JP2007225408A - Sideslip measuring device of moving body - Google Patents

Sideslip measuring device of moving body Download PDF

Info

Publication number
JP2007225408A
JP2007225408A JP2006046185A JP2006046185A JP2007225408A JP 2007225408 A JP2007225408 A JP 2007225408A JP 2006046185 A JP2006046185 A JP 2006046185A JP 2006046185 A JP2006046185 A JP 2006046185A JP 2007225408 A JP2007225408 A JP 2007225408A
Authority
JP
Japan
Prior art keywords
moving body
calculating
relative position
skid
velocity vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006046185A
Other languages
Japanese (ja)
Inventor
Akikatsu Yamaguchi
哲功 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VIOS SYSTEM KK
Original Assignee
VIOS SYSTEM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VIOS SYSTEM KK filed Critical VIOS SYSTEM KK
Priority to JP2006046185A priority Critical patent/JP2007225408A/en
Publication of JP2007225408A publication Critical patent/JP2007225408A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for measuring highly accurately sideslip of a moving body. <P>SOLUTION: A sideslip angle of the moving body is calculated from the direction (forward direction) of a front antenna to a rear antenna calculated from a signal received by the positioning satellite receiving antennas mounted on the front and the rear on the moving body, and from the progression direction of the antennas. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、移動体の横滑り計測の精度向上を図ることに関する。   The present invention relates to improving the accuracy of side slip measurement of a moving body.

移動体の横滑り計測は、たとえばGPS受信機による測位値から得られた進行方位角と、ヨーレートセンサから得られた角速度を積分して求めた移動体の旋回量から算出する。
この時、高精度な測位値を得る為にいわゆるキネマティックGPS測位方法を用いるのが一般的であるが、キネマティックGPS測位は取り扱いが煩雑で高価なシステムである。
また、ヨーレートセンサから得られた旋回量には積分された累積誤差が含まれるので高精度な計測が困難である。
特開2005−17191号公報 特開H11−190770号公報
For example, the side slip measurement of the moving body is calculated from the turning amount of the moving body obtained by integrating the traveling azimuth obtained from the positioning value by the GPS receiver and the angular velocity obtained from the yaw rate sensor.
At this time, in order to obtain a highly accurate positioning value, a so-called kinematic GPS positioning method is generally used. However, kinematic GPS positioning is a complicated and expensive system.
Further, since the turning amount obtained from the yaw rate sensor includes an integrated cumulative error, it is difficult to measure with high accuracy.
JP 2005-17191 A JP H11-190770 A

移動体の横滑り計測を、移動体上に取り付けた2台の衛星測位装置から得た計測データだけを用いて横滑りを精度よく行なうこと。 Carry a skid measurement of a moving object accurately using only the measurement data obtained from two satellite positioning devices installed on the moving object.

前記課題を解決するために本発明の移動体横滑り計測装置は、測位用衛星からの信号とデータに基づく、たとえばグローバルポジショニングシステム(以下、GPSという)のみを移動体上に2個配置して利用する。そのため、異なった種類のセンサからの出力値の場合に生じる計測時刻同期問題や、それぞれに内在する誤差の問題を解決した計測ができる。また、前記2箇所の相互間の距離を拘束条件として同じ種類のセンサからの出力値を用いて横滑り状態を算出するため、高精度な横滑り状態が算出できる。 In order to solve the above-mentioned problem, the mobile side slip measuring device of the present invention uses only two global positioning systems (hereinafter referred to as GPS), for example, based on signals and data from positioning satellites. To do. Therefore, it is possible to perform measurement while solving the measurement time synchronization problem that occurs in the case of output values from different types of sensors and the problem of errors inherent in each. Further, since the skid state is calculated using the output value from the same type of sensor with the distance between the two locations as a constraint, a highly accurate skid state can be calculated.

