing and facilitating pattern design and stabilizing the printing accuracy, the edge region of the adjacent insulating substrate 2 is divided into one surface of the large insulating substrate 12. Adjacent backside terminal electrodes 3 </ b> C straddling the groove 13 are integrally formed. Part of the first step is completed by the formation of the back terminal electrode 3C.

所定位置のもう一つは、裏面端子電極3Cとの導通をしないように、大型絶縁基板12の一方の面の分割用溝13を跨ぐ部分および跨がない部分を有するように、大型絶縁基板12の他方の面に形成する放熱部材9の配置位置である。放熱部材9の配置に際しても、スクリーン印刷の際のパターンを大きくして、パターン設計を容易にする観点および印刷精度の安定化の観点から、隣接する絶縁基板2に渡って一体として放熱部材9を形成している。このスクリーン印刷工程後、大型絶縁基板12を焼成して裏面端子電極3Cおよび放熱部材9を固化する。この放熱部材9の形成により、第2の工程が終了する。   The large insulating substrate 12 has another portion at a predetermined position that has a portion that straddles the dividing groove 13 on one surface of the large insulating substrate 12 and a portion that does not straddle so as not to be electrically connected to the back surface terminal electrode 3C. It is the arrangement position of the heat radiating member 9 formed in the other surface of the. In disposing the heat dissipating member 9, the heat dissipating member 9 is integrally formed over the adjacent insulating substrates 2 from the viewpoint of enlarging the pattern at the time of screen printing and facilitating pattern design and stabilizing the printing accuracy. Forming. After this screen printing process, the large insulating substrate 12 is baked to solidify the back terminal electrode 3C and the heat dissipation member 9. The formation of the heat dissipating member 9 completes the second step.

図3(C)は、裏面端子電極3Cおよび放熱部材9の形成後に行われる、表面端子電極3Aの形成を示す図である。この図3(C)は、大型絶縁基板12の一方の面に、Ag−Pd系合金を主構成材料とするメタルグレーズ系導電ペーストをスクリーン印刷法により所定位置に配置させた状態を示している。この所定位置とは、後の工程で分割用溝13に沿って分割を行い、単位絶縁基板(絶縁基板2)としたときに、絶縁基板2の一方の面の端辺領域に設けられる対となる表面端子電極3Aとなる位置である。 FIG. 3C is a diagram illustrating the formation of the front surface terminal electrode 3 </ b> A performed after the formation of the back surface terminal electrode 3 </ b> C and the heat dissipation member 9. FIG. 3C shows a state in which a metal glaze-based conductive paste mainly composed of an Ag—Pd-based alloy is disposed at a predetermined position on one surface of the large insulating substrate 12 by screen printing. . This predetermined position refers to a pair provided in the edge region of one surface of the insulating substrate 2 when the unit insulating substrate (insulating substrate 2) is divided along the dividing groove 13 in a later step. This is the position to be the surface terminal electrode 3A.

ここで、スクリーン印刷の際のパターンを大きくして、パターン設計を容易にする観点および印刷精度の安定化の観点から、隣接する絶縁基板2の端辺領域には、分割用溝13を跨いで隣接する表面端子電極3Aを一体として形成している。但しこの一体形成は、一体形成によって、隣接する抵抗素子が直列に接続される状態とするのみで、隣接する抵抗素子が並列に接続される状態とはしない。その理由は、後述する抵抗値調整のためのトリミング工程を的確に行うためである。このスクリーン印刷工程後、大型絶縁基板12を焼成して表面端子電極3Aを固化する。以上により、第1の工程の一部が終了する。   Here, from the viewpoint of facilitating pattern design by enlarging the pattern during screen printing and stabilizing the printing accuracy, the edge region of the adjacent insulating substrate 2 straddles the dividing groove 13. Adjacent surface terminal electrodes 3A are integrally formed. However, this integral formation only brings the adjacent resistance elements into a state of being connected in series, and does not mean that the adjacent resistance elements are connected in parallel. This is because the trimming process for adjusting the resistance value described later is performed accurately. After this screen printing step, the large insulating substrate 12 is baked to solidify the surface terminal electrode 3A. Thus, a part of the first process is completed.

図3(D)は、図3(C)の状態の後、大型絶縁基板12の一方の面に、酸化ルテニウムを主構成材料とするメタルグレーズ系抵抗体用ペーストをスクリーン印刷法により所定位置に配置させた状態を示している。この所定位置とは、後の工程で分割用溝13に沿って分割を行い、単位絶縁基板(絶縁基板2)としたときに、絶縁基板2の一方の面の端辺領域に対となるように先に形成した表面端子電極3Aの双方に一部重なり合う位置であり、抵抗体4となる部分である。このスクリーン印刷工程後、大型絶縁基板12を焼成して固化した抵抗体4が得られる。またこの段階では、対となる表面端子電極3Aの双方に接続する抵抗体4からなる抵抗素子が得られる。これで第1の工程が全て終了する。   In FIG. 3D, after the state of FIG. 3C, a metal glaze-based resistor paste containing ruthenium oxide as a main constituent material is placed in a predetermined position on one surface of the large insulating substrate 12 by screen printing. The state of arrangement is shown. The predetermined position is a pair of the edge regions of one surface of the insulating substrate 2 when the unit substrate (insulating substrate 2) is divided along the dividing groove 13 in a later step. This is a position that partially overlaps both of the surface terminal electrodes 3A previously formed and is a portion that becomes the resistor 4. After this screen printing step, the resistor 4 is obtained by baking and solidifying the large insulating substrate 12. At this stage, a resistance element composed of the resistor 4 connected to both of the paired surface terminal electrodes 3A is obtained. This completes the first step.

