JP2007211730A - Reciprocating internal combustion engine - Google Patents

Reciprocating internal combustion engine Download PDF

Info

Publication number
JP2007211730A
JP2007211730A JP2006034641A JP2006034641A JP2007211730A JP 2007211730 A JP2007211730 A JP 2007211730A JP 2006034641 A JP2006034641 A JP 2006034641A JP 2006034641 A JP2006034641 A JP 2006034641A JP 2007211730 A JP2007211730 A JP 2007211730A
Authority
JP
Japan
Prior art keywords
intake
piston
angle
compression
intake stroke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006034641A
Other languages
Japanese (ja)
Inventor
Hiroshi Oba
大羽  拓
Hiroshi Iwano
岩野  浩
Shinobu Kamata
忍 釜田
Kenji Ota
健司 太田
Hisanori Onoda
尚徳 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006034641A priority Critical patent/JP2007211730A/en
Publication of JP2007211730A publication Critical patent/JP2007211730A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reciprocating internal combustion engine which provides intake air inertia effect appropriately according to an engine operation condition. <P>SOLUTION: This engine includes: a intake air compression piston 13 slidably fitted in an intake air compression cylinder 11 in which intake/compression stroke is performed; and an expansion exhaust piston 15 slidably fitted in an expansion exhaust cylinder 12 and driving and rotating a crankshaft 3. A linear motor 25 is driven and controlled by a control part 5, and intake stroke angle which is rotation angle of the crankshaft 3 until the intake compression piston 13 reaches bottom dead center from top dead center in intake stroke is variably controlled according to engine operation conditions. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はレシプロ式内燃機関の改良に関する。   The present invention relates to an improvement of a reciprocating internal combustion engine.

特許文献1では、4サイクルのレシプロ式内燃機関における容積効率を高めるために、吸気行程から圧縮行程に移行する際、ピストン下死点において休止期間を設けている。特許文献2では、内燃機関(エンジン)が低回転で運転している場合の吸気慣性効果を高めるために、リンク機構を用いてピストンの上昇時間(圧縮・排気行程)に比べて下降時間(吸気・膨張行程)を短くしている。
特公平8−6607号公報 特開2003−083102号公報
In Patent Document 1, in order to increase the volumetric efficiency in a four-cycle reciprocating internal combustion engine, a pause period is provided at the bottom dead center of the piston when shifting from the intake stroke to the compression stroke. In Patent Document 2, in order to enhance the intake inertia effect when the internal combustion engine (engine) is operating at a low rotation speed, a descent time (intake air) is compared with a piston rise time (compression / exhaust stroke) using a link mechanism.・ Expansion stroke is shortened.
Japanese Patent Publication No. 8-6607 Japanese Patent Laid-Open No. 2003-083102

しかしながら、上記特許文献1のように、吸気下死点でピストンを停止する休止期間を単に設けただけでは、例えばエンジンが低回転で運転中の場合にはピストンモーションが遅いために空気の流速が遅く、容積効率を十分に向上させることができない。また、エンジン要求トルクや機関回転数のような機関運転条件にかかわらず吸気行程や膨張行程のピストンモーションが一定であると、運転条件によっては最適な吸気慣性効果を実現することができない。例えば、特許文献2のように低回転側で効果を得るような設定とした場合、高回転側でピストンスピードが早過ぎて、吸気弁での吸気抵抗が大きくなってしまい、逆にトルクが低下することが懸念される。   However, just providing a pause period in which the piston is stopped at the intake bottom dead center as in the above-mentioned Patent Document 1, for example, when the engine is operating at a low speed, the piston motion is slow, so the air flow rate is low. Slow, volumetric efficiency cannot be improved sufficiently. If the piston motion in the intake stroke or the expansion stroke is constant regardless of the engine operation conditions such as the engine required torque and the engine speed, the optimum intake inertia effect cannot be realized depending on the operation conditions. For example, when setting is made such that an effect is obtained on the low rotation side as in Patent Document 2, the piston speed is too fast on the high rotation side, and the intake resistance at the intake valve increases, conversely the torque decreases. There is a concern to do.

上述した課題を解決するために、本発明のレシプロ式内燃機関では、吸気行程においてピストンが上死点から下死点に到達するまでのクランクシャフトの回転角度である吸気行程角度を変更する吸気行程角度変更手段を有し、吸気慣性効果を得るように、機関運転条件に応じて吸気行程角度を変化させるようにしている。   In order to solve the above-described problem, in the reciprocating internal combustion engine of the present invention, the intake stroke for changing the intake stroke angle, which is the rotation angle of the crankshaft until the piston reaches the bottom dead center from the top dead center in the intake stroke. An angle changing means is provided, and the intake stroke angle is changed according to the engine operating conditions so as to obtain the intake inertia effect.

本発明によれば、機関運転条件に応じて適切な吸気行程角度に設定し、機関運転条件に応じた形で有効に吸気慣性効果を得ることができる。   According to the present invention, it is possible to set an appropriate intake stroke angle in accordance with the engine operating conditions and effectively obtain the intake inertia effect in a form in accordance with the engine operating conditions.

以下、本発明の好ましい実施の形態を図面に基づいて説明する。図1は、本発明の一実施例に係るレシプロ式内燃機関を示す構成図である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing a reciprocating internal combustion engine according to an embodiment of the present invention.

このレシプロ式内燃機関のシリンダブロック1には、吸気・圧縮・膨張・排気の4行程のうちで、吸気・圧縮行程が行われる吸気圧縮シリンダ11と、膨張・排気行程が行われる膨張排気シリンダ12と、が隣接して設けられている。吸気圧縮シリンダ11には吸気圧縮ピストン13が摺動可能に嵌合しており、この吸気圧縮ピストン13の上方に圧縮室14が形成されている。膨張排気シリンダ12には膨張排気ピストン15が摺動可能に嵌合しており、この膨張排気ピストン15の上方に燃焼室16が形成されている。   The cylinder block 1 of the reciprocating internal combustion engine includes an intake / compression cylinder 11 that performs an intake / compression stroke among four strokes of intake / compression / expansion / exhaust, and an expansion / exhaust cylinder 12 that performs an expansion / exhaust stroke. Are provided adjacent to each other. An intake compression piston 13 is slidably fitted to the intake compression cylinder 11, and a compression chamber 14 is formed above the intake compression piston 13. An expansion exhaust piston 15 is slidably fitted to the expansion exhaust cylinder 12, and a combustion chamber 16 is formed above the expansion exhaust piston 15.

シリンダブロック1の上側に固定されるシリンダヘッド2には、圧縮室14へ吸気を供給する吸気通路17と、燃焼室16から排気を排出する排気通路18と、圧縮室14と燃焼室16とを連通・接続する連通路19と、が形成され、かつ、吸気通路17を開閉する吸気弁21と、排気通路18を開閉する排気弁22と、連通路19を開閉する圧縮弁23と、が配設されている。なお、図1の例では圧縮弁23が圧縮室14側と燃焼室16側の2箇所に設けられているが、一箇所のみに設けても良い。   The cylinder head 2 fixed to the upper side of the cylinder block 1 includes an intake passage 17 that supplies intake air to the compression chamber 14, an exhaust passage 18 that discharges exhaust from the combustion chamber 16, and the compression chamber 14 and the combustion chamber 16. A communication passage 19 that communicates and connects, and an intake valve 21 that opens and closes the intake passage 17, an exhaust valve 22 that opens and closes the exhaust passage 18, and a compression valve 23 that opens and closes the communication passage 19. It is installed. In addition, in the example of FIG. 1, although the compression valve 23 is provided in two places, the compression chamber 14 side and the combustion chamber 16 side, you may provide only in one place.

