JP2007202227A - Ultrasonic driver - Google Patents

Ultrasonic driver Download PDF

Info

Publication number
JP2007202227A
JP2007202227A JP2006014269A JP2006014269A JP2007202227A JP 2007202227 A JP2007202227 A JP 2007202227A JP 2006014269 A JP2006014269 A JP 2006014269A JP 2006014269 A JP2006014269 A JP 2006014269A JP 2007202227 A JP2007202227 A JP 2007202227A
Authority
JP
Japan
Prior art keywords
vibration
vibrator
moving body
displaced
excited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006014269A
Other languages
Japanese (ja)
Other versions
JP4804154B2 (en
JP2007202227A5 (en
Inventor
Kaishi Ohashi
海史 大橋
Takashi Maeno
隆司 前野
Makoto Toeda
誠 戸枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006014269A priority Critical patent/JP4804154B2/en
Publication of JP2007202227A publication Critical patent/JP2007202227A/en
Publication of JP2007202227A5 publication Critical patent/JP2007202227A5/ja
Application granted granted Critical
Publication of JP4804154B2 publication Critical patent/JP4804154B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic driver for reducing a distribution of a vibration speed in a contact region between an oscillator and a movable element in the drive direction without reducing the contact region between the oscillator and the movable element, reducing a slippage between the oscillator and the movable element, and improving the efficiency and lifetime. <P>SOLUTION: An ultrasonic motor is provided with the oscillator 1 having an oscillation element 1-2 for generating an oscillation excited by piezoelectric elements 1-1a, 1-1b, and the movable element 2 contacting the oscillator 1 in a pressed state and driven by the oscillation from the oscillation element 1-2. The oscillation for displacing the oscillator 1 in the normal direction at the contact region between the oscillator 1 and the movable element 2 and the oscillation for displacing the oscillator 1 in the drive direction of the movable element 2 are excited in the oscillator 1. The oscillation excited in the oscillator 1 and displacing the oscillator 1 in the drive direction of the movable element 2 is an oscillation having a combination of at least a n-th order oscillation and a 3n-th order oscillation (n is a natural number). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、振動子に励起した振動により駆動対象を駆動する超音波駆動装置に関する。   The present invention relates to an ultrasonic drive device that drives a drive target by vibration excited by a vibrator.

従来、圧電素子により振動子に振動を励起し、振動子に加圧接触される移動体を所定方向に駆動する超音波駆動装置としての超音波モータに関する提案が数多くなされている。例えば、振動子に励起する移動体の駆動方向の振動が、2次の曲げ振動である超音波モータが提案されている(例えば、特許文献1参照)。また、振動子に励起する移動体の駆動方向の振動が、1次の伸縮振動である超音波モータが提案されている(例えば、特許文献2参照)。
特開2004−304887号公報(第16頁、図1、図2) 特開平7−337045号公報(第8頁、図2、図4)
Conventionally, many proposals have been made regarding an ultrasonic motor as an ultrasonic driving device that excites vibration in a vibrator by a piezoelectric element and drives a moving body that is in pressure contact with the vibrator in a predetermined direction. For example, an ultrasonic motor has been proposed in which the vibration in the driving direction of the moving body excited by the vibrator is a secondary bending vibration (for example, see Patent Document 1). In addition, an ultrasonic motor has been proposed in which the vibration in the driving direction of the moving body excited by the vibrator is a primary stretching vibration (see, for example, Patent Document 2).
Japanese Patent Laying-Open No. 2004-304877 (page 16, FIG. 1, FIG. 2) Japanese Patent Laid-Open No. 7-337045 (page 8, FIG. 2, FIG. 4)

しかしながら、上記従来の超音波モータには以下の課題がある。振動子と移動体を加圧接触させ、振動子に、移動体との接触部の法線方向に変位する振動と、移動体との接触部の接線方向に変位する振動を励起する。これにより、振動子における移動体との接触部に楕円運動を励起し、移動体を駆動する。この場合、振動子と移動体には有限の接触領域があるが、その接触領域での振動子の楕円運動は、移動体の駆動方向において振動速度に分布を持つ(振動速度に差がある)。   However, the conventional ultrasonic motor has the following problems. The vibrator and the moving body are brought into pressure contact with each other, and vibrations that are displaced in the normal direction of the contact portion with the moving body and vibrations that are displaced in the tangential direction of the contact portion with the moving body are excited. This excites elliptical motion at the contact portion of the vibrator with the moving body, and drives the moving body. In this case, the vibrator and the moving body have a finite contact area, but the elliptical motion of the vibrator in the contact area has a distribution in vibration speed in the driving direction of the moving body (there is a difference in vibration speed). .

このため、振動子における移動体との接触領域では、振動子の振動速度が移動体の移動速度と異なる速度の部分において、移動子と移動体の滑りが発生する。この滑りの発生に伴い、摺動損失と振動子及び移動体の摩耗が起こる。摺動損失が大きいと超音波モータの効率が下がり、振動子及び移動体の摩耗が大きいと超音波モータの寿命が短くなってしまうという問題が生じる。   For this reason, in the contact area of the vibrator with the moving body, the slider and the moving body slip at a portion where the vibration speed of the vibrator is different from the moving speed of the moving body. Along with the occurrence of this slip, sliding loss and wear of the vibrator and the moving body occur. When the sliding loss is large, the efficiency of the ultrasonic motor is reduced, and when the wear of the vibrator and the moving body is large, the life of the ultrasonic motor is shortened.

例えば、振動子における移動体との接触領域での振動速度の分布(振動速度の差)を減少させる方法として、振動子と移動体の接触領域を減少させることが考えられる。しかし、この方法では、振動子と移動体の接触が不安定になり、超音波モータにおいて異音の発生や駆動が不安定になってしまう等の原因となる問題が生じる。尚、従来の超音波モータの駆動方法及び課題の詳細については、本実施の形態の超音波モータとの比較を行うため、本実施の形態の記載欄で後述する。   For example, as a method of reducing the vibration velocity distribution (vibration velocity difference) in the contact area between the vibrator and the moving body, it is conceivable to reduce the contact area between the vibrator and the moving body. However, in this method, the contact between the vibrator and the moving body becomes unstable, and there arises a problem that causes generation of abnormal noise and unstable driving in the ultrasonic motor. The details of the conventional ultrasonic motor driving method and problems will be described later in the description section of the present embodiment for comparison with the ultrasonic motor of the present embodiment.

本発明の目的は、振動子と移動体の接触領域を減らすことなく、振動子における移動体との接触領域での駆動方向の振動速度の分布を減少させ、振動子と移動体の滑りを減少させ、高効率化及び長寿命化を可能とした超音波駆動装置を提供することにある。   The object of the present invention is to reduce the vibration velocity distribution in the driving direction in the contact area between the vibrator and the moving body without reducing the contact area between the vibrator and the moving body, thereby reducing the slip between the vibrator and the moving body. It is another object of the present invention to provide an ultrasonic drive device that can achieve high efficiency and long life.

上述の目的を達成するために、本発明の超音波駆動装置は、電気−機械エネルギ変換素子により振動が励起される振動子と、前記振動子に加圧状態に接触され前記振動により駆動される移動体とを備え、前記振動子には、前記移動体との接触箇所の法線方向に変位する振動と、前記移動体の駆動方向に変位する振動が励起され、前記振動子に励起される前記移動体の駆動方向に変位する振動が、少なくともn次の振動と3n次の振動を合成した振動である(但しnは自然数)ことを特徴とする。   In order to achieve the above-described object, an ultrasonic drive device according to the present invention is driven by a vibrator whose vibration is excited by an electro-mechanical energy conversion element, and in contact with the vibrator in a pressurized state. The vibrator is excited by vibration that is displaced in a normal direction of a contact point with the movable body and vibration that is displaced in a driving direction of the movable body, and is excited by the vibrator. The vibration displaced in the driving direction of the moving body is a vibration obtained by synthesizing at least an nth order vibration and a 3nth order vibration (where n is a natural number).