図3(E)は、その後に第1のガラス皮膜5を設けた状態を示している。なお、図3(E)では、第1のガラス皮膜5と抵抗体4が重なる部分は、抵抗体4が現われ、第1のガラス皮膜5は示されていない。第1のガラス皮膜5を設ける際には、まず、大型絶縁基板12の一方の面に、ガラスペーストをスクリーン印刷法により、先に形成した抵抗体4を覆う位置に配置させる。このスクリーン印刷工程後、大型絶縁基板12を焼成して第1のガラス皮膜5を得る。図3(F)は、その後、抵抗素子の抵抗値調整のため、レーザー照射により抵抗体4にトリミング溝14を形成した状態を示している。先に形成した第1のガラス皮膜5は、このレーザー照射による抵抗体4の過剰な破壊を防止するように機能している。図2(G)は、その後大型絶縁基板12の一方の面に、ガラスペーストをスクリーン印刷法により、先に形成した第1のガラス皮膜5を覆う位置に配置させ、このスクリーン印刷工程後、大型絶縁基板12を焼成して第2のガラス皮膜6を得た状態を示している。第2のガラス皮膜6は、トリミング溝14に入り込んだ状態で固化し、抵抗素子全体を保護するよう機能する。   FIG. 3E shows a state in which the first glass film 5 is provided thereafter. In FIG. 3 (E), the portion where the first glass film 5 and the resistor 4 overlap is shown with the resistor 4 and the first glass film 5 is not shown. When the first glass film 5 is provided, first, a glass paste is placed on one surface of the large insulating substrate 12 at a position covering the resistor 4 previously formed by screen printing. After this screen printing step, the large insulating substrate 12 is fired to obtain the first glass film 5. FIG. 3F shows a state in which the trimming groove 14 is formed in the resistor 4 by laser irradiation for adjusting the resistance value of the resistance element. The first glass film 5 previously formed functions to prevent excessive destruction of the resistor 4 due to this laser irradiation. In FIG. 2G, glass paste is then placed on one surface of the large insulating substrate 12 at a position covering the first glass film 5 previously formed by screen printing, and after this screen printing process, The state which the 2nd glass membrane | film | coat 6 was obtained by baking the insulated substrate 12 is shown. The second glass film 6 functions to protect the entire resistance element by solidifying in the state of entering the trimming groove 14.

図3(H)は、その後、大型絶縁基板12の一方の面に縦横に形成された分割用溝13のうち、上述した第1の端面2Aをすることとなる分割用溝13に沿って分割した状態を示している。この分割は分割用溝13を開く方向に大型絶縁基板12を曲げ、短冊状の絶縁基板15へと分割(以下、一次分割という。)する。一次分割の際には、分割用溝13に跨って形成されていた表面端子電極3Aおよび裏面端子電極3Cが、分割用溝13に沿って同時に破断して、第1の端面2Aにそれらの破断面が露出している。ここで一次分割により、大型絶縁基板12の他方の面(裏面)に形成した裏面端子電極3C及び表面端子電極3Aが絶縁基板2から剥離するおそれがあると考えられる。しかし、その剥離が生じたとしても、後述する第1の端面2Aに銀(Ag)をスパッタリング法により被着させる工程で、短冊状の絶縁基板15から裏面端子電極3C及び表面端子電極3Aが剥離した部分にもAgが被着されることから、抵抗器1として機能することができる。   FIG. 3 (H) is divided along the dividing groove 13 that will be the first end face 2A described above, among the dividing grooves 13 formed vertically and horizontally on one surface of the large insulating substrate 12. Shows the state. In this division, the large insulating substrate 12 is bent in the direction of opening the dividing groove 13 and divided into strip-like insulating substrates 15 (hereinafter referred to as primary division). At the time of primary division, the front surface terminal electrode 3A and the back surface terminal electrode 3C formed over the division groove 13 are simultaneously broken along the division groove 13 and the first end surface 2A is broken. The cross section is exposed. Here, it is considered that the back surface terminal electrode 3 </ b> C and the surface terminal electrode 3 </ b> A formed on the other surface (back surface) of the large insulating substrate 12 may be separated from the insulating substrate 2 by the primary division. However, even if the peeling occurs, the back terminal electrode 3C and the surface terminal electrode 3A are peeled from the strip-shaped insulating substrate 15 in the step of depositing silver (Ag) on the first end face 2A described later by the sputtering method. Since Ag is also deposited on the part that has been removed, it can function as the resistor 1.

図3(I)は、その後、第1の端面2Aにスパッタリング法によりAgを被着させ、端面端子電極3Bを形成した状態を示している。このとき、表面端子電極3Aおよび裏面端子電極3Cの破断面にもAgが被着されるため、表面端子電極3Aと端面端子電極3B、および端面端子電極3Bと裏面端子電極3Cとが電気的に接続し、表面端子電極3A、端面端子電極3Bおよび裏面端子電極3Cが一体となって、端子電極3が形成される。   FIG. 3I shows a state in which the end face terminal electrode 3B is formed by subsequently depositing Ag on the first end face 2A by the sputtering method. At this time, Ag is also deposited on the fracture surfaces of the surface terminal electrode 3A and the back surface terminal electrode 3C, so that the surface terminal electrode 3A and the end surface terminal electrode 3B, and the end surface terminal electrode 3B and the back surface terminal electrode 3C are electrically connected. The terminal electrode 3 is formed by connecting the surface terminal electrode 3A, the end surface terminal electrode 3B, and the back surface terminal electrode 3C together.

図3(J)は、その後、短冊状の絶縁基板15に対し、第2の端面2Bを形成することとなる分割用溝13に沿って分割した状態を示している。この分割は、分割用溝13を開く方向に応力付与して、単位絶縁基板(絶縁基板2)へと分割(以下、二次分割という。)することとなる。図3(J)の左側は、抵抗器1の一方の面(表面)を、同図右側は、抵抗器1の他方の面(裏面)を示している。二次分割の際には、分割用溝13に一部跨って形成されていた放熱部材9のうち分割用溝13を跨ぐ部分および裏面端子電極3Cのうち分割用溝13を跨ぐ部分が、分割用溝13に沿って同時に破断して、第2の端面2Bにそれらの破断面が露出する。この一次分割と二次分割によって第3の工程が終了する。ここで二次分割により、大型絶縁基板12の他方の面(裏面)に形成した裏面端子電極3Cが絶縁基板2から剥離するおそれがあると考えられる。しかし、通常、裏面端子電極3Cの二次分割時の破断面の面積は小さいため、容易に破断する。そしてその破断の際の衝撃が小さいことから、裏面端子電極3Cは、絶縁基板2面との剥離に至ることは殆ど無い。   FIG. 3J shows a state in which the strip-shaped insulating substrate 15 is subsequently divided along the dividing grooves 13 that form the second end face 2B. In this division, stress is applied in the direction in which the dividing grooves 13 are opened to divide the unit insulating substrate (insulating substrate 2) (hereinafter referred to as secondary division). The left side of FIG. 3 (J) shows one surface (front surface) of the resistor 1, and the right side of FIG. 3 shows the other surface (back surface) of the resistor 1. At the time of secondary division, the portion of the heat dissipation member 9 that has been partially straddled across the dividing groove 13 and the portion that straddles the dividing groove 13 and the portion of the back terminal electrode 3C that straddles the dividing groove 13 are divided. It breaks simultaneously along the groove 13 and those fracture surfaces are exposed at the second end face 2B. The third step is completed by the primary division and the secondary division. Here, it is considered that the back surface terminal electrode 3 </ b> C formed on the other surface (back surface) of the large insulating substrate 12 may be peeled off from the insulating substrate 2 by the secondary division. However, since the area of the fracture surface at the time of the secondary division of the back terminal electrode 3C is usually small, it easily breaks. And since the impact at the time of the fracture | rupture is small, the back surface terminal electrode 3C hardly reaches peeling with the insulating substrate 2 surface.