具体的には、移動体上に離して取り付けた2台の衛星測位装置アンテナのそれぞれの計測速度の差から相対速度ベクトルを求め、その相対ベクトル方向に直角な方向と2台の衛星測位装置アンテナ間の距離とから2台の衛星測位装置アンテナ間の相対位置を算出し、その相対位置を拘もとにして前記測位用衛星信号の搬送波位相整数バイアスを算出し、その搬送波位相整数バイアスを用いて改めて2台の衛星測位装置アンテナ間の相対位置を算出し、その相対位置から得られる前方方位角(移動体の向き)と前記計測速度から得られる進行方位角との差から前記移動体の横滑り角を算出する。 Specifically, the relative velocity vector is obtained from the difference between the measurement speeds of the two satellite positioning device antennas mounted apart on the moving body, and the direction perpendicular to the relative vector direction and the two satellite positioning device antennas are obtained. The relative position between the two satellite positioning device antennas is calculated from the distance between them, and the carrier phase integer bias of the positioning satellite signal is calculated based on the relative position, and the carrier phase integer bias is used. The relative position between the two satellite positioning device antennas is calculated again, and the difference between the forward azimuth angle (direction of the moving body) obtained from the relative position and the traveling azimuth angle obtained from the measurement speed is calculated. Calculate the skid angle.

本発明によれば、種々のセンサを取り扱うこと無く容易に移動体の横滑り計測を高精度に行なうことができる。 According to the present invention, it is possible to easily perform a skid measurement of a moving body with high accuracy without handling various sensors.

以下、本発明の実施形態について図面を参照しながら説明する。
図1は本発明の実施形態、図2は実施形態の移動体横滑り計測装置のブロック図を示す。
本実施形態の移動体横滑り計測装置2は、例えばテストコースにおいて移動体1の走行中の横滑りを計測するためのものであり、2つの速度ベクトル計測部10a、10bと横滑り算出部20とからなる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment of the present invention, and FIG. 2 shows a block diagram of a mobile side skid measuring apparatus according to the embodiment.
The mobile body skid measuring device 2 according to the present embodiment is for measuring, for example, a skid during the travel of the mobile body 1 on a test course, and includes two speed vector measuring units 10a and 10b and a skid calculating unit 20. .

速度ベクトル計測部10a、10bでは、GPSの受信アンテナ11a、11bを移動体上に離して配置して測位用衛星の電波を受信する。単独測位方式のGPSでは公知の如く、測位用衛星から送信される電波の位相信号と搬送波に変調されている航法データとを利用して、GPSシステム時刻に同期して周期1秒から0.01秒間隔で受信点の緯度、経度及び高さのメートル精度の位置情報と、緯度、経度及び高さのミリメートル精度の秒速度情報が得られる。 In the velocity vector measuring units 10a and 10b, the GPS receiving antennas 11a and 11b are arranged apart from each other on the moving body to receive radio waves from the positioning satellite. As is well known in the single positioning type GPS, a period of 1 second to 0.01 seconds is synchronized with the GPS system time using a phase signal of a radio wave transmitted from a positioning satellite and navigation data modulated on a carrier wave. The position information of the latitude, longitude and height of the receiving point with meter accuracy and the second speed information of millimeter accuracy of the latitude, longitude and height are obtained at intervals of seconds.

本実施形態では速度ベクトル計測部10は、単独測位方式のGPSを用いる。速度ベクトル計測部10で計測された速度ベクトルデータは横滑り算出部20に出力する。 In the present embodiment, the velocity vector measuring unit 10 uses a single positioning GPS. The velocity vector data measured by the velocity vector measuring unit 10 is output to the skid calculating unit 20.

横滑り算出部20では、速度ベクトル計測部10a、10bで計測された速度ベクトルデータおよび、GPS受信観測データを用いて、横滑りを算出する。横滑り算出部20には、2つの速度ベクトルデータの差から相対速度ベクトルを算出する手段と、その相対速度ベクトル方向および前記2箇所間の距離を満たした相対位置を算出する手段と、その相対位置から前記測位用衛星信号の搬送波位相整数バイアスを算出する手段と、その搬送波位相整数バイアスを用いて前記相対位置を再算出する手段と、再算出された相対位置から得られる前方方位角と前記速度ベクトルから得られる進行方位角の差から前記移動体の横滑りを算出する手段が備えられている。 The skid calculating unit 20 calculates the skid using the velocity vector data measured by the velocity vector measuring units 10a and 10b and the GPS reception observation data. The skid calculation unit 20 includes means for calculating a relative speed vector from a difference between two speed vector data, means for calculating a relative position satisfying the relative speed vector direction and the distance between the two locations, and the relative position. Means for calculating a carrier phase integer bias of the satellite signal for positioning from, means for recalculating the relative position using the carrier phase integer bias, a forward azimuth angle obtained from the recalculated relative position and the velocity Means are provided for calculating the side slip of the moving body from the difference in traveling azimuth obtained from the vector.