本発明によれば、振動子に励起する移動体の駆動方向に変位する振動を、少なくともn次の振動と3n次の振動を合成した振動とする。これに伴い、振動子の駆動方向の振動速度を矩形波状に変化させることが可能となり、振動子と移動体の接触領域を減らすことなく、振動子の移動体との接触領域での駆動方向の振動速度の分布(振動速度の差)を減少させることが可能となる。これにより、振動子と移動体との滑りを減少させ、超音波駆動装置の高効率化及び長寿命化を実現することが可能となる。   According to the present invention, the vibration displaced in the driving direction of the moving body excited by the vibrator is a vibration obtained by synthesizing at least the nth order vibration and the 3nth order vibration. Accordingly, the vibration speed in the driving direction of the vibrator can be changed to a rectangular wave shape, and the driving direction in the contact area between the vibrator and the moving body can be reduced without reducing the contact area between the vibrator and the moving body. It is possible to reduce the vibration speed distribution (vibration speed difference). As a result, it is possible to reduce slippage between the vibrator and the moving body, and to achieve higher efficiency and longer life of the ultrasonic driving device.

以下、本発明の実施の形態を図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[第1の実施の形態]
図1は、本発明の第1の実施の形態に係る超音波駆動装置としての超音波モータの外観を示す斜視図である。図2は、超音波モータの振動子の外観を示す斜視図である。
[First Embodiment]
FIG. 1 is a perspective view showing an appearance of an ultrasonic motor as an ultrasonic driving apparatus according to the first embodiment of the present invention. FIG. 2 is a perspective view showing the appearance of the vibrator of the ultrasonic motor.

図1及び図2において、超音波モータは、振動子1と移動体2を備えている。振動子1は、直方体(角柱)形状に形成されており、1対の圧電素子1−1a、1−1a、圧電素子1−1b、振動体1−2、接触部1−3から構成されている。移動体2は、細長い直方体(角柱)形状に形成されており、ステンレス鋼から構成されている。振動子1と移動体2とは、不図示のコイルバネ等の加圧手段により加圧状態に接触されている。移動体2は、振動子1に励起する振動により、該移動体2の駆動方向であるx方向の正方向及び逆方向に駆動される。   1 and 2, the ultrasonic motor includes a vibrator 1 and a moving body 2. The vibrator 1 is formed in a rectangular parallelepiped (rectangular prism) shape, and includes a pair of piezoelectric elements 1-1a and 1-1a, a piezoelectric element 1-1b, a vibrating body 1-2, and a contact portion 1-3. Yes. The moving body 2 is formed in an elongated rectangular parallelepiped (prism) shape, and is made of stainless steel. The vibrator 1 and the moving body 2 are in contact with each other in a pressurized state by a pressing means such as a coil spring (not shown). The moving body 2 is driven in the forward direction and the reverse direction of the x direction, which is the driving direction of the moving body 2, by vibration excited by the vibrator 1.

振動体1−2は、移動体2の駆動方向であるx方向に略同一(または同一)の断面形状を有するステンレス鋼製の角柱形状部材として構成されている。つまり、振動体1−2のx方向と直交する平面における断面形状が、振動体1−2のいずれの部位であっても略同一(同一)になるということである。振動体1−2における移動体2との接触面である上面には、2つの接触部1−3が長手方向に所定間隔を置いて一体に形成されている。また、振動体1−2の両側面には、x方向に変位する伸縮振動を振動体1−2に励起するための圧電素子1−1aが接着により固定されている。また、振動体1−2の底面には、該振動体1−2の移動体2との接触箇所の法線方向であるz方向に変位する曲げ振動を、振動体1−2に励起するための圧電素子1−1bが接着により固定されている。   The vibrating body 1-2 is configured as a prismatic member made of stainless steel having substantially the same (or the same) cross-sectional shape in the x direction that is the driving direction of the moving body 2. That is, the cross-sectional shape in the plane orthogonal to the x direction of the vibrating body 1-2 is substantially the same (same) at any part of the vibrating body 1-2. Two contact portions 1-3 are integrally formed at a predetermined interval in the longitudinal direction on the upper surface which is a contact surface with the moving body 2 in the vibrating body 1-2. Moreover, the piezoelectric element 1-1a for exciting the expansion-contraction vibration displaced to ax direction to the vibration body 1-2 is being fixed to the both sides | surfaces of the vibration body 1-2 by adhesion | attachment. Further, in order to excite the vibrating body 1-2 on the bottom surface of the vibrating body 1-2, bending vibration that is displaced in the z direction, which is the normal direction of the contact point of the vibrating body 1-2 with the moving body 2, is applied. The piezoelectric element 1-1b is fixed by adhesion.

圧電素子1−1a、1−1a、圧電素子1−1bは、電気エネルギ(電圧)を機械エネルギ(振動)に変換する電気−機械エネルギ変換素子である。圧電素子1−1a、1−1a、圧電素子1−1bには、不図示の電源により電気エネルギが供給される。   The piezoelectric elements 1-1a and 1-1a and the piezoelectric element 1-1b are electro-mechanical energy conversion elements that convert electrical energy (voltage) into mechanical energy (vibration). Electrical energy is supplied to the piezoelectric elements 1-1a and 1-1a and the piezoelectric element 1-1b from a power source (not shown).

次に、上記構成を有する本実施の形態の超音波モータの駆動方法及び作用効果について、従来の超音波モータとの比較を行いながら図1乃至図7に基づき詳細に説明する。   Next, the driving method and operation effect of the ultrasonic motor of the present embodiment having the above configuration will be described in detail based on FIGS. 1 to 7 while comparing with the conventional ultrasonic motor.

図3は、伸縮振動を励起する圧電素子1−1aの模式図である。図4は、曲げ振動を励起する圧電素子1−1bの模式図である。図5は、2次の曲げ振動の変形を示す模式図である。図6は、1次の伸縮振動の変形を示す模式図である。図7は、合成された伸縮振動の速度を示す模式図である。   FIG. 3 is a schematic diagram of the piezoelectric element 1-1a that excites stretching vibration. FIG. 4 is a schematic diagram of the piezoelectric element 1-1b that excites bending vibration. FIG. 5 is a schematic diagram showing deformation of secondary bending vibration. FIG. 6 is a schematic diagram showing the deformation of the primary stretching vibration. FIG. 7 is a schematic diagram showing the speed of the combined stretching vibration.

先ず、本実施の形態の超音波モータとの比較を行うため、従来の超音波モータの駆動方法とその課題を説明する。尚、従来の超音波モータの以下の説明では、便宜上、本実施の形態の超音波モータに関する図面及び符号を流用するものとする。   First, in order to make a comparison with the ultrasonic motor of the present embodiment, a conventional ultrasonic motor driving method and its problems will be described. In the following description of the conventional ultrasonic motor, for the sake of convenience, the drawings and symbols relating to the ultrasonic motor of the present embodiment are used.

従来の超音波モータの駆動方法では、例えば、振動子1のz方向に変位する2次の曲げ振動(図5参照)の固有振動数と、振動子1のx方向に変位する1次の伸縮振動(図6参照)の固有振動数とを略一致(または一致)させる。圧電素子1−1b及び圧電素子1−1aに、振動子1の前記固有振動数と略一致(または一致)する位相差を持った交番電圧を印加し、振動子1の接触部1−3に楕円軌跡を描く楕円運動を励起する。接触部1−3に加圧接触された移動体2は、x方向の正方向及び逆方向に駆動することができる。   In the conventional ultrasonic motor driving method, for example, the natural frequency of the secondary bending vibration (see FIG. 5) that is displaced in the z direction of the vibrator 1 and the primary expansion and contraction that is displaced in the x direction of the vibrator 1. The natural frequency of the vibration (see FIG. 6) is substantially matched (or matched). An alternating voltage having a phase difference that substantially matches (or matches) the natural frequency of the vibrator 1 is applied to the piezoelectric element 1-1b and the piezoelectric element 1-1a, and the contact portion 1-3 of the vibrator 1 is applied. Excites elliptical motion that draws an elliptical trajectory. The mobile body 2 that is brought into pressure contact with the contact portion 1-3 can be driven in the forward and reverse directions in the x direction.