その後、バレルめっき法により、表面端子電極3A、端面端子電極3Bおよび裏面端子電極3Cの表面、および放熱部材9表面に、ニッケルめっき層7を形成し、さらにニッケルめっき層7表面に錫めっき層8を形成する。ニッケルめっき層7は、端子電極3と錫めっき層8との合金化による、端子電極3の、いわゆるはんだ喰われを防止するように機能する。また、錫めっき層8は、実装回路板10への表面実装の際に、固着部材となるはんだとの濡れ性を良好にするよう機能する。ここで、ニッケルめっき層7および錫めっき層8の厚みは、3μm以上12μm以下となるよう、めっき時間および/または通電電流値等を調整する。このバレルめっき法によるめっき層の形成によって第4の工程が終了する。   Thereafter, the nickel plating layer 7 is formed on the surface of the surface terminal electrode 3A, the end surface terminal electrode 3B and the back surface terminal electrode 3C, and the surface of the heat dissipation member 9 by barrel plating, and the tin plating layer 8 is further formed on the surface of the nickel plating layer 7. Form. The nickel plating layer 7 functions to prevent so-called solder erosion of the terminal electrode 3 due to alloying of the terminal electrode 3 and the tin plating layer 8. In addition, the tin plating layer 8 functions so as to improve the wettability with the solder serving as the fixing member during surface mounting on the mounting circuit board 10. Here, the plating time and / or the energization current value and the like are adjusted so that the thicknesses of the nickel plating layer 7 and the tin plating layer 8 are 3 μm or more and 12 μm or less. The fourth step is completed by forming the plating layer by the barrel plating method.

以上の各工程を経て製造された抵抗器1(図1参照)と、図7(F)に示す抵抗器21について、サンプル数n=20での比較検討を行った。2つの抵抗器1,21は、抵抗器21が放熱部材23aを長方形とし、絶縁基板22aの端面に到達させない形状とした以外は同条件で製造されている。図4(A)はニッケルめっき層7の厚み、図4(B)は錫めっき層8の厚みを比較した結果を示している。従来の抵抗器21のめっき条件(めっき時間および/または通電電流値等)は、本実施の形態に係る抵抗器1のめっき条件と同一にしている。本実施の形態に係る放熱部材9の表面に被着したニッケルめっき層7の厚み(最大値8.3μm、最小値5.7μm、平均値6.9μm)および錫めっき層8の厚み(最大値7.2μm、最小値4.7μm、平均値6.1μm)は、明らかに従来の放熱部材23aの表面に被着したニッケルめっき層の厚み(最大値6.9μm、最小値2.4μm、平均値4.2μm)、および錫めっき層の厚み(最大値1.7μm、最小値0.6μm、平均値1.3μm)よりも厚いことがわかる。このことから、本実施の形態に係る放熱部材9の一部を絶縁基板2の第2の端面2Bに露出させたことで、ダミーボールが放熱部材9へ接触しやすくなる効果が顕著に得られていることがわかる。   For the resistor 1 (see FIG. 1) manufactured through the above steps and the resistor 21 shown in FIG. 7 (F), a comparative study was performed with the number of samples n = 20. The two resistors 1 and 21 are manufactured under the same conditions except that the resistor 21 has a rectangular shape of the heat dissipating member 23a and does not reach the end face of the insulating substrate 22a. 4A shows the result of comparing the thickness of the nickel plating layer 7 and FIG. 4B shows the result of comparing the thickness of the tin plating layer 8. The plating conditions (plating time and / or energization current value, etc.) of the conventional resistor 21 are the same as the plating conditions of the resistor 1 according to the present embodiment. The thickness (maximum value 8.3 μm, minimum value 5.7 μm, average value 6.9 μm) of the nickel plating layer 7 deposited on the surface of the heat dissipation member 9 according to the present embodiment and the thickness (maximum value) of the tin plating layer 8. 7.2 μm, minimum value 4.7 μm, average value 6.1 μm) is clearly the thickness of the nickel plating layer deposited on the surface of the conventional heat radiating member 23a (maximum value 6.9 μm, minimum value 2.4 μm, average) Value 4.2 μm) and the thickness of the tin plating layer (maximum value 1.7 μm, minimum value 0.6 μm, average value 1.3 μm). From this, by exposing a part of the heat radiating member 9 according to the present embodiment to the second end surface 2B of the insulating substrate 2, the effect of making the dummy balls easily come into contact with the heat radiating member 9 is significantly obtained. You can see that

次に、本実施の形態に係る抵抗器1、上述の従来の抵抗器21および放熱部材9を設けない以外は抵抗器1と同条件で製造した抵抗器について、サンプル数n=20での温度衝撃試験を行った。温度衝撃試験は、ガラス繊維を混入したエポキシ系樹脂の板状成形物からなる実装回路板にこれら3種の抵抗器を実装し、常温で抵抗値測定をした後、125℃まで昇温してから30分で−55℃まで降温し、30分で125℃まで昇温するサイクルを1000回繰り返した後、再び常温で抵抗値測定をして、当初の抵抗値からの変化率を求める試験である。   Next, with respect to the resistor manufactured under the same conditions as the resistor 1 except that the resistor 1 according to the present embodiment, the above-described conventional resistor 21 and the heat dissipating member 9 are not provided, the temperature at the number of samples n = 20 An impact test was performed. In the temperature impact test, these three types of resistors are mounted on a mounting circuit board made of an epoxy resin plate-like product mixed with glass fiber, measured for resistance at room temperature, and then heated to 125 ° C. In this test, the temperature was lowered to -55 ° C in 30 minutes and raised to 125 ° C in 30 minutes 1000 times, and then the resistance value was measured again at room temperature to obtain the rate of change from the initial resistance value. is there.