膨張排気ピストン15はコネクティングロッド4により機関出力軸であるクランクシャフト3に連係されている。コネクティングロッド4の下端はクランクシャフト3のクランクピン3Aに回転可能に取付けられている。コネクティングロッド4の上端は膨張排気ピストン15のピストンピン15Aに回転可能に取付けられている。従って、燃焼室16で生じる燃焼圧による膨張排気ピストン15の往復運動がコネクティングロッド4を介してクランクシャフト3の回転運動に変換されて、クランクシャフト3が回転駆動される。吸気圧縮ピストン13は、この実施例ではリニアモータ25の出力軸25Aに連結され、このリニアモータ25により直接的に往復駆動される。このリニアモータ25は、吸気圧縮ピストン13のピストン行程を変化させることによって、後述するように、吸気行程において吸気圧縮ピストン13が上死点から下死点に到達するまでのクランク角度である吸気行程角度を機関運転状態に応じて変化させることができる(吸気行程角度変更手段)。   The expansion / exhaust piston 15 is linked to a crankshaft 3 that is an engine output shaft by a connecting rod 4. The lower end of the connecting rod 4 is rotatably attached to the crankpin 3A of the crankshaft 3. The upper end of the connecting rod 4 is rotatably attached to a piston pin 15A of the expansion exhaust piston 15. Accordingly, the reciprocating motion of the expansion exhaust piston 15 due to the combustion pressure generated in the combustion chamber 16 is converted into the rotational motion of the crankshaft 3 via the connecting rod 4, and the crankshaft 3 is rotationally driven. In this embodiment, the intake compression piston 13 is connected to an output shaft 25A of a linear motor 25, and is directly reciprocated by the linear motor 25. As will be described later, the linear motor 25 changes the piston stroke of the intake compression piston 13 so that the intake stroke is the crank angle until the intake compression piston 13 reaches the bottom dead center from the top dead center in the intake stroke. The angle can be changed according to the engine operating state (intake stroke angle changing means).

シリンダブロック1には、機関回転数に対応するクランクシャフト3の回転位置を検出するクランク角センサ26と、吸気圧縮ピストン13のピストン位置(下死点BDCからの距離)を検出する吸気ピストン位置センサ27と、が設けられている。吸気通路17には、上流側より順に、吸気流量を計測するエアフロメータ28、吸気通路17の開度を調整する電制スロットル(絞り弁)29と、吸気通路(吸気ポート)17へ燃料を噴射する燃料噴射弁30と、が配設されている。ガソリンエンジンの場合、図1に示すように、燃焼室16に混合気を火花点火する点火プラグ31が配設される。ディーゼルエンジンの場合には、点火プラグが省略され、燃料噴射弁が燃焼室16内(図1の点火プラグ31の位置)に配設されることとなる。   The cylinder block 1 includes a crank angle sensor 26 that detects the rotational position of the crankshaft 3 corresponding to the engine speed, and an intake piston position sensor that detects the piston position of the intake compression piston 13 (distance from the bottom dead center BDC). 27 are provided. Fuel is injected into the intake passage 17 in order from the upstream side, an air flow meter 28 for measuring the intake flow rate, an electric throttle (throttle valve) 29 for adjusting the opening of the intake passage 17, and an intake passage (intake port) 17. And a fuel injection valve 30 is disposed. In the case of the gasoline engine, as shown in FIG. In the case of a diesel engine, the ignition plug is omitted, and the fuel injection valve is disposed in the combustion chamber 16 (position of the ignition plug 31 in FIG. 1).

機関運転条件を検出するセンサ類として、上記のセンサ類26〜28の他、ドライバのアクセル操作量に相当するアクセルペダルの開度を検出するアクセル開度センサ32等が設けられている。制御部(ECM)5は、各種制御処理を記憶及び実行する機能を有し、上記センサ類26〜28,32等の検出信号に基づいて、上記の電制スロットル29、燃料噴射弁30、点火プラグ31、及びリニアモータ25等のアクチュエータへ制御信号を出力し、その動作を制御する。   As sensors for detecting engine operating conditions, in addition to the sensors 26 to 28, an accelerator opening sensor 32 for detecting an accelerator pedal opening corresponding to an accelerator operation amount of the driver is provided. The control unit (ECM) 5 has a function of storing and executing various control processes. Based on detection signals from the sensors 26 to 28, 32, etc., the electric control throttle 29, the fuel injection valve 30, the ignition A control signal is output to an actuator such as the plug 31 and the linear motor 25 to control its operation.

なお、本実施例では上記の弁21〜23は電磁弁であり、制御部5からの信号に基づいて機関運転状態に応じて駆動制御される。但し、これらの弁21〜23は、吸気弁21の閉時期を変更可能な構成であれば、必ずしも電磁弁である必要はなく、クランクシャフト3の回転に対する同期がとれるものであればよく、一般的によく知られているクランクシャフト3の回転動力により作動する(可変)動弁形態であっても良い。   In the present embodiment, the above-described valves 21 to 23 are electromagnetic valves and are driven and controlled according to the engine operating state based on a signal from the control unit 5. However, these valves 21 to 23 do not necessarily need to be electromagnetic valves as long as the closing timing of the intake valve 21 can be changed, and may be any one that can be synchronized with the rotation of the crankshaft 3. In other words, it may be a (variable) valve operating system that is operated by the rotational power of the crankshaft 3 that is well known.

吸気行程と圧縮行程とは吸気圧縮シリンダ11においてクランクシャフト3の1回転で行われる。圧縮終了付近で圧縮弁23が開かれ、圧縮された混合気が連通路19を経由して圧縮室14から燃焼室16へ投入される。膨張行程と排気行程とは膨張排気シリンダ12においてクランクシャフト3の1回転で行われる。圧縮行程の終わり時期と排気行程の終わり時期とがほぼ同期して実行されるため、吸気、圧縮、膨張、排気の4行程を、クランクシャフト3の1回転で行うことができる。   The intake stroke and the compression stroke are performed by one rotation of the crankshaft 3 in the intake compression cylinder 11. The compression valve 23 is opened near the end of compression, and the compressed air-fuel mixture is introduced from the compression chamber 14 to the combustion chamber 16 via the communication path 19. The expansion stroke and the exhaust stroke are performed by one rotation of the crankshaft 3 in the expansion exhaust cylinder 12. Since the end time of the compression stroke and the end time of the exhaust stroke are executed almost synchronously, four strokes of intake, compression, expansion, and exhaust can be performed by one rotation of the crankshaft 3.