しかしながら、この場合、振動子1の接触部1−3と移動体2には、有限の接触領域(図7の「接触領域」(水平方向の線から上方に矢印で示す領域))がある。且つ、接触部1−3の楕円運動において、図7の「1次(従来の駆動方法)」に示すようにx方向の振動子1の振動速度に正弦波(sin)状の分布を持つ。このため、振動子1の接触部1−3と移動体2の接触領域では、移動体2の移動速度(図7の「移動体の移動速度」(2点鎖線))と異なる速度の場所で、振動子1の接触部1−3と移動子2の滑りが発生する。   However, in this case, the contact portion 1-3 of the vibrator 1 and the moving body 2 have a finite contact region (“contact region” in FIG. 7 (region indicated by an arrow upward from the horizontal line)). In addition, the elliptical motion of the contact portion 1-3 has a sinusoidal distribution in the vibration velocity of the vibrator 1 in the x direction, as shown in “first order (conventional driving method)” in FIG. For this reason, in the contact area between the contact part 1-3 of the vibrator 1 and the moving body 2, the moving speed of the moving body 2 ("moving speed of the moving body" (two-dot chain line) in FIG. 7) is different. As a result, the contact portion 1-3 of the vibrator 1 and the slider 2 slip.

上記課題欄で説明したように、滑り発生に伴い摺動損失と接触部1−3及び移動体2の摩耗が起こり、摺動損失が大きいとモータ効率が下がり、摩耗が大きいとモータ寿命が短くなる。また、接触部1−3と移動体2の接触領域での接触部1−3の、移動体2の駆動方向であるx方向の振動速度の分布を減少させるために、接触部1−3と移動体2の接触領域を減少させると、両者の接触が不安定になり、異音の発生または駆動不安定の原因となる。   As described in the above problem column, sliding loss and wear of the contact part 1-3 and the moving body 2 occur as a result of slippage. If the sliding loss is large, the motor efficiency decreases, and if the wear is large, the motor life is shortened. Become. Further, in order to reduce the distribution of the vibration velocity in the x direction that is the driving direction of the moving body 2 of the contact portion 1-3 in the contact area between the contact portion 1-3 and the moving body 2, the contact portion 1-3 and If the contact area of the moving body 2 is reduced, the contact between the two becomes unstable, causing abnormal noise or driving instability.

本実施の形態の超音波モータは、以下で詳述するような駆動方法を用いることにより、従来技術における前記のような問題を解決するものである。   The ultrasonic motor according to the present embodiment solves the above-described problems in the prior art by using a driving method described in detail below.

次に、本実施の形態の超音波モータの駆動方法及び作用効果を説明する。本実施の形態の超音波モータ駆動方法が、従来の超音波モータ駆動方法と異なる点は、振動子1に対して移動体2の駆動方向であるx方向の1次の伸縮振動に加え、3次の伸縮振動を同時に励起する点である。   Next, the driving method and operation effect of the ultrasonic motor according to the present embodiment will be described. The ultrasonic motor driving method of the present embodiment is different from the conventional ultrasonic motor driving method in that in addition to the primary stretching vibration in the x direction which is the driving direction of the moving body 2 with respect to the vibrator 1, 3 This is the point of exciting the next stretching vibration at the same time.

本実施の形態では、振動子1に対して移動体2の駆動方向であるx方向に1次の伸縮振動と3次の伸縮振動を励起するために、上述したように振動体1−2の両側面に圧電素子1−1a(図3参照)を接着している。圧電素子1−1aは、図3に示すように、一方の面(A面)は4つの電極(電極A1、電極A3、電極A3、電極AS)に分割されており、不図示の他方の面(B面)は全面に渡って1つの電極が形成されている。圧電素子1−1aの振動体1−2との接着はB面で行われており、A面は表面に露出している。   In this embodiment, in order to excite the primary stretching vibration and the tertiary stretching vibration in the x direction that is the driving direction of the moving body 2 with respect to the vibrator 1, as described above, Piezoelectric elements 1-1a (see FIG. 3) are bonded to both side surfaces. As shown in FIG. 3, the piezoelectric element 1-1a has one surface (A surface) divided into four electrodes (electrode A1, electrode A3, electrode A3, electrode AS), and the other surface (not shown). One electrode is formed over the entire surface (B surface). Bonding of the piezoelectric element 1-1a to the vibrating body 1-2 is performed on the B surface, and the A surface is exposed on the surface.

圧電素子1−1aのB面の電極と不図示の電源との電気的な接続は、導電性を有する(ステンレス鋼製)振動体1−2を介して、不図示のフレキシブル基板により行われている。圧電素子1−1aのA面の電極と上記電源との電気的な接続も、同一の上記フレキシブル基板により行われている。A面の4つの電極の内、電極A1を1次の伸縮振動を励起するために用い、2つの電極A3を3次の伸縮振動を励起するために用い、電極ASは振動体1−2の振動速度を検出するセンサ部として用いている。B面の電極は共通のグラウンド電極として使用している。上記各電極は、図3に+で図示しているように、全て圧電素子の厚さ方向に同じ分極方向となっている。   The electrical connection between the electrode on the B surface of the piezoelectric element 1-1a and a power source (not shown) is performed by a flexible substrate (not shown) via a vibrating body 1-2 having conductivity (made of stainless steel). Yes. The electrical connection between the electrode on the A surface of the piezoelectric element 1-1a and the power source is also performed by the same flexible substrate. Of the four electrodes on the A surface, the electrode A1 is used to excite the first order stretching vibration, the two electrodes A3 are used to excite the third order stretching vibration, and the electrode AS is the vibrating body 1-2. It is used as a sensor unit that detects the vibration speed. The B side electrode is used as a common ground electrode. Each of the electrodes has the same polarization direction in the thickness direction of the piezoelectric element, as indicated by + in FIG.

尚、超音波モータは、演算処理及びモータ駆動制御を司る制御部(不図示)を備えている。制御部は、圧電素子1−1aの電極AS(センサ部)により検出された振動子1の振動体1−2の振動速度に基づき、振動子1における各次数の伸縮振動の速度の振幅を演算する。また、制御部は、振動子1におけるn次の伸縮振動の速度の振幅と3n次の伸縮振動の速度の振幅との比を、1:1/3に略一致(または一致)させる制御を行う。これらの伸縮振動については後述する。   Note that the ultrasonic motor includes a control unit (not shown) that performs arithmetic processing and motor drive control. Based on the vibration speed of the vibrating body 1-2 of the vibrator 1 detected by the electrode AS (sensor part) of the piezoelectric element 1-1a, the control unit calculates the amplitude of the stretching vibration speed of each order in the vibrator 1. To do. In addition, the control unit performs control so that the ratio of the amplitude of the n-th order stretching vibration and the amplitude of the 3n-order stretching vibration in the vibrator 1 substantially matches (or matches) the ratio of 1: 1/3. . These stretching vibrations will be described later.

また、本実施の形態では、振動子1における移動体2との接触箇所の法線方向であるz方向に変位する振動として、図5に示すような2次の曲げ振動を用いている。振動子1に対して2次の曲げ振動を励起するために、上述したように振動体1−2の底面に圧電素子1−1b(図4参照)を接着している。圧電素子1−1bは、図4に示すように、一方の面(C面)は2つの電極に分割されており、不図示の他方の面(D面)は全面に渡って1つの電極が形成されている。圧電素子1−1bの振動体1−2との接着はD面で行われている。   Further, in the present embodiment, a secondary bending vibration as shown in FIG. 5 is used as the vibration displaced in the z direction, which is the normal direction of the contact portion of the vibrator 1 with the moving body 2. In order to excite secondary bending vibration with respect to the vibrator 1, the piezoelectric element 1-1b (see FIG. 4) is bonded to the bottom surface of the vibrating body 1-2 as described above. As shown in FIG. 4, the piezoelectric element 1-1b has one surface (C surface) divided into two electrodes, and the other surface (D surface) (not shown) has one electrode over the entire surface. Is formed. Bonding of the piezoelectric element 1-1b to the vibrating body 1-2 is performed on the D surface.