次に、横滑りの算出について図3をもとに説明する。速度ベクトル計測部10aの受信アンテナ11aは移動体1上の前方に配置して取り付けられ、測位用衛星からの電波を受信して受信アンテナ設置箇所の東西、南北、上下の速度ベクトルデータ(AEv,ANv)を1秒間に1回から100回の頻度で計測し出力する。速度ベクトル計測部10bの受信アンテナ11bは移動体1上の後方に配置して取り付けられ、測位用衛星からの電波を受信して受信アンテナ設置箇所の東西、南北、上下の速度ベクトルデータ(BEv、BNv)を1秒間に1回から100回の頻度で計測し出力する。本実施例の2つの受信アンテナは、受信アンテナ11bから見た受信アンテナ11aの方向を移動体1の前方方向と一致させて配置する。 Next, calculation of skid will be described with reference to FIG. The receiving antenna 11a of the velocity vector measuring unit 10a is arranged and attached in front of the moving body 1, receives radio waves from a positioning satellite, and receives east-west, north-south, and vertical velocity vector data (AEv, ANv) is measured and output at a frequency of 1 to 100 times per second. The receiving antenna 11b of the velocity vector measuring unit 10b is disposed and attached to the rear of the moving body 1, receives radio waves from a positioning satellite, and receives east-west, north-south, and upper / lower velocity vector data (BEv, BNv) is measured and output at a frequency of 1 to 100 times per second. The two receiving antennas of the present embodiment are arranged such that the direction of the receiving antenna 11a viewed from the receiving antenna 11b coincides with the forward direction of the moving body 1.

移動体1上の2箇所で計測された速度ベクトルデータは横滑り算出部20に送られ、移動体1の位置、進行方位角Wm、受信アンテナ11aの11bに対する相対位置(REp,RNp)、前方方位角Wh、横滑り角Ws、横滑り角速度Wvを以下の様な公知の算出方法で算出する。 The velocity vector data measured at two locations on the moving body 1 is sent to the skid calculation unit 20, where the position of the moving body 1, the traveling azimuth angle Wm, the relative position (REp, RNp) of the receiving antenna 11a with respect to 11b, and the forward direction. The angle Wh, the side slip angle Ws, and the side slip angular velocity Wv are calculated by a known calculation method as described below.

移動体1の位置として、受信アンテナ11aの水平位置(AEpt、ANpt)は、受信アンテナ11aにおける速度成分(AEv,ANv)に計測時間間隔を掛けた値を前回算出した水平位置(AEpt−1、ANpt−1)に加算することで算出する。 As the position of the moving body 1, the horizontal position (AEpt, ANpt) of the receiving antenna 11a is the horizontal position (AEpt−1) calculated previously by multiplying the velocity component (AEv, ANv) in the receiving antenna 11a by the measurement time interval. It is calculated by adding to ANpt-1).

移動体1の位置として、受信アンテナ11bの水平位置(BEpt、BNpt)は、受信アンテナ11bにおける速度成分(BEv,BNv)に計測時間間隔を掛けた値を前回算出した水平位置(BEpt−1、BNpt−1)に加算することで算出する。 As the position of the moving body 1, the horizontal position (Bept, BNpt) of the receiving antenna 11b is the horizontal position (Bept-1, BTv-1, BNpt) calculated last time by multiplying the velocity component (BEv, BNv) in the receiving antenna 11b by the measurement time interval. It is calculated by adding to BNpt-1).

移動体1の進行方位角として、受信アンテナ11bの進行方位角Wmは、速度成分(BEv,BNv)を使ってBNv/BEvの逆正接を算出する事で算出する。 As the traveling azimuth angle of the mobile body 1, the traveling azimuth angle Wm of the receiving antenna 11b is calculated by calculating an arctangent of BNv / BEv using velocity components (BEv, BNv).

移動体1の進行方位角として、受信アンテナ11aの進行方位角Wmは、速度成分(AEv,ANv)を使ってANv/AEvの逆正接を算出する事で算出する。 As the traveling azimuth angle of the moving body 1, the traveling azimuth angle Wm of the receiving antenna 11a is calculated by calculating the arc tangent of ANv / AEv using the velocity components (AEv, ANv).

なお、これで得られる方位角は東を0度、北を90度としたものであるが、北を0度、東を90度とする事も算出式を変えることで容易に行なえる。さらに本例では、受信アンテナ11bから見た受信アンテナ11aの方向を移動体1の前方方向と一致させて配置したが、ずらして配置した場合でもその取り付けずれ角をバイアスとして加減する事で移動体1の前方方位角の算出は容易に行なえる。 The azimuth angle obtained in this way is 0 degrees in the east and 90 degrees in the north, but setting the north to 0 degrees and the east to 90 degrees can be easily performed by changing the calculation formula. Furthermore, in this example, the direction of the receiving antenna 11a viewed from the receiving antenna 11b is arranged so as to coincide with the forward direction of the moving body 1. However, even when the moving antenna 1 is displaced, the moving object can be adjusted by adjusting the mounting deviation angle as a bias. The calculation of the forward azimuth angle of 1 can be easily performed.

受信アンテナ11aの受信アンテナ11bに対する相対速度ベクトル方向は、速度成分(AEv,ANv)と速度成分(BEv,BNv)の差(AEv−BEv,ANv−BNv)を使って(AEv−BEv)/(ANv−BNv)の逆正接を算出する事で得る。この方向は受信アンテナ11bを中心として受信アンテナ11a、11bの取り付け間隔Lを半径とする円周上の接線方向である。 The relative velocity vector direction of the receiving antenna 11a with respect to the receiving antenna 11b is calculated using (AEv−BEv) / (AEv−BEv, ANv−BNv) using the difference (AEv−BEv, ANv−BNv) between the velocity component (AEv, ANv) and the velocity component (BEv, BNv). ANv−BNv) is obtained by calculating the arc tangent. This direction is a tangential direction on the circumference centered on the receiving antenna 11b and having a radius of the mounting interval L between the receiving antennas 11a and 11b.

受信アンテナ11aの11bに対する相対位置(REp、RNp)は概略、受信アンテナ11bを中心として受信アンテナ11a、11bの取り付け間隔Lを半径とする円周上で相対速度ベクトル方向と一致する接線の接点付近に有ると推定できる。もし相対移動量が生じなければ、移動体は旋回運動をせず初期の相対位置関係を保っている事になるが、この場合は進行方位角Wmと取り付け間隔Lから相対位置(REp、RNp)の概略値を推定できる。 The relative position (REp, RNp) of the receiving antenna 11a with respect to 11b is roughly the vicinity of the contact point of the tangent line that coincides with the direction of the relative velocity vector on the circumference centered on the receiving antenna 11b and having a mounting interval L as the radius. It can be estimated that If the relative movement amount does not occur, the moving body does not perform the turning motion and maintains the initial relative positional relationship. In this case, the relative position (REp, RNp) is determined from the traveling azimuth angle Wm and the mounting interval L. Can be estimated.

本実施形態では相対移動が水平面上で行われるとして説明してあるが、相対移動が3次元である場合には、相対位置は概略、半径Lの球面上の3次元相対速度ベクトル方向と一致する接点付近に有ると推定できる。 In the present embodiment, the relative movement is described as being performed on a horizontal plane. However, when the relative movement is three-dimensional, the relative position is approximately the same as the direction of the three-dimensional relative velocity vector on the spherical surface of radius L. It can be estimated that it is in the vicinity of the contact.

受信アンテナ11aの11bに対する相対位置(REp、RNp)の正確な値は、公知のように、相対位置の推定値を使って測位用衛星からの電波の搬送波位相整数バイアスを決定し、搬送波位相相対測位によってフィックス解を算出する事で得る。公知な技術については、たとえば特開H11−190770の「従来の技術」項に記載されている。 As is known, an accurate value of the relative position (REp, RNp) of the receiving antenna 11a with respect to 11b is determined by using the estimated relative position to determine the carrier wave phase integer bias of the radio wave from the positioning satellite, Obtained by calculating a fixed solution by positioning. Known techniques are described, for example, in the section “Prior Art” of Japanese Patent Application Laid-Open No. H11-190770.