図5に、この試験結果を示す。本実施の形態に係る抵抗器1の抵抗値変化率(最大値0.37%、最小値0.13%、平均値0.25%)は、放熱部材9を設けない以外は抵抗器1と同条件で製造した抵抗器の抵抗値変化率(最大値0.84%、最小値0.44%、平均値0.60%)に比べて明らかにが小さく、熱衝撃によっても抵抗素子特性を維持できていることがわかる。また本実施の形態に係る抵抗器1の抵抗値変化率は、上述の従来の抵抗器21の抵抗値変化率(最大値0.61%、最小値0.24%、平均値0.36%)よりも小さい。この理由は、上述の従来の抵抗器21の放熱部材23aの表面に被着しためっき層の薄さが、実装回路板との固着状態において本実施の形態に係る抵抗器1との差異を生じさせ、その差異が従来の抵抗器21から実装回路板への熱移動阻害要因となっているものと考えられる。   FIG. 5 shows the test results. The resistance value change rate (maximum value 0.37%, minimum value 0.13%, average value 0.25%) of the resistor 1 according to the present embodiment is the same as that of the resistor 1 except that the heat radiating member 9 is not provided. The resistance value change rate (maximum value 0.84%, minimum value 0.44%, average value 0.60%) of resistors manufactured under the same conditions is clearly smaller, and the resistance element characteristics are also improved by thermal shock. You can see that it is maintained. Further, the resistance value change rate of the resistor 1 according to the present embodiment is the resistance value change rate of the above-described conventional resistor 21 (maximum value 0.61%, minimum value 0.24%, average value 0.36%). Smaller than). This is because the thickness of the plating layer deposited on the surface of the heat dissipating member 23a of the conventional resistor 21 described above causes a difference from the resistor 1 according to the present embodiment in a state of being fixed to the mounting circuit board. Therefore, it is considered that the difference becomes a factor for inhibiting heat transfer from the conventional resistor 21 to the mounting circuit board.

以上、この実施の形態における抵抗器1およびその製造法について説明したが、本発明の要旨を逸脱しない限り種々変更実施可能である。たとえば、表面端子電極3A、裏面端子電極3Cおよび抵抗体4をスクリーン印刷法による厚膜で形成したが、これらの全部または一部をスパッタリング法等による薄膜で形成しても良い。また、裏面端子電極3Cと放熱部材9とは、同時に形成しても良いが、別々に形成しても良い。また、図3(C)に示す表面端子電極3Aを形成する工程を、図3(B)に示す裏面端子電極3Cおよび放熱部材9を形成する工程の前に行っても良い。但し、焼成の際に大型絶縁基板12が金属製の搬送ベルト等に載置される場合には、搬送ベルト表面の金属錆が表面端子電極3Aへ付着し、後に形成する抵抗体4との接触状態が不安定となるのを防止するため、本実施の形態のように、裏面端子電極3Cおよび放熱部材9を形成する工程が表面端子電極3Aを形成する工程の前に行われることが好ましい。さらに、端面端子電極3Bは、スパッタリング法以外の方法、例えば塗布法、スクリーン印刷法等により形成することができる。さらに、上述した実施の形態では第2の工程(放熱部材9を形成する工程)を第1の工程(抵抗素子を形成する工程)の最中に行っているが、第2の工程を第1の工程の開始前または完了後に行っても良い。さらに、裏面端子電極3Cおよび放熱部材9は、マイグレーション抑制材料としての、たとえばAg−Pd系合金等のメタルグレーズ系ペーストを焼成したもので構成させることができる。そうすることにより、本例の抵抗器1のように裏面端子電極3Cと放熱部材9との距離が比較的短くても、対となる裏面端子電極3C同士のマイグレーションによる短絡を抑制できる。   Although the resistor 1 and the manufacturing method thereof have been described above, various modifications can be made without departing from the gist of the present invention. For example, although the front surface terminal electrode 3A, the back surface terminal electrode 3C, and the resistor 4 are formed of a thick film by a screen printing method, all or a part of them may be formed of a thin film by a sputtering method or the like. Moreover, although the back surface terminal electrode 3C and the heat radiating member 9 may be formed simultaneously, you may form separately. Moreover, you may perform the process of forming 3 A of surface terminal electrodes shown in FIG.3 (C) before the process of forming the back surface terminal electrode 3C and the thermal radiation member 9 shown in FIG.3 (B). However, when the large insulating substrate 12 is placed on a metal transport belt or the like during firing, metal rust on the surface of the transport belt adheres to the surface terminal electrode 3A and contacts with the resistor 4 to be formed later. In order to prevent the state from becoming unstable, the step of forming the back surface terminal electrode 3C and the heat dissipation member 9 is preferably performed before the step of forming the surface terminal electrode 3A as in the present embodiment. Furthermore, the end face terminal electrode 3B can be formed by a method other than the sputtering method, for example, a coating method, a screen printing method, or the like. Furthermore, in the above-described embodiment, the second step (the step of forming the heat radiating member 9) is performed during the first step (the step of forming the resistance element), but the second step is the first step. You may perform before the start of this process, or after completion. Furthermore, the back terminal electrode 3C and the heat radiating member 9 can be configured by firing a metal glaze paste such as an Ag—Pd alloy as a migration suppressing material. By doing so, even if the distance between the back terminal electrode 3C and the heat radiating member 9 is relatively short like the resistor 1 of this example, a short circuit due to migration between the pair of back terminal electrodes 3C can be suppressed.

また、本実施の形態に係る抵抗器1は、裏面端子電極3Cを有しているが必ずしも必要でない。たとえば、図2の実装状態の抵抗器1において、裏面端子電極3Cをなくして表面端子電極3Aおよび端面端子電極3Bがランド16へ、はんだ11により固着されることとすることができる。また、本実施の形態に係る抵抗素子を有する電子部品である抵抗器1に設けた低融点金属層には、錫めっき層8を用いているが、錫めっき層8に代えてはんだめっき層とすることができる。ここで「はんだ」には、Pb−Sn系合金およびSn−Cu系合金等のいわゆる鉛フリーはんだを含む。   Moreover, although the resistor 1 which concerns on this Embodiment has the back surface terminal electrode 3C, it is not necessarily required. For example, in the mounted resistor 1 in FIG. 2, the back surface terminal electrode 3 </ b> C can be eliminated, and the front surface terminal electrode 3 </ b> A and the end surface terminal electrode 3 </ b> B can be fixed to the land 16 with the solder 11. Moreover, although the tin-plating layer 8 is used for the low melting-point metal layer provided in the resistor 1 which is an electronic component having the resistance element according to the present embodiment, a solder plating layer is used instead of the tin-plating layer 8. can do. Here, the “solder” includes so-called lead-free solder such as Pb—Sn alloy and Sn—Cu alloy.