圧電素子1−1bのC面の電極及びD面の電極と不図示の電源との電気的な接続は、圧電素子1−1aの場合と同様である。C面の2つの電極の分極方向は、図4に+−で図示しているように、圧電素子1−1bの厚さ方向に逆向きで、D面の電極を共通のグラウンド電極としている。C面の2つの電極に同じ交番電圧を印加し、上述したようにz方向に変位する2次の曲げ振動を励起している。   The electrical connection between the C-plane electrode and D-plane electrode of the piezoelectric element 1-1b and a power source (not shown) is the same as that of the piezoelectric element 1-1a. The polarization direction of the two electrodes on the C plane is opposite to the thickness direction of the piezoelectric element 1-1b as shown by +-in FIG. 4, and the electrode on the D plane is a common ground electrode. The same alternating voltage is applied to the two electrodes on the C plane to excite secondary bending vibrations that are displaced in the z direction as described above.

振動子1における移動体2との接触部分である接触部1−3は、図5に示すように、z方向に変位する2次の曲げ振動において、移動体2の駆動方向であるx方向の変位及び速度が極めて小さい2箇所の腹の位置(図中黒丸)となるように振動体1−2に設けている。これにより、移動体2の駆動方向であるx方向の振動速度に及ぼす2次の曲げ振動の影響を極めて少なくでき、振動子1の伸縮振動によるx方向の振動速度の合成が容易になると共に、振動子1の固有振動数を低くすることが可能となる。   As shown in FIG. 5, the contact portion 1-3, which is a contact portion of the vibrator 1 with the moving body 2, has an x-direction which is the driving direction of the moving body 2 in the secondary bending vibration displaced in the z direction. The vibrating body 1-2 is provided so as to have two antinode positions (black circles in the figure) where displacement and speed are extremely small. Thereby, the influence of the secondary bending vibration on the vibration speed in the x direction which is the driving direction of the moving body 2 can be extremely reduced, and the composition of the vibration speed in the x direction due to the stretching vibration of the vibrator 1 can be facilitated. The natural frequency of the vibrator 1 can be lowered.

尚、本実施の形態では、振動子1における移動体2の駆動方向であるx方向の振動速度を有する振動として、x方向の振動速度が大きく且つ振動の合成が最も容易であるという点で伸縮振動を用いているが、伸縮振動に限定されるものではない。伸縮振動以外としては例えば曲げ振動が考えられる。   In this embodiment, the vibration having the vibration speed in the x direction that is the driving direction of the moving body 2 in the vibrator 1 is large in that the vibration speed in the x direction is large and the vibration can be synthesized most easily. Although vibration is used, it is not limited to stretching vibration. For example, bending vibration can be considered as other than stretching vibration.

次に、振動子1における移動体2の駆動方向であるx方向の振動の合成について説明する。例えば、1次の伸縮振動の速度の振幅と、固有振動数が1次の伸縮振動の略3倍(または3倍)の3次の伸縮振動の速度の振幅との比を、1:1/3としたとき、図7の「1次+3次」に示すような伸縮振動の速度が得られる。その結果、振動子1の接触部1−3と移動体2の接触領域では、振動子1の振動速度と移動体2の移動速度との差を減少させることが可能となる。これにより、振動子1の接触部1−3と移動体2の滑りを減少させ、超音波モータの高効率化及び長寿命化を実現することが可能となる。   Next, synthesis of vibration in the x direction that is the driving direction of the moving body 2 in the vibrator 1 will be described. For example, the ratio of the amplitude of the primary stretching vibration to the amplitude of the third stretching vibration whose natural frequency is approximately three times (or three times) the primary stretching vibration is 1: 1 / When 3, it is possible to obtain a stretching vibration speed as shown in “first order + third order” in FIG. As a result, in the contact area between the contact portion 1-3 of the vibrator 1 and the moving body 2, the difference between the vibration speed of the vibrator 1 and the moving speed of the moving body 2 can be reduced. As a result, slippage between the contact portion 1-3 of the vibrator 1 and the moving body 2 can be reduced, and high efficiency and long life of the ultrasonic motor can be realized.

また、図7の「1次+3次+5次+・・・」に示すような伸縮振動の速度とすることにより、振動子1における移動体2の駆動方向であるx方向の振動速度を矩形波に近づけることが可能となる。その結果、振動子1の振動速度と移動体2の移動速度との差をより減少させることが可能となる。これにより、振動子1の接触部1−3と移動体2の滑りをより減少させることが可能となる。   Further, by setting the speed of stretching vibration as shown in “first order + third order + 5th order +...” In FIG. 7, the vibration speed in the x direction that is the driving direction of the moving body 2 in the vibrator 1 is a rectangular wave. It becomes possible to approach. As a result, the difference between the vibration speed of the vibrator 1 and the movement speed of the moving body 2 can be further reduced. Thereby, it is possible to further reduce the sliding between the contact portion 1-3 of the vibrator 1 and the moving body 2.

本実施の形態では、振動子1における移動体2の駆動方向であるx方向の振動の合成を行う際、上記のように1次の伸縮振動と3次の伸縮振動のみを合成しているが、その理由は、簡便な振動子構成と簡便な回路構成でより大きな効果が得られるからである。   In the present embodiment, when the vibration in the x direction that is the driving direction of the moving body 2 in the vibrator 1 is synthesized, only the first and third stretching vibrations are synthesized as described above. The reason is that a greater effect can be obtained with a simple vibrator configuration and a simple circuit configuration.

また、本実施の形態では、振動子1における伸縮振動の最低次の次数を1次とした場合を例に挙げているが、1次に限定されるものではない。伸縮振動の最低次の次数をn次とすれば、n次+3n次+5n次+・・・+(2m+1)n次の合成された振動であれば(m、nは自然数)、接触部1−3と移動体2の滑りを減少させる効果が得られる。このとき、移動体2の駆動方向であるx方向の振動速度を良好な矩形波とするには、n次の伸縮振動に対する(2m+1)n次の伸縮振動の速度の振幅比を1:1/(2m+1)に略一致(または一致)させることが最も効果的である。   In the present embodiment, the case where the lowest order of the stretching vibration in the vibrator 1 is taken as an example is described as an example, but the first order is not limited. Assuming that the lowest order of the stretching vibration is n order, if the vibration is a synthesized vibration of n order + 3n order + 5n order +... + (2m + 1) n order (m and n are natural numbers), the contact portion 1− 3 and the effect of reducing the slip of the moving body 2 is obtained. At this time, in order to make the vibration speed in the x direction, which is the driving direction of the moving body 2, a favorable rectangular wave, the amplitude ratio of the speed of the (2m + 1) n-order stretching vibration to the n-order stretching vibration is 1: 1 /. It is most effective to substantially match (or match) (2m + 1).

次に、振動子1における移動体2の駆動方向に変位する伸縮振動において、最低次のn次の伸縮振動の固有振動数と3n次の伸縮振動の固有振動数とを、略整数倍(または整数倍)の関係となるように設定している点についての効果を説明する。既に、移動体2の駆動方向であるx方向の振動速度を矩形波に近づけることが好ましいと述べたが、超音波モータのある程度の駆動の間、上記速度を矩形波に近づけておくためには、合成する伸縮振動の同期を取ることが必要となってくる。   Next, in the stretching vibration displaced in the driving direction of the moving body 2 in the vibrator 1, the natural frequency of the lowest-order n-order stretching vibration and the natural frequency of the 3n-order stretching vibration are approximately integer multiples (or The effect of the points set so as to be an integer multiple) will be described. It has already been described that it is preferable to make the vibration speed in the x direction, which is the driving direction of the moving body 2, close to a rectangular wave, but in order to keep the speed close to a rectangular wave during a certain amount of driving of the ultrasonic motor. It is necessary to synchronize the stretching vibration to be synthesized.

