JP2007214391A - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
JP2007214391A
JP2007214391A JP2006033098A JP2006033098A JP2007214391A JP 2007214391 A JP2007214391 A JP 2007214391A JP 2006033098 A JP2006033098 A JP 2006033098A JP 2006033098 A JP2006033098 A JP 2006033098A JP 2007214391 A JP2007214391 A JP 2007214391A
Authority
JP
Japan
Prior art keywords
capacitor
separator
positive
negative
polarizable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006033098A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Take
弘義 武
Kikuko Katou
菊子 加藤
Yasuo Nakahara
康雄 中原
Hiroshi Nonogami
寛 野々上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006033098A priority Critical patent/JP2007214391A/en
Publication of JP2007214391A publication Critical patent/JP2007214391A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacitor which is capable of being reduced in internal resistance even if the capacitor is miniaturized. <P>SOLUTION: A positive case 1 and a negative case 4 facing each other are arranged nearly in parallel with each other. A separator 3 is arranged on the diagonal line of a rectangle formed between the positive case 1 and the negative case 4, a positive polarizable electrode 2a is arranged below the separator 3, and a negative polarizable electrode 2b is arranged above the separator 3. Peripheral edges of the positive case 1 and the negative case 4 are caulked through a packing 5 so as to enable the positive case 1 and the negative case 4 to serve as hermetically sealed housing vessels. The separator 3 is arranged aslant so that the part of the positive polarizable electrode 2a facing the negative polarizable electrode 2b can be increased in area, and the internal resistance of the capacitor can be reduced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、セパレータや分極性電極を備え、内部抵抗を小さくすることができるキャパシタに関する。   The present invention relates to a capacitor that includes a separator and a polarizable electrode and can reduce internal resistance.

電気二重層キャパシタ等のキャパシタはバックアップ電源、補助電源として携帯電話や家庭用電気製品に用いられる。このキャパシタの形状は、コイン型あるいはボタン型という呼称が用いられるように円柱状であり、各種電子機器のプリント基板にハンダ付けされ、実装されている。   Capacitors such as electric double layer capacitors are used in mobile phones and household electric products as backup power sources and auxiliary power sources. The capacitor has a cylindrical shape so that the name of coin type or button type is used, and is soldered and mounted on printed boards of various electronic devices.

図4に、コイン型あるいはボタン型と呼ばれるキャパシタの従来構造を示す。円盤状の正極ケース31に正の分極性電極32a、セパレータ33、負の分極性電極32bが積層され、上から円盤状の負極ケース34が被せられ、パッキング35を用いて密閉された収納容器を形成する。正極ケース31、負極ケース34が正極集電体、負極集電体の役割を果たし、正極ケース31、負極ケース34に別途端子を取り付けてプリント基板等にハンダ付けされる。   FIG. 4 shows a conventional structure of a capacitor called a coin type or a button type. A positive polarizable electrode 32a, a separator 33, and a negative polarizable electrode 32b are stacked on a disc-shaped positive electrode case 31, and a disc-shaped negative electrode case 34 is covered from above, and a storage container sealed with a packing 35 is provided. Form. The positive electrode case 31 and the negative electrode case 34 serve as a positive electrode current collector and a negative electrode current collector, and terminals are separately attached to the positive electrode case 31 and the negative electrode case 34 and soldered to a printed circuit board or the like.

一方、図4のコイン型あるいはボタン型と呼ばれるキャパシタよりも実装面積を小さくし、小型化したキャパシタとして、図5に示される構造が提案されている(例えば、特許文献1参照)。凹状容器41の底面中央部にセパレータ43が縦方向に設置され、このセパレータ43を挟んで正の分極性電極42a、負の分極性電極42bが配置されている。   On the other hand, a structure shown in FIG. 5 has been proposed as a miniaturized capacitor having a smaller mounting area than the coin-type or button-type capacitor shown in FIG. 4 (see, for example, Patent Document 1). A separator 43 is vertically installed at the center of the bottom surface of the concave container 41, and a positive polarizable electrode 42a and a negative polarizable electrode 42b are disposed with the separator 43 interposed therebetween.

正極集電体44が凹状容器41の左側底面に形成され、正の分極性電極42aに接しており、負極集電体45が凹状容器41の右側底面に形成され、負の分極性電極42bに接している。また、正極集電体44は接続端子48と接続されており、負極集電体45は接続端子49と接続されている。凹状容器41は、シールリング46を凹状容器41上面の周縁部に載置し、その上にさらに封口板47を載せて溶接することで密閉される。
特開2000−294454号公報 特開2001−216952号公報
A positive electrode current collector 44 is formed on the left bottom surface of the concave container 41 and is in contact with the positive polarizable electrode 42a, and a negative electrode current collector 45 is formed on the right bottom surface of the concave container 41 and is connected to the negative polarizable electrode 42b. Touching. The positive electrode current collector 44 is connected to the connection terminal 48, and the negative electrode current collector 45 is connected to the connection terminal 49. The concave container 41 is hermetically sealed by placing the seal ring 46 on the peripheral edge of the upper surface of the concave container 41 and further mounting and sealing the sealing plate 47 thereon.
JP 2000-294454 A JP 2001-216852 A