搬送波位相整数バイアス決定に際し、相対位置情報は3次元で与える必要があるが、本実施形態では相対移動が水平面上で行われたとして説明しているため、相対高さ成分は零となる。 In determining the carrier phase integer bias, the relative position information needs to be given in three dimensions. However, in the present embodiment, the relative height component is zero because the relative movement is described on the horizontal plane.

前方方位角Whは、相対位置(REp、RNp)からRNp/REpの逆正接を算出する事で得る。 The forward azimuth angle Wh is obtained by calculating the arctangent of RNp / REp from the relative position (REp, RNp).

横滑り角Wsは、前方方位角Whと進行方位角Wmとの差を算出する事で得る。 The skid angle Ws is obtained by calculating the difference between the forward azimuth angle Wh and the traveling azimuth angle Wm.

横滑り角速度Wvは、横滑り角Wsの時間変化を算出する事で得る。 The skid angular velocity Wv is obtained by calculating the temporal change of the skid angle Ws.

本発明の移動体横滑り計測装置は、例えばテストコースにおいて車両の走行中の横滑り状態を計測するためのものであり、本発明によれば、種々のセンサを取り扱うこと無く、高精度な横滑り状態を得ることができる。さらに本装置のアンテナを移動体の左右に設置すればローリング角をも同時に計測することができ、アンテナを移動体の前後に設置すればピッチング角を計測することもできる。 The mobile side skid measuring device of the present invention is for measuring a skid state during running of a vehicle on a test course, for example. According to the present invention, a highly accurate skid state can be obtained without handling various sensors. Obtainable. Furthermore, if the antenna of this apparatus is installed on the left and right of the moving body, the rolling angle can be measured simultaneously, and if the antenna is installed before and after the moving body, the pitching angle can also be measured.

実施形態を示す全体構成図である。It is a whole lineblock diagram showing an embodiment. 実施形態の移動体横滑り計測装置のブロック図であるIt is a block diagram of the mobile body skid measurement device of the embodiment 実施形態の横滑り算出に係る図であるIt is a figure which concerns on the skid calculation of embodiment.

符号の説明Explanation of symbols

1−移動体
2−移動体横滑り計測装置
10−速度ベクトル計測部
11−受信アンテナ
20−横滑り算出部
30−横滑り計測結果出力部



















1-moving body 2-moving body side slip measuring device 10-speed vector measuring unit 11-receiving antenna 20-side slip calculating unit 30-side slip measurement result output unit



















Claims (1)

測位用衛星からの信号とデータに基づいて移動体の横滑りを計測する装置であって、
移動体上の定められた距離を隔てた2箇所の速度ベクトルを計測する手段と、
前記2つの速度ベクトルデータの差から相対速度ベクトルを算出する手段と、
前記相対速度ベクトル方向および前記2箇所間の距離を満たした相対位置を
算出する手段と、
前記相対位置から前記測位用衛星信号の搬送波位相整数バイアスを算出する手段と、
前記搬送波位相整数バイアスを用いて前記相対位置を再算出する手段と、
再算出された相対位置から得られる前方方位角と前記速度ベクトルから得られる進行方位角の差から前記移動体の横滑りを算出する手段とを備える事を特徴とする横滑り計測装置。
A device for measuring a skid of a moving object based on signals and data from a positioning satellite,
Means for measuring two velocity vectors separated by a predetermined distance on the moving body;
Means for calculating a relative velocity vector from a difference between the two velocity vector data;
Means for calculating a relative position satisfying the relative velocity vector direction and the distance between the two locations;
Means for calculating a carrier phase integer bias of the positioning satellite signal from the relative position;
Means for recalculating the relative position using the carrier phase integer bias;
A side slip measuring device comprising: means for calculating a side slip of the moving body from a difference between a forward azimuth angle obtained from the recalculated relative position and a traveling azimuth angle obtained from the velocity vector.
JP2006046185A 2006-02-23 2006-02-23 Sideslip measuring device of moving body Pending JP2007225408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006046185A JP2007225408A (en) 2006-02-23 2006-02-23 Sideslip measuring device of moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006046185A JP2007225408A (en) 2006-02-23 2006-02-23 Sideslip measuring device of moving body

Publications (1)

Publication Number Publication Date
JP2007225408A true JP2007225408A (en) 2007-09-06

Family

ID=38547367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046185A Pending JP2007225408A (en) 2006-02-23 2006-02-23 Sideslip measuring device of moving body

Country Status (1)

Country Link
JP (1) JP2007225408A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170903A (en) * 2012-02-20 2013-09-02 Ono Sokki Co Ltd Measurement apparatus and measurement method
JP2013228318A (en) * 2012-04-26 2013-11-07 Ono Sokki Co Ltd Calibration quality determination apparatus and method
JP2014202571A (en) * 2013-04-04 2014-10-27 古野電気株式会社 Mobile object information calculation device, mobile object information acquisition device, mobile object, mobile object information calculation method, mobile object information acquisition method, mobile object information calculation program and mobile object information acquisition program
WO2016020718A1 (en) * 2014-08-07 2016-02-11 Hitachi Automotive Systems, Ltd. Method and apparatus for determining the dynamic state of a vehicle
WO2021006243A1 (en) * 2019-07-10 2021-01-14 株式会社デンソー Method for estimating relative position between antennas, apparatus for estimating relative position between antennas, and program for estimating relative position between antennas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170903A (en) * 2012-02-20 2013-09-02 Ono Sokki Co Ltd Measurement apparatus and measurement method
JP2013228318A (en) * 2012-04-26 2013-11-07 Ono Sokki Co Ltd Calibration quality determination apparatus and method
JP2014202571A (en) * 2013-04-04 2014-10-27 古野電気株式会社 Mobile object information calculation device, mobile object information acquisition device, mobile object, mobile object information calculation method, mobile object information acquisition method, mobile object information calculation program and mobile object information acquisition program
WO2016020718A1 (en) * 2014-08-07 2016-02-11 Hitachi Automotive Systems, Ltd. Method and apparatus for determining the dynamic state of a vehicle
WO2021006243A1 (en) * 2019-07-10 2021-01-14 株式会社デンソー Method for estimating relative position between antennas, apparatus for estimating relative position between antennas, and program for estimating relative position between antennas
JP2021015002A (en) * 2019-07-10 2021-02-12 株式会社豊田中央研究所 Estimation method of relative position between antennas and estimation program of relative position between antennas
JP7140443B2 (en) 2019-07-10 2022-09-21 株式会社豊田中央研究所 Antenna relative position estimation method and antenna relative position estimation program

Similar Documents

Publication Publication Date Title
CN104412066B (en) Locating device
US9423509B2 (en) Moving platform INS range corrector (MPIRC)
CN104237920B (en) Vehicle Positioning in High-Reflection Environments
US10732299B2 (en) Velocity estimation device
US20110153266A1 (en) Augmented vehicle location system
JP5892845B2 (en) Calibration quality determination apparatus and method
JPH06341847A (en) Navigation apparatus
WO2017145575A1 (en) Satellite positioning device and train control system
JP2007225408A (en) Sideslip measuring device of moving body
JP2004069536A (en) Data calibration device and method
JP2010256301A (en) Multipath determination device and program
US8890747B2 (en) Longitudinal and lateral velocity estimation using single antenna GPS and magnetic compass
WO2006067968A1 (en) Advance direction measurement device
JPS636414A (en) Data processing system for hybrid satellite navigation
US20100090893A1 (en) User based positioning aiding network by mobile GPS station/receiver
JP2012098185A (en) Azimuth angle estimation device and program
WO2020110996A1 (en) Positioning device, speed measuring device, and program
JP2008051573A (en) Navigation apparatus, method therefor, and program therefor
CN101793529B (en) Double pseudo satellite aided position calibration method of inertial navigation system
JPH11190771A (en) Gps measurement position correction device
KR20000031712A (en) Apparatus for detecting slope and vehicle speed using gyro and acceleration meter
WO2019087778A1 (en) Mobile unit orientation sensor unit
JP3652775B2 (en) GPS navigation system
JP2007057242A (en) Motion measurement device of mobile body
JPH0875479A (en) Radio navigation device