合成する伸縮振動の同期を取る方法としては、合成する伸縮振動の周期を略整数倍(または整数倍)することが望ましい。また、一定時間ごとに、別途、合成する伸縮振動の同期をとる手段を設けてもよい。また、接触部1−3と移動体2の接触の同期もとることが望ましい。これには、合成される移動体2の駆動方向であるx方向の振動速度の伸縮振動のうち、最低次の伸縮振動の固有振動数と、振動子1と移動体2の接触箇所の法線方向であるz方向の曲げ振動の固有振動数とを、略一致(または一致)させることが簡易な方法である。   As a method of synchronizing the stretching vibration to be synthesized, it is desirable to multiply the period of the stretching vibration to be synthesized by substantially an integral multiple (or an integer multiple). In addition, a means for synchronizing the expansion and contraction vibration to be synthesized may be separately provided at regular time intervals. It is desirable to synchronize the contact between the contact portion 1-3 and the moving body 2. This includes the natural frequency of the lowest-order stretching vibration among the stretching vibrations of the vibration velocity in the x direction that is the driving direction of the moving body 2 to be synthesized, and the normal line of the contact point between the vibrator 1 and the moving body 2. It is a simple method to substantially match (or match) the natural frequency of the bending vibration in the z direction that is the direction.

次に、振動子1を構成する振動体1−2の断面形状を、移動体2の駆動方向であるx方向に略同一(または同一)の断面形状としている点についての効果を説明する。振動子1における、移動体2の駆動方向であるx方向に振動する振動モードをx方向に伸縮する伸縮振動モードとし、x方向の断面形状を略同一形状(または同一形状)とする。これにより、1次の伸縮振動の固有振動数とn次の伸縮振動の固有振動数とが、略n倍(略整数倍)(または整数倍)の関係になり、合成する伸縮振動の同期を容易に取ることが可能となる。   Next, an effect of the fact that the cross-sectional shape of the vibrating body 1-2 constituting the vibrator 1 is substantially the same (or the same) cross-sectional shape as the driving direction of the moving body 2 will be described. In the vibrator 1, a vibration mode that vibrates in the x direction that is the driving direction of the moving body 2 is an expansion / contraction vibration mode that expands and contracts in the x direction, and a cross-sectional shape in the x direction is substantially the same shape (or the same shape). As a result, the natural frequency of the first-order stretching vibration and the natural frequency of the n-th stretching vibration are in a relationship of approximately n times (approximately integer multiples) (or integer multiples). It can be easily taken.

以上説明したように、本実施の形態によれば、振動子1に励起する移動体2の駆動方向(x方向)に変位する振動を、少なくともn次の振動と3n次の振動を合成した振動とする。これに伴い、振動子1における移動体2の駆動方向の振動速度を矩形波状に変化させることが可能となり、振動子1と移動体2の接触領域を減らすことなく、振動子1の移動体2との接触領域での駆動方向の振動速度の分布(振動速度の差)を減少させることが可能となる。これにより、振動子1と移動体2との滑りを減少させ、超音波モータの高効率化及び長寿命化を実現することが可能となる。   As described above, according to the present embodiment, the vibration displaced in the driving direction (x direction) of the moving body 2 excited by the vibrator 1 is a vibration obtained by combining at least the nth order vibration and the 3nth order vibration. And Accordingly, the vibration speed of the vibrator 1 in the driving direction of the moving body 2 can be changed to a rectangular wave shape, and the moving body 2 of the vibrator 1 can be reduced without reducing the contact area between the vibrator 1 and the moving body 2. It is possible to reduce the vibration velocity distribution (vibration velocity difference) in the driving direction in the contact area. Thereby, it is possible to reduce slippage between the vibrator 1 and the moving body 2 and to realize high efficiency and long life of the ultrasonic motor.

また、振動子1に励起する移動体2の駆動方向に変位するn次の振動の固有振動数と3n次の振動の固有振動数とを、略整数倍の関係となるように設定している。これにより、振動子1における移動体2の駆動方向の振動速度を矩形波状にすることが容易となり、上記効果を容易に得ることが可能となる。   Further, the natural frequency of the nth order vibration displaced in the driving direction of the moving body 2 excited by the vibrator 1 and the natural frequency of the 3nth order vibration are set so as to have a substantially integer multiple relationship. . Thereby, it becomes easy to make the vibration speed of the vibrator 1 in the driving direction of the movable body 2 rectangular, and the above-described effect can be easily obtained.

また、振動子1における伸縮振動の最低次の次数を1次とした場合は、合成する複数の次数の振動の各々の固有振動数を最も小さくすることが可能となり、上記効果を簡便な振動子及び回路構成で得ることが可能となる。   Further, when the lowest order of the stretching vibration in the vibrator 1 is set to the first order, the natural frequency of each of the vibrations of a plurality of orders to be synthesized can be minimized, and the above effect can be achieved with a simple vibrator. And a circuit configuration.

また、超音波モータの制御部により、振動子1におけるn次の伸縮振動の速度の振幅と3n次の伸縮振動の速度の振幅との比を1:1/3に略一致(または一致)させる制御を行う。これにより、振動子1における移動体2の駆動方向の振動速度を良好な矩形波状に制御することが可能となり、上記効果をより顕著に得ることが可能となる。   Further, the control unit of the ultrasonic motor substantially matches (or matches) the ratio of the amplitude of the n-order stretching vibration speed and the amplitude of the 3n-order stretching vibration speed in the vibrator 1 to 1: 1/3. Take control. Thereby, the vibration speed in the driving direction of the moving body 2 in the vibrator 1 can be controlled in a favorable rectangular wave shape, and the above effect can be obtained more remarkably.

また、振動子1に励起する移動体2の駆動方向に変位する振動を、移動体2の駆動方向の伸縮振動とすることで、大きな駆動方向の振動成分を得ることができ且つ振動の合成が容易となり、上記効果を容易な構成で得ることが可能となる。   Further, by making the vibration displaced in the driving direction of the moving body 2 excited by the vibrator 1 into a stretching vibration in the driving direction of the moving body 2, a large vibration component in the driving direction can be obtained, and the vibration can be synthesized. It becomes easy and the above-mentioned effect can be obtained with an easy configuration.

また、振動子1の断面形状を、移動体2の駆動方向に略同一の断面形状とすることで、振動子1に励起する移動体2の駆動方向の伸縮振動の合成する各々の固有振動数が略整数倍となる。これにより、容易な構成で、振動子1における移動体2の駆動方向の振動速度を矩形波状とすることが可能となり、上記効果を容易に得ることが可能となる。   Further, by making the cross-sectional shape of the vibrator 1 substantially the same cross-sectional shape in the driving direction of the moving body 2, each natural frequency synthesized by the stretching vibration in the driving direction of the moving body 2 excited by the vibrator 1. Is approximately an integer multiple. Thereby, it is possible to make the vibration speed in the driving direction of the moving body 2 in the vibrator 1 to be a rectangular wave shape with an easy configuration, and the above-described effect can be easily obtained.