また本発明の実施の形態に係る抵抗素子を有する電子部品となる抵抗器1は、抵抗素子一つからなる表面実装型のチップ抵抗器となっている。しかし他の抵抗器、例えば多連チップ抵抗器やチップネットワーク抵抗器等、単位絶縁基板に複数の抵抗素子を有する複合電子部品にも適用できる。この複合電子部品は、抵抗素子一つからなる抵抗器1に比べ、ジュール熱の発熱量が多く、絶縁基板にジュール熱が蓄積し易いため、ジュール熱を絶縁基板から逃がす必要性が高い場合があり、そのような場合には、本実施の形態に係る抵抗器1のように放熱部材9を設けることが非常に好ましいものとなる。また、抵抗素子と、コンデンサ等の他の回路素子との複合電子部品にも放熱部材9を設けることができる。   In addition, the resistor 1 as an electronic component having the resistance element according to the embodiment of the present invention is a surface-mount type chip resistor including one resistance element. However, the present invention can also be applied to other electronic components such as multiple chip resistors and chip network resistors having a plurality of resistance elements on a unit insulating substrate. Since this composite electronic component generates a greater amount of Joule heat than the resistor 1 consisting of one resistive element and Joule heat is likely to accumulate on the insulating substrate, there is a high need to release Joule heat from the insulating substrate. In such a case, it is very preferable to provide the heat dissipating member 9 like the resistor 1 according to the present embodiment. Further, the heat radiating member 9 can be provided also in a composite electronic component including a resistance element and another circuit element such as a capacitor.

本発明の実施の形態に係る抵抗素子を有する電子部品は、周囲温度が高温になりやすい環境下での使用により、特に利点を発揮できる。例えば、高密度実装をする電子機器への用途、パーソナルコンピュータ等、高温になりやすいCPU(Central Processing Unit)の近くに抵抗器が実装される電子機器への用途、高温になりやすい車のエンジンルーム内の電子制御部等への用途が好適である。   The electronic component having the resistance element according to the embodiment of the present invention can exhibit an advantage particularly when used in an environment where the ambient temperature tends to be high. For example, for use in electronic equipment with high-density mounting, for personal computers, etc., for electronic equipment in which a resistor is mounted near a CPU (Central Processing Unit) that tends to be hot, and in a car engine room that is likely to be hot The use to the electronic control part etc. of the inside is suitable.

本発明の実施の形態に係る抵抗素子を有する電子部品は、アルミナからなる絶縁基板2を用いている。しかし、より放熱性を良好にするためには、窒化アルミニウム等の熱伝導性の良好な材料を採択することが好適である。   An electronic component having a resistance element according to an embodiment of the present invention uses an insulating substrate 2 made of alumina. However, in order to improve heat dissipation, it is preferable to adopt a material having good thermal conductivity such as aluminum nitride.

本発明の実施の形態に係る抵抗素子を有する電子部品の製造の第3の工程に際し、大型絶縁基板12および短冊状の絶縁基板15の分割を、分割用溝13を開く方向に応力を付与する方法により実現した。しかしこの方法に代えて、ダイシング等の他の分割手段を採用できる。ダイシングを採用する利点は、分割の寸法精度を良好にできることと、分割用線(この線は、可視のものおよび不可視のものの双方を含む。)を跨いで形成された放熱部材9の部分を切断する際に比較的その部分に与える衝撃が小さく、絶縁基板2からの剥がれをより一層抑制できることである。また、一般に絶縁基板寸法精度の高い分割が困難な一次分割にダイシングを採用し、二次分割に製造コスト面で有利な分割用溝13を開く方向に応力を付与する方法を採用することができる。   In the third step of manufacturing the electronic component having the resistance element according to the embodiment of the present invention, the large insulating substrate 12 and the strip-shaped insulating substrate 15 are divided by applying stress in the direction of opening the dividing grooves 13. Realized by the method. However, instead of this method, other dividing means such as dicing can be employed. The advantage of adopting dicing is that the dimensional accuracy of the division can be improved, and the portion of the heat radiation member 9 formed across the division line (including both visible and invisible) is cut. In doing so, the impact applied to the portion is relatively small, and peeling from the insulating substrate 2 can be further suppressed. In general, it is possible to adopt a method in which dicing is generally used for primary division, which is difficult to divide with high insulation substrate dimensional accuracy, and stress is applied to the secondary division in the direction of opening the dividing groove 13 that is advantageous in terms of manufacturing cost. .

本発明の実施の形態に係る抵抗素子を有する電子部品の製造に際し、分割用溝13を大型絶縁基板12の他方の面(放熱部材9が配される面)に形成することができる。そして第3の工程に際し大型絶縁基板12および短冊状の絶縁基板15の分割を、分割用溝13を開く方向に応力付与すれば、放熱部材9の端面到達部分9Aは、絶縁基板2の面(他方の面)から剥離する方向には力が加えられ難くなり、放熱部材9の絶縁基板2の面からの剥離抑制効果を大きく得ることができる。同様の効果を得るためには、一次分割用の分割用溝は大型絶縁基板12の一方の面(放熱部材9が配されない面)に形成し、二次分割用の分割用溝は大型絶縁基板12の他方の面(放熱部材9が配される面)に形成する方法を採用することができる。   When manufacturing an electronic component having a resistance element according to an embodiment of the present invention, the dividing groove 13 can be formed on the other surface of the large insulating substrate 12 (surface on which the heat dissipation member 9 is disposed). In the third step, if the large insulating substrate 12 and the strip-shaped insulating substrate 15 are divided in the direction of opening the dividing grooves 13, the end surface reaching portion 9A of the heat radiating member 9 becomes the surface of the insulating substrate 2 ( It is difficult to apply force in the direction of peeling from the other surface), and the effect of suppressing peeling from the surface of the insulating substrate 2 of the heat radiating member 9 can be greatly obtained. In order to obtain the same effect, the dividing groove for primary division is formed on one surface of the large insulating substrate 12 (surface on which the heat dissipation member 9 is not disposed), and the dividing groove for secondary division is formed on the large insulating substrate. The method of forming on the other surface of 12 (surface on which the heat dissipation member 9 is disposed) can be employed.

本発明の実施の形態に係る抵抗素子を有する電子部品は、放熱部材9を端子電極3の材料と同様に導電性材料とした。電子部品と実装回路板10との熱移動を低融点金属(はんだ)を介して行う場合には、放熱部材9を導電性材料とするのが適している。しかし、電子部品と実装回路板10との間に熱移動の介在物が無い場合等は、放熱部材9を、市販の放熱シリコンゲル等の絶縁物で構成することができる。放熱シリコンゲル等の絶縁物を用いることにより、絶縁基板2を用いない抵抗器、たとえばニクロム板(Ni−Cr系合金板)を、エポキシ系樹脂や液晶ポリマー等を用いて樹脂モールドした表面実装型の金属板抵抗器を対象として、そのモールド部分から実装回路板面への熱移動を実現できる。また、金属板抵抗器であって抵抗体がモールドされていないものであっても、放熱シリコンゲル等の絶縁物を直接抵抗体に接触させ、実装回路板と接続して金属板抵抗器のジュール熱を実装回路板へと移動する(逃がす)ことができる。   In the electronic component having the resistance element according to the embodiment of the present invention, the heat radiating member 9 is made of a conductive material in the same manner as the material of the terminal electrode 3. When the heat transfer between the electronic component and the mounting circuit board 10 is performed via a low melting point metal (solder), it is suitable that the heat radiating member 9 is a conductive material. However, when there is no heat transfer inclusion between the electronic component and the mounted circuit board 10, the heat dissipating member 9 can be made of an insulator such as a commercially available heat dissipating silicon gel. By using an insulator such as a heat dissipating silicon gel, a surface mount type in which a resistor not using the insulating substrate 2, such as a nichrome plate (Ni-Cr alloy plate), is resin-molded using an epoxy resin or a liquid crystal polymer. Heat transfer from the mold part to the mounting circuit board surface can be realized. In addition, even if the resistor is a metal plate resistor and the resistor is not molded, an insulator such as a heat-dissipating silicon gel is brought into direct contact with the resistor and connected to the mounting circuit board so that the joule of the metal plate resistor can be connected. Heat can be transferred to the mounting circuit board.

図6には、本発明の実施の形態に係る放熱部材9の形状の各種の変形例を示している。図6(A)は、図1に示した抵抗器1の放熱部材9の端面到達部分9Aを半減させたものである。この放熱部材9Cは、二次分割によって放熱部材9の絶縁基板2からの剥離が生じやすい場合に採択するのが好ましい構成である。   FIG. 6 shows various modifications of the shape of the heat dissipation member 9 according to the embodiment of the present invention. FIG. 6 (A) is obtained by halving the end surface reaching portion 9A of the heat radiating member 9 of the resistor 1 shown in FIG. The heat radiating member 9C is preferably adopted when the heat radiating member 9 is likely to be peeled off from the insulating substrate 2 by secondary division.

図6(B)は、図1に示した抵抗器1の放熱部材9の端面到達部分9Aの幅すなわち、第2の端面2Bに露出している部分の距離を抵抗器1に比べ約1.5倍にしたものである。この放熱部材9Dは、バレルめっき法により被着されるめっきの厚みを大きくしたい場合に採択するのが好ましい構成である。   6B shows the width of the end surface reaching portion 9A of the heat radiating member 9 of the resistor 1 shown in FIG. 1, that is, the distance of the portion exposed at the second end surface 2B, about 1. It is 5 times. The heat dissipating member 9D is preferably adopted when it is desired to increase the thickness of the plating applied by the barrel plating method.

図6(C)は、図6(B)同様、図1に示した抵抗器1の放熱部材9の端面到達部分9Aの距離を約1.5倍にしたものである。この放熱部材9Eは、放熱部材9Dと同様の効果が得られる。また、放熱部材9Eの形状は、放熱部材9Dの形状に比して単純なので、スクリーン印刷等のパターンを単純化でき、スクリーン印刷精度を高めることができる利点を有している。   FIG. 6C is a diagram in which the distance of the end surface reaching portion 9A of the heat radiating member 9 of the resistor 1 shown in FIG. The heat radiating member 9E has the same effect as the heat radiating member 9D. Further, since the shape of the heat radiating member 9E is simpler than that of the heat radiating member 9D, there is an advantage that a pattern such as screen printing can be simplified and the screen printing accuracy can be increased.

図6(D)は、放熱部材9Fの端面到達部分9Aから端面非到達部分9Bに至るまでの放熱部材9Fの端辺を斜めの線としたものである。この構成を採用することにより、放熱部材9Fの端面到達部分9Aで絶縁基板2からの剥離が若干生じた場合でも、それが進行し難くなる。何故ならば、その剥離が進行するに従い放熱部材9Fと絶縁基板2との固着面積が大きくなり、剥離するための力に、より大きな力が要求されるためである。   In FIG. 6D, the end side of the heat radiating member 9F from the end face reaching portion 9A to the end face non-reaching portion 9B of the heat radiating member 9F is an oblique line. By adopting this configuration, even if some peeling from the insulating substrate 2 occurs at the end face reaching portion 9A of the heat radiating member 9F, it becomes difficult to proceed. This is because as the peeling progresses, the fixing area between the heat dissipating member 9F and the insulating substrate 2 increases, and a larger force is required for the peeling force.

図6(E)は、放熱部材9Gの端面到達部分9Aが、対向する2つの第2の端面2Bの一方のみに伸びているものである。この構成を採用することにより、二次分割による放熱部材9Gの絶縁基板2からの剥離を極力生じさせないことができる。さらに、絶縁基板2の他方の面を放熱部材9Gにより、放熱部材9C,9D,9Eよりも大きく取ることにより、放熱効果を大きく得ることができる。   In FIG. 6E, the end surface reaching portion 9A of the heat radiating member 9G extends to only one of the two opposing second end surfaces 2B. By adopting this configuration, it is possible to prevent the heat radiating member 9G from being separated from the insulating substrate 2 by secondary division as much as possible. Furthermore, by taking the other surface of the insulating substrate 2 larger than the heat radiating members 9C, 9D, and 9E by the heat radiating member 9G, a large heat radiating effect can be obtained.

図6(F)は、外形が6角形の絶縁基板2Cを用い、絶縁基板2Cの対向する端辺領域に対となる裏面端子電極3Dを形成し、かつ裏面端子電極3Dの間に放熱部材9Hを形成した状態を示している。放熱部材9Hは、外形がほぼ長方形に近い、単純で形成(パターニング)しやすい形状である。そのような単純な形状としても、絶縁基板2Cの外形が6角形であることにより、端面到達部分9Aおよび端面非到達部分9Bを形成できている。ここで、絶縁基板2Cの外形を正6角形にできることは言うまでもない。また、このように平面図における形状が長方形や正方形のような直角四角形以外に、図6(F)のような六角形、さらには五角形、八角形等の多角形としたり、第2の端面2Bが円弧状に膨らむ形状等種々の形状とすることができる。   In FIG. 6F, an insulating substrate 2C having a hexagonal outer shape is used, a pair of back surface terminal electrodes 3D are formed in opposing edge regions of the insulating substrate 2C, and the heat dissipation member 9H is interposed between the back surface terminal electrodes 3D. The state in which is formed is shown. The heat dissipating member 9H has a simple shape that is easy to form (patterning) and has an outer shape that is almost rectangular. Even in such a simple shape, the end face reaching portion 9A and the end face non-reaching portion 9B can be formed by the hexagonal outer shape of the insulating substrate 2C. Here, it goes without saying that the outer shape of the insulating substrate 2C can be a regular hexagon. In addition to the right-angled rectangle such as a rectangle or a square, the shape in the plan view may be a hexagon as shown in FIG. 6F, a polygon such as a pentagon or an octagon, or the second end face 2B. It can be made into various shapes, such as the shape which swells in circular arc shape.

本発明の実施の形態に係る抵抗器を示す図であって、(A)は縦断面図、(B)は実装回路板との対向面(裏面)の平面図である。It is a figure which shows the resistor which concerns on embodiment of this invention, Comprising: (A) is a longitudinal cross-sectional view, (B) is a top view of the opposing surface (back surface) with a mounting circuit board. 本発明の実施の形態に係る抵抗器が実装回路板に実装された状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state by which the resistor which concerns on embodiment of this invention was mounted in the mounting circuit board. 本発明の実施の形態に係る抵抗器の製造過程を順を追って示す図である。It is a figure which shows order for the manufacturing process of the resistor which concerns on embodiment of this invention later on. 本発明の実施の形態に係る抵抗器と従来の抵抗器の放熱部材表面と端子電極の表面に被着しためっきによる金属膜の厚みを示す図で、(A)はニッケルめっき層の厚みを示す図で、(B)は錫めっき層の厚みを示す図である。It is a figure which shows the thickness of the metal film by the plating deposited on the surface of the resistor according to the embodiment of the present invention and the heat radiation member of the conventional resistor and the surface of the terminal electrode, (A) shows the thickness of the nickel plating layer In the figure, (B) shows the thickness of the tin plating layer. 本発明の実施の形態に係る抵抗器と、従来の抵抗器と、放熱部材無しの抵抗器(放熱部材以外は本発明の実施の形態に係る抵抗器と同一)の温度衝撃試験の結果を示す図であり、抵抗値変化率を示す図である。The result of the temperature impact test of the resistor according to the embodiment of the present invention, the conventional resistor, and the resistor without the heat radiating member (same as the resistor according to the embodiment of the present invention except for the heat radiating member) is shown. It is a figure and is a figure which shows resistance value change rate. 本発明の実施の形態に係る放熱部材の形状の各種の変形例を示す図である。It is a figure which shows the various modifications of the shape of the heat radiating member which concerns on embodiment of this invention. 従来の各種の抵抗器の縦断面図および実装回路板との対向面(裏面)の平面図である。It is the longitudinal cross-sectional view of the conventional various resistors, and the top view of the opposing surface (back surface) with a mounting circuit board.

符号の説明Explanation of symbols

1 抵抗器
2,2C 絶縁基板
2A 第1の端面
2B 第2の端面
3 端子電極
3A 表面端子電極(端子電極の一部)
3B 端面端子電極(端子電極の一部)
3C,3D 裏面端子電極(端子電極の一部)
4 抵抗体
5 第1のガラス皮膜
6 第2のガラス皮膜
7 ニッケルめっき層
8 錫めっき層
9,9C,9D,9E,9F,9G,9H 放熱部材
9A 端面到達部分
9A1 第1端面到達部分
9A2 第2端面到達部分
9B 端面非到達部分
10 実装回路板
11 はんだ
12 大型絶縁基板
13 分割用溝
14 トリミング溝
15 短冊状の絶縁基板
16 ランド
DESCRIPTION OF SYMBOLS 1 Resistor 2, 2C Insulation board | substrate 2A 1st end surface 2B 2nd end surface 3 Terminal electrode 3A Surface terminal electrode (a part of terminal electrode)
3B end face terminal electrode (part of terminal electrode)
3C, 3D Back terminal electrode (part of terminal electrode)
4 Resistor 5 First Glass Film 6 Second Glass Film 7 Nickel Plating Layer 8 Tin Plating Layer 9, 9C, 9D, 9E, 9F, 9G, 9H 2 End face reaching portion 9B End face non-reaching portion 10 Mounting circuit board 11 Solder 12 Large insulating substrate 13 Dividing groove 14 Trimming groove 15 Strip-like insulating substrate 16 Land

Claims (6)

絶縁基板の端辺領域に設けられる対となる端子電極および上記絶縁基板の一方の面に配置され、上記端子電極の双方に接続される抵抗体を有する抵抗素子と、上記絶縁基板の他方の面に上記端子電極と接触しないように配置された、上記抵抗素子の放熱のための放熱部材と、を有する電子部品において、
上記放熱部材は、上記端子電極の配置方向に対向する上記絶縁基板の2つの第1の端面とは異なる第2の端面であって、上記2つの第1の端面を結ぶように配置された第2の端面まで伸ばされた端面到達部分と、伸ばされずに上記第2の端面との間に距離を設けられた端面非到達部分とを有することを特徴とする抵抗素子を有する電子部品。
A pair of terminal electrodes provided in an edge region of the insulating substrate and a resistive element disposed on one surface of the insulating substrate and having a resistor connected to both of the terminal electrodes, and the other surface of the insulating substrate In an electronic component having a heat radiating member for radiating heat of the resistance element, arranged so as not to contact the terminal electrode.
The heat dissipating member is a second end face different from the two first end faces of the insulating substrate facing the arrangement direction of the terminal electrodes, and is arranged to connect the two first end faces. An electronic component having a resistance element, comprising: an end surface reaching portion that is extended to two end surfaces; and an end surface non-reaching portion that is not stretched and is spaced apart from the second end surface.
前記絶縁基板は、直方体とされ、対向する2つの前記第2の端面を有し、前記放熱部材は、2つの前記第2の端面の双方にまで伸ばされた前記端面到達部分を有することを特徴とする請求項1記載の抵抗素子を有する電子部品。   The insulating substrate is a rectangular parallelepiped and has two opposing second end faces, and the heat radiating member has the end face reaching portion extended to both of the two second end faces. An electronic component having the resistance element according to claim 1. 前記第2の端面に伸びた前記放熱部材の端面側部分には、前記第2の端面にまで伸ばされた第1端面到達部分と、伸ばさずに前記第2の端面との間に距離を設けた前記端面非到達部分と、前記第2の端面にまで伸ばされた第1端面到達部分とが前記第2の端面に沿ってこの順に配置されていることを特徴とする請求項1または2記載の抵抗素子を有する電子部品。   The end surface side portion of the heat radiating member extending to the second end surface is provided with a distance between the first end surface reaching portion extended to the second end surface and the second end surface without extending. 3. The end face non-reaching part and the first end face reaching part extended to the second end face are arranged in this order along the second end face. Electronic component having a resistive element. 前記放熱部材が、前記第2の端面に沿った方向の直線であって、前記絶縁基板の他方の面の中心領域を通る直線を対称軸とする線対称の形状をしていることを特徴とする請求項1、2または3記載の抵抗素子を有する電子部品。   The heat dissipating member is a straight line in a direction along the second end surface, and has a line-symmetric shape with a straight line passing through a central region of the other surface of the insulating substrate as an axis of symmetry. An electronic component having the resistance element according to claim 1, 2 or 3. 表面に縦横に交差する線状分割部を有する大型絶縁基板の、上記線状分割部で囲われる一単位の絶縁基板(以下、単位絶縁基板という)の各々に少なくとも抵抗素子を含む一つまたは複数の回路素子を形成する工程と、上記抵抗素子の放熱のための導電性の放熱部材を、上記抵抗素子との導通をしないように、上記線状分割部を跨ぐ部分および跨がない部分を有するように形成する工程と、上記両工程の後に上記線状分割部に沿って上記大型絶縁基板を個々の上記単位絶縁基板へと分割する工程と、その後、上記抵抗素子と接触し、端子を構成する端子電極の表面および上記放熱部材の表面にバレルめっき法により低融点金属膜を被着する工程とを有することを特徴とする抵抗素子を有する電子部品の製造法。   One or a plurality of large insulating substrates having linear divisions that intersect the surface vertically and horizontally, each including at least a resistive element in each of the unit insulating substrates (hereinafter referred to as unit insulating substrates) surrounded by the linear division portions. A step of forming the circuit element and a conductive heat radiating member for radiating heat of the resistance element have a portion straddling the linear divided portion and a portion not straddling so as not to conduct with the resistance element. Forming the step, dividing the large insulating substrate into the individual unit insulating substrates along the linear dividing portion after both the steps, and then contacting the resistor elements to form terminals And a step of depositing a low melting point metal film on the surface of the terminal electrode and the surface of the heat dissipating member by barrel plating, and a method for producing an electronic component having a resistance element. 前記端子電極の表面および前記放熱部材の表面に被着される前記低融点金属膜の厚みが、ともに3μm以上12μm以下であることを特徴とする請求項5記載の抵抗素子を有する電子部品の製造法。   6. The manufacturing of an electronic component having a resistance element according to claim 5, wherein the thickness of the low melting point metal film deposited on the surface of the terminal electrode and the surface of the heat dissipation member is 3 μm or more and 12 μm or less. Law.
JP2006048087A 2006-02-24 2006-02-24 Electronic component having resistive element and manufacturing method thereof Pending JP2007227718A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006048087A JP2007227718A (en) 2006-02-24 2006-02-24 Electronic component having resistive element and manufacturing method thereof
CN2007100057870A CN101026028B (en) 2006-02-24 2007-02-13 Electronic device equipped with resistance component and its making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006048087A JP2007227718A (en) 2006-02-24 2006-02-24 Electronic component having resistive element and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2007227718A true JP2007227718A (en) 2007-09-06

Family

ID=38549217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006048087A Pending JP2007227718A (en) 2006-02-24 2006-02-24 Electronic component having resistive element and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP2007227718A (en)
CN (1) CN101026028B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8325007B2 (en) * 2009-12-28 2012-12-04 Vishay Dale Electronics, Inc. Surface mount resistor with terminals for high-power dissipation and method for making same
CN103369203B (en) * 2012-03-27 2015-11-18 华晶科技股份有限公司 Color calibration method and image processing apparatus
US8823483B2 (en) 2012-12-21 2014-09-02 Vishay Dale Electronics, Inc. Power resistor with integrated heat spreader
JP7085378B2 (en) * 2018-03-23 2022-06-16 Koa株式会社 Chip resistor
CN110580991A (en) * 2019-09-30 2019-12-17 深圳市禹龙通电子有限公司 Resistance card

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210406U (en) * 1985-07-03 1987-01-22
JPS646006U (en) * 1987-06-30 1989-01-13
JPH0239401A (en) * 1988-07-28 1990-02-08 Fujitsu Ltd Chip resistor
JPH0786755A (en) * 1993-09-17 1995-03-31 Nagano Japan Radio Co Printed board
JPH08130161A (en) * 1994-10-31 1996-05-21 Kyocera Corp Chip rc network
WO2004055836A1 (en) * 2002-12-16 2004-07-01 Koa Kabushiki Kaisha Resistive material, resistive element, resistor and method for manufacturing resistor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1433030A (en) * 2002-01-14 2003-07-30 陈富强 Metal sheet type resistor making process and structure
CN2655394Y (en) * 2003-10-28 2004-11-10 陈富强 Metal plate type resistance structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210406U (en) * 1985-07-03 1987-01-22
JPS646006U (en) * 1987-06-30 1989-01-13
JPH0239401A (en) * 1988-07-28 1990-02-08 Fujitsu Ltd Chip resistor
JPH0786755A (en) * 1993-09-17 1995-03-31 Nagano Japan Radio Co Printed board
JPH08130161A (en) * 1994-10-31 1996-05-21 Kyocera Corp Chip rc network
WO2004055836A1 (en) * 2002-12-16 2004-07-01 Koa Kabushiki Kaisha Resistive material, resistive element, resistor and method for manufacturing resistor

Also Published As

Publication number Publication date
CN101026028A (en) 2007-08-29
CN101026028B (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4632358B2 (en) Chip type fuse
JP4909077B2 (en) Chip resistor
JP4110967B2 (en) Protective element
US10354826B2 (en) Fuse in chip design
US10290402B2 (en) Chip resistor and method of making the same
JP2008235523A (en) Electronic component including resistive element
JP5306139B2 (en) Chip fuse
JP2007227718A (en) Electronic component having resistive element and manufacturing method thereof
JP2018133554A (en) Resistor element, method of manufacturing the same, and resistor element assembly
JP2014135427A (en) Chip resistor
JP2006310277A (en) Chip type fuse
JP2007048784A (en) Chip resistor and its manufacturing method
JP2000306711A (en) Multiple chip resistor and production thereof
JP2006319260A (en) Chip resistor
JP3118509B2 (en) Chip resistor
JP2002270402A (en) Chip resistor
WO2017033793A1 (en) Chip resistor and method for manufacturing chip resistor
JP2007227719A (en) Electronic component having resistive element and manufacturing method thereof
JP2022012055A (en) Resistor
JP3567144B2 (en) Chip type resistor and method of manufacturing the same
JP7117116B2 (en) chip resistor
JP4729398B2 (en) Chip resistor
JP2004319195A (en) Chip type fuse
JPH1092601A (en) Terminal electrode for surface mount electronic parts and its manufacture
JP4508737B2 (en) Network resistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100914