より詳しくは、吸気弁21は、吸気圧縮ピストン13が下降する動作に合わせて開かれ、吸気圧縮ピストン13の下死点近傍で閉じられる。好ましくは、ドライバの要求負荷、機関回転数等に応じて、吸気弁21の開閉タイミングを可変制御する。吸気圧縮ピストン13が上死点に接近すると圧縮弁23が開かれて、圧縮室14で圧縮された混合気が連通路19を経由して燃焼室16へ送り込まれる。吸気圧縮ピストン13が上死点に到達すると圧縮弁23が閉じられて、圧縮された混合気が燃焼室16から圧縮室14へ逆流することを防止する。圧縮された混合気は点火プラグ31によって点火されて燃焼し、膨張排気ピストン15を下降させる。膨張排気ピストン15が下死点に到達すると排気弁22が開かれて排気が行われる。   More specifically, the intake valve 21 is opened when the intake compression piston 13 is lowered, and is closed near the bottom dead center of the intake compression piston 13. Preferably, the opening / closing timing of the intake valve 21 is variably controlled according to the driver's required load, engine speed, and the like. When the intake compression piston 13 approaches top dead center, the compression valve 23 is opened, and the air-fuel mixture compressed in the compression chamber 14 is sent to the combustion chamber 16 via the communication path 19. When the intake compression piston 13 reaches top dead center, the compression valve 23 is closed to prevent the compressed air-fuel mixture from flowing backward from the combustion chamber 16 to the compression chamber 14. The compressed air-fuel mixture is ignited by the spark plug 31 and burned, and the expansion exhaust piston 15 is lowered. When the expansion exhaust piston 15 reaches bottom dead center, the exhaust valve 22 is opened and exhaust is performed.

このように、吸気圧縮ピストン13が上死点に接近する圧縮行程と、膨張排気ピストン15が上死点に接近する排気行程とが比較的近いタイミングで同期して行われる。また、吸気圧縮ピストン13が下死点に接近する吸気行程と、膨張排気ピストン15が下死点に接近する膨張行程と、が比較的近いタイミングで同期して行われる。但し、本実施例では後述するように機関運転状態に応じて吸気圧縮ピストン13のピストンモーションを変更させるので、常にそのタイミングが全く同じというわけではない。   In this way, the compression stroke in which the intake compression piston 13 approaches the top dead center and the exhaust stroke in which the expansion exhaust piston 15 approaches the top dead center are performed synchronously at a relatively close timing. Further, the intake stroke in which the intake compression piston 13 approaches the bottom dead center and the expansion stroke in which the expansion exhaust piston 15 approaches the bottom dead center are performed in synchronization with each other at a relatively close timing. However, in this embodiment, as will be described later, the piston motion of the intake compression piston 13 is changed according to the engine operating state, so the timing is not always exactly the same.

このように、上記レシプロ式内燃機関では、吸気・圧縮行程が行われる吸気圧縮シリンダ11と膨張・排気行程が行われる膨張排気シリンダ12とを分離し、上記の4行程をクランクシャフト3の1回転で行うことができるので、クランクシャフト3の2回転毎に4つの行程が行われる一般的な4サイクル型のレシプロ式内燃機関に比して大きな出力を得ることができる。また、圧縮比と膨張比とを個別に設定できるので、圧縮比を低くしつつ膨張比を大きくして、ノッキングを生じることなく熱効率を高めることができる。更に、吸気圧縮シリンダ11と膨張排気シリンダ12とを別個に構成したので、燃焼が行われる膨張排気シリンダ12とは別に吸気圧縮シリンダ11を冷却することができ、吸気の冷却が容易である。そして本実施例では、リニアモータ25により吸気圧縮ピストン13の動作(ピストンモーション)をクランクシャフト3の角度に対して任意に制御することができる。   As described above, in the reciprocating internal combustion engine, the intake / compression cylinder 11 in which the intake / compression stroke is performed is separated from the expansion / exhaust cylinder 12 in which the expansion / exhaust stroke is performed, and the above four strokes are performed once per rotation of the crankshaft 3. Therefore, a large output can be obtained as compared with a general four-cycle type reciprocating internal combustion engine in which four strokes are performed every two rotations of the crankshaft 3. In addition, since the compression ratio and the expansion ratio can be set individually, the thermal efficiency can be increased without causing knocking by increasing the expansion ratio while lowering the compression ratio. Furthermore, since the intake / compression cylinder 11 and the expansion / exhaust cylinder 12 are configured separately, the intake / compression cylinder 11 can be cooled separately from the expansion / exhaust cylinder 12 where combustion is performed, and intake air can be easily cooled. In this embodiment, the operation of the intake compression piston 13 (piston motion) can be arbitrarily controlled with respect to the angle of the crankshaft 3 by the linear motor 25.

図2及び図3は、本実施例の制御内容を簡略的に示すブロック図及びフローチャートであり、本ルーチンは、上記の制御部5により極短い所定期間Δt(例えば10ms毎、あるいは所定クランク角毎)に繰り返し実行される。   FIGS. 2 and 3 are a block diagram and a flowchart showing the control contents of the present embodiment in a simplified manner. This routine is executed by the control unit 5 in a very short predetermined period Δt (for example, every 10 ms or every predetermined crank angle). ) Is repeatedly executed.

ステップS1では、アクセル開度センサ32により検出されるアクセル開度を読み込む。ステップS2では、クランク角センサ26(及びカム角センサ)等により得られる機関(エンジン)回転数を読み込む。ステップS3及びブロックB1では、アクセル開度及び機関回転数に基づいて、エンジントルクつまり要求負荷を演算する。図4は要求負荷の設定マップの一例を示している。同図に示すように、要求負荷は低・中・高の機関回転域に応じてそれぞれ設定され、アクセル開度が高いほど高く設定される。   In step S1, the accelerator opening detected by the accelerator opening sensor 32 is read. In step S2, the engine (engine) speed obtained by the crank angle sensor 26 (and cam angle sensor) or the like is read. In step S3 and block B1, an engine torque, that is, a required load is calculated based on the accelerator opening and the engine speed. FIG. 4 shows an example of a required load setting map. As shown in the figure, the required load is set according to the low, medium and high engine speed ranges, and is set higher as the accelerator opening is higher.

ステップS4及びブロックB1では、機関回転数と要求負荷に基づいて、吸気行程角度の目標値である目標吸気行程角度を算出する。吸気行程角度は、吸気行程において吸気圧縮ピストン13が上死点から下死点に到達するまでのクランク角度である。目標吸気行程角度は、クランク角度で0度から180度の範囲内で設定される。図5(A)は一定の機関回転数での(目標)吸気行程角度と最大吸入空気量の関係を示しており、図5(B)は全回転領域・全要求負荷域での目標吸気行程角度の設定マップの一例を示している。図5(B)に示すように、要求負荷が大きく、機関回転数が低いほど、目標吸気行程角度を小さくして、吸気行程角度でのピストンスピードを早くし、空気の慣性効果を活用することで、シリンダ容積分の空気量を越える多くの吸入空気量を、機関回転数及び機関負荷に応じて有効に確保することが可能となる。   In step S4 and block B1, a target intake stroke angle, which is a target value of the intake stroke angle, is calculated based on the engine speed and the required load. The intake stroke angle is a crank angle until the intake compression piston 13 reaches the bottom dead center from the top dead center in the intake stroke. The target intake stroke angle is set within a range of 0 to 180 degrees as a crank angle. FIG. 5 (A) shows the relationship between the (target) intake stroke angle and the maximum intake air amount at a constant engine speed, and FIG. 5 (B) shows the target intake stroke in the full speed range and the full required load range. An example of an angle setting map is shown. As shown in FIG. 5B, the larger the required load and the lower the engine speed, the smaller the target intake stroke angle, the faster the piston speed at the intake stroke angle, and the use of the inertial effect of air. Thus, it is possible to effectively secure a large amount of intake air exceeding the amount of air corresponding to the cylinder volume according to the engine speed and the engine load.

再び図2及び図3を参照して、ステップS5及びブロックB2では、クランク角センサ26により検出されるクランク角と目標吸気行程角度とに基づいて、吸気圧縮ピストン13のピストン位置(下死点BDCからの距離)の目標値である目標ピストン位置を算出する(図9参照)。   2 and 3 again, in step S5 and block B2, the piston position (bottom dead center BDC) of the intake compression piston 13 is determined based on the crank angle detected by the crank angle sensor 26 and the target intake stroke angle. The target piston position, which is the target value of the distance from (see Fig. 9).

吸気圧縮ピストン13の加速度が極端に大きくなると、リニアモータ25の要求モータトルクが過大となることから、吸気圧縮ピストン13の加速度が極端に大きくならないように、目標吸気ピストン位置tIP1は、例えばsin関数を利用した下式(1)によりクランク角θに基づいて求められる。なお、min(a,b)はa,bのうち小さい方を選択する関数である。
目標吸気ピストン位置tIP1
=ストローク/2×(1−sin(min(θ/吸気行程角度×180,180)−90°)):(0≦θ<180)
=ストローク/2×(1−sin(θ−90°)):(180≦θ<360)…(1)
また、吸入可能な空気量や吸気圧縮シリンダ11内の負圧は吸気弁21の周辺の開口面積に大きく依存するので(図6参照)、好ましくは、吸気弁21の周辺の開口面積を考慮して目標ピストン位置tIP2を決定する。つまり、シリンダ11内の負圧が極端に発生しないように吸気弁21の開口面積を加味して予め求められた許容ピストンスピードを考慮して下式(2)により目標吸気ピストン位置tIP2を設定する。なお、min(a,b)はa,bのうち小さい方を選択する関数で、Δtは本ルーチンの演算間隔である。
目標吸気ピストン位置tIP2
=min(tIP1,tIP1の前回値+許容ピストンスピード×Δt)…(2)
ステップS6及びブロックB3では、目標吸気行程角度と機関回転数とに基づいて、吸気弁21の閉時期の目標値である目標吸気弁閉時期(IVC)を算出する(図7参照)。図7(B)はIVCの設定マップの一例を示している。同図に示すように、IVCは、基本的には(目標)吸気行程角度に応じた形で設定される。また、機関回転数が高いほど吸気弁開弁期間を長く確保するようにIVCが遅角側へ設定される。より具体的には、図9の符号(A)に示すように、吸気行程角度が大きくなり、ピストン13が下死点に達する時期が遅角するほど、つまりピストン13が下死点で停止している休止期間が短くなるほど、IVCを遅角して吸気弁の開弁期間を長く確保している。また、図9の符号(B)に示すように、吸気行程角度が小さくなり、ピストンが下死点に達する時期が下死点前に進角するほど、つまりピストンが下死点で停止している休止期間が長くなるほど、IVCを進角して、吸気弁の開弁期間を短くしている。
When the acceleration of the intake compression piston 13 becomes extremely large, the required motor torque of the linear motor 25 becomes excessive. Therefore, the target intake piston position tIP1 is, for example, a sin function so that the acceleration of the intake compression piston 13 does not become extremely large. Is obtained based on the crank angle θ by the following equation (1) using Note that min (a, b) is a function that selects the smaller of a and b.
Target intake piston position tIP1
= Stroke / 2 × (1-sin (min (θ / intake stroke angle × 180, 180) −90 °)): (0 ≦ θ <180)
= Stroke / 2 × (1-sin (θ−90 °)): (180 ≦ θ <360) (1)
Further, since the amount of air that can be sucked and the negative pressure in the intake compression cylinder 11 greatly depend on the opening area around the intake valve 21 (see FIG. 6), preferably, the opening area around the intake valve 21 is taken into consideration. To determine the target piston position tIP2. That is, the target intake piston position tIP2 is set by the following equation (2) in consideration of the allowable piston speed determined in advance in consideration of the opening area of the intake valve 21 so that the negative pressure in the cylinder 11 is not extremely generated. . Note that min (a, b) is a function that selects the smaller of a and b, and Δt is the calculation interval of this routine.
Target intake piston position tIP2
= Min (previous value of tIP1, tIP1 + allowable piston speed × Δt) (2)
In step S6 and block B3, a target intake valve closing timing (IVC) that is a target value of the closing timing of the intake valve 21 is calculated based on the target intake stroke angle and the engine speed (see FIG. 7). FIG. 7B shows an example of an IVC setting map. As shown in the figure, the IVC is basically set in a form corresponding to the (target) intake stroke angle. Further, the IVC is set to the retard side so as to ensure a longer intake valve opening period as the engine speed is higher. More specifically, as indicated by reference numeral (A) in FIG. 9, the intake stroke angle increases and the timing at which the piston 13 reaches the bottom dead center is delayed, that is, the piston 13 stops at the bottom dead center. The shorter the idle period, the longer the valve opening period of the intake valve is retarded by IVC. In addition, as shown in FIG. 9 (B), the intake stroke angle becomes smaller, and the time when the piston reaches the bottom dead center is advanced before the bottom dead center, that is, the piston stops at the bottom dead center. The longer the idle period is, the more the IVC is advanced to shorten the intake valve opening period.

一本のコネクティングロッドによりピストンとクランクピンとを接続した一般的な単リンク式ピストン−クランク機構のピストンモーションでは、吸気行程角度が常に一定の固定値(180deg)である。これに対して本実施例では、図5(B)に示すように、機関運転条件(機関回転数及び要求負荷)に応じて目標吸気行程角度を適切に設定することによって、機関運転条件に応じた形で、慣性効果により吸入空気量を効果的に向上しつつ、フリクション、ポンプロスの増加を抑制し、機関トルク・出力の向上を図ることができる。ただし、図5(A)にも示すように、吸気行程角度をあまり小さく設定すると慣性効果で燃焼室16側へ吸入された空気が圧縮室14側へ吹き戻り、所望の慣性効果が得られず、シリンダ容積分の空気量を越える吸入空気量を確保することはできないので、このような場合には吸気行程角度の変更を禁止する。   In a piston motion of a general single link type piston-crank mechanism in which a piston and a crank pin are connected by a single connecting rod, the intake stroke angle is always a fixed value (180 deg). On the other hand, in this embodiment, as shown in FIG. 5B, the target intake stroke angle is appropriately set according to the engine operating conditions (engine speed and required load), so as to meet the engine operating conditions. As a result, it is possible to improve the engine torque and output while suppressing the increase of friction and pump loss while effectively increasing the intake air amount by the inertia effect. However, as shown in FIG. 5A, if the intake stroke angle is set too small, the air sucked into the combustion chamber 16 side blows back to the compression chamber 14 side due to the inertia effect, and the desired inertia effect cannot be obtained. Since it is impossible to secure an intake air amount that exceeds the cylinder volume, it is prohibited to change the intake stroke angle in such a case.

図6(A)は、吸気弁周辺の開口面積とクランク角の関係の一例を示している。吸気弁周辺の開口面積は以下の式(3)によって概算できる。   FIG. 6A shows an example of the relationship between the opening area around the intake valve and the crank angle. The opening area around the intake valve can be estimated by the following equation (3).

吸気弁周辺の開口面積=2×π×吸気弁半径×リフト量×バルブ数…(3)
上述したようにピストンモーションを速くする(吸気行程角度を小さくする)ことで、吸気慣性効果を増大することができるものの、開口面積が小さい時にピストンモーションが速いと、シリンダ11内に大きな負圧が発生して、損失が増えてしまうおそれがある。そこで好ましくは、少なくとも吸気弁周辺の開口面積を用いて単位時間当たりのピストン13の変化許容値、つまり許容ピストンスピードを設定して、ピストンスピードが過度に高くなることを制限・禁止する。その一例を図6(B)に示す。同図に示すように、吸気弁周辺の開口面積が小さくなるほど、許容ピストンスピードを低く抑制する。これによって、吸気行程時のシリンダ内に大きな負圧が発生することを有効に防ぐことができる。
Opening area around the intake valve = 2 × π × intake valve radius × lift amount × number of valves (3)
As described above, by increasing the piston motion (decreasing the intake stroke angle), the intake inertia effect can be increased. However, if the piston motion is fast when the opening area is small, a large negative pressure is generated in the cylinder 11. It may occur and the loss may increase. Therefore, it is preferable to set a permissible change value of the piston 13 per unit time, that is, a permissible piston speed by using at least the opening area around the intake valve to restrict or prohibit the piston speed from becoming excessively high. An example is shown in FIG. As shown in the figure, the allowable piston speed is reduced as the opening area around the intake valve decreases. As a result, it is possible to effectively prevent a large negative pressure from being generated in the cylinder during the intake stroke.

図7(B)は、上述したように吸気弁21の閉時期(IVC)の一設定例を示している。吸気行程角度に応じて慣性効果がより大きく発生するIVCは変化するが、それに伴って最大吸気量を確保するIVCも変化する。これは、主としてふき戻しにより吸気通路(吸気ポート)17に空気が戻ってしまうことに起因している。また、機関回転数が高くなるほど、単位クランク角度あたりの時間が短くなるため、十分な吸気時間を確保するためには、低回転時に比べてIVCを遅角する必要がある。本実施例では図7(B)に示すように吸気行程角度を180度から小さくするに従ってIVCを進めて、吹き戻りを防止する。   FIG. 7B shows a setting example of the closing timing (IVC) of the intake valve 21 as described above. Depending on the intake stroke angle, the IVC where the inertial effect is generated changes, but the IVC that secures the maximum intake amount also changes accordingly. This is mainly due to air returning to the intake passage (intake port) 17 by wiping back. Further, the higher the engine speed, the shorter the time per unit crank angle. Therefore, in order to secure a sufficient intake time, it is necessary to retard the IVC as compared to when the engine speed is low. In this embodiment, as shown in FIG. 7B, the IVC is advanced as the intake stroke angle is decreased from 180 degrees to prevent blowback.

また、吸気行程角度が所定の下限値α1〜α3小さくピストンモーションが過度に速くなるおそれおがある領域では、IVCを最進角値β1〜β3に固定して、吸気行程角度に応じたIVCの変更(進角)を禁止する。これは慣性効果により吸入空気の流速が上がるものの、流れの遅れが生じるために、十分な吸入ができなくなることを防ぐためである。なお、図示するように、吸気行程角度の下限値α1〜α3及び最進角値β1〜β3は機関回転数に応じて個別に設定される。   In an area where the intake stroke angle is a predetermined lower limit value α1 to α3 and the piston motion is likely to be excessively fast, IVC is fixed to the most advanced angle values β1 to β3, and IVC corresponding to the intake stroke angle is set. Change (advance) is prohibited. This is to prevent the intake air from becoming unable to be sufficiently sucked due to a flow delay although the flow velocity of the intake air increases due to the inertia effect. As shown in the figure, the lower limit values α1 to α3 and the most advanced angle values β1 to β3 of the intake stroke angle are individually set according to the engine speed.

図8は、本実施例におけるアクセル開度の変化に対するスロットル開度,吸気行程角度及び吸気弁閉時期の関係を示している。但し、機関回転数は一定とする。同図に示すように、アクセル開度が所定値のしきい値sAPOより小さく要求負荷(トルク)が小さい低負荷側の領域では、吸入空気量が少ないことから、ピストンモーションを速くすると逆に損失が増えてしまうおそれがあるために、アクセル開度に応じてスロットル開度のみを変更し、具体的にはアクセル開度の低下に応じてスロットル開度を小さくし、(目標)吸気行程角度とIVCの変更を禁止する。具体的には、吸気行程角度を最大値(180deg)に固定し、IVCを下死点付近の最遅角値に固定する。   FIG. 8 shows the relationship between the throttle opening, the intake stroke angle, and the intake valve closing timing with respect to changes in the accelerator opening in the present embodiment. However, the engine speed is constant. As shown in the figure, in the low load area where the accelerator opening is smaller than the predetermined threshold value sAPO and the required load (torque) is small, the intake air amount is small. Therefore, only the throttle opening is changed according to the accelerator opening, specifically, the throttle opening is reduced according to the decrease in the accelerator opening, and the (target) intake stroke angle and Prohibit changes to IVC. Specifically, the intake stroke angle is fixed to the maximum value (180 deg), and IVC is fixed to the most retarded value near the bottom dead center.

一方、アクセル開度がしきい値sAPO以上の高負荷側の領域では、アクセル開度の増加に伴い、ピストンモーションを速くするために吸気行程角度を小さくするとともに、この吸気行程角度の低下に応じて、吸気弁閉時期を進角する。これにより、シリンダからの吹き戻しを招くことなく、吸気慣性効果を増大させて、より多くの吸入空気量を確保することができる。   On the other hand, in the region on the high load side where the accelerator opening is greater than or equal to the threshold value sAPO, as the accelerator opening increases, the intake stroke angle is reduced in order to speed up the piston motion, and the intake stroke angle is reduced accordingly. To advance the intake valve closing timing. As a result, the intake inertia effect can be increased and a larger amount of intake air can be secured without causing blowback from the cylinder.

以上の説明より把握し得る本発明の特徴的な技術思想について、上記実施例を参照して列記する。但し、本発明は参照符号を付した実施例の構成に限定されるものではなく、種々の変形・変更を含むものである。例えば、図1に示すレシプロ式内燃機関に限らず、機関回転数や要求負荷に応じて吸気ピストンスピードを変更することができる内燃機関に本発明を同様に適用することが可能である。また、上記実施例においては、機関弁21〜23を電磁弁とし、吸気弁21の開時期(IVO)にかかわらずIVCのみを変更可能な構成としているが、これに限定されるものではなく、例えば、吸気弁の開時期と閉時期を同時に変更する周知のバルブタイミング変更機構(VTC)を用いても良い。   The characteristic technical ideas of the present invention that can be understood from the above description will be listed with reference to the above-described embodiments. However, the present invention is not limited to the configuration of the embodiment given the reference numerals, and includes various modifications and changes. For example, the present invention can be similarly applied not only to the reciprocating internal combustion engine shown in FIG. 1 but also to an internal combustion engine that can change the intake piston speed according to the engine speed and the required load. Moreover, in the said Example, it is set as the structure which can change only IVC irrespective of the opening timing (IVO) of the intake valve 21 by making the engine valves 21-23 into solenoid valves, but it is not limited to this, For example, a known valve timing changing mechanism (VTC) that simultaneously changes the opening timing and closing timing of the intake valve may be used.

(1)吸気行程においてピストン13が上死点から下死点に到達するまでのクランクシャフト3の回転角度である吸気行程角度を変更する吸気行程角度変更手段(リニアモータ25)と、機関運転条件に応じて吸気行程角度を可変制御する制御部5と、を有している。   (1) Intake stroke angle changing means (linear motor 25) for changing the intake stroke angle, which is the rotation angle of the crankshaft 3 until the piston 13 reaches the bottom dead center from the top dead center in the intake stroke, and engine operating conditions And a control unit 5 that variably controls the intake stroke angle according to the control.

従って、機関運転条件に応じて吸気行程角度を適切に設定することにより、吸気慣性効果を運転条件に応じた形で最大限に得ることができる。   Therefore, by appropriately setting the intake stroke angle according to the engine operating conditions, the intake inertia effect can be obtained to the maximum in the form according to the operating conditions.

(2)図5(B)に示すように、要求トルクが大きいほど吸気行程角度を小さくすることによって、要求トルクの小さい低負荷側でのフリクションの低減化と、要求トルクの大きい高負荷側でのトルク・出力の向上と、を両立することができる。特に、多くの吸入空気を必要とする高負荷側で吸気行程角度を小さくし、そのピストンモーションを速くすることで、要求トルクに応じた多くの吸入空気量を確保することができる。   (2) As shown in FIG. 5B, the larger the required torque, the smaller the intake stroke angle, thereby reducing the friction on the low load side where the required torque is small and the high load side where the required torque is large. Torque and output can be improved. In particular, by reducing the intake stroke angle on the high load side that requires a large amount of intake air and speeding up the piston motion, a large amount of intake air according to the required torque can be secured.

(3)低中負荷時には要求される空気量が最大空気量に比べて少ないため、低回転時においても敢えてピストンスピードを早くする領域を設ける必要が無い。つまり、出力軸回転角度であるクランク角に対して標準的なピストンモーション(例えば、略sin波)でも良い。また、一般的にフリクションはピストン速度に比例して増加するため、ピストン速度が遅い方がフリクションを低く抑えることができる。従って、図5(B)に示すように、要求トルクが小さい所定の低負荷域F1では、吸気行程角度の変更を禁止して、吸気行程角度を最大値に固定する。   (3) Since the amount of air required at low and medium loads is smaller than the maximum amount of air, it is not necessary to provide a region for increasing the piston speed even at low speeds. That is, a standard piston motion (for example, approximately sin wave) with respect to the crank angle that is the output shaft rotation angle may be used. Moreover, since friction generally increases in proportion to the piston speed, the lower the piston speed, the lower the friction. Accordingly, as shown in FIG. 5B, in the predetermined low load region F1 where the required torque is small, the change of the intake stroke angle is prohibited and the intake stroke angle is fixed to the maximum value.

(4)図5(B)に示すように、機関回転数が低いほど吸気行程角度を小さくする。これにより、慣性効果をあまり期待できない低回転側では、吸気行程角度を小さくすることによりピストンスピードを速くして十分な吸入空気量を確保することができる。一方、高回転側では、もともと十分な慣性効果が得られるので、吸気行程角度の増加によりピストン速度を低下させて、そのフリクションを低減することができる。   (4) As shown in FIG. 5B, the intake stroke angle is reduced as the engine speed is lower. As a result, on the low rotation side where an inertial effect cannot be expected so much, it is possible to secure a sufficient intake air amount by increasing the piston speed by reducing the intake stroke angle. On the other hand, since a sufficient inertial effect is originally obtained on the high rotation side, the piston speed can be reduced by increasing the intake stroke angle, and the friction can be reduced.

(5)図5(B)に示すように、機関回転数が高い所定の高回転域F1では、吸気行程角度の変更を禁止して、吸気行程角度を最大値に固定することによって、簡素な制御で不必要なフリクションの増加やポンピングロスの増加を回避することができる。   (5) As shown in FIG. 5B, in a predetermined high engine speed F1 where the engine speed is high, the intake stroke angle is prohibited from being changed, and the intake stroke angle is fixed to the maximum value. It is possible to avoid an unnecessary increase in friction and an increase in pumping loss.

(6)クランクシャフトの回転角度に対する吸気弁の閉時期を変更可能であれば、吸気行程角度の変更に応じて吸気弁の閉時期を操作することによって、より効率的に吸入空気量を確保できる。ここで、吸気行程では、吸気圧縮ピストン13の下降に伴ってシリンダ11の圧縮室14内の圧力が吸気通路17の上流側の吸気圧に対して負圧となり、その後、圧縮室14への空気の流入等により正圧になる。正圧となったタイミングで吸気弁を閉じることができれば、より多くの吸入空気量を確保できるが、遅れると吸気通路17へ吹き戻ってしまう。従って、吸気弁の閉時期は、上記のタイミングに近いことが望ましい。しかし、クランクシャフトの回転角度に対するピストン作動距離つまり吸気行程角度の変更に伴い、シリンダ内に流入した空気が吹き戻るタイミングも変化する。そこで、図8に示すように、吸気行程角度を小さくする際に、これに応じて吸気弁閉時期を進角させることにより、吸気行程角度に応じて有効に吸入空気量を確保することができる。なお、図9に示すように、吸気弁の閉時期は吸気行程の終わり時期よりも遅角側に設定される。   (6) If the closing timing of the intake valve relative to the rotation angle of the crankshaft can be changed, the intake air amount can be secured more efficiently by operating the closing timing of the intake valve according to the change of the intake stroke angle. . Here, in the intake stroke, as the intake compression piston 13 descends, the pressure in the compression chamber 14 of the cylinder 11 becomes negative with respect to the intake pressure upstream of the intake passage 17, and then the air to the compression chamber 14 It becomes positive pressure due to inflow. If the intake valve can be closed at the timing when the pressure becomes positive, a larger amount of intake air can be secured, but if it is delayed, it will blow back to the intake passage 17. Therefore, it is desirable that the closing timing of the intake valve is close to the above timing. However, as the piston working distance with respect to the rotation angle of the crankshaft, that is, the intake stroke angle is changed, the timing at which the air flowing into the cylinder blows back also changes. Therefore, as shown in FIG. 8, when the intake stroke angle is decreased, the intake valve closing timing is advanced in accordance with the intake stroke angle, whereby the intake air amount can be effectively secured according to the intake stroke angle. . Note that, as shown in FIG. 9, the closing timing of the intake valve is set to be retarded from the end timing of the intake stroke.

(7)吸気行程角度が小さい場合には、慣性効果は増大しているが、空気の流れの遅れによりシリンダ内に十分に空気が充填されるには時間がかかるようになる。従って、図7(B)に示すように、吸気行程角度が所定値α1〜α3より小さい場合には、吸気弁閉時期の進角側への変更を禁止して、吸気弁閉時期を最進角値β1〜β3に固定することによって、簡素な制御でありながら、空気の流れが遅れることの影響を受けずに十分な吸入空気量を確保することができる。   (7) When the intake stroke angle is small, the inertial effect is increased, but it takes time to sufficiently fill the cylinder with air due to the delay of the air flow. Therefore, as shown in FIG. 7B, when the intake stroke angle is smaller than the predetermined values α1 to α3, changing the intake valve closing timing to the advance side is prohibited and the intake valve closing timing is most advanced. By fixing the angle values to β1 to β3, it is possible to secure a sufficient intake air amount without being affected by the delay of the air flow while being simple control.

(8)上記実施例では、図1に示すように、吸気行程及び圧縮行程が行われる吸気圧縮シリンダ11に摺動可能に嵌合する吸気圧縮ピストン13と、膨張行程及び排気行程が行われる膨張排気シリンダ12に摺動可能に嵌合し、クランクシャフト3を回転駆動する膨張排気ピストン15と、上記吸気圧縮ピストン13上に形成される圧縮室14に接続する吸気通路17を開閉する吸気弁21と、上記膨張排気ピストン15上に形成される燃焼室16に接続する排気通路18を開閉する排気弁22と、上記圧縮室14と燃焼室16とを連通する連通路19を開閉する圧縮弁23と、を有しており、上記吸気行程角度変更手段としてのリニアモータ25により吸気圧縮ピストンの吸気行程角度を変化させている。   (8) In the above embodiment, as shown in FIG. 1, the intake compression piston 13 slidably fitted to the intake compression cylinder 11 in which the intake stroke and the compression stroke are performed, and the expansion in which the expansion stroke and the exhaust stroke are performed. An expansion valve 15 that is slidably fitted to the exhaust cylinder 12 and rotationally drives the crankshaft 3 and an intake valve 21 that opens and closes an intake passage 17 connected to the compression chamber 14 formed on the intake and compression piston 13. An exhaust valve 22 that opens and closes an exhaust passage 18 connected to the combustion chamber 16 formed on the expansion exhaust piston 15, and a compression valve 23 that opens and closes a communication passage 19 that communicates the compression chamber 14 and the combustion chamber 16. And the intake stroke angle of the intake compression piston is changed by the linear motor 25 as the intake stroke angle changing means.

このようなレシプロ式内燃機関では、上述したように、吸気・圧縮・膨張・排気の4行程をクランクシャフト3の1回転で行うことができるので高出力化が可能で、かつ、吸気圧縮シリンダ11と膨張排気シリンダ12とを別個に構成したので、吸気の冷却が容易であるとともに、圧縮比と膨張比とをそれぞれ適切に設定することができる。   In such a reciprocating internal combustion engine, as described above, four strokes of intake, compression, expansion, and exhaust can be performed by one rotation of the crankshaft 3, so that high output can be achieved, and the intake compression cylinder 11 And the expansion / exhaust cylinder 12 are configured separately, the intake air can be easily cooled, and the compression ratio and the expansion ratio can be set appropriately.

そして、吸気圧縮ピストン13がクランクシャフト3に連結されておらず、かつ、燃焼圧が作用しないので、比較的小型のリニアモータ25等により吸気圧縮ピストン13の動作、つまりピストンモーション及び吸気行程角度を、クランク角に対して比較的容易に変更・制御することが可能であり、本発明を具現化するのに適した構成である。   Since the intake compression piston 13 is not connected to the crankshaft 3 and the combustion pressure does not act, the operation of the intake compression piston 13, that is, the piston motion and the intake stroke angle are controlled by a relatively small linear motor 25 or the like. The crank angle can be changed and controlled relatively easily, and is suitable for embodying the present invention.

本発明の一実施例に係るレシプロ式内燃機関を簡略的に示す構成図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram which shows simply the reciprocating type internal combustion engine which concerns on one Example of this invention. 上記実施例の制御内容を簡略的に示す制御ブロック図。The control block diagram which shows simply the control content of the said Example. 上記実施例の制御の流れを示すフローチャート。The flowchart which shows the flow of control of the said Example. 機関回転域毎のアクセル開度とエンジントルクとの関係を示す特性図。The characteristic view which shows the relationship between the accelerator opening and engine torque for every engine rotation area. (A)が吸気行程角度と吸入空気量との関係を示す特性図、(B)が機関回転数と要求負荷に応じた吸気行程角度の一設定例を示す特性図。(A) is a characteristic diagram showing the relationship between the intake stroke angle and the intake air amount, (B) is a characteristic diagram showing a setting example of the intake stroke angle according to the engine speed and the required load. (A)がクランク角度と吸気弁開口面積との関係を示す特性図、(B)が吸気弁開口面積と許容ピストンスピードとの関係を示す特性図。(A) is a characteristic diagram showing the relationship between the crank angle and the intake valve opening area, (B) is a characteristic diagram showing the relationship between the intake valve opening area and the allowable piston speed. (A)が吸気弁の閉時期と吸入空気量の関係を示す特性図、(B)が機関回転域毎の吸気行程角度に応じた吸気弁閉時期の一設定例を示す特性図。(A) is a characteristic diagram showing the relationship between the closing timing of the intake valve and the intake air amount, and (B) is a characteristic diagram showing a setting example of the intake valve closing timing according to the intake stroke angle for each engine rotation range. 本実施例に係るアクセル開度に応じたスロットル開度、吸気行程角度、及び吸気弁閉時期の一設定例を示すタイムチャート。The time chart which shows one setting example of the throttle opening according to the accelerator opening which concerns on a present Example, an intake stroke angle, and an intake valve closing timing. 本実施例の動作を説明するための説明図。Explanatory drawing for demonstrating operation | movement of a present Example.

符号の説明Explanation of symbols

3…クランクシャフト
5…制御部
11…吸気圧縮シリンダ
12…膨張排気シリンダ
13…吸気圧縮ピストン
15…膨張排気ピストン
25…リニアモータ(吸気行程角度変更手段)
DESCRIPTION OF SYMBOLS 3 ... Crankshaft 5 ... Control part 11 ... Intake compression cylinder 12 ... Expansion exhaust cylinder 13 ... Intake compression piston 15 ... Expansion exhaust piston 25 ... Linear motor (intake stroke angle change means)

Claims (8)

吸気行程においてピストンが上死点から下死点に到達するまでのクランクシャフトの回転角度である吸気行程角度を変更する吸気行程角度変更手段と、
機関運転条件に応じて吸気行程角度を可変制御する制御部と、
を有し、上記制御部によって吸気慣性効果を得るように制御することを特徴とするレシプロ式内燃機関。
An intake stroke angle changing means for changing an intake stroke angle which is a rotation angle of the crankshaft until the piston reaches the bottom dead center from the top dead center in the intake stroke;
A control unit that variably controls the intake stroke angle according to engine operating conditions;
And a reciprocating internal combustion engine controlled by the control unit so as to obtain an intake inertia effect.
上記制御部は、要求トルクが大きいほど上記吸気行程角度を小さくすることを特徴とする請求項1に記載のレシプロ式内燃機関。   The reciprocating internal combustion engine according to claim 1, wherein the control unit decreases the intake stroke angle as the required torque increases. 上記制御部は、要求トルクが小さい所定の低負荷域では、吸気行程角度を最大値に固定することを特徴とする請求項2に記載のレシプロ式内燃機関。   The reciprocating internal combustion engine according to claim 2, wherein the control unit fixes the intake stroke angle to a maximum value in a predetermined low load range where the required torque is small. 上記制御部は、機関回転数が低いほど上記吸気行程角度を小さくすることを特徴とする請求項1〜3のいずれかに記載のレシプロ式内燃機関。   The reciprocating internal combustion engine according to any one of claims 1 to 3, wherein the control unit decreases the intake stroke angle as the engine speed decreases. 上記制御部は、機関回転数が高い所定の高回転域では、上記吸気行程角度を最大値に固定することを特徴とする請求項4に記載のレシプロ式内燃機関。   5. The reciprocating internal combustion engine according to claim 4, wherein the control unit fixes the intake stroke angle to a maximum value in a predetermined high engine speed range where the engine speed is high. クランクシャフトの回転角度に対する吸気弁閉時期を変更可能であり、
上記制御部は、上記吸気行程角度を小さくする際に、上記吸気弁閉時期を進角させることを特徴とする請求項1〜5のいずれかに記載のレシプロ式内燃機関。
The intake valve closing timing relative to the crankshaft rotation angle can be changed,
6. The reciprocating internal combustion engine according to claim 1, wherein the control unit advances the intake valve closing timing when the intake stroke angle is decreased.
上記制御部は、上記吸気行程角度が所定値より小さい場合に、吸気弁閉時期を最進角値に固定することを特徴とする請求項6に記載のレシプロ式内燃機関。   The reciprocating internal combustion engine according to claim 6, wherein the control unit fixes the intake valve closing timing at a most advanced angle value when the intake stroke angle is smaller than a predetermined value. 吸気行程及び圧縮行程が行われる吸気圧縮シリンダに摺動可能に嵌合する吸気圧縮ピストンと、
膨張行程及び排気行程が行われる膨張排気シリンダに摺動可能に嵌合し、上記クランクシャフトを回転駆動する膨張排気ピストンと、
上記吸気圧縮ピストン上に形成される圧縮室に接続する吸気通路を開閉する吸気弁と、
上記膨張排気ピストン上に形成される燃焼室に接続する排気通路を開閉する排気弁と、
上記圧縮室と燃焼室とを連通する連通路を開閉する圧縮弁と、を有し、
上記吸気行程角度変更手段が吸気圧縮ピストンの吸気行程角度を変化させることを特徴とする請求項1〜7のいずれかに記載のレシプロ式内燃機関。
An intake compression piston slidably fitted to an intake compression cylinder in which an intake stroke and a compression stroke are performed;
An expansion exhaust piston that is slidably fitted to an expansion exhaust cylinder in which an expansion stroke and an exhaust stroke are performed, and rotationally drives the crankshaft;
An intake valve for opening and closing an intake passage connected to a compression chamber formed on the intake compression piston;
An exhaust valve for opening and closing an exhaust passage connected to a combustion chamber formed on the expansion exhaust piston;
A compression valve that opens and closes a communication passage communicating the compression chamber and the combustion chamber,
8. The reciprocating internal combustion engine according to claim 1, wherein the intake stroke angle changing means changes the intake stroke angle of the intake compression piston.
JP2006034641A 2006-02-13 2006-02-13 Reciprocating internal combustion engine Pending JP2007211730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006034641A JP2007211730A (en) 2006-02-13 2006-02-13 Reciprocating internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006034641A JP2007211730A (en) 2006-02-13 2006-02-13 Reciprocating internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007211730A true JP2007211730A (en) 2007-08-23

Family

ID=38490385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006034641A Pending JP2007211730A (en) 2006-02-13 2006-02-13 Reciprocating internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007211730A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7900444B1 (en) 2008-04-09 2011-03-08 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8046990B2 (en) 2009-06-04 2011-11-01 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8117842B2 (en) 2009-11-03 2012-02-21 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8240146B1 (en) 2008-06-09 2012-08-14 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8539763B2 (en) 2011-05-17 2013-09-24 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US8667792B2 (en) 2011-10-14 2014-03-11 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8733095B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for efficient pumping of high-pressure fluids for energy
JP2014218998A (en) * 2013-04-11 2014-11-20 富夫 岸田 Exhaust gas intake, compression and injection engine
JP2022548479A (en) * 2019-10-01 2022-11-21 フィリップ クリスタニ Throttle replacement device

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8763390B2 (en) 2008-04-09 2014-07-01 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8713929B2 (en) 2008-04-09 2014-05-06 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8733094B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US7900444B1 (en) 2008-04-09 2011-03-08 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8209974B2 (en) 2008-04-09 2012-07-03 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8627658B2 (en) 2008-04-09 2014-01-14 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8733095B2 (en) 2008-04-09 2014-05-27 Sustainx, Inc. Systems and methods for efficient pumping of high-pressure fluids for energy
US8240146B1 (en) 2008-06-09 2012-08-14 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
US8234862B2 (en) 2009-01-20 2012-08-07 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8122718B2 (en) 2009-01-20 2012-02-28 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8046990B2 (en) 2009-06-04 2011-11-01 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage and recovery systems
US8479502B2 (en) 2009-06-04 2013-07-09 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8109085B2 (en) 2009-09-11 2012-02-07 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8468815B2 (en) 2009-09-11 2013-06-25 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8117842B2 (en) 2009-11-03 2012-02-21 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8661808B2 (en) 2010-04-08 2014-03-04 Sustainx, Inc. High-efficiency heat exchange in compressed-gas energy storage systems
US8245508B2 (en) 2010-04-08 2012-08-21 Sustainx, Inc. Improving efficiency of liquid heat exchange in compressed-gas energy storage systems
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
US8539763B2 (en) 2011-05-17 2013-09-24 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8806866B2 (en) 2011-05-17 2014-08-19 Sustainx, Inc. Systems and methods for efficient two-phase heat transfer in compressed-air energy storage systems
US8667792B2 (en) 2011-10-14 2014-03-11 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
JP2014218998A (en) * 2013-04-11 2014-11-20 富夫 岸田 Exhaust gas intake, compression and injection engine
JP2022548479A (en) * 2019-10-01 2022-11-21 フィリップ クリスタニ Throttle replacement device
JP7324362B2 (en) 2019-10-01 2023-08-09 フィリップ クリスタニ Throttle replacement device

Similar Documents

Publication Publication Date Title
JP2007211730A (en) Reciprocating internal combustion engine
JP5919697B2 (en) Diesel engine start control device
JP4275143B2 (en) Ignition timing control device for internal combustion engine
JP4525517B2 (en) Internal combustion engine
JP4672220B2 (en) Combustion control device for compression ignition engine
JP5971396B2 (en) Control device and control method for internal combustion engine
US10697378B2 (en) Control system of miller cycle engine and method of controlling miller cycle engine
JP2006046293A (en) Intake air control device for internal combustion engine
JP4952732B2 (en) Internal combustion engine control method and internal combustion engine control system
JP5979031B2 (en) Spark ignition engine
JP4506414B2 (en) Valve characteristic control device for internal combustion engine
JP4400379B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller
JP2014020265A (en) Control device for internal combustion engine
JP2020026751A (en) Control device of internal combustion engine
KR102160518B1 (en) Method for compensating a gas spring action in the case of cylinder shutoff with exhaust gas inclusion
JP5851463B2 (en) Valve timing control device for internal combustion engine
JP4425839B2 (en) Control device for internal combustion engine
JP2007162664A (en) Valve operation angle variable control device for internal combustion engine
JP6222210B2 (en) Control device for internal combustion engine
JP4258453B2 (en) Intake control device for internal combustion engine
JP2010013940A (en) Internal combustion engine and valve timing control method
JP4144421B2 (en) Control device for internal combustion engine
JP4640120B2 (en) Control device for internal combustion engine
JP2016050502A (en) Control device of internal combustion engine
JP5594265B2 (en) Engine intake control device