また、振動子1に励起する移動体2との接触箇所の法線方向(z方向)に変位する振動の固有振動数を、振動子1に励起する移動体2の駆動方向に変位する振動の最低次の振動の固有振動数と略一致するように設定している。これに伴い、振動子1に励起する移動体2との接触箇所の法線方向に変位する振動の周期と、振動子1における移動体2の駆動方向の矩形波状の振動速度の周期とを略一致させることが可能となる。これにより、振動子1と移動体2が接触しているときに、振動子1に励起する移動体2の駆動方向に変位する振動の速度を略一定にすることが容易となり、上記効果を容易に得ることが可能となる。   Further, the natural frequency of the vibration displaced in the normal direction (z direction) of the contact point with the moving body 2 excited by the vibrator 1 is changed to the vibration displacement displaced in the driving direction of the moving body 2 excited by the vibrator 1. It is set so as to substantially match the natural frequency of the lowest order vibration. Accordingly, the period of vibration displaced in the normal direction of the contact point with the moving body 2 excited by the vibrator 1 and the period of the rectangular wave-like vibration speed in the driving direction of the moving body 2 in the vibrator 1 are approximately set. It is possible to match. Accordingly, when the vibrator 1 and the moving body 2 are in contact with each other, it becomes easy to make the speed of the vibration displaced in the driving direction of the moving body 2 excited by the vibrator 1 substantially constant, and the above effect is easy. Can be obtained.

また、振動子1に励起する移動体2との接触箇所の法線方向に変位する振動を、曲げ振動とすることで、前記法線方向に変位する振動の固有振動数を低くでき、振動子1の振幅が大きく、振動子1と移動体2の安定した接触を得ることが可能となる。これと共に、簡易な構成で、振動子1に励起する移動体2との接触箇所の法線方向に変位する振動の周期と、振動子1における移動体2の駆動方向の矩形波状の振動速度の周期とを略一致させることが可能となる。   Further, by making the vibration displaced in the normal direction of the contact portion with the moving body 2 excited by the vibrator 1 into a bending vibration, the natural frequency of the vibration displaced in the normal direction can be lowered, and the vibrator The amplitude of 1 is large, and stable contact between the vibrator 1 and the moving body 2 can be obtained. At the same time, with a simple configuration, the period of vibration displaced in the normal direction of the contact point with the moving body 2 excited by the vibrator 1 and the vibration speed of the rectangular wave in the driving direction of the moving body 2 in the vibrator 1 are as follows. It becomes possible to substantially match the period.

[第2の実施の形態]
図8は、本発明の第2の実施の形態に係る超音波駆動装置としての超音波モータの振動子の振動体の外観を示す斜視図であり、(a)は、円形の断面形状を有する振動体を示す図、(b)は、楕円形の断面形状を有する振動体を示す図、(c)は、三角形の断面形状を有する振動体を示す図である。
[Second Embodiment]
FIG. 8 is a perspective view showing the appearance of the vibrator of the vibrator of the ultrasonic motor as the ultrasonic driving device according to the second embodiment of the present invention, and (a) has a circular cross-sectional shape. The figure which shows a vibrating body, (b) is a figure which shows the vibrating body which has an elliptical cross-sectional shape, (c) is a figure which shows the vibrating body which has a triangular cross-sectional shape.

図8において、本実施の形態の振動子の第1例は、図8(a)に示すように振動子11の振動体11−2が、移動体(不図示)の駆動方向に略同一(または同一)の円形の断面形状を有する。振動体11−2の接触部11−3と移動体とは、板バネ等の加圧手段(不図示)により移動体との接触箇所の法線方向であるz方向に加圧接触されている。   8, in the first example of the vibrator of the present embodiment, as shown in FIG. 8A, the vibrator 11-2 of the vibrator 11 is substantially the same in the driving direction of the moving body (not shown) ( Or the same cross-sectional shape. The contact portion 11-3 of the vibrating body 11-2 and the moving body are pressed and contacted in the z direction, which is the normal direction of the contact point with the moving body, by pressurizing means (not shown) such as a leaf spring. .

また、本実施の形態の振動子の第2例は、図8(b)に示すように振動子21の振動体21−2が、移動体(不図示)の駆動方向に略同一(または同一)の楕円形の断面形状を有する。振動体21−2の接触部21−3と移動体とは、板バネ等の加圧手段(不図示)によりz方向に加圧接触されている。   Further, in the second example of the vibrator of the present embodiment, as shown in FIG. 8B, the vibrator 21-2 of the vibrator 21 is substantially the same (or the same) in the driving direction of the moving body (not shown). ) Having an elliptical cross-sectional shape. The contact portion 21-3 of the vibrating body 21-2 and the moving body are pressed and contacted in the z direction by a pressing means (not shown) such as a leaf spring.

また、本実施の形態の振動子の第3例は、図8(c)に示すように振動子31の振動体31−2が、移動体(不図示)の駆動方向に略同一(または同一)の三角形の断面形状を有する。振動体31−2の接触部31−3と移動体とは、板バネ等の加圧手段(不図示)によりz方向に加圧接触されている。   Further, in the third example of the vibrator of the present embodiment, as shown in FIG. 8C, the vibrating body 31-2 of the vibrator 31 is substantially the same (or the same) in the driving direction of the moving body (not shown). ) Having a triangular cross-sectional shape. The contact portion 31-3 of the vibrating body 31-2 and the moving body are pressed and contacted in the z direction by a pressing means (not shown) such as a leaf spring.

本実施の形態においても、移動体の駆動方向であるx方向の1次の伸縮振動と3次の伸縮振動を合成することで、x方向の振動の速度を矩形波状にすることができる。これにより、上記第1の実施の形態と同様に、振動子と移動体の滑りを減少させることができる効果が得られる。   Also in the present embodiment, the speed of vibration in the x direction can be made to be a rectangular wave shape by combining the primary stretching vibration in the x direction that is the driving direction of the moving body and the tertiary stretching vibration. Thereby, the effect which can reduce the slip of a vibrator | oscillator and a moving body is acquired similarly to the said 1st Embodiment.

尚、本実施の形態では、振動体における移動体の駆動方向の断面形状を円形、楕円形、三角形とした場合を例に挙げているが、特定の断面形状に限定されるものではなく、その他のどのような断面形状でも上記効果は得られる。   In this embodiment, the case where the cross-sectional shape in the driving direction of the moving body in the vibrating body is a circle, an ellipse, or a triangle is given as an example, but the present invention is not limited to a specific cross-sectional shape, and other The above effects can be obtained with any cross-sectional shape.

以上説明したように、本実施の形態によれば、上記第1の実施の形態と同様に、振動子と移動体の接触領域を減らすことなく、振動子と移動体との滑りを減少させ、超音波モータの高効率化及び長寿命化を実現することが可能となるなどの効果を奏する。   As described above, according to the present embodiment, similarly to the first embodiment, without reducing the contact area between the vibrator and the moving body, the slip between the vibrator and the moving body is reduced. There are effects such as high efficiency and long life of the ultrasonic motor.

[第3の実施の形態]
図9は、本発明の第3の実施の形態に係る超音波駆動装置としての超音波モータの振動子の外観を示す斜視図である。
[Third Embodiment]
FIG. 9 is a perspective view showing an appearance of a vibrator of an ultrasonic motor as an ultrasonic driving apparatus according to the third embodiment of the present invention.

図9において、振動子41は、円環形状に形成されており、圧電素子41−1、振動体41−2、接触部41−3から構成されている。振動体41−2の底面には、圧電素子41−1が接着により固定されている。振動体41−2の上面には、多数の突起形状の接触部41−3が周方向に所定間隔で振動体41−2と一体に形成されている。接触部41−3と円環形状の移動体(不図示)とは、ウェーブワッシャ(不図示)により、接触部41−3と移動体との接触箇所の法線方向であるz方向に加圧接触されている。振動子41の圧電素子41−1と電源(不図示)とは、フレキシブル基板43により電気的に接続されている。   In FIG. 9, the vibrator 41 is formed in an annular shape, and includes a piezoelectric element 41-1, a vibrating body 41-2, and a contact portion 41-3. A piezoelectric element 41-1 is fixed to the bottom surface of the vibrating body 41-2 by adhesion. On the upper surface of the vibrating body 41-2, a large number of protrusion-shaped contact portions 41-3 are formed integrally with the vibrating body 41-2 at predetermined intervals in the circumferential direction. The contact portion 41-3 and the annular moving body (not shown) are pressurized in the z direction, which is the normal direction of the contact portion between the contact portion 41-3 and the moving body, by a wave washer (not shown). Is touching. The piezoelectric element 41-1 of the vibrator 41 and a power source (not shown) are electrically connected by a flexible substrate 43.