しかしながら、上記従来構造のキャパシタでは、小型化することによって、デバイスの内部抵抗が高くなるという問題があった。また、図5の構造では、キャパシタの実装面積を小さくして図4のキャパシタよりも小型化することができるものの、小型化することによって、分極性電極やセパレータのサイズが小さくなり、内部抵抗が一段と増加してしまう。   However, the capacitor having the conventional structure has a problem that the internal resistance of the device is increased by downsizing. In the structure of FIG. 5, although the mounting area of the capacitor can be reduced and the size of the capacitor of FIG. 4 can be reduced, the size of the polarizable electrode and the separator can be reduced and the internal resistance can be reduced. It will increase further.

また、キャパシタの実装面積を小さくして小型化した他の構造として、凹状容器の底面に集電体を形成して、この上に分極性電極、セパレータ等を積層配置し、凹状容器の開口部に封口板を溶接して密閉した構造が特許文献2に示されているが、小型化すれば上記同様の理由で内部抵抗が増加するので問題となっていた。   As another structure in which the mounting area of the capacitor is reduced and the size is reduced, a current collector is formed on the bottom surface of the concave container, and a polarizable electrode, a separator, and the like are stacked on the current collector, and the opening of the concave container A structure in which a sealing plate is welded and hermetically sealed is shown in Patent Document 2, but if the size is reduced, the internal resistance increases for the same reason as described above, which causes a problem.

本発明は、上述した課題を解決するために創案されたものであり、小型化されたキャパシタであっても、内部抵抗を低減することができるキャパシタを提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a capacitor that can reduce internal resistance even when the capacitor is miniaturized.

上記目的を達成するために、請求項1記載の発明は、対向して形成された1対の壁面を少なくとも有する収納容器を用い、前記1対の壁面間に正負1対の分極性電極、セパレータが配置収納されたキャパシタにおいて、前記1対の壁面間の対角線上に前記セパレータを配置し、該セパレータを挟むようにして前記正負1対の分極性電極を配置したことを特徴とするキャパシタである。   In order to achieve the above object, the invention described in claim 1 uses a storage container having at least a pair of wall surfaces formed facing each other, and a pair of positive and negative polarizable electrodes and separators between the pair of wall surfaces. Is a capacitor in which the separator is disposed on a diagonal line between the pair of wall surfaces, and the pair of positive and negative polarizable electrodes are disposed so as to sandwich the separator.

また、請求項2記載の発明は、前記収納容器が封口蓋と凹状容器で構成されていることを特徴とする請求項1記載のキャパシタである。   The invention according to claim 2 is the capacitor according to claim 1, wherein the storage container is constituted by a sealing lid and a concave container.

また、請求項3記載の発明は、前記凹状容器の内壁面に正負1対の集電体が形成されており、前記1対の分極性電極が前記正負1対の集電体に電気的に接続していることを特徴とする請求項2記載のキャパシタである。   According to a third aspect of the present invention, a pair of positive and negative current collectors are formed on the inner wall surface of the concave container, and the pair of polarizable electrodes are electrically connected to the pair of positive and negative current collectors. The capacitor according to claim 2, wherein the capacitor is connected.

本発明によれば、収納容器の対向する壁面の間に、正負一対の分極性電極、セパレータが配置収納されており、この壁面間の対角線上にセパレータを配置し、セパレータを挟むようにして正負1対の分極性電極を配置しているので、正負1対の分極性電極が対向する面積を広く取ることができ、内部抵抗を低減することができる。   According to the present invention, a pair of positive and negative polarizable electrodes and separators are disposed and stored between the opposing wall surfaces of the storage container. Therefore, the area where the pair of positive and negative polarizable electrodes oppose each other can be widened, and the internal resistance can be reduced.

以下、図面を参照して本発明の一実施形態を説明する。図1は本発明による第1のキャパシタの構造を示す。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows the structure of a first capacitor according to the present invention.

第1のキャパシタは、コイン型又はボタン型キャパシタと呼ばれるもので、収納容器全体が円柱状の形状となっている。円盤状の正極ケース1と円盤状の負極ケース4とで収納容器を構成しており、この正極ケース1、負極ケース4に別途接続端子が設けられ、プリント基板等にハンダ付けされる。   The first capacitor is called a coin-type or button-type capacitor, and the entire storage container has a cylindrical shape. The disc-shaped positive electrode case 1 and the disc-shaped negative electrode case 4 constitute a storage container. The positive electrode case 1 and the negative electrode case 4 are separately provided with connection terminals and soldered to a printed circuit board or the like.

正極ケース1の上面と負極ケース4の底面とが、対向して形成された壁面に相当し、ほぼ平行になるように配置されている。正極ケース1と負極ケース4において対向して形成されている壁面間の対角線上にセパレータ3が配置されており、セパレータ3を挟んで下側に正の分極性電極2aが、上側に負の分極性電極2bが設けられている。正極ケース1と負極ケース4とで密閉された収納容器とするために、正極ケース1と負極ケース4との周縁部はパッキング5を介してかしめられている。   The upper surface of the positive electrode case 1 and the bottom surface of the negative electrode case 4 correspond to the wall surfaces formed facing each other, and are arranged so as to be substantially parallel. Separator 3 is arranged on the diagonal line between the wall surfaces facing each other in positive electrode case 1 and negative electrode case 4, with positive polarizable electrode 2a on the lower side and a negative component on the upper side. A polar electrode 2b is provided. In order to obtain a storage container sealed with the positive electrode case 1 and the negative electrode case 4, the peripheral edge portions of the positive electrode case 1 and the negative electrode case 4 are caulked through a packing 5.

正極ケース1と負極ケース4とは集電体の役割も果たすので、金属で構成される。また、パッキング5は絶縁体であり、分極性電極2a、2bには活物質として活性炭等が用いられ、セパレータ3にはガラス繊維等が用いられる。   Since the positive electrode case 1 and the negative electrode case 4 also serve as current collectors, they are made of metal. The packing 5 is an insulator, activated carbon or the like is used as the active material for the polarizable electrodes 2a and 2b, and glass fiber or the like is used for the separator 3.

セパレータ3を斜めに配置することで、図4に示す同型の従来構造のキャパシタよりもセパレータの面積を広く形成することができるとともに、このセパレータに相対する正負の分極性電極の面積も広く形成することができ、内部抵抗を低下させることができる。また、セパレータの面積が広くなると、セパレータが含む電解液量も増えるので、内部抵抗をさらに低減することができる。   By arranging the separator 3 diagonally, the area of the separator can be made larger than that of the capacitor having the same type of conventional structure shown in FIG. 4, and the area of the positive and negative polarizable electrodes opposite to the separator can be made wider. And the internal resistance can be reduced. Further, when the area of the separator is increased, the amount of electrolyte contained in the separator is also increased, so that the internal resistance can be further reduced.

(実施例1)
実施例1においては、以下のように、分極性電極を作製し、電解液を調製して、図1に示すコイン型の第1のキャパシタを形成した。分極性電極は、比表面積が2000m/gの活性炭粉末にアセチレンブラック10wt%、ポリテトラフルオロエチレン(以下、PTFEと称する)10wt%を混合して混練によってシート化した。このようにして得られたシートを直径2.2mm、厚さ0.7mmの円盤状に打ち抜いて正負2枚の分極性電極を作製した。
Example 1
In Example 1, a polarizable electrode was prepared and an electrolytic solution was prepared as follows to form a coin-type first capacitor shown in FIG. The polarizable electrode was formed into a sheet by mixing 10% by weight of acetylene black and 10% by weight of polytetrafluoroethylene (hereinafter referred to as PTFE) into activated carbon powder having a specific surface area of 2000 m 2 / g. The sheet thus obtained was punched into a disk shape having a diameter of 2.2 mm and a thickness of 0.7 mm to produce two positive and negative polarizable electrodes.

次に、作製した分極性電極を金型内に押し込み、円盤状の分極性電極の上面あるいは下面のいずれか一面を傾斜させ、一端が他端に比べて薄い、断面形状が三角形状になるような分極性電極2a、2bを形成した。電解液は、溶媒にプロピレンカーボネートを用い、溶質である(CNBFを1mol/lの濃度になるように溶解させて電解液を調製した。 Next, the prepared polarizable electrode is pushed into the mold, and one of the upper and lower surfaces of the disc-shaped polarizable electrode is inclined so that one end is thinner than the other end and the cross-sectional shape is triangular. Polarizable electrodes 2a and 2b were formed. As the electrolytic solution, propylene carbonate was used as a solvent, and (C 2 H 5 ) 4 NBF 4 as a solute was dissolved to a concentration of 1 mol / l to prepare an electrolytic solution.

図1に示す第1のキャパシタの製造は、まず、上記のようにして作製した2枚の分極性電極2a、2bの間にガラス繊維製のセパレータ3を介在させ、ステンレス鋼製の正極ケース1内に収納する。ステンレス鋼製の正極ケース1内に上記調製した電解液を注入して30秒間40kPaで真空含浸し、分極性電極2a、2b及びセパレータ3に電解液を十分含浸させる。次に、ステンレス鋼製の正極ケース1の周縁部にパッキング5を配置し、ステンレス鋼製の負極ケース4をかぶせ、これらをかしめて封口して一体化し、直径4.0mm、厚さ1.4mmのコイン型の第1のキャパシタを完成させた。   The first capacitor shown in FIG. 1 is manufactured by first interposing a glass fiber separator 3 between the two polarizable electrodes 2a and 2b produced as described above, and a positive electrode case 1 made of stainless steel. Store inside. The electrolyte solution prepared above is poured into the stainless steel positive electrode case 1 and vacuum impregnated at 40 kPa for 30 seconds, and the polarizable electrodes 2a, 2b and the separator 3 are sufficiently impregnated with the electrolyte solution. Next, the packing 5 is disposed on the peripheral edge of the positive electrode case 1 made of stainless steel, and the negative electrode case 4 made of stainless steel is covered, and these are sealed and integrated, and the diameter is 4.0 mm and the thickness is 1.4 mm. The first capacitor of the coin type was completed.

(比較例1)
実施例1の第1のキャパシタと比較するために、図4に示す従来構造のコイン型のキャパシタを以下のように形成した。セパレータ33、分極性電極32a、32bの大きさや形状の違いを除き、上記実施例1と同様に形成した。比較例1では、分極性電極を円柱形のまま用い、正極ケース31の底面から分極性電極32a、セパレータ33、分極性電極32bと順に、正極ケース31の底面とほぼ平行になるように積層した。
(Comparative Example 1)
For comparison with the first capacitor of Example 1, a coin-type capacitor having a conventional structure shown in FIG. 4 was formed as follows. The separator 33 and the polarizable electrodes 32a and 32b were formed in the same manner as in Example 1 except for the difference in size and shape. In Comparative Example 1, the polarizable electrode was used in a cylindrical shape, and the polarizable electrode 32a, the separator 33, and the polarizable electrode 32b were sequentially stacked from the bottom surface of the positive electrode case 31 so as to be substantially parallel to the bottom surface of the positive electrode case 31. .

次に、上記のようにして形成した実施例1および比較例1のキャパシタの内部抵抗値を測定した。内部抵抗値は正負極間の交流1kHzにおける抵抗値をオームテスターにより測定し、結果は次のようになった。実施例1のキャパシタでは内部抵抗が47Ω、比較例1のキャパシタでは、55Ωであった。この結果から明らかなように、セパレータを収納容器内部の縦断面の対角線上に配置することにより、内部抵抗が低減した。   Next, the internal resistance values of the capacitors of Example 1 and Comparative Example 1 formed as described above were measured. The internal resistance value was measured with an ohm tester at an alternating current of 1 kHz between the positive and negative electrodes, and the results were as follows. The internal resistance of the capacitor of Example 1 was 47Ω, and the capacitor of Comparative Example 1 was 55Ω. As is clear from this result, the internal resistance was reduced by arranging the separator on the diagonal of the longitudinal section inside the storage container.

図2は、本発明の第2のキャパシタを示す。収納容器は凹状容器11と封口蓋としての封口板17とで構成されており、凹状容器11の内部に正極集電体14、正の分極性電極12a、セパレータ13、負の分極性電極12b、負極集電体15が配置されている。   FIG. 2 shows a second capacitor of the present invention. The storage container is composed of a concave container 11 and a sealing plate 17 as a sealing lid. Inside the concave container 11, a positive current collector 14, a positive polarizable electrode 12a, a separator 13, a negative polarizable electrode 12b, A negative electrode current collector 15 is disposed.

凹状容器11の両側面又は封口板17の裏面と凹状容器11の底面が、対向して形成された壁面に相当し、ほぼ平行になるように形成されている。例えば、凹状容器11の両側面を対向して形成された壁面と見なすと、この壁面間の対角線上にセパレータ13が配置されており、セパレータ13を挟んで下側に正の分極性電極12aが、上側に負の分極性電極12bが設けられている。凹状容器11を密閉された収納容器とするために、シールリング16を凹状容器11の周縁部に配置して、封口板17を被せ、シーム溶接し密封する。   Both side surfaces of the concave container 11 or the back surface of the sealing plate 17 and the bottom surface of the concave container 11 correspond to the wall surfaces formed facing each other, and are formed so as to be substantially parallel. For example, assuming that both side surfaces of the concave container 11 are wall surfaces formed facing each other, the separator 13 is disposed on a diagonal line between the wall surfaces, and the positive polarizable electrode 12a is disposed on the lower side with the separator 13 in between. On the upper side, a negative polarizable electrode 12b is provided. In order to make the concave container 11 a sealed storage container, the seal ring 16 is disposed on the peripheral edge of the concave container 11, and the sealing plate 17 is put on, and seam welding is performed for sealing.

凹状容器11の左側面内壁には正極集電体14が、右側面内壁には負極集電体15が、Auめっき、スパッタなどにより一体に形成されている。正極集電体14は、凹状容器11の左側面を貫通して形成されており、貫通した出口のところで正極の接続端子18と接続されている。また、負極集電体15は、凹状容器11の右側面を貫通して形成されており、貫通した出口のところで負極の接続端子19と接続されている。   The positive electrode current collector 14 is integrally formed on the left inner wall of the concave container 11 and the negative electrode current collector 15 is integrally formed on the right inner wall by Au plating, sputtering, or the like. The positive electrode current collector 14 is formed so as to penetrate the left side surface of the concave container 11, and is connected to the positive connection terminal 18 at the penetrating outlet. The negative electrode current collector 15 is formed so as to penetrate the right side surface of the concave container 11 and is connected to the negative connection terminal 19 at the penetrating outlet.

接続端子18、19は、プリント基板等に取り付けるときの端子となり、Wメタライズ層、Niめっき層、Auめっき層等からなる。また、分極性電極12a、12bは、活性炭電極で構成されており、セパレータ13はガラス繊維等で構成される。   The connection terminals 18 and 19 are terminals when attached to a printed circuit board or the like, and are made of a W metallized layer, a Ni plated layer, an Au plated layer, or the like. The polarizable electrodes 12a and 12b are made of activated carbon electrodes, and the separator 13 is made of glass fiber or the like.

凹状容器11は、封口板17を凹状容器11の開口部に被せて溶接することにより密閉された容器となるように構成されている。凹状容器11は、樹脂、ガラス、セラミックス、セラミックスガラスまたは金属等により構成される。これらの材料は耐熱性に優れるため、これらの材料を用いて構成したキャパシタは、耐リフロー半田付け性能や長期保存に優れる。封口板17も、凹状容器11と熱膨張率が近い方が良いので、上記同様、樹脂、ガラス、セラミックス、セラミックスガラスまたは金属等を用いる。なお、凹状容器11の封口蓋としての封口板17は、板状の形状でなくても良く、凹状容器11の開口部を封止できるものであれば、他の形状でも良い。   The concave container 11 is configured to be a hermetically sealed container by welding the sealing plate 17 over the opening of the concave container 11. The concave container 11 is made of resin, glass, ceramics, ceramic glass, metal, or the like. Since these materials are excellent in heat resistance, a capacitor configured using these materials is excellent in reflow soldering performance and long-term storage. Since the sealing plate 17 should have a coefficient of thermal expansion close to that of the concave container 11, resin, glass, ceramics, ceramic glass, metal, or the like is used as described above. Note that the sealing plate 17 as a sealing lid of the concave container 11 may not have a plate shape, and may have another shape as long as the opening of the concave container 11 can be sealed.

本発明の第2のキャパシタにおいても、セパレータ13を収納容器内部の縦断面の対角線上に配置することで、図5に示すキャパシタよりもセパレータの面積を広く形成することができるとともに、このセパレータに相対する正負の分極性電極の面積も広く形成することができ、内部抵抗を低下させることができる。   Also in the second capacitor of the present invention, by arranging the separator 13 on the diagonal of the longitudinal section inside the storage container, the separator area can be formed wider than the capacitor shown in FIG. The opposing positive and negative polarizable electrodes can be formed with a large area, and the internal resistance can be reduced.

(実施例2)
実施例2においては、下記のように、分極性電極を作製し、電解液を調製することにより、図2に示すようなチップ型の第2のキャパシタを形成した。まず、比表面積が2000m/gの活性炭粉末にアセチレンブラック10wt%、PTFE10wt%を加え混練し、3.3mm角で厚み1.0mmの分極性電極を作製した。
(Example 2)
In Example 2, as described below, a polarizable electrode was prepared and an electrolytic solution was prepared, thereby forming a chip-type second capacitor as shown in FIG. First, 10 wt% acetylene black and 10 wt% PTFE were added to activated carbon powder having a specific surface area of 2000 m 2 / g and kneaded to prepare a polarizable electrode having a 3.3 mm square and a thickness of 1.0 mm.

次に、この分極性電極を金型内に押し込み、分極性電極の上面あるいは下面のいずれか一面を傾斜させ、三角柱状の分極性電極12a、12bを作製した。電解液は、溶媒にプロピレンカーボネートを用い、溶質である(CNBFを1mol/lの濃度になるように溶解させて調製した。 Next, this polarizable electrode was pushed into the mold, and either one of the upper surface or the lower surface of the polarizable electrode was inclined to produce triangular prism-shaped polarizable electrodes 12a and 12b. The electrolytic solution was prepared by using propylene carbonate as a solvent and dissolving (C 2 H 5 ) 4 NBF 4 as a solute so as to have a concentration of 1 mol / l.

図2に示す第2のキャパシタの製造は、以下のように行った。まず、アルミナ製の一辺が5mm、高さが1.5mmの凹状容器11の凹部内側面にはタングステン上に金めっきを施し、互いに絶縁された二つの集電体14、15となる金属層を形成しておき、この集電体が凹部壁面を貫通して電気的に接続される接続端子18、19を凹部外壁面に形成しておく。   The second capacitor shown in FIG. 2 was manufactured as follows. First, the inner surface of the concave portion of the concave container 11 made of alumina having a side of 5 mm and a height of 1.5 mm is subjected to gold plating on tungsten, and a metal layer that becomes two current collectors 14 and 15 insulated from each other is formed. The connection terminals 18 and 19 are formed on the outer wall surface of the recess so that the current collector penetrates the recess wall surface and is electrically connected.

次に、上端周縁部にシールリング16を設けた凹状容器11内に、上記のようにして作製した2枚の分極性電極のうち一方の分極性電極12aを配置し、その上にガラス繊維製のセパレータ13を配設した後、もう一方の分極性電極12bを載置した。   Next, one polarizable electrode 12a out of the two polarizable electrodes produced as described above is placed in a concave container 11 provided with a seal ring 16 at the upper peripheral edge, and a glass fiber is formed thereon. After the separator 13 was disposed, the other polarizable electrode 12b was placed.

そして、上記のように調製した電解液を凹状容器11内に注液し、30秒間40kPaで真空含浸した。次に、凹状容器11上に封口板17を配置し、パラレルシーム溶接にて溶接し、第2のキャパシタを完成させた。このとき、溶接した封口板17が分極性電極12a、12bおよびセパレータ13を押さえつける力が、凹状容器11の水平方向に分散することにより、各集電体と各分極性電極間及び各分極性電極とセパレータ間に十分な圧力をかけることができる。   Then, the electrolytic solution prepared as described above was poured into the concave container 11 and vacuum impregnated at 40 kPa for 30 seconds. Next, the sealing plate 17 was arrange | positioned on the concave container 11, and it welded by parallel seam welding, and completed the 2nd capacitor. At this time, the force by which the welded sealing plate 17 presses the polarizable electrodes 12a, 12b and the separator 13 is dispersed in the horizontal direction of the concave container 11, so that each current collector and each polarizable electrode and each polarizable electrode are dispersed. And sufficient pressure can be applied between the separators.

図3は、本発明の第3のキャパシタを示す。図2と特に形状が相違する部分に異なる符合を付している。図2の構成と相違する部分は、セパレータ21の形状と分極性電極20a、20bの形状である。分極性電極20a、20bについては、三角柱状に形成した分極性電極のセパレータと接する面を波状にし、セパレータ21については、図2で平板状であったセパレータを、分極性電極20a、20bに形成した波状の面に合わせて波状とした。   FIG. 3 shows a third capacitor of the present invention. The parts different in shape from those in FIG. The difference from the configuration of FIG. 2 is the shape of the separator 21 and the shapes of the polarizable electrodes 20a and 20b. For the polarizable electrodes 20a and 20b, the surface of the polarizable electrode formed in the shape of a triangular prism is wavy and the separator 21 is a flat separator in FIG. 2 formed on the polarizable electrodes 20a and 20b. Corrugated to match the corrugated surface.

(実施例3)
セパレータ21を波状に形成し、分極性電極を金型内に押し込み、三角柱状に形成した分極性電極の断面の三角形の長辺を含み、セパレータ21と接する面を波状にした分極性電極20a、20bを作製した以外は実施例2と同様にして第3のキャパシタを製造した。封口板17が溶接されると、封口板17が分極性電極20a、20bおよびセパレータ21を押さえつける力が、上記同様、凹状容器11容器の水平方向に分散することにより、各集電体と各分極性電極間及び各分極性電極とセパレータ間に十分な圧力をかけることができる。
(Example 3)
The separator 21 is formed into a wave shape, the polarizable electrode is pushed into the mold, and the polarizable electrode 20a includes a long side of the triangular shape of the cross section of the polarizable electrode formed in a triangular prism shape, and the surface in contact with the separator 21 is waved. A third capacitor was produced in the same manner as in Example 2 except that 20b was produced. When the sealing plate 17 is welded, the force by which the sealing plate 17 presses the polarizable electrodes 20a, 20b and the separator 21 is dispersed in the horizontal direction of the concave container 11 as described above, whereby each current collector and each component are separated. Sufficient pressure can be applied between the polar electrodes and between each polarizable electrode and the separator.

(比較例2)
上記第2、第3のキャパシタと比較するために比較例2として図5の構成を有するキャパシタを製造した。以下のように、分極性電極を作製し、電解液を調製した。分極性電極42a、42bは、比表面積が2000m/gの活性炭粉末にアセチレンブラック10wt%、PTFE10wt%を加え混練し、長辺3.3mm×短辺1.5mm×厚み1.0mmとした。電解液は、溶媒にプロピレンカーボネートを用い、溶質である(CNBFを1mol/lの濃度になるように溶解させて調製した。
(Comparative Example 2)
In order to compare with the second and third capacitors, a capacitor having the configuration of FIG. A polarizable electrode was produced as follows and an electrolyte solution was prepared. The polarizable electrodes 42a and 42b were prepared by adding 10% by weight of acetylene black and 10% by weight of PTFE to activated carbon powder having a specific surface area of 2000 m 2 / g and kneading them to make the long side 3.3 mm × short side 1.5 mm × thickness 1.0 mm. The electrolytic solution was prepared by using propylene carbonate as a solvent and dissolving (C 2 H 5 ) 4 NBF 4 as a solute so as to have a concentration of 1 mol / l.

図5の構成のキャパシタの製造は以下のように行った。あらかじめ、一辺が5mm、高さが1.5mmのアルミナ製の凹状容器41の凹部底面内壁にタングステン上に金めっきを施し、互いに絶縁された二つの集電体44、45となる金属層を形成し、側面壁を貫通して電気的に接続する接続端子48、49を形成しておく。   The capacitor having the configuration shown in FIG. 5 was manufactured as follows. In advance, the inner wall of the bottom surface of the concave portion of the concave container 41 made of alumina having a side of 5 mm and a height of 1.5 mm is plated with tungsten to form a metal layer that becomes two current collectors 44 and 45 insulated from each other. Then, connection terminals 48 and 49 are formed to be electrically connected through the side wall.

凹状容器41の上端周縁部にシールリング46を設け、凹状容器41内に上記のようにして作製した2枚の分極性電極42a、42bを設置し、その間にガラス繊維製のセパレータ43を設置して収容した。次に、上記のように調製した電解液を凹状容器41内に注液し、30秒間40kPaで真空含浸した。   A seal ring 46 is provided on the peripheral edge of the upper end of the concave container 41, the two polarizable electrodes 42a and 42b prepared as described above are installed in the concave container 41, and a glass fiber separator 43 is installed therebetween. And housed. Next, the electrolytic solution prepared as described above was poured into the concave container 41 and vacuum impregnated at 40 kPa for 30 seconds.

そして、凹状容器41に封口板47を配置し、パラレルシーム溶接にて容接し、比較例2のキャパシタを構成した。図5のキャパシタの構造では、封口板47を溶接して密閉しても、分極性電極42a、セパレータ43、分極性電極42bの積層方向には圧力がかからない。   And the sealing board 47 was arrange | positioned to the concave container 41, and it contacted by parallel seam welding, and the capacitor of the comparative example 2 was comprised. In the capacitor structure of FIG. 5, even if the sealing plate 47 is welded and sealed, no pressure is applied in the stacking direction of the polarizable electrode 42a, the separator 43, and the polarizable electrode 42b.

次に、上記のように形成した実施例2、実施例3および比較例2のキャパシタの内部抵抗値を測定した。内部抵抗値は正負極間の交流1kHzにおける抵抗値をオームテスターにより測定した。結果は次のようになった。実施例2のキャパシタでは内部抵抗が54Ω、実施例3のキャパシタでは内部抵抗が50Ω、比較例2の従来構造のキャパシタでは内部抵抗が78Ωであった。この結果からわかるように、特に、実施例3のキャパシタでは、セパレータとこれに相対する分極性電極を波形にすることで表面積をさらに拡大させることができるので、内部抵抗の低減の効果は大きい。   Next, the internal resistance values of the capacitors of Examples 2, 3 and Comparative Example 2 formed as described above were measured. The internal resistance value was measured with an ohm tester at an alternating current of 1 kHz between positive and negative electrodes. The result was as follows. The internal resistance of the capacitor of Example 2 was 54Ω, the internal resistance of the capacitor of Example 3 was 50Ω, and the internal resistance of the conventional structure capacitor of Comparative Example 2 was 78Ω. As can be seen from the results, in particular, in the capacitor of Example 3, the surface area can be further increased by corrugating the separator and the polarizable electrode opposite thereto, so that the effect of reducing internal resistance is great.

この結果から明らかなように、セパレータを収納容器の対向する壁面間の対角線上に配置することにより、正負1対の分極性電極が対向する面積を大きく取ることができるので、内部抵抗が低減する。さらに、分極性電極およびセパレータ間に十分な圧力をかけることができるので、内部抵抗を一層減少させることができる。   As is clear from this result, by arranging the separator on the diagonal line between the opposing wall surfaces of the storage container, the area where the pair of positive and negative polarizable electrodes oppose each other can be increased, thereby reducing the internal resistance. . Furthermore, since sufficient pressure can be applied between the polarizable electrode and the separator, the internal resistance can be further reduced.

また、第2、第3のキャパシタの構成であると、正負一対の分極性電極と、セパレータ、集電体を凹状容器に収納でき、封口板に分極性電極を貼り付ける必要がないため、封口板を溶接する際の作業性が向上し、製造歩留まりが向上する。
Further, since the second and third capacitors have a configuration in which a pair of positive and negative polarizable electrodes, a separator, and a current collector can be accommodated in a concave container, and there is no need to attach a polarizable electrode to the sealing plate. The workability when welding the plates is improved, and the production yield is improved.

本発明の第1のキャパシタの構造例を示す図である。It is a figure which shows the structural example of the 1st capacitor of this invention. 本発明の第2のキャパシタの構造例を示す図である。It is a figure which shows the structural example of the 2nd capacitor of this invention. 本発明の第3のキャパシタの構造例を示す図である。It is a figure which shows the structural example of the 3rd capacitor of this invention. 従来のキャパシタの構造例を示す図である。It is a figure which shows the structural example of the conventional capacitor. 従来のキャパシタの他の構造例を示す図である。It is a figure which shows the other structural example of the conventional capacitor.

符号の説明Explanation of symbols

1 正極ケース
2a 分極性電極
2b 分極性電極
3 セパレータ
4 負極ケース
5 パッキング
DESCRIPTION OF SYMBOLS 1 Positive electrode case 2a Polarization electrode 2b Polarization electrode 3 Separator 4 Negative electrode case 5 Packing

Claims (3)

対向して形成された1対の壁面を少なくとも有する収納容器を用い、前記1対の壁面間に正負1対の分極性電極、セパレータが配置収納されたキャパシタにおいて、
前記1対の壁面間の対角線上に前記セパレータを配置し、該セパレータを挟むようにして前記正負1対の分極性電極を配置したことを特徴とするキャパシタ。
In a capacitor in which a storage container having at least a pair of wall surfaces formed facing each other is used, and a pair of positive and negative polarizable electrodes and a separator are disposed and stored between the pair of wall surfaces,
A capacitor, wherein the separator is disposed on a diagonal line between the pair of wall surfaces, and the pair of positive and negative polarizable electrodes are disposed so as to sandwich the separator.
前記収納容器は封口蓋と凹状容器で構成されていることを特徴とする請求項1記載のキャパシタ。   The capacitor according to claim 1, wherein the storage container includes a sealing lid and a concave container. 前記凹状容器の内壁面に正負1対の集電体が形成されており、前記1対の分極性電極が前記正負1対の集電体に電気的に接続していることを特徴とする請求項2記載のキャパシタ。   A pair of positive and negative current collectors is formed on an inner wall surface of the concave container, and the pair of polarizable electrodes are electrically connected to the pair of positive and negative current collectors. Item 3. The capacitor according to Item 2.
JP2006033098A 2006-02-09 2006-02-09 Capacitor Withdrawn JP2007214391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006033098A JP2007214391A (en) 2006-02-09 2006-02-09 Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006033098A JP2007214391A (en) 2006-02-09 2006-02-09 Capacitor

Publications (1)

Publication Number Publication Date
JP2007214391A true JP2007214391A (en) 2007-08-23

Family

ID=38492543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033098A Withdrawn JP2007214391A (en) 2006-02-09 2006-02-09 Capacitor

Country Status (1)

Country Link
JP (1) JP2007214391A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023220A (en) * 2010-07-15 2012-02-02 Seiko Instruments Inc Electronic component, electronic apparatus, and method of manufacturing electronic component
US20120092809A1 (en) * 2010-10-15 2012-04-19 Tsuneaki Tamachi Electronic component and electronic device
JP2013165267A (en) * 2012-01-20 2013-08-22 Korea Advanced Inst Of Sci Technol Film-type supercapacitor and manufacturing method thereof
US20140177135A1 (en) * 2012-10-30 2014-06-26 Taiyo Yuden Co., Ltd. Electrochemical device
EP3878023A4 (en) * 2018-11-07 2022-08-17 Rutgers, the State University of New Jersey Enclosures for electrochemical cells
US11830672B2 (en) * 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023220A (en) * 2010-07-15 2012-02-02 Seiko Instruments Inc Electronic component, electronic apparatus, and method of manufacturing electronic component
US20120092809A1 (en) * 2010-10-15 2012-04-19 Tsuneaki Tamachi Electronic component and electronic device
US8797716B2 (en) * 2010-10-15 2014-08-05 Seiko Instruments Inc. Electrochemical cell
JP2013165267A (en) * 2012-01-20 2013-08-22 Korea Advanced Inst Of Sci Technol Film-type supercapacitor and manufacturing method thereof
US8951306B2 (en) 2012-01-20 2015-02-10 Korea Advanced Institute Of Science And Technology Film-type supercapacitor and manufacturing method thereof
US20140177135A1 (en) * 2012-10-30 2014-06-26 Taiyo Yuden Co., Ltd. Electrochemical device
US11830672B2 (en) * 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process
EP3878023A4 (en) * 2018-11-07 2022-08-17 Rutgers, the State University of New Jersey Enclosures for electrochemical cells

Similar Documents

Publication Publication Date Title
JP5013772B2 (en) Electric double layer capacitor
JP5069834B2 (en) Electrochemical energy storage device with improved enclosure mechanism
JPH0399415A (en) Electric double layer capacitor
JPWO2007086569A1 (en) Container for power storage unit, battery and electric double layer capacitor using the same
JP2006049289A (en) Case for battery, battery, case for electric double layer capacitor, and electric double layer capacitor
JP5828503B2 (en) Electronic component and electronic device
JP2007214391A (en) Capacitor
JP4868797B2 (en) Battery case and battery, and electric double layer capacitor case and electric double layer capacitor
JP4923086B2 (en) Electric double layer capacitor package
JP2007207920A (en) Capacitor
JP2007012921A (en) Electrochemical element and its manufacturing method
JP2008085084A (en) Electric double layer capacitor
JP5115204B2 (en) Surface mount square storage cell
JP4762074B2 (en) Container, battery or electric double layer capacitor using the same, and electronic device
JP2004356461A (en) Electric double layer chip capacitor and chip electrolyte battery
JP2004356462A (en) Electric double layer chip capacitor and chip electrolyte battery
JP4993873B2 (en) Ceramic container and battery or electric double layer capacitor using the same, and electric circuit board
JP2014090039A (en) Electrochemical device
JP2005209640A (en) Battery housing and battery, and housing for battery and electric double-layer capacitor and electric double-layer capacitor
JP2010114365A (en) Electric double layer capacitor and method of manufacturing the same
WO2024029466A1 (en) All-solid-state battery
KR20130140956A (en) Ceramic-flat type of edlc
JP2007227425A (en) Electric double layer capacitor
WO2023171735A1 (en) Electrochemical element
JP4390601B2 (en) Electric double layer capacitor

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080118

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20080201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A761 Written withdrawal of application

Effective date: 20090127

Free format text: JAPANESE INTERMEDIATE CODE: A761