振動子41に励起する、移動体との接触箇所の法線方向であるz方向に変位する振動は、円環の面外の曲げ振動である。また、振動子41に励起する、移動体の駆動方向であるθ方向(周方向)に変位する振動は、θ方向の伸縮振動であり、1次の伸縮振動と3次の伸縮振動と5次の伸縮振動が合成される。θ方向の伸縮振動における、1次の伸縮振動と3次の伸縮振動と5次の伸縮振動の固有振動数の比は、略整数倍(または整数倍)の1:3:5となり、各々の伸縮振動の同期が容易となっている。   The vibration excited in the vibrator 41 and displaced in the z direction, which is the normal direction of the contact point with the moving body, is a bending vibration out of the plane of the ring. In addition, the vibration that is excited in the vibrator 41 and is displaced in the θ direction (circumferential direction) that is the driving direction of the moving body is the stretching vibration in the θ direction, which is the first stretching vibration, the third stretching vibration, and the fifth order. The stretching vibration is synthesized. The ratio of the natural frequencies of the first-order stretching vibration, the third-order stretching vibration, and the fifth-order stretching vibration in the θ-direction stretching vibration is 1: 3: 5, which is substantially an integer multiple (or integer multiple). It is easy to synchronize stretching vibration.

本実施の形態においては、振動子41に加圧接触される移動体の駆動方向を、上記第1の実施の形態では直交座標系のx方向であったのに対し、円筒座標系のθ方向(周方向)としている。本実施の形態においても、上記第1の実施の形態と同様に、振動子41と移動体の滑りを減少させることができる効果が得られる。   In the present embodiment, the driving direction of the moving body that is in pressure contact with the vibrator 41 is the x direction of the orthogonal coordinate system in the first embodiment, whereas the θ direction of the cylindrical coordinate system. (Circumferential direction). Also in the present embodiment, as in the first embodiment, an effect of reducing the slip between the vibrator 41 and the moving body can be obtained.

以上説明したように、本実施の形態によれば、上記第1の実施の形態と同様に、振動子と移動体の接触領域を減らすことなく、振動子と移動体との滑りを減少させ、超音波モータの高効率化及び長寿命化を実現することが可能となるなどの効果を奏する。   As described above, according to the present embodiment, similarly to the first embodiment, without reducing the contact area between the vibrator and the moving body, the slip between the vibrator and the moving body is reduced. There are effects such as high efficiency and long life of the ultrasonic motor.

本発明の第1の実施の形態に係る超音波駆動装置としての超音波モータの外観を示す斜視図である。1 is a perspective view showing an appearance of an ultrasonic motor as an ultrasonic drive device according to a first embodiment of the present invention. 図1の超音波モータの振動子の外観を示す斜視図である。It is a perspective view which shows the external appearance of the vibrator | oscillator of the ultrasonic motor of FIG. 伸縮振動を励起する圧電素子の模式図である。It is a schematic diagram of a piezoelectric element that excites stretching vibration. 曲げ振動を励起する圧電素子の模式図である。It is a schematic diagram of the piezoelectric element which excites bending vibration. 2次の曲げ振動の変形を示す模式図である。It is a schematic diagram which shows a deformation | transformation of a secondary bending vibration. 1次の伸縮振動の変形を示す模式図である。It is a schematic diagram which shows the deformation | transformation of a primary expansion-contraction vibration. 合成された伸縮振動の速度を示す模式図である。It is a schematic diagram which shows the speed | rate of the synthetic | combination stretching vibration. 本発明の第2の実施の形態に係る超音波駆動装置としての超音波モータの振動子の振動体の外観を示す斜視図であり、(a)は、円形の断面形状を有する振動体を示す図、(b)は、楕円形の断面形状を有する振動体を示す図、(c)は、三角形の断面形状を有する振動体を示す図である。It is a perspective view which shows the external appearance of the vibrating body of the vibrator | oscillator of the ultrasonic motor as an ultrasonic drive device concerning the 2nd Embodiment of this invention, (a) shows the vibrating body which has circular cross-sectional shape. FIG. 4B is a diagram illustrating a vibrating body having an elliptical cross-sectional shape, and FIG. 5C is a diagram illustrating a vibrating body having a triangular cross-sectional shape. 本発明の第3の実施の形態に係る超音波駆動装置としての超音波モータの振動子の外観を示す斜視図である。It is a perspective view which shows the external appearance of the vibrator | oscillator of the ultrasonic motor as an ultrasonic drive device concerning the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1、11、21、31 振動子
1−1a 伸縮振動を励起する圧電素子(電気−機械エネルギ変換素子)
1−1b 曲げ振動を励起する圧電素子(電気−機械エネルギ変換素子)
1−2、11−2、21−2、31−2 振動体
1−3、11−3、21−3、31−3 接触部
2 移動体
A1 1次の伸縮振動を励起する電極
A3 3次の伸縮振動を励起する電極
AS 電極(検出手段)
41 振動子
41−1 圧電素子(電気−機械エネルギ変換素子)
41−2 振動体
41−3 接触部
DESCRIPTION OF SYMBOLS 1, 11, 21, 31 Vibrator 1-1a Piezoelectric element (electro-mechanical energy conversion element) which excites stretching vibration
1-1b Piezoelectric element that excites bending vibration (electro-mechanical energy conversion element)
1-2, 11-2, 21-2, 31-2 Vibrating body 1-3, 11-3, 21-3, 31-3 Contact part 2 Moving body A1 Electrode for exciting primary stretching vibration A3 Tertiary That excites the stretching vibration of the electrode AS electrode (detection means)
41 vibrator 41-1 piezoelectric element (electro-mechanical energy conversion element)
41-2 Vibrating body 41-3 Contact part

Claims (9)

電気−機械エネルギ変換素子により振動が励起される振動子と、
前記振動子に加圧状態に接触され前記振動により駆動される移動体とを備え、
前記振動子には、前記移動体との接触箇所の法線方向に変位する振動と、前記移動体の駆動方向に変位する振動が励起され、
前記振動子に励起される前記移動体の駆動方向に変位する振動が、少なくともn次の振動と3n次の振動を合成した振動である(但しnは自然数)ことを特徴とする超音波駆動装置。
A vibrator whose vibration is excited by an electromechanical energy conversion element;
A moving body that is brought into contact with the vibrator in a pressurized state and driven by the vibration;
The vibrator is excited by vibration that is displaced in a normal direction of a contact portion with the moving body and vibration that is displaced in a driving direction of the moving body,
The ultrasonic drive device characterized in that the vibration displaced in the drive direction of the moving body excited by the vibrator is a vibration obtained by synthesizing at least the n-th order vibration and the 3n-order vibration (where n is a natural number). .
前記振動子に励起される前記移動体の駆動方向に変位する前記n次の振動の固有振動数と前記3n次の振動の固有振動数とが、略整数倍の関係となるように設定されることを特徴とする請求項1記載の超音波駆動装置。   The natural frequency of the n-th order vibration displaced in the driving direction of the moving body excited by the vibrator and the natural frequency of the 3n-order vibration are set so as to have a substantially integer multiple relationship. The ultrasonic drive device according to claim 1. 前記自然数nが1であることを特徴とする請求項1又は2記載の超音波駆動装置。   The ultrasonic driving apparatus according to claim 1, wherein the natural number n is 1. 3. 前記振動子の振動速度を検出する検出手段と、
前記検出手段により検出した振動速度に基づき各次数の振動の振幅を演算し、前記n次の振動の振動速度の振幅と前記3n次の振動の振動速度の振幅との比を1:1/3に略一致させる制御手段と、
を更に備えることを特徴とする請求項1乃至3の何れかに記載の超音波駆動装置。
Detecting means for detecting a vibration speed of the vibrator;
Based on the vibration speed detected by the detecting means, the vibration amplitude of each order is calculated, and the ratio between the vibration speed amplitude of the n-th vibration and the vibration speed amplitude of the 3n-order vibration is 1: 1/3. Control means for substantially matching
The ultrasonic drive device according to claim 1, further comprising:
前記振動子に励起される前記移動体の駆動方向に変位する振動が、前記移動体の駆動方向の伸縮振動であることを特徴とする請求項1乃至4の何れかに記載の超音波駆動装置。   5. The ultrasonic drive device according to claim 1, wherein the vibration displaced in the driving direction of the moving body excited by the vibrator is a stretching vibration in the driving direction of the moving body. . 前記振動子が、前記移動体の駆動方向に略同一の断面形状を有することを特徴とする請求項5記載の超音波駆動装置。   The ultrasonic driving apparatus according to claim 5, wherein the vibrator has substantially the same cross-sectional shape in the driving direction of the moving body. 前記振動子に励起される前記移動体との接触箇所の法線方向に変位する振動の固有振動数が、前記振動子に励起される前記移動体の駆動方向に変位する振動の最低次の振動の固有振動数と略一致するように設定されることを特徴とする請求項1乃至6の何れかに記載の超音波駆動装置。   The natural frequency of the vibration displaced in the normal direction of the contact point with the moving body excited by the vibrator is the lowest order vibration of the vibration displaced in the driving direction of the moving body excited by the vibrator. The ultrasonic driving device according to claim 1, wherein the ultrasonic driving device is set so as to substantially coincide with the natural frequency of the ultrasonic wave. 前記振動子に励起される前記移動体との接触箇所の法線方向に変位する振動が、曲げ振動であることを特徴とする請求項1乃至7の何れかに記載の超音波駆動装置。   The ultrasonic driving device according to claim 1, wherein the vibration displaced in the normal direction of the contact portion with the moving body excited by the vibrator is a bending vibration. 前記移動体の駆動方向は、直交座標系の軸方向、円筒座標系の周方向を含む群から選択されることを特徴とする請求項1乃至8の何れかに記載の超音波駆動装置。   The ultrasonic driving apparatus according to claim 1, wherein the driving direction of the moving body is selected from a group including an axial direction of an orthogonal coordinate system and a circumferential direction of a cylindrical coordinate system.
JP2006014269A 2006-01-23 2006-01-23 Ultrasonic drive Expired - Fee Related JP4804154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006014269A JP4804154B2 (en) 2006-01-23 2006-01-23 Ultrasonic drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006014269A JP4804154B2 (en) 2006-01-23 2006-01-23 Ultrasonic drive

Publications (3)

Publication Number Publication Date
JP2007202227A true JP2007202227A (en) 2007-08-09
JP2007202227A5 JP2007202227A5 (en) 2009-02-26
JP4804154B2 JP4804154B2 (en) 2011-11-02

Family

ID=38456257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006014269A Expired - Fee Related JP4804154B2 (en) 2006-01-23 2006-01-23 Ultrasonic drive

Country Status (1)

Country Link
JP (1) JP4804154B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023895A (en) * 2010-07-15 2012-02-02 Olympus Corp Ultrasonic wave motor
JP2014236629A (en) * 2013-06-04 2014-12-15 オリンパス株式会社 Ultrasonic motor
JP2017108615A (en) * 2015-12-04 2017-06-15 キヤノン株式会社 Driving method of vibration type actuator, vibration type drive device and mechanism

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224989A (en) * 1985-07-19 1987-02-02 株式会社 日平トヤマ Preventive device for rocking of industrial robot
JPH03128683A (en) * 1989-07-27 1991-05-31 Olympus Optical Co Ltd Ultrasonic motor
JPH07241090A (en) * 1994-02-28 1995-09-12 Nikon Corp Ultrasonic motor
JPH08168274A (en) * 1994-12-13 1996-06-25 Canon Inc Vibration device and ultrasonic motor
JPH1175379A (en) * 1997-08-29 1999-03-16 Nikon Corp Driver
JP2000060163A (en) * 1998-02-10 2000-02-25 Nikon Corp Vibration actuator
JP2000092867A (en) * 1998-09-11 2000-03-31 Nikon Corp Oscillating actuator
JP2000125576A (en) * 1998-10-09 2000-04-28 Nikon Corp Carrying device using vibration actuator
JP2001292583A (en) * 2000-04-05 2001-10-19 Nikon Corp Vibration motor and positioning apparatus
JP2005228322A (en) * 2004-02-11 2005-08-25 Samsung Electronics Co Ltd Method and apparatus for oscillation control using acceleration sensor, and system for driving joints of robot

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6224989A (en) * 1985-07-19 1987-02-02 株式会社 日平トヤマ Preventive device for rocking of industrial robot
JPH03128683A (en) * 1989-07-27 1991-05-31 Olympus Optical Co Ltd Ultrasonic motor
JPH07241090A (en) * 1994-02-28 1995-09-12 Nikon Corp Ultrasonic motor
JPH08168274A (en) * 1994-12-13 1996-06-25 Canon Inc Vibration device and ultrasonic motor
JPH1175379A (en) * 1997-08-29 1999-03-16 Nikon Corp Driver
JP2000060163A (en) * 1998-02-10 2000-02-25 Nikon Corp Vibration actuator
JP2000092867A (en) * 1998-09-11 2000-03-31 Nikon Corp Oscillating actuator
JP2000125576A (en) * 1998-10-09 2000-04-28 Nikon Corp Carrying device using vibration actuator
JP2001292583A (en) * 2000-04-05 2001-10-19 Nikon Corp Vibration motor and positioning apparatus
JP2005228322A (en) * 2004-02-11 2005-08-25 Samsung Electronics Co Ltd Method and apparatus for oscillation control using acceleration sensor, and system for driving joints of robot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023895A (en) * 2010-07-15 2012-02-02 Olympus Corp Ultrasonic wave motor
JP2014236629A (en) * 2013-06-04 2014-12-15 オリンパス株式会社 Ultrasonic motor
JP2017108615A (en) * 2015-12-04 2017-06-15 キヤノン株式会社 Driving method of vibration type actuator, vibration type drive device and mechanism
US10516349B2 (en) 2015-12-04 2019-12-24 Canon Kabushiki Kaisha Method of driving vibration actuator with enhanced sliding efficiency, vibration drive device, and mechanical apparatus

Also Published As

Publication number Publication date
JP4804154B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
JP2690907B2 (en) Composite piezoelectric motor
JP4965973B2 (en) Vibration type actuator
JP5384794B2 (en) Driving method and driving apparatus of standing wave type ultrasonic actuator
JP5201873B2 (en) Drive device
JP2010233316A (en) Ultrasonic motor
JP4804154B2 (en) Ultrasonic drive
US8390172B2 (en) Ultrasonic motor
US9099640B2 (en) Transducer for ultrasonic motor
JP4814948B2 (en) Control device for vibration actuator
JPH07115782A (en) Vibration wave driver
JP2006333682A (en) Method for setting drive signal frequency of ultrasonic motor and driving device for ultrasonic motor
KR101225008B1 (en) Piezoelectric vibrator of ultrasonic motor
JP5612940B2 (en) Ultrasonic motor
JP4208753B2 (en) Control device for vibration type drive device, control method for vibration type drive device, control program for vibration type drive device
JP4497980B2 (en) Piezoelectric body and polarization method thereof
JP4593266B2 (en) Vibrator
JP5137396B2 (en) Mobile device
JP2004297910A (en) Oscillation-type drive
JP2009018352A (en) Ultrasonic cutter and method of driving the same
JP4951318B2 (en) Mobile device
JP4208627B2 (en) Control device, operation device, and control method for vibration type drive device
JP2004336862A (en) Drive circuit and actuator for ultrasonic motor
JP3770425B2 (en) Piezoelectric vibration angular velocity meter vibrator
JP2001258277A (en) Vibration wave driver
JP5144149B2 (en) Mobile device

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees