JP2007182626A - Composite coated metal sheet, treatment agent for composite coating, and method of manufacturing composite coated metal sheet - Google Patents

Composite coated metal sheet, treatment agent for composite coating, and method of manufacturing composite coated metal sheet Download PDF

Info

Publication number
JP2007182626A
JP2007182626A JP2006326088A JP2006326088A JP2007182626A JP 2007182626 A JP2007182626 A JP 2007182626A JP 2006326088 A JP2006326088 A JP 2006326088A JP 2006326088 A JP2006326088 A JP 2006326088A JP 2007182626 A JP2007182626 A JP 2007182626A
Authority
JP
Japan
Prior art keywords
composite
metal plate
metal
coating
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006326088A
Other languages
Japanese (ja)
Inventor
Hiroo Shoji
浩雄 莊司
Hiroshi Jodai
洋 上代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006326088A priority Critical patent/JP2007182626A/en
Publication of JP2007182626A publication Critical patent/JP2007182626A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite coated metal sheet comprising a coated film having a low environment impact prepared free from hexavalent chromium, and having good corrosion resistance and excellent adhesiveness between the coated film and a resin layer formed on the coated film, to provide a treatment agent for a composite coating, and to provide a method of manufacturing a composite coated metal sheet. <P>SOLUTION: The present invention provides a composite coated metal sheet comprising a coated film formed on a surface of a metal sheet, the coated film contains an oxide and/or a hydroxide or metal other than chromium, and an organic component comprising modified and/or unmodified functional group(s). The present invention also provides a treatment agent for a composite coating and a method of manufacturing a composite coated metal sheet. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、クロメートフリーで高い耐食性を有する被膜であって、更に、前記被膜の上部に形成する樹脂層との密着性に優れた被膜を施した、複合被膜金属板、複合被覆処理剤、及び複合被覆金属板の製造方法に関する。   The present invention is a chromate-free coating having high corrosion resistance, and further coated with a coating having excellent adhesion to the resin layer formed on the coating, a composite coated metal plate, a composite coating treatment agent, and The present invention relates to a method for producing a composite coated metal plate.

種々の用途で使用されるめっき金属板や金属板には、意匠性、耐食性、絶縁性等の様々な特性の発現を目的として各種の塗装やラミネート等の処理が施される。この場合、これら金属板表面には下地処理としてクロメート処理を施すことがある。この際のクロメート処理は、上部に形成する塗装やラミネート等の樹脂層との密着性および耐食性の向上を目的としている。   Various treatments such as coating and laminating are applied to plated metal plates and metal plates used in various applications for the purpose of expressing various properties such as design properties, corrosion resistance, and insulation. In this case, the surface of these metal plates may be subjected to chromate treatment as a base treatment. The chromate treatment at this time is intended to improve adhesion and corrosion resistance with a resin layer such as paint or laminate formed on the top.

しかしながら、近年、地球環境問題の関心の高まりから環境負荷の大きな6価クロムを含有するクロメート処理を使用しないことが望まれるようになってきた。このような背景の下、クロメート処理と同等の性能を目指して様々なクロメートフリーの表面処理が開発されているが、十分な特性が得られていないのが現状である。例えば、特許文献1では、アルミニウム用の防錆処理剤として、ジルコニウムの酸化物、酸素酸塩、有機酸塩、フルオロ錯塩及びこれらの混合物から成る群から選択されるジルコニウム化合物と亜鉛化合物が配合された処理剤が開示されている。前記処理剤を、アルミニウム基材に塗布、浸漬、スプレー等で表面に付着、乾燥させることにより、亜鉛化合物が添加されたジルコニウム化合物の被膜が形成され、耐食性が向上することが示されている。クロメート処理代替としては、耐食性とともにその上部に形成する樹脂の密着性に優れることが必須であるが、前記被膜に塗料やラミネート樹脂を施した際の樹脂密着性については、記載されておらず、示唆もされていない。また、特許文献2では、アルミニウム用の防錆処理剤として、ジルコニウムの酸化物、酸素酸塩、有機酸塩及びフルオロ錯塩の少なくとも1種に、ジルコニウムと反応性を有する架橋性樹脂と親水性樹脂を含む処理剤が開示されている。前記処理剤を、熱交換器等のアルミニウム基材に塗布、浸漬、スプレー等で表面に付着、乾燥させることにより、ジルコニウム化合物と親水性有機樹脂からなる被膜が形成され、耐食性とともに親水性を付与できることが示されている。前記被膜を被覆したアルミニウム材料は、その上に塗料やラミネート等を施さず、被膜に付与した親水性を利用するためにそのまま熱交換器等に使用されることから、前記被膜に塗料やラミネート樹脂を施した際の樹脂密着性については、記載されておらず、示唆もされていない。   However, in recent years, it has been desired not to use a chromate treatment containing hexavalent chromium, which has a large environmental load, due to the growing interest in global environmental problems. Against this background, various chromate-free surface treatments have been developed aiming for the same performance as chromate treatment, but at present, sufficient characteristics have not been obtained. For example, in Patent Document 1, a zirconium compound selected from the group consisting of an oxide of zirconium, an oxyacid salt, an organic acid salt, a fluoro complex salt, and a mixture thereof and a zinc compound are blended as an antirust treatment agent for aluminum. Treatment agents are disclosed. It has been shown that a coating of a zirconium compound to which a zinc compound is added is formed by applying the treatment agent on an aluminum substrate, dipping, spraying, or the like on a surface of the aluminum substrate, and drying, thereby improving the corrosion resistance. As an alternative to chromate treatment, it is essential to have excellent adhesion to the resin formed on the top as well as corrosion resistance, but the resin adhesion when the paint or laminate resin is applied to the coating is not described, There is no suggestion. Further, in Patent Document 2, as a rust preventive agent for aluminum, at least one of zirconium oxide, oxyacid salt, organic acid salt and fluoro complex salt is used as a crosslinkable resin and a hydrophilic resin having reactivity with zirconium. A treating agent containing is disclosed. The treatment agent is applied to an aluminum substrate such as a heat exchanger, adhered to the surface by dipping, spraying, etc., and dried to form a coating composed of a zirconium compound and a hydrophilic organic resin, thereby imparting hydrophilicity as well as corrosion resistance. It has been shown that it can. Since the aluminum material coated with the coating is not used for coating or laminating on the aluminum material, it is used as it is in a heat exchanger or the like in order to use the hydrophilicity imparted to the coating. There is no description or suggestion about the resin adhesion when subjected to.

さらに、クロメートフリー処理の方法として、特許文献3ではバナジウム化合物を必須成分とし官能基を有する有機化合物を含有する金属表面処理剤が提案されている。前記処理剤を金属素材の表面にロールコート法、浸漬法等で塗布し、乾燥することによって、耐水性や耐アルカリ性に弱い5価のバナジウムを4価、3価、2価等に還元されたバナジウム化合物の被膜が形成され、耐食性が向上することが示されている。前記有機化合物を添加するのは、5価のバナジウムを還元し、4価、3価、2価等に還元されたバナジウムとキレート化させ、処理液中のバナジウム化合物を安定させるためである。また、特許文献3では、耐食性、耐指紋性及び表面潤滑性の向上を目的として、水溶性高分子を処理液中にさらに添加したり、前記被膜上に更に有機高分子被膜を形成することが示されているが、前記被膜に塗料やラミネート樹脂を施した際の樹脂密着性については、記載されておらず、示唆もされていない。   Further, as a chromate-free treatment method, Patent Document 3 proposes a metal surface treatment agent containing a vanadium compound as an essential component and an organic compound having a functional group. By applying the treatment agent to the surface of a metal material by a roll coating method, a dipping method, and the like, and drying, pentavalent vanadium that is weak in water resistance and alkali resistance was reduced to tetravalent, trivalent, divalent, and the like. It has been shown that a film of vanadium compound is formed and the corrosion resistance is improved. The reason for adding the organic compound is to reduce pentavalent vanadium and chelate it with vanadium reduced to tetravalent, trivalent, divalent, etc., and stabilize the vanadium compound in the treatment liquid. In Patent Document 3, for the purpose of improving corrosion resistance, fingerprint resistance and surface lubricity, a water-soluble polymer may be further added to the treatment liquid, or an organic polymer film may be further formed on the film. Although shown, there is no description or suggestion about the resin adhesion when the coating is applied with a paint or a laminate resin.

上述のようにこれまでのクロメートフリー処理では、処理液を塗布し、乾燥、場合によっては加熱乾燥や焼付け処理して被膜を形成する方法である。すなわち、特許文献1、2は焼き付けを行って架橋的結合を完結させ、特許文献3も塗布及び乾燥を行うものであり、加熱乾燥により被膜形成性、密着性が向上するとしている。このような塗布型の成膜方法は、クロメート処理と類似の単純なプロセスであるが、バリヤー性に頼る前述のようなクロメートフリー被膜では基材へのつきまわり性が不十分な場合、その部分を起点に腐食等が進行する可能性がある。さらに、これらは特許文献4の顔料の開示に見られるように樹脂等の被膜マトリックスやバインダーが必要であるため、無機成分比率の低下が避けられない。これらのことから十分な特性が得られないと考えられる。また、無機成分比率を上げる方法としては、例えばゾルゲル法などがあるが、被膜形成のためには数百度以上の加熱が必要となり、例えば上層に形成する樹脂層との密着性を向上させる目的で有機成分を含有させることは困難となる(図1参照)。ここで、図1は、塗布後に乾燥、焼付けをした被膜の断面構成図である。図1の左図は、低無機成分比率の塗布被膜の例である。無機成分比率が低い被膜では数百℃の熱処理は必要でないが、無機成分が少ないのでバリヤー性が低くなる。また、図1の右図は、下層膜が高無機成分比率とし、上層に樹脂層を施した2層複合膜の塗布被膜の例である。無機成分比率が高い被膜では数百度以上の加熱が必要である。下層は無機成分比率が高くなるのでバリヤー性は向上する。しかしながら、下層膜は高温処理を必要とするために有機成分を含有させるのが難しく、下層と樹脂層の間で密着性が不十分となる。   As described above, the conventional chromate-free treatment is a method in which a treatment liquid is applied and dried, and in some cases, heat-dried or baked to form a film. That is, Patent Documents 1 and 2 complete the cross-linking by baking, and Patent Document 3 also performs coating and drying, and the film-forming property and adhesion are improved by heat drying. Such a coating-type film formation method is a simple process similar to the chromate treatment. However, if the chromate-free coating as described above that relies on barrier properties is insufficient, There is a possibility that corrosion or the like proceeds from the starting point. Furthermore, since these require a coating matrix such as a resin or a binder as seen in the disclosure of the pigment of Patent Document 4, a decrease in the ratio of inorganic components is inevitable. From these, it is considered that sufficient characteristics cannot be obtained. Further, as a method of increasing the inorganic component ratio, for example, there is a sol-gel method, etc., but heating of several hundred degrees or more is necessary for forming a film, for example, for the purpose of improving the adhesion with the resin layer formed on the upper layer. It becomes difficult to contain an organic component (refer FIG. 1). Here, FIG. 1 is a cross-sectional configuration diagram of a coating that is dried and baked after coating. The left figure of FIG. 1 is an example of the coating film of a low inorganic component ratio. A coating with a low inorganic component ratio does not require heat treatment at several hundreds of degrees Celsius, but the barrier properties are low because there are few inorganic components. Moreover, the right figure of FIG. 1 is an example of the coating film of the 2 layer composite film which made the lower layer film the high inorganic component ratio, and gave the resin layer to the upper layer. In a film having a high inorganic component ratio, heating of several hundred degrees or more is required. Since the lower layer has a higher inorganic component ratio, the barrier property is improved. However, since the lower layer film requires high temperature treatment, it is difficult to contain an organic component, and adhesion between the lower layer and the resin layer becomes insufficient.

これまでの単純塗布法等による成膜方法に対し、基材へのつきまわり性が良く、欠陥が生じ難く、無機成分比率が高く緻密でバリヤー性の高い被膜を常温領域で形成する方法としては、特許文献5のような電気化学的な析出方法が開発されてきた。単なる処理剤に基材を浸漬させるだけでなく、さらに、基材と対極間に電界を印加してカソード電解により短時間で酸化物被膜を形成する方法である。この方法について、ジルコニアを例として反応式を記述する。   As a method for forming a coating film in a room temperature region with a high coverage ratio to the base material, less likely to cause defects, a high inorganic component ratio and a dense barrier property, compared to the conventional film forming method such as a simple coating method. An electrochemical deposition method as described in Patent Document 5 has been developed. In addition to immersing the base material in a simple treating agent, an oxide film is formed in a short time by cathode electrolysis by applying an electric field between the base material and the counter electrode. For this method, the reaction formula is described using zirconia as an example.

ZrF 2− + 2HO ⇔ ZrO + 4H +6F ZrF 6 2− + 2H 2 O⇔ ZrO 2 + 4H + + 6F

この平衡反応において水素イオン及びフッ素イオンを消費すればジルコニアが形成することがわかる。この水素イオン及びフッ素イオンの消費に電解を用いれば、その速度制御可能となる。このようにして形成される被膜は、緻密で欠陥がほとんど出来ないために、これまでの塗布被膜等に比べて耐食性に優れており、クロメート処理と同等あるいはそれ以上の耐食性を示す。但し、クロメート処理のもう一つの重要な効果である、被膜の上部に形成する樹脂層との密着性については、未だ開発されておらず、早急な開発が望まれていた。   It can be seen that zirconia is formed when hydrogen ions and fluorine ions are consumed in this equilibrium reaction. If electrolysis is used for the consumption of hydrogen ions and fluorine ions, the speed can be controlled. The film formed in this manner is dense and has almost no defects. Therefore, the film is excellent in corrosion resistance as compared with conventional coating films and the like, and exhibits corrosion resistance equivalent to or higher than that of chromate treatment. However, the adhesiveness with the resin layer formed on the upper part of the coating, which is another important effect of the chromate treatment, has not been developed yet, and rapid development has been desired.

特開2000−282256号公報JP 2000-282256 A 特開2000−282267号公報JP 2000-282267 A 特開2002−30460号公報JP 2002-30460 A 特開平7−278853号公報JP-A-7-278853 国際公開第2003/048416号パンフレットInternational Publication No. 2003/048416 Pamphlet

これまでのクロメートフリー処理で形成される被膜に関して、前述のように被膜の上部に形成する樹脂層との密着性について、十分検討されておらず、密着性の良好な被膜は得られていない。例えば、特許文献1の被膜については、本発明者らの検討結果、前記被膜上層に樹脂層を形成すると、湿潤環境下での密着性が十分ではないことが分かった。また、特許文献2の被膜では、親水性樹脂の耐水性不足を補うために架橋性樹脂が添加されており、これによって造膜性が付与されて強固な樹脂層が期待できるが、バリヤー効果の発揮する無機成分であるジルコニウム量の比率が下がるため、耐食性が十分ではない。特許文献3の被膜では、バナジウム化合物に有機樹脂を添加しているので被膜の上部に形成すると塗料やラミネート等の樹脂層とも高い秋密着性が期待できそうであるが、樹脂添加が耐指紋性の改善に至っていることから、樹脂等の有機物との密着性は低下する。また、還元されたバナジウム化合物は、導電性を有して腐食電子を非局在化することで耐食性向上させるものであるが、非導電性である有機樹脂を混在させると前記効果が十分発揮できす、耐食性が低下する。特許文献5においても、被膜形成時に欠陥が生じ難く、耐食性は極めて優れるものの、上部に塗料やラミネート等の樹脂層を施した場合、樹脂との密着性が不十分である。   Regarding the coating film formed by the conventional chromate-free treatment, as described above, the adhesiveness with the resin layer formed on the upper part of the coating has not been sufficiently studied, and a coating film with good adhesion has not been obtained. For example, with respect to the coating of Patent Document 1, as a result of the study by the present inventors, it has been found that when a resin layer is formed on the coating upper layer, the adhesion in a wet environment is not sufficient. Further, in the coating of Patent Document 2, a crosslinkable resin is added to make up for the lack of water resistance of the hydrophilic resin, and thereby a film-forming property can be imparted and a strong resin layer can be expected. Since the ratio of the amount of zirconium which is an inorganic component to be exhibited is lowered, the corrosion resistance is not sufficient. In the film of Patent Document 3, since an organic resin is added to the vanadium compound, it seems that high autumn adhesion can be expected with a resin layer such as a paint or a laminate when formed on the top of the film. As a result, the adhesion with organic substances such as resins is lowered. Further, the reduced vanadium compound has conductivity and improves corrosion resistance by delocalizing corrosive electrons. However, the above effect can be sufficiently exerted by mixing non-conductive organic resin. Corrosion resistance decreases. Also in Patent Document 5, defects are hardly generated at the time of film formation and the corrosion resistance is extremely excellent. However, when a resin layer such as a paint or a laminate is applied on the upper part, the adhesion to the resin is insufficient.

本発明は、このような状況に鑑みてなされたものであり、6価クロムを含有しない環境負荷の小さい耐食性被膜層であって、耐食性がクロメート処理と同レベルで、かつ被膜の上部に形成する樹脂層との優れた密着性を有する被膜層を施した複合被覆金属板、被膜層形成のための複合被覆処理剤、及び複合被覆金属板の製造方法を提供することを目的とする。   This invention is made | formed in view of such a condition, Comprising: It is a corrosion resistance coating layer with a small environmental load which does not contain hexavalent chromium, Comprising: Corrosion resistance is the same level as chromate treatment, and forms in the upper part of a coating film. It is an object of the present invention to provide a composite coated metal plate provided with a coating layer having excellent adhesion to a resin layer, a composite coating treatment agent for forming a coating layer, and a method for producing a composite coated metal plate.

本発明者らは、前記課題を解決するために鋭意検討した結果、めっき金属板又は金属板の表面に被膜層を形成し、この被膜層が、クロムを除く金属の酸化物又は水酸化物の一方又は双方に、少なくとも1種の官能基又は該官能基が変性したものの一方又は双方を有する有機成分を含有すると、クロメート被膜の同等以上の耐食性で、被膜の上部に形成する樹脂層との密着性が優れていることを見出し、この知見に基づいて本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have formed a coating layer on the surface of a plated metal plate or metal plate, and this coating layer is made of an oxide or hydroxide of a metal excluding chromium. If one or both of them contains an organic component having at least one functional group or one or both of the functional groups modified, the adhesion to the resin layer formed on the upper part of the coating is equivalent to or better than the chromate coating. Based on this finding, the present invention has been completed.

本発明の趣旨とするところ、以下の通りである。
(1)金属板の表面に形成され、クロムを除く金属の酸化物又は水酸化物の一方又は双方を含む被膜層を有し、前記被膜層は、少なくとも1種の官能基又は該官能基が変性したものの一方又は双方を有する有機成分を1種以上含有することを特徴とする、複合被覆金属板。
(2)前記被膜層上に、単層又は複数層の有機樹脂層をさらに有し、前記有機樹脂層のうち、前記被膜層に直接接する層が、前記被膜層に含まれる官能基又は該官能基が変性したものの少なくとも1種を含有することを特徴とする、(1)に記載の複合被覆金属板。
(3)前記被膜層の平均厚さが、5μm以下であることを特徴とする、(1)又は(2)に記載の複合被覆金属板。
(4)前記被膜層中の前記有機成分の含有率が、質量比で20%未満であることを特徴とする、(1)〜(3)のいずれかに記載の複合被覆金属板。
(5)前記被膜層中の前記有機成分の含有率が、質量比で5%未満であることを特徴とする、(1)〜(3)のいずれかに記載の複合被覆金属板。
(6)前記被膜層に含まれる官能基の少なくとも1種が、極性を有する基及び炭素−炭素結合として二重結合又は三重結合を含有する基であることを特徴とする、(1)〜(5)のいずれかに記載の複合被覆金属板。
(7)前記被膜層に含まれる官能基の少なくとも1種が、カルボキシル基であることを特徴とする、(1)〜(6)のいずれかに記載の複合被覆金属板。
(8)前記クロムを除く金属が、ジルコニウム、チタン、又はケイ素の少なくとも1種以上であることを特徴とする、(1)〜(7)のいずれかに記載の複合被覆金属板。
(9)前記クロムを除く金属が、ジルコニウムであることを特徴とする、(1)〜(7)のいずれかに記載の複合被覆金属板。
(10)クロムを除く金属イオンと該イオンに対して6倍以上のモル比のフッ素イオンが共存する水溶液、又は、クロムを除く金属イオンと該イオンに対して6倍以上のモル比のフッ素を含む錯イオンを含む水溶液の一方又は双方からなる水溶液中に、少なくとも1種の官能基又は該官能基が変性したものの一方又は双方を有する有機成分を1種以上含むことを特徴とする、複合被覆処理剤。
(11)前記有機成分の含有率が、質量比で20%未満であることを特徴とする、(10)に記載の複合被覆処理剤。
(12)前記有機成分の含有率が、質量比で5%未満であることを特徴とする、(10)に記載の複合被覆処理剤。
(13)前記有機成分を含む水溶液のpHが2〜7であることを特徴とする、(11)又は(12)に記載の複合被覆処理剤。
(14)前記官能基が、極性を有する基及び炭素−炭素結合として二重結合又は三重結合を含有する基であることを特徴とする、(10)〜(13)のいずれかに記載の複合被覆処理剤。
(15)前記官能基が、カルボキシル基であることを特徴とする、(10)〜(14)のいずれかに記載の複合被覆処理剤。
(16)前記クロムを除く金属イオンが、ジルコニウム、チタン、又はケイ素の少なくとも1種以上のイオンであることを特徴とする、(10)〜(15)のいずれかに記載の複合被覆処理剤。
(17)前記クロムを除く金属イオンが、ジルコニウムであることを特徴とする、(10)〜(15)のいずれかに記載の複合被覆処理剤。
(18)(10)〜(17)のいずれかに記載の複合被覆処理剤に、金属板又はめっき金属板を接触させることにより、前記金属板又は前記金属板の表面に、クロムを除く金属の金属の酸化物又は水酸化物の一方又は双方と、少なくとも1種の官能基又は該官能基が変性したものの一方又は双方を有する有機成分と、を含有する被膜層を形成することを特徴とする、複合被覆金属板の製造方法。
(19)(10)〜(17)のいずれかに記載の複合被覆処理剤に、金属板又はめっき金属板を浸漬させ電解することにより、前記金属板又は前記金属板の表面に、クロムを除く金属の金属の酸化物又は水酸化物の一方又は双方と、少なくとも1種の官能基又は該官能基が変性したものの一方又は双方を有する有機成分と、を含有する被膜層を形成することを特徴とする、複合被覆金属板の製造方法。
(20)前記金属板又は前記めっき金属板の表面に形成された前記被膜層上に、有機樹脂層をさらに形成することを特徴とする、(18)又は(19)に記載の複合被覆金属板の製造方法。
The gist of the present invention is as follows.
(1) It has a coating layer formed on the surface of a metal plate and contains one or both of an oxide or a hydroxide of a metal excluding chromium, and the coating layer has at least one functional group or the functional group A composite coated metal sheet comprising at least one organic component having one or both of modified ones.
(2) The organic resin layer further includes a single layer or a plurality of organic resin layers on the coating layer, and the layer directly in contact with the coating layer is a functional group contained in the coating layer or the functional group. The composite coated metal sheet according to (1), which contains at least one of the groups modified.
(3) The composite coated metal sheet according to (1) or (2), wherein an average thickness of the coating layer is 5 μm or less.
(4) The composite coated metal plate according to any one of (1) to (3), wherein the content ratio of the organic component in the coating layer is less than 20% by mass ratio.
(5) The composite-coated metal sheet according to any one of (1) to (3), wherein a content ratio of the organic component in the coating layer is less than 5% by mass ratio.
(6) At least one of the functional groups contained in the coating layer is a group having a polarity and a group containing a double bond or a triple bond as a carbon-carbon bond. 5) The composite coated metal sheet according to any one of the above.
(7) The composite coated metal plate according to any one of (1) to (6), wherein at least one of the functional groups contained in the coating layer is a carboxyl group.
(8) The composite coated metal plate according to any one of (1) to (7), wherein the metal excluding chromium is at least one of zirconium, titanium, and silicon.
(9) The composite coated metal plate according to any one of (1) to (7), wherein the metal excluding chromium is zirconium.
(10) An aqueous solution in which a metal ion excluding chromium and a fluorine ion having a molar ratio of 6 times or more with respect to the ion coexists, or a fluorine having a molar ratio of 6 or more to the metal ion excluding chromium and the ion. A composite coating comprising at least one organic component having at least one functional group or one or both of functional groups modified in an aqueous solution comprising one or both of an aqueous solution containing complex ions. Processing agent.
(11) The composite coating treatment according to (10), wherein a content ratio of the organic component is less than 20% by mass ratio.
(12) The composite coating treatment according to (10), wherein a content ratio of the organic component is less than 5% by mass ratio.
(13) The composite coating treatment agent according to (11) or (12), wherein the aqueous solution containing the organic component has a pH of 2 to 7.
(14) The composite according to any one of (10) to (13), wherein the functional group is a group having a polarity and a group containing a double bond or a triple bond as a carbon-carbon bond. Coating treatment agent.
(15) The composite coating treatment agent according to any one of (10) to (14), wherein the functional group is a carboxyl group.
(16) The composite coating treatment according to any one of (10) to (15), wherein the metal ions excluding chromium are at least one ion of zirconium, titanium, or silicon.
(17) The composite coating treatment according to any one of (10) to (15), wherein the metal ion excluding chromium is zirconium.
(18) By bringing a metal plate or a plated metal plate into contact with the composite coating treatment agent according to any one of (10) to (17), the surface of the metal plate or the metal plate is made of a metal other than chromium. Forming a coating layer containing one or both of a metal oxide or a hydroxide and an organic component having at least one functional group or one or both of the functional groups modified; The manufacturing method of a composite covering metal plate.
(19) Chromium is removed from the surface of the metal plate or the metal plate by immersing and electrolyzing the metal plate or the plated metal plate in the composite coating treatment agent according to any one of (10) to (17). Forming a coating layer containing one or both of a metal oxide or hydroxide of a metal and an organic component having at least one functional group or one or both of the functional groups modified; The manufacturing method of a composite covering metal plate.
(20) The composite coated metal plate according to (18) or (19), wherein an organic resin layer is further formed on the coating layer formed on the surface of the metal plate or the plated metal plate. Manufacturing method.

本発明によれば、6価クロムを含有しない環境負荷の小さい耐食性被膜層で、被膜の上部に形成する樹脂層との優れた密着性を有する被膜層を施した複合被覆金属板、複合被覆処理剤、及び複合被覆金属板の製造方法の提供が可能となる。さらに、本発明の複合被覆金属板は、高い耐食性を有し、樹脂密着性が優れているので、種々の塗料やラミネート樹脂を施した金属板として好適に使用できる。   ADVANTAGE OF THE INVENTION According to this invention, the composite covering metal plate which gave the coating layer which has the adhesiveness with the resin layer formed in the upper part of a coating film by the corrosion resistant coating layer with a small environmental load which does not contain hexavalent chromium, composite coating processing An agent and a method for producing a composite coated metal sheet can be provided. Furthermore, since the composite coated metal plate of the present invention has high corrosion resistance and excellent resin adhesion, it can be suitably used as a metal plate coated with various paints and laminate resins.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

本発明で得られる複合被覆金属板は、金属板の表面上に形成され、クロムを除く金属の酸化物又は水酸化物の一方又は双方を含む被膜層を有し、この被膜層は、少なくとも1種の官能基又は該官能基が変性したものの一方又は双方を有する有機成分を1種以上含有するものである。   The composite coated metal plate obtained by the present invention has a coating layer formed on the surface of the metal plate and containing one or both of a metal oxide and a hydroxide excluding chromium, and this coating layer is at least 1 It contains at least one organic component having one or both of a functional group of the species or a modified functional group.

本発明者らが鋭意検討した結果、めっき金属板又は金属板の表面に金属酸化物又は金属水酸化物の一方又は双方と少なくとも1種の官能基又は該官能基が変性したものの一方又は双方を有する有機成分の1種以上とを含む被膜層を有する場合、このような被膜が無い場合に比して、被膜の上部に形成する樹脂層との密着性に優れていることを見出した。この機構については明確ではないが、本発明者らは、金属酸化物又は金属水酸化物がその上に形成される有機樹脂層と強固な化学結合を有することに加えて、上記官能基を介して金属酸化物又は金属水酸化物と形成される有機樹脂層との強固な化学結合(図2参照)を有するためと考えている。なお、図2は、本発明の一実施形態に係る複合被覆金属板の表面と有機樹脂との界面結合状態の模式図(官能基と有機樹脂層との結合モデル図)である。   As a result of intensive studies by the present inventors, one or both of a metal oxide or a metal hydroxide and at least one functional group or one or both of the functional groups modified on the surface of a plated metal plate or metal plate are used. It has been found that in the case of having a coating layer containing one or more organic components, the adhesiveness with the resin layer formed on the upper portion of the coating is excellent as compared with the case where there is no such coating. Although it is not clear about this mechanism, the present inventors, in addition to the metal oxide or metal hydroxide having a strong chemical bond with the organic resin layer formed thereon, through the above functional group. This is considered to be because of having a strong chemical bond (see FIG. 2) between the metal oxide or metal hydroxide and the formed organic resin layer. FIG. 2 is a schematic diagram (bonding model diagram of a functional group and an organic resin layer) of an interface bonding state between the surface of the composite coated metal plate and the organic resin according to an embodiment of the present invention.

特に、クロムを除く金属イオンとフッ素イオンを含む錯イオンの水溶液に、金属基材を浸漬して、さらに金属基材と対極の間に電界をかけて電解して得られる酸化物や水酸化物の被膜に前述の有機成分が存在すると、高い耐食性で、極めて優れた樹脂密着性を発現できる。また、前記被膜中に有機成分を含ませるのには、クロムを除く金属イオンとフッ素イオンを含む錯イオンの水溶液に後述の有機成分を溶解して前述と同様に電解して被膜を形成すると、有機成分を導入できる。金属酸化物又は金属水酸化物の一方又は双方と、少なくとも1種の官能基又は該官能基が変性したものの一方又は双方を有する有機成分の1種以上との電解による共析機構は明確ではないが、それぞれが独立に処理液中に存在し有機成分がその機能を失うことなく被膜に取り込まれ、その結果、機能発現すると考えている(図3参照)。ここで、図3は、本発明の一実施携帯に係る膜に樹脂層を形成した場合の断面構造模式図である。図3に示すように、下層は、電解して被膜を形成した高無機成分比率と有機成分を含み、樹脂層との密着性が向上する。また、電解して被膜を形成すると高温の焼付けを必要とせずに常温で被膜を形成できるので、無機成分比率を高めて有機成分を導入できる。   In particular, oxides and hydroxides obtained by immersing a metal substrate in an aqueous solution of complex ions including metal ions and fluorine ions excluding chromium, and then applying an electric field between the metal substrate and the counter electrode. When the above-mentioned organic component is present in the coating, it is possible to express excellent resin adhesion with high corrosion resistance. In order to include an organic component in the film, a film is formed by dissolving an organic component described later in an aqueous solution of a complex ion containing metal ions and fluorine ions excluding chromium, and performing electrolysis in the same manner as described above. Organic components can be introduced. The eutectoid mechanism of electrolysis of one or both of metal oxide or metal hydroxide and at least one functional group or one or both of organic components having modified one or both of the functional groups is not clear. However, each of them is present in the treatment liquid independently, and the organic component is taken into the coating without losing its function, and as a result, the function is considered to be manifested (see FIG. 3). Here, FIG. 3 is a schematic cross-sectional structure diagram when a resin layer is formed on a film according to one embodiment of the present invention. As shown in FIG. 3, the lower layer contains a high inorganic component ratio and an organic component that have been electrolyzed to form a coating, and adhesion to the resin layer is improved. Further, when a film is formed by electrolysis, the film can be formed at room temperature without requiring high-temperature baking, so that the organic component can be introduced by increasing the inorganic component ratio.

さらに、前記被覆金属板上に形成する有機樹脂層にも、前記被膜中の有機成分と同様の官能基を有する場合には、より樹脂密着性が向上することを見出した。これは、化学結合が上記に比してより強固となるため、もしくは、官能基が関与した結合が増加するためと考えている。ここで、本発明でいう変性とは、官能基がpH変動を伴うような処理液調製や熱処理を伴うような被膜形成等の工程を経ることで起こり得る酸化、還元、縮合や官能基を構成するイオンが一部置換する等の種々の化学結合を形成することを意味する。   Furthermore, it has been found that when the organic resin layer formed on the coated metal plate also has the same functional group as the organic component in the film, the resin adhesion is further improved. This is thought to be because the chemical bond becomes stronger than the above, or the bond involving the functional group increases. Here, the modification referred to in the present invention includes oxidation, reduction, condensation, and functional groups that can occur through processes such as preparation of a treatment solution in which functional groups are accompanied by pH fluctuations and film formation that involves heat treatment. This means that various chemical bonds such as partial substitution of ions are formed.

また、上記金属酸化物又は金属水酸化物の一方又は双方を含む被膜層の平均厚さは5μm以下が好ましい。被膜層の厚さが5μm超の場合には、被膜の上部に形成する樹脂層との密着性が飽和すると共に、経済的ではないし、加工時の樹脂密着性が低下する場合がある。ここで、平均厚さとは1000倍〜20万倍程度の断面SEM(Scanning Electron Microscope:走査型電子顕微鏡)観察又は断面TEM(Transmission Electron Microscope:透過型電子顕微鏡)観察において、任意の10視野で測定された膜厚の平均値を意味する。皮膜層厚さを計測する対象となるのは被覆されている金属表面の全体であるから、金属表面の一部が被覆されていない部分は皮膜層厚さを計測する対象から除かれる。ただし、金属板に単分子層が被覆されていれば被覆されているとして取り扱う。したがって、皮膜層の平均厚さの下限は、単分子層となる。   The average thickness of the coating layer containing one or both of the metal oxide and metal hydroxide is preferably 5 μm or less. When the thickness of the coating layer exceeds 5 μm, the adhesion with the resin layer formed on the upper portion of the coating is saturated, and it is not economical and the resin adhesion during processing may be lowered. Here, the average thickness is measured in 10 fields of view in a cross-sectional SEM (Scanning Electron Microscope) observation or a cross-sectional TEM (Transmission Electron Microscope) observation of about 1000 to 200,000 times. It means the average value of the film thickness. Since it is the entire coated metal surface that is the target for measuring the thickness of the coating layer, the part of the metal surface that is not covered is excluded from the target for measuring the coating layer thickness. However, if the metal plate is coated with a monomolecular layer, it is handled as being coated. Therefore, the lower limit of the average thickness of the coating layer is a monomolecular layer.

上記金属酸化物又は金属水酸化物の一方又は双方を含む被膜層上に形成させる有機樹脂層は、特に限定するものではない。例えば、ポリエステル系樹脂、アクリル系樹脂、エポキシ系樹脂、ウレタン系樹脂、フッ素系樹脂、シリコンポリエステル系樹脂、塩化ビニル系樹脂、ポリオレフィン系樹脂、ブチラール系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリスチレン系樹脂、ポリイミド系樹脂、フェノール系樹脂あるいはこれらの変成樹脂等の樹脂成分をブチル化メラミン、メチル化メラミン、ブチルメチル混合メラミン、尿素樹脂、イソシアネートやこれらの混合系の架橋剤成分により架橋させたもの、あるいは電子線硬化型、紫外線硬化型等のもの、さらには適宜官能基を付与したものが挙げられる。   The organic resin layer formed on the coating layer containing one or both of the metal oxide and metal hydroxide is not particularly limited. For example, polyester resin, acrylic resin, epoxy resin, urethane resin, fluorine resin, silicon polyester resin, vinyl chloride resin, polyolefin resin, butyral resin, polycarbonate resin, polyamide resin, polystyrene Resins, polyimide resins, phenol resins, or resin components such as these modified resins are cross-linked with butylated melamine, methylated melamine, butyl methyl mixed melamine, urea resin, isocyanate or a cross-linking agent component of these mixed systems, Or the thing of an electron beam curable type, an ultraviolet curable type, etc., and what provided the functional group suitably are mentioned.

また、上記有機樹脂層は、着色顔料、染料、シリカ等の光沢調整剤、表面平滑剤、紫外線吸収剤、ヒンダードアミン系光安定剤、粘度調整剤、硬化触媒、顔料分散剤、顔料沈降防止剤、色別れ防止剤、防錆剤、酸化防止剤、カーボンブラック粉末等の添加剤を含んでもよい。これらは単独で用いてもよいし、複数を混合して用いてもよい。但し、地球環境に配慮したものを選択することが望ましい。また、有機樹脂層の形成方法も特に限定されず、例えば、塗装やラミネート等が挙げられる。   In addition, the organic resin layer includes a color pigment, a dye, a gloss adjusting agent such as silica, a surface smoothing agent, an ultraviolet absorber, a hindered amine light stabilizer, a viscosity adjusting agent, a curing catalyst, a pigment dispersant, a pigment settling inhibitor, Additives such as a color separation inhibitor, a rust inhibitor, an antioxidant, and carbon black powder may be included. These may be used alone or in combination. However, it is desirable to select one that takes the global environment into consideration. Moreover, the formation method of an organic resin layer is not specifically limited, For example, painting, a lamination, etc. are mentioned.

金属酸化物又は金属水酸化物の一方又は双方を含む被膜層中の有機成分は、次のような官能基を有するのが好ましい。酸素原子、窒素原子、硫黄原子、リン原子、ハロゲン原子等が炭素原子と結合をした極性を有する基及び炭素−炭素結合として二重結合又は三重結合を含有する基を指す。具体的には、カルボキシル基、エステル基、ホルミル基、水酸基、エポキシ基、酸無水物基、カルボニル基、リン酸基、アミノ基、アミド基、イミノ基、チオール基、ウレア基、ふっ化アルキル基、塩化アルキル基、臭素アルキル基、アリール基、アルケニル基、アルキニル基、エーテル基、ニトリル基等が挙げられる。好ましくはカルボキシル基、エステル基、水酸基、エポキシ基、酸無水物基、カルボニル基、リン酸基、アミノ基、チオール基、ウレア基である。有機成分は、これら官能基又は該官能基が変性したものの一方又は双方の少なくとも1種を有し、官能基の数は1個以上有する。これら官能基を有する有機成分は、被膜中に1種類を含有させても、異なる官能基を有する2種類以上としても、同じ官能基を有する2種類以上としても、上記の樹脂層との密着性向上に寄与するものであれば、特に制限をするものではない。   The organic component in the coating layer containing one or both of metal oxide and metal hydroxide preferably has the following functional groups. A group having a polarity in which an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a halogen atom or the like is bonded to a carbon atom and a group containing a double bond or a triple bond as a carbon-carbon bond. Specifically, carboxyl group, ester group, formyl group, hydroxyl group, epoxy group, acid anhydride group, carbonyl group, phosphoric acid group, amino group, amide group, imino group, thiol group, urea group, alkyl fluoride group , Alkyl chloride group, bromine alkyl group, aryl group, alkenyl group, alkynyl group, ether group, nitrile group and the like. Preferred are a carboxyl group, an ester group, a hydroxyl group, an epoxy group, an acid anhydride group, a carbonyl group, a phosphoric acid group, an amino group, a thiol group, and a urea group. The organic component has at least one of one or both of these functional groups or the modified functional groups, and has one or more functional groups. Even if these organic components having a functional group are contained in a film, the adhesion to the resin layer may be two or more having different functional groups, or two or more having the same functional group. There is no particular limitation as long as it contributes to improvement.

また、この有機成分は、水溶性であり、かつ、金属イオンとフッ素イオンが共存する水溶液や金属イオンとフッ素を含む錯イオンを含む水溶液と反応して耐食性や密着性に悪影響を及ぼさないものであれば、特に制限をするものではない。   This organic component is water-soluble and does not adversely affect corrosion resistance and adhesion by reacting with an aqueous solution in which metal ions and fluorine ions coexist or an aqueous solution containing complex ions containing metal ions and fluorine ions. If there is, there is no particular limitation.

上記金属酸化物又は金属水酸化物の一方又は双方を含む被膜層中の有機成分の含有率が、被膜中の全固形分量に対して質量比で20%未満である場合、樹脂層との密着性及び耐食性が共により良好となるため好ましい。より好ましくは10%未満、さらに好ましくは5%未満である。この機構については明確ではないが、本発明者らは、樹脂層との密着性については、無機成分及び有機成分の相互作用による影響、また、耐食性については、ある一定比率の無機成分がバリヤ被膜として機能したことによると考えている。ここで、質量比とは、被膜の赤外分光法(ATR法)による定量分析や被膜を溶解した水溶液のICP発光分光分析などの手法により求められ、ここではICP発光分光分析により求めたものである。   When the content of the organic component in the coating layer containing one or both of the metal oxide and the metal hydroxide is less than 20% by mass ratio with respect to the total solid content in the coating, adhesion with the resin layer This is preferable because both the property and the corrosion resistance become better. More preferably, it is less than 10%, More preferably, it is less than 5%. Although it is not clear about this mechanism, the present inventors have determined that the adhesion to the resin layer is influenced by the interaction between the inorganic component and the organic component, and that the corrosion resistance is that a certain proportion of the inorganic component is a barrier coating. I think that it worked as a. Here, the mass ratio is obtained by a technique such as quantitative analysis by infrared spectroscopy (ATR method) of a film or ICP emission spectroscopy analysis of an aqueous solution in which the film is dissolved. Here, it is obtained by ICP emission spectroscopy analysis. is there.

本発明の金属板の上に形成される被膜に含まれる金属酸化物又は金属水酸化物を構成する金属は、特に限定するものではないが、鉄、マグネシウム、ニオブ、タンタル、アルミニウム、ニッケル、コバルト、チタン、ジルコニウム、ケイ素等が挙げられる。上記被膜は、1種類の金属種で構成されていても良いし、2種類以上の複合系、混合系や積層でも良い。特に好適な金属種はチタン、ジルコニウム、ケイ素である。これは、チタン、ジルコニウム、ケイ素の酸化物又は水酸化物が、その上に形成される有機樹脂、及び、官能基を介した有機樹脂層と特に強固な化学結合を形成するためと本発明者らは考えている。ジルコニウムは、これらの中で最も良好な結合を形成する。   Although the metal which comprises the metal oxide or metal hydroxide contained in the film formed on the metal plate of the present invention is not particularly limited, iron, magnesium, niobium, tantalum, aluminum, nickel, cobalt , Titanium, zirconium, silicon and the like. The coating film may be composed of one kind of metal, or two or more kinds of composite system, mixed system, or lamination. Particularly suitable metal species are titanium, zirconium and silicon. This is because the oxide or hydroxide of titanium, zirconium, silicon forms a particularly strong chemical bond with the organic resin formed on the organic resin layer and the organic resin layer via the functional group. Are thinking. Zirconium forms the best bond among these.

次に、本発明の複合被覆処理剤について述べる。   Next, the composite coating treatment agent of the present invention will be described.

水溶液中では、例えば、先に述べた平衡式
ZrF 2− + 2HO ⇔ ZrO + 4H +6F
により表される金属イオンと酸化物との平衡反応が生じている。
In the aqueous solution, for example, the equilibrium formula ZrF 6 2 + 2H 2 O Z ZrO 2 + 4H + + 6F − described above is used.
Equilibrium reaction between the metal ion represented by the formula and oxide occurs.

当該式の左辺を実現する水溶液として、2種類考えられる。   There are two types of aqueous solutions that realize the left side of the equation.

第1は、左辺のZrF 2− をZr4++6Fのようなイオンとして有する水溶液すなわち、クロムを除く金属イオンと該イオンに対して6倍以上のモル比のフッ素イオンが共存する水溶液である。 The first is an aqueous solution having ZrF 6 2− on the left side as an ion such as Zr 4+ + 6F , that is, an aqueous solution in which metal ions excluding chromium and fluorine ions having a molar ratio of 6 times or more with respect to the ions coexist. .

第2は、左辺のZrF 2−そのものを含む水溶液すなわち、クロムを除く金属イオンと該イオンに対して6倍以上のモル比のフッ素を含む錯イオンを含む水溶液である。 The second is an aqueous solution containing ZrF 6 2- itself on the left side, that is, an aqueous solution containing metal ions excluding chromium and complex ions containing fluorine at a molar ratio of 6 times or more with respect to the ions.

これらの第1、第2の水溶液の少なくとも一方からなる水溶液の下では、上記の平衡式に基づいた金属イオンと酸化物との平衡反応が生じる。   Under an aqueous solution comprising at least one of these first and second aqueous solutions, an equilibrium reaction between the metal ion and the oxide occurs based on the above equilibrium equation.

金属イオン濃度を同一にしても、金属イオンの種類が異なると、成膜状態や成膜量は異なる。これは、金属イオンによって、成膜に関する濃度の最適値が異なることに起因するからである。   Even if the metal ion concentration is the same, if the type of metal ion is different, the film formation state and the film formation amount are different. This is because the optimum value of the concentration related to film formation differs depending on the metal ions.

フッ素イオンを生じさせるためには、フッ化水素酸あるいはその塩、例えば、アンモニウム塩、カリウム塩、ナトリウム塩等を水に溶解させればよく、これらに関して制約はない。   In order to generate fluorine ions, hydrofluoric acid or a salt thereof, for example, an ammonium salt, a potassium salt, a sodium salt or the like may be dissolved in water, and there is no restriction on these.

金属と該金属に対して6倍以上のモル比のフッ素を含んでなる錯イオンを生じさせるためには、ヘキサフルオロチタン酸、ヘキサフルオロニオブ酸、ヘキサフルオロタンタル酸、ヘキサフルオロジルコン酸等、あるいはこれらの塩、例えば、アンモニウム塩、カリウム塩、ナトリウム塩等を水に溶解させればよく、これらに関して特に制約はない。   In order to generate a complex ion comprising fluorine with a molar ratio of 6 times or more with respect to the metal, hexafluorotitanic acid, hexafluoroniobic acid, hexafluorotantalic acid, hexafluorozirconic acid, etc., or These salts, for example, ammonium salts, potassium salts, sodium salts and the like may be dissolved in water, and there are no particular restrictions on these.

さらに、金属とフッ素以外の元素が錯イオン中に含まれていてもよい。塩を用いる場合は、そのカチオン種によって飽和溶解度が異なるため、成膜濃度範囲を考慮して選定することが好ましい。複合被覆処理剤の金属イオンとフッ素イオンのモル比が6倍未満では、健全な成膜ができる条件もあるものの、樹脂層との密着性が安定しない場合がある。この理由については明確ではない。   Furthermore, elements other than metal and fluorine may be contained in the complex ions. When a salt is used, the saturation solubility varies depending on the cation species, and therefore, it is preferable to select the salt in consideration of the film formation concentration range. When the molar ratio of the metal ion to the fluorine ion in the composite coating treatment agent is less than 6 times, the adhesiveness with the resin layer may not be stable, although there are conditions that enable sound film formation. The reason for this is not clear.

また、本発明者らは、フッ素イオン、水素イオンの消費、還元により、金属イオンが酸化物になる反応が進むと考え、複合被覆処理剤のpHに着目し検討した結果、複合被覆処理剤のpHは2〜7が好ましいことを見出した。より好ましくは2〜5である。複合被覆処理剤のpHが2未満では、健全な成膜ができているものの、成膜量が安定しない場合があった。この理由については明確ではない。一方、複合被覆処理剤のpHが7より大きい場合は、液が不安定であり、凝集したものが析出する場合があり好ましくない。   In addition, the present inventors considered that the reaction of metal ions to oxides proceeds due to the consumption and reduction of fluorine ions and hydrogen ions, and as a result of investigating the pH of the composite coating treatment agent, It was found that the pH is preferably 2-7. More preferably, it is 2-5. When the pH of the composite coating treatment agent is less than 2, although a sound film can be formed, the film formation amount may not be stable. The reason for this is not clear. On the other hand, when the pH of the composite coating treatment agent is larger than 7, the liquid is unstable, and agglomerated material may precipitate, which is not preferable.

複合被覆処理剤中に含まれる有機成分の含有率は、複合被覆処理剤の固形分濃度を100%としたときの質量比が20%未満であることが好ましい。有機成分の含有率が20%以上の場合、被膜への含有率が20%以上となり、20%未満の場合に比して耐食性、樹脂層との密着性が劣である。また、成膜方法、条件によって被膜への含有率が異なるため適宜設定すれば良い。複合被覆処理剤のpHの調整は周知の方法で行うことができる。本発明の析出反応のその他の条件は、特に限定されない。複合被覆金属板の製造処理方法は、金属板を上述の処理液に接触させることにより複合被覆金属板を製造できるが、特に好適な手法としては浸漬し電解するものである。反応温度や反応時間等の諸条件は適宜設定すれば良い。電解する際の電流密度は0.1A/dm〜50A/dmが好ましい、電解する際の反応温度は常温〜80℃、電解する際の反応時間は目的とする成膜量に応じて設定すべきだが経済的には短い方が良く、60分以内が好ましい。また、金属板は脱脂、スケール除去させた表面が好ましい。 The content ratio of the organic component contained in the composite coating treatment agent is preferably such that the mass ratio when the solid content concentration of the composite coating treatment agent is 100% is less than 20%. When the content rate of the organic component is 20% or more, the content rate to the coating film is 20% or more, and the corrosion resistance and the adhesion with the resin layer are inferior compared to the case of less than 20%. Moreover, what is necessary is just to set suitably because the content rate to a film changes with film-forming methods and conditions. The pH of the composite coating treatment can be adjusted by a known method. Other conditions for the precipitation reaction of the present invention are not particularly limited. The method for producing a composite-coated metal plate can produce a composite-coated metal plate by bringing the metal plate into contact with the above-described treatment liquid, but as a particularly preferred technique, it is immersed and electrolyzed. Various conditions such as reaction temperature and reaction time may be set as appropriate. Current density when electrolysis is 0.1A / dm 2 ~50A / dm 2 is preferred, the reaction temperature in the electrolysis room temperature to 80 ° C., the reaction time for electrolysis is in accordance with the deposition amount of interest set Although it should be short in terms of economy, it is preferably within 60 minutes. The metal plate is preferably degreased and scaled.

本発明に適用できる金属板又はめっき金属板は、各種金属・合金、各種金属表面処理材等である。例えば、冷延鋼板、ステンレス鋼板、アルミニウム・アルミニウム合金板、チタン板、マグネシウム・マグネシウム合金、亜鉛めっき鋼板、錫めっき鋼板、ニッケルめっき鋼板等の亜鉛系合金めっき鋼板等が挙げられるが、特に限定されない。但し、製造工程も含めて地球環境問題に配慮した材料を選択することが望ましい。   Metal plates or plated metal plates applicable to the present invention are various metals / alloys, various metal surface treatment materials, and the like. Examples include cold-rolled steel sheets, stainless steel sheets, aluminum / aluminum alloy sheets, titanium sheets, magnesium / magnesium alloys, galvanized steel sheets, tin-plated steel sheets, nickel-plated steel sheets, etc., but are not particularly limited. . However, it is desirable to select materials that take into account global environmental issues, including the manufacturing process.

以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例によって何ら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

表1〜11に諸条件を示す。金属板としては、冷延鋼板、電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板、溶融アルミニウム鋼板、合金化亜鉛めっき鋼板、錫めっき鋼板、ニッケルめっき鋼板、アルミニウム板、SUS304板、電気亜鉛ニッケルめっき鋼板を使用した。これら金属板試料に対して、アセトン中で超音波脱脂処理を施した後、実験に供した。   Various conditions are shown in Tables 1-11. Cold rolled steel plate, electrogalvanized steel plate, hot dip galvanized steel plate, hot dip galvanized steel plate, alloyed galvanized steel plate, tin plated steel plate, nickel plated steel plate, aluminum plate, SUS304 plate, electrogalvanized nickel plated steel plate did. These metal plate samples were subjected to ultrasonic degreasing treatment in acetone and then subjected to experiments.

まず、金属板への、少なくとも1種の官能基又は該官能基が変性したものの一方又は両方を有する有機成分と、クロムを除く金属酸化物又は金属水酸化物の一方又は両方とを含む複合被覆処理剤について述べる。上記金属として、チタン、ジルコニウム、ケイ素のヘキサフルオロ錯塩水溶液又は塩化物塩とフッ化水素アンモニウムの混合水溶液に官能基を有する有機成分を添加し、さらに必要に応じてアンモニウム水、フッ化水素酸を用いてpHを調整した複合被覆処理剤を用いた。官能基を有する有機成分としては、カルボキシル基はポリアクリル酸、エステル基はアクリル酸2−エチルヘキシル、エポキシ基はメタクリル酸2,3−エポキシプロピルを用いた。   First, a composite coating comprising an organic component having one or both of at least one functional group or a modified one of the functional group, and one or both of a metal oxide and a metal hydroxide excluding chromium. The treatment agent will be described. As the metal, an organic component having a functional group is added to an aqueous solution of hexafluoro complex salt of titanium, zirconium, or silicon, or a mixed aqueous solution of chloride salt and ammonium hydrogen fluoride, and if necessary, ammonium water and hydrofluoric acid are added. The composite coating treatment agent that was used to adjust the pH was used. As the organic component having a functional group, polyacrylic acid was used for the carboxyl group, 2-ethylhexyl acrylate was used for the ester group, and 2,3-epoxypropyl methacrylate was used for the epoxy group.

脱脂処理まで行った金属板を上記複合被覆処理剤に10秒間〜30分間接触させて成膜後に、水洗し乾燥した。または、上記処理剤中で白金を対極として電流密度を100mA/cmに制御して10秒間〜30分間カソード電解を行い、成膜後、水洗し乾燥した。 The metal plate subjected to degreasing treatment was brought into contact with the composite coating treatment agent for 10 seconds to 30 minutes, washed with water and dried after film formation. Alternatively, cathodic electrolysis was performed for 10 seconds to 30 minutes by controlling the current density to 100 mA / cm 2 using platinum as a counter electrode in the above treatment agent, and after film formation, washed with water and dried.

表1に、各供試材の作製条件を示す。実験No.1〜10は、被膜中に含まれる有機成分が所定量となるように有機成分を添加した0.1mol/Lヘキサフルオロチタン酸アンモニウム水溶液をpH4に調整し、基材を浸漬し電解して成膜した。実験No.11〜20は、被膜中に含まれる有機成分が所定量となるように有機成分を添加した0.1mol/Lヘキサフルオロジルコン酸アンモニウム水溶液をpH4に調整し、基材を浸漬し電解して成膜した。実験No.21〜30は、被膜中に含まれる有機成分が所定量となるように有機成分を添加した0.1mol/Lヘキサフルオロケイ酸アンモニウム水溶液をpH4に調整し、基材を浸漬し電解して成膜した。膜厚は成膜時間によって制御した。これらの被膜は、X線光電子分光法と赤外線分光法により有機成分を含有した金属酸化物及び金属水酸化物の生成を確認した。   Table 1 shows the production conditions of each test material. Experiment No. Nos. 1 to 10 were prepared by adjusting the pH of a 0.1 mol / L ammonium hexafluorotitanate aqueous solution to which an organic component was added so that a predetermined amount of the organic component contained in the coating film was obtained, and immersing and electrolyzing the substrate. Filmed. Experiment No. Nos. 11 to 20 were prepared by adjusting 0.1 mol / L ammonium hexafluorozirconate aqueous solution added with organic components to pH 4 so that the organic components contained in the coating film were in a predetermined amount, and immersing and electrolyzing the substrate. Filmed. Experiment No. Nos. 21 to 30 were prepared by adjusting 0.1 mol / L ammonium hexafluorosilicate aqueous solution added with organic components to pH 4 so that the organic components contained in the coating film were in a predetermined amount, and immersing and electrolyzing the base material. Filmed. The film thickness was controlled by the film formation time. These coatings confirmed the formation of metal oxides and metal hydroxides containing organic components by X-ray photoelectron spectroscopy and infrared spectroscopy.

比較例として、No.31はクロム付着量が20mg/mとなるように塗布型クロメート処理剤を塗布、乾燥した。さらに、比較例としてNo.32は脱脂処理のみを行った金属板である。 As a comparative example, no. In No. 31, a coating type chromate treatment agent was applied and dried so that the chromium adhesion amount was 20 mg / m 2 . Furthermore, as a comparative example, no. 32 is a metal plate which performed only the degreasing process.

平板部の耐食性試験は、以下の条件で評価した。35℃、5質量%NaCl水溶液を噴霧し、72時間経過後の白錆発生率を測定し、4段階で評価した。ここでは、評点2以上を良好とした。
4 : 錆発生率 0%
3 : 錆発生率 5%未満
2 : 錆発生率 5%以上、20%未満
1 : 錆発生率 20%以上
The corrosion resistance test of the flat plate portion was evaluated under the following conditions. A 5 mass% NaCl aqueous solution was sprayed at 35 ° C., and the white rust occurrence rate after 72 hours was measured and evaluated in four stages. Here, a score of 2 or higher was considered good.
4: Rust generation rate 0%
3: Rust generation rate of less than 5% 2: Rust generation rate of 5% or more and less than 20% 1: Rust generation rate of 20% or more

評価結果を表1に示す。   The evaluation results are shown in Table 1.

表2の実験No.33〜42、表5の実験No.69〜78は、被膜中に含まれる有機成分が所定量となるように有機成分を添加した0.1mol/Lヘキサフルオロチタン酸アンモニウム水溶液をpH4に調整し、基材を浸漬し電解して成膜した。表3の実験No.45〜54、表6の実験No.81〜90、表8の実験No.105〜114は、被膜中に含まれる有機成分が所定量となるように有機成分を添加した0.1mol/Lヘキサフルオロジルコン酸アンモニウム水溶液をpH4に調整し、基材を浸漬し電解して成膜した。表4の実験No.57〜66、表7の実験No.93〜102、表9の実験No.117〜126は、被膜中に含まれる有機成分が所定量となるように有機成分を添加した0.1mol/Lヘキサフルオロケイ酸アンモニウム水溶液をpH4に調整し、基材を浸漬し電解して成膜した。膜厚は成膜時間によって制御した。これらの被膜は、X線光電子分光法と赤外線分光法により有機成分を含有した金属酸化物及び金属水酸化物の生成を確認した。比較例として、表2〜表9のNo43、55、67、79、91、103、115、127は、クロム付着量が20mg/mとなるように塗布型クロメート処理剤を塗布、乾燥した。さらに、比較例として、表2〜表9のNo44、56、68、80、92、104、116、128は、脱脂処理のみを行った金属板である。 Experiment No. 2 in Table 2 33-42, Experiment No. in Table 5. Nos. 69 to 78 were prepared by adjusting the pH of a 0.1 mol / L ammonium hexafluorotitanate aqueous solution to which an organic component was added so that the organic component contained in the coating film had a predetermined amount, and immersing and electrolyzing the substrate. Filmed. Experiment No. 1 in Table 3 45-54, experiment No. of Table 6. 81-90, Experiment No. in Table 8. 105 to 114 are prepared by adjusting a 0.1 mol / L ammonium hexafluorozirconate aqueous solution to which an organic component is added so that a predetermined amount of the organic component contained in the film is adjusted to pH 4, and immersing and electrolyzing the substrate. Filmed. Experiment No. 4 in Table 4 57-66, Experiment No. in Table 7. 93-102, Experiment No. in Table 9. 117 to 126 were prepared by adjusting 0.1 mol / L ammonium hexafluorosilicate aqueous solution added with organic components to pH 4 so that the organic components contained in the coating film were in a predetermined amount, and immersing and electrolyzing the base material. Filmed. The film thickness was controlled by the film formation time. These coatings confirmed the formation of metal oxides and metal hydroxides containing organic components by X-ray photoelectron spectroscopy and infrared spectroscopy. As comparative examples, Nos. 43, 55, 67, 79, 91, 103, 115 and 127 in Tables 2 to 9 were coated with a coating type chromate treatment agent and dried so that the chromium adhesion amount was 20 mg / m 2 . Furthermore, as comparative examples, Nos. 44, 56, 68, 80, 92, 104, 116, and 128 in Tables 2 to 9 are metal plates subjected to only degreasing treatment.

次いで、有機樹脂層を以下のように形成した。No.33〜44は、アクリル系エマルジョンを用いて塗装、乾燥してアクリル樹脂層を形成した。No.45〜56、69〜80は、水性ウレタン樹脂を用いて塗装、乾燥してウレタン樹脂層を形成した。No.57〜68は、エポキシ樹脂エマルジョンを用いて塗装、乾燥してエポキシ樹脂層を形成した。No.81〜92はポリエチレンテレフタレート樹脂フィルム、No.93〜104はエチレン−メタクリル酸共重合体フィルム、No.105〜116はエチレン−アクリル酸共重合体フィルム、No.117〜128はエチレン−酢酸ビニル共重合体フィルムを各々熱圧着して形成した。なお、有機樹脂層は、形成後の厚さが15μmとなるように行った。なお、アクリル系エマルジョンとしては、アクリル酸エステル/アクリル酸共重合体のエマルジョンを使用し、水性ウレタン樹脂としては、自己乳化型のポリウレタン樹脂エマルジョンを使用し、エポキシ樹脂エマルジョンとしては、ビスフェノールF型を使用した。   Next, an organic resin layer was formed as follows. No. Nos. 33 to 44 were coated and dried using an acrylic emulsion to form an acrylic resin layer. No. 45-56 and 69-80 were coated with an aqueous urethane resin and dried to form a urethane resin layer. No. 57 to 68 were coated with an epoxy resin emulsion and dried to form an epoxy resin layer. No. 81 to 92 are polyethylene terephthalate resin films, No. Nos. 93 to 104 are ethylene-methacrylic acid copolymer films, No. 105-116 are ethylene-acrylic acid copolymer films, No. 117 to 128 were formed by thermocompression bonding ethylene-vinyl acetate copolymer films, respectively. The organic resin layer was formed so that the thickness after formation was 15 μm. As the acrylic emulsion, an acrylate / acrylic acid copolymer emulsion is used, as the aqueous urethane resin, a self-emulsifying polyurethane resin emulsion is used, and as the epoxy resin emulsion, bisphenol F type is used. used.

湿潤雰囲気での樹脂層との密着性(以下、「二次密着性」という。)は以下の条件で評価した。沸騰水に60分間浸漬した後、JIS K 5400に記載されている碁盤目試験法に準拠して碁盤目を付けて、さらに7mmのエリクセン加工をした。その加工部に粘着テープ(セロハンテープ(登録商標)、ニチバン(株)製)を貼り付け、速やかに斜め45°の方向に引っ張って剥離させて、100個の碁盤目の内で剥離した碁盤目の数を数えた。剥離の程度により5段階で評価した。樹脂層との密着性の評点は、下記のとおりである。ここでは、評点3以上を良好とする。
5 : 剥離無し
4 : 剥離面積率25%未満
3 : 剥離面積率25%以上50%未満
2 : 剥離面積率50%以上75%未満
1 : 剥離面積率75%以上
Adhesion with the resin layer in a wet atmosphere (hereinafter referred to as “secondary adhesion”) was evaluated under the following conditions. After dipping in boiling water for 60 minutes, a grid pattern was applied in accordance with the grid pattern test method described in JIS K 5400, and a 7 mm Erichsen process was performed. Adhesive tape (cellophane tape (registered trademark), manufactured by Nichiban Co., Ltd.) was applied to the processed part, and it was quickly pulled obliquely at a 45 ° angle and peeled, and peeled off within 100 grids. I counted the number of. The evaluation was made in five stages depending on the degree of peeling. The score of adhesion with the resin layer is as follows. Here, a score of 3 or higher is considered good.
5: No peeling 4: Peeling area ratio less than 25% 3: Peeling area ratio of 25% or more and less than 50% 2: Peeling area ratio of 50% or more and less than 75% 1: Peeling area ratio of 75% or more

また、加工部の耐食性(以下、「加工部耐食性」という。)の試験は、以下の条件で評価した。腐食はサンプルを切断したときにその切断部に生じるいわゆる「バリ」に起因する。バリには、切断面の上側に着く「上バリ」と切断面の下側に着く「下バリ」がある。バリの位置により耐食試験の結果が異なるので、耐食試験用のサンプルの作成に当たって、当該バリの位置である上、下、左、右を揃える。サンプルは、JIS H 8502に規定される中性塩水噴霧サイクル試験方法(5質量%NaCl水溶液噴霧(2時間)→乾燥(60℃、RH20%〜30%、4時間)→湿潤(50℃、RH95%以上))を180サイクル行い、切断端面部からの最大膨れ幅により5段階で評価した。ここでは、評点2以上を良好とする。
5 : 膨れ無し
4 : 最大膨れ幅3mm未満
3 : 最大膨れ幅3mm超6mm未満
2 : 最大膨れ幅6mm超9mm未満
1 : 最大膨れ幅9mm超
Moreover, the test of the corrosion resistance of the processed part (hereinafter referred to as “processed part corrosion resistance”) was evaluated under the following conditions. Corrosion is caused by a so-called “burr” that occurs in the cut part when the sample is cut. There are two types of burrs: an “upper burr” that reaches the upper side of the cut surface and a “lower burr” that arrives below the cut surface. Since the result of the corrosion resistance test differs depending on the position of the burr, the top, bottom, left, and right of the burr position are aligned when preparing the sample for the corrosion resistance test. The sample is a neutral salt spray cycle test method specified in JIS H 8502 (5 mass% NaCl aqueous solution spray (2 hours) → dry (60 ° C., RH 20% to 30%, 4 hours) → wet (50 ° C., RH95 %))) Was carried out for 180 cycles, and the maximum swelling width from the cut end face was evaluated in five stages. Here, a score of 2 or more is considered good.
5: No blistering 4: Maximum swollen width less than 3mm 3: Maximum swollen width greater than 3mm and less than 6mm 2: Maximum swollen width greater than 6mm and less than 9mm 1: Maximum swollen width greater than 9mm

表10の実験No.129〜136は、有機成分を1質量%含んだ0.1mol/Lヘキサフルオロチタン酸アンモニウム水溶液を表10に記載のpHに調整し、SUS(冷間圧延ステンレス鋼材)基材を浸漬し電解して成膜した。表10の実験No.137〜144は、有機成分を1質量%含んだ0.1mol/Lヘキサフルオロジルコン酸アンモニウム水溶液を表10に記載のpHに調整し、SUS基材を浸漬し電解して成膜した。表10の実験No.145〜152は、有機成分を1質量%含んだ0.1mol/Lヘキサフルオロケイ酸アンモニウム水溶液を表10記載のpHに調整し、SUS基材を浸漬し電解して成膜した。表10の実験No.153〜158は、有機成分を1質量%含み、かつ、チタンとフッ素を表10に記載のモル比にした塩化チタンとフッ化水素アンモニウムの混合水溶液をpH4に調整し、SUS基材を浸漬し電解して成膜した。   Experiment No. in Table 10 Nos. 129 to 136 are prepared by adjusting a 0.1 mol / L ammonium hexafluorotitanate aqueous solution containing 1% by mass of an organic component to the pH shown in Table 10 and immersing and electrolyzing a SUS (cold rolled stainless steel) substrate. To form a film. Experiment No. in Table 10 In 137 to 144, a 0.1 mol / L ammonium hexafluorozirconate aqueous solution containing 1% by mass of an organic component was adjusted to the pH shown in Table 10, and a SUS substrate was immersed and electrolyzed to form a film. Experiment No. in Table 10 In 145 to 152, a 0.1 mol / L ammonium hexafluorosilicate aqueous solution containing 1% by mass of an organic component was adjusted to the pH shown in Table 10, and a SUS substrate was immersed and electrolyzed to form a film. Experiment No. in Table 10 153 to 158 are adjusted to pH 4 with a mixed aqueous solution of titanium chloride and ammonium hydrogen fluoride containing 1% by mass of an organic component and having a molar ratio of titanium and fluorine described in Table 10, and immersing the SUS substrate. The film was formed by electrolysis.

表11の実験No.161〜168は、有機成分を1質量%含んだ0.1mol/Lヘキサフルオロチタン酸アンモニウム水溶液を表11に記載のpHに調整し、ニッケル亜鉛めっき鋼板を浸漬して成膜した。表11の実験No.169〜176は、有機成分を1質量%含んだ0.1mol/Lヘキサフルオロジルコン酸アンモニウム水溶液を表11に記載のpHに調整し、ニッケル亜鉛めっき鋼板を浸漬して成膜した。表11の実験No.177〜184は、有機成分を1質量%含んだ0.1mol/Lヘキサフルオロケイ酸アンモニウム水溶液を表11に記載のpHに調整し、ニッケル亜鉛めっき鋼板を浸漬して成膜した。表11の実験No.185〜190は、有機成分を1質量%含み、かつ、チタンとフッ素を表11に記載のモル比にした塩化チタンとフッ化水素アンモニウムの混合水溶液をpH4に調整し、ニッケル亜鉛めっき鋼板を浸漬して成膜した。これらの被膜は、X線光電子分光法と赤外線分光法により有機成分を含有した金属酸化物及び金属水酸化物の生成を確認した。   Experiment No. in Table 11 161-168 adjusted the pH of 0.1 mol / L ammonium hexafluorotitanate aqueous solution containing 1 mass% of organic components to the pH of Table 11, and formed the film by immersing the nickel galvanized steel sheet. Experiment No. in Table 11 In 169 to 176, a 0.1 mol / L ammonium hexafluorozirconate aqueous solution containing 1% by mass of an organic component was adjusted to the pH shown in Table 11, and a nickel galvanized steel sheet was immersed to form a film. Experiment No. in Table 11 In 177 to 184, a 0.1 mol / L ammonium hexafluorosilicate aqueous solution containing 1% by mass of an organic component was adjusted to the pH shown in Table 11, and a nickel galvanized steel sheet was immersed to form a film. Experiment No. in Table 11 Nos. 185 to 190 adjust the pH of a mixed aqueous solution of titanium chloride and ammonium hydrogen fluoride containing 1% by mass of an organic component and titanium and fluorine at a molar ratio shown in Table 11, and immerse the nickel-zinc-plated steel sheet. To form a film. These coatings confirmed the formation of metal oxides and metal hydroxides containing organic components by X-ray photoelectron spectroscopy and infrared spectroscopy.

比較例として、表10、11のNo.159、191は、クロム付着量が20mg/mとなるように塗布型クロメート処理剤を塗布、乾燥した。さらに、比較例として、表10、11のNo.160、192は、脱脂処理のみを行った金属板である。 As comparative examples, Nos. In 159 and 191, a coating type chromate treatment agent was applied and dried so that the chromium adhesion amount was 20 mg / m 2 . Further, as comparative examples, Nos. Reference numerals 160 and 192 denote metal plates subjected to only degreasing treatment.

次いで、アクリル系エマルジョンを用いて塗装、乾燥してアクリル樹脂層を形成した。なお、有機樹脂層は、形成後の厚さが15μmとなるように行った。   Subsequently, the acrylic resin layer was formed by painting and drying using an acrylic emulsion. The organic resin layer was formed so that the thickness after formation was 15 μm.

樹脂層との密着性は、以下の条件で評価した。沸騰水に60分間浸漬した後、JIS K 5400に記載されている碁盤目試験法に準拠して碁盤目を付けて、さらに7mmのエリクセン加工をした。その加工部に粘着テープ(セロハンテープ(登録商標)、ニチバン(株)製)を貼り付け、速やかに斜め45°の方向に引っ張って剥離させて、100個の碁盤目の内で剥離した碁盤目の数を数えた。剥離の程度により5段階で評価した。樹脂層との密着性の評点は下記の通りである。ここでは、評点3以上を良好とする。
5 : 剥離無し
4 : 剥離面積率25%未満
3 : 剥離面積率25%以上50%未満
2 : 剥離面積率50%以上75%未満
1 : 剥離面積率75%以上
The adhesion with the resin layer was evaluated under the following conditions. After dipping in boiling water for 60 minutes, a grid pattern was applied in accordance with the grid pattern test method described in JIS K 5400, and a 7 mm Erichsen process was performed. Adhesive tape (cellophane tape (registered trademark), manufactured by Nichiban Co., Ltd.) was applied to the processed part, and it was quickly pulled diagonally in a 45 ° direction to peel it off, and it was peeled off within 100 grids. I counted the number of. The evaluation was made in five stages depending on the degree of peeling. The score of adhesion with the resin layer is as follows. Here, a score of 3 or higher is considered good.
5: No peeling 4: Peeling area rate less than 25% 3: Peeling area rate 25% or more and less than 50% 2: Peeling area rate 50% or more and less than 75% 1: Peeling area rate 75% or more

表1〜11に得られた結果を示す。いずれの場合でも、本発明の実施例に係る金属板は、比較例に係る無処理に比して樹脂層との優れた密着性を示し、クロメート処理並みの密着性と耐食性が確認された。また、本発明の金属板には6価クロムを含有していないので、クロメート処理に比べて環境負荷が小さいことは明らかである。   The results obtained are shown in Tables 1-11. In any case, the metal plate according to the example of the present invention showed excellent adhesion with the resin layer as compared with the non-treatment according to the comparative example, and the adhesion and corrosion resistance comparable to the chromate treatment were confirmed. Further, since the metal plate of the present invention does not contain hexavalent chromium, it is clear that the environmental load is smaller than that of the chromate treatment.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

本発明は、上層に形成する樹脂層との密着性と耐食性を共に満足するクロメートフリー処理が施された複合被覆金属板、複合被覆処理剤、及び複合被覆金属板の製造方法に適用可能である。   INDUSTRIAL APPLICABILITY The present invention is applicable to a composite coated metal plate subjected to a chromate-free treatment that satisfies both adhesion and corrosion resistance with the resin layer formed on the upper layer, a composite coating treatment agent, and a method for producing the composite coated metal plate. .

塗布後に乾燥、焼付けをした被膜の断面構成図である。It is a section lineblock diagram of a coat dried and baked after application. 本発明の一実施形態に係る複合被覆金属板の表面と有機樹脂との界面結合状態の模式図である。It is a schematic diagram of the interface coupling | bonding state of the surface of the composite covering metal plate and organic resin which concern on one Embodiment of this invention. 本発明の一実施形態に係る膜に樹脂層を形成した場合の断面構造模式図である。It is a cross-sectional structure schematic diagram at the time of forming the resin layer in the film | membrane which concerns on one Embodiment of this invention.

Claims (20)

金属板の表面に形成され、クロムを除く金属の酸化物又は水酸化物の一方又は双方を含む被膜層を有し、
前記被膜層は、少なくとも1種の官能基又は該官能基が変性したものの一方又は双方を有する有機成分を1種以上含有することを特徴とする、複合被覆金属板。
Formed on the surface of the metal plate, and having a coating layer containing one or both of an oxide or hydroxide of a metal excluding chromium,
The composite coated metal sheet, wherein the coating layer contains at least one organic component having at least one functional group or one or both of functional groups modified.
前記被膜層上に、単層又は複数層の有機樹脂層をさらに有し、
前記有機樹脂層のうち、前記被膜層に直接接する層が、前記被膜層に含まれる官能基又は該官能基が変性したものの少なくとも1種を含有することを特徴とする、請求項1に記載の複合被覆金属板。
On the coating layer, further has a single layer or a plurality of organic resin layers,
2. The organic resin layer according to claim 1, wherein the layer directly in contact with the coating layer contains at least one of a functional group contained in the coating layer or a modified one of the functional group. Composite coated metal plate.
前記被膜層の平均厚さが、5μm以下であることを特徴とする、請求項1又は2に記載の複合被覆金属板。   3. The composite coated metal plate according to claim 1, wherein an average thickness of the coating layer is 5 μm or less. 前記被膜層中の前記有機成分の含有率が、質量比で20%未満であることを特徴とする、請求項1〜3のいずれかに記載の複合被覆金属板。   The composite coated metal sheet according to any one of claims 1 to 3, wherein a content ratio of the organic component in the coating layer is less than 20% by mass ratio. 前記被膜層中の前記有機成分の含有率が、質量比で5%未満であることを特徴とする、請求項1〜3のいずれかに記載の複合被覆金属板。   The composite coated metal sheet according to any one of claims 1 to 3, wherein a content ratio of the organic component in the coating layer is less than 5% by mass ratio. 前記被膜層に含まれる官能基の少なくとも1種が、極性を有する基及び炭素−炭素結合として二重結合又は三重結合を含有する基であることを特徴とする、請求項1〜5のいずれかに記載の複合被覆金属板。   At least one of the functional groups contained in the coating layer is a group having a polarity and a group containing a double bond or a triple bond as a carbon-carbon bond. A composite coated metal plate according to 1. 前記被膜層に含まれる官能基の少なくとも1種が、カルボキシル基であることを特徴とする、請求項1〜6のいずれかに記載の複合被覆金属板。   The composite coated metal sheet according to claim 1, wherein at least one of the functional groups contained in the coating layer is a carboxyl group. 前記クロムを除く金属が、ジルコニウム、チタン、又はケイ素の少なくとも1種以上であることを特徴とする、請求項1〜7のいずれかに記載の複合被覆金属板。   The composite coated metal plate according to any one of claims 1 to 7, wherein the metal excluding chromium is at least one of zirconium, titanium, and silicon. 前記クロムを除く金属が、ジルコニウムであることを特徴とする、請求項1〜7のいずれかに記載の複合被覆金属板。   The composite coated metal plate according to any one of claims 1 to 7, wherein the metal excluding chromium is zirconium. クロムを除く金属イオンと該イオンに対して6倍以上のモル比のフッ素イオンが共存する水溶液、又は、クロムを除く金属イオンと該イオンに対して6倍以上のモル比のフッ素を含む錯イオンを含む水溶液の一方又は双方からなる水溶液中に、少なくとも1種の官能基又は該官能基が変性したものの一方又は双方を有する有機成分を1種以上含むことを特徴とする、複合被覆処理剤。   An aqueous solution in which a metal ion excluding chromium and a fluorine ion at a molar ratio of 6 times or more with respect to the ion coexists, or a complex ion containing fluorine at a molar ratio of 6 or more to the metal ion other than chromium and the ion. A composite coating treatment agent comprising at least one organic component having at least one functional group or one or both of functional groups modified in an aqueous solution composed of one or both of an aqueous solution containing the functional group. 前記有機成分の含有率が、質量比で20%未満であることを特徴とする、請求項10に記載の複合被覆処理剤。   The composite coating treatment according to claim 10, wherein the content of the organic component is less than 20% by mass. 前記有機成分の含有率が、質量比で5%未満であることを特徴とする、請求項10に記載の複合被覆処理剤。   The composite coating treatment according to claim 10, wherein a content ratio of the organic component is less than 5% by mass ratio. 前記有機成分を含む水溶液のpHが2〜7であることを特徴とする、請求項11又は12に記載の複合被覆処理剤。   The composite coating treatment agent according to claim 11 or 12, wherein the aqueous solution containing the organic component has a pH of 2 to 7. 前記官能基が、極性を有する基及び炭素−炭素結合として二重結合又は三重結合を含有する基であることを特徴とする、請求項10〜13のいずれかに記載の複合被覆処理剤。   The composite coating treatment agent according to any one of claims 10 to 13, wherein the functional group is a group having polarity and a group containing a double bond or a triple bond as a carbon-carbon bond. 前記官能基が、カルボキシル基であることを特徴とする、請求項10〜14のいずれかに記載の複合被覆処理剤。   The composite coating treatment agent according to claim 10, wherein the functional group is a carboxyl group. 前記クロムを除く金属イオンが、ジルコニウム、チタン、又はケイ素の少なくとも1種以上のイオンであることを特徴とする、請求項10〜15のいずれかに記載の複合被覆処理剤。   The composite coating treatment agent according to any one of claims 10 to 15, wherein the metal ion excluding chromium is at least one ion of zirconium, titanium, or silicon. 前記クロムを除く金属イオンが、ジルコニウムであることを特徴とする、請求項10〜15のいずれかに記載の複合被覆処理剤。   The composite coating treatment agent according to any one of claims 10 to 15, wherein the metal ion excluding chromium is zirconium. 請求項10〜17のいずれかに記載の複合被覆処理剤に、金属板又はめっき金属板を接触させることにより、前記金属板又は前記金属板の表面に、クロムを除く金属の金属の酸化物又は水酸化物の一方又は双方と、少なくとも1種の官能基又は該官能基が変性したものの一方又は双方を有する有機成分と、を含有する被膜層を形成することを特徴とする、複合被覆金属板の製造方法。   A metal plate or a plated metal plate is brought into contact with the composite coating treatment agent according to any one of claims 10 to 17, so that the metal plate or the surface of the metal plate has an oxide of a metal metal other than chromium or A composite coated metal sheet, characterized in that a coating layer containing one or both of hydroxides and at least one functional group or an organic component having one or both of functional groups modified is formed. Manufacturing method. 請求項10〜17のいずれかに記載の複合被覆処理剤に、金属板又はめっき金属板を浸漬させ電解することにより、前記金属板又は前記金属板の表面に、クロムを除く金属の金属の酸化物又は水酸化物の一方又は双方と、少なくとも1種の官能基又は該官能基が変性したものの一方又は双方を有する有機成分と、を含有する被膜層を形成することを特徴とする、複合被覆金属板の製造方法。   A metal plate or a plated metal plate is immersed in the composite coating treatment agent according to any one of claims 10 to 17 and electrolyzed to oxidize a metal metal other than chromium on the surface of the metal plate or the metal plate. Forming a coating layer containing one or both of a product or a hydroxide and an organic component having at least one functional group or one or both of the functional groups modified A method for producing a metal plate. 前記金属板又は前記めっき金属板の表面に形成された前記被膜層上に、有機樹脂層をさらに形成することを特徴とする、請求項18又は19に記載の複合被覆金属板の製造方法。   The method for producing a composite coated metal plate according to claim 18 or 19, further comprising forming an organic resin layer on the coating layer formed on the surface of the metal plate or the plated metal plate.
JP2006326088A 2005-12-06 2006-12-01 Composite coated metal sheet, treatment agent for composite coating, and method of manufacturing composite coated metal sheet Pending JP2007182626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006326088A JP2007182626A (en) 2005-12-06 2006-12-01 Composite coated metal sheet, treatment agent for composite coating, and method of manufacturing composite coated metal sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005352512 2005-12-06
JP2006326088A JP2007182626A (en) 2005-12-06 2006-12-01 Composite coated metal sheet, treatment agent for composite coating, and method of manufacturing composite coated metal sheet

Publications (1)

Publication Number Publication Date
JP2007182626A true JP2007182626A (en) 2007-07-19

Family

ID=38338954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006326088A Pending JP2007182626A (en) 2005-12-06 2006-12-01 Composite coated metal sheet, treatment agent for composite coating, and method of manufacturing composite coated metal sheet

Country Status (1)

Country Link
JP (1) JP2007182626A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050640A (en) * 2006-08-23 2008-03-06 Jfe Steel Kk Surface treated metallic plate and method of manufacturing the same, resin-coated metallic plate, metallic can and metallic lid
WO2010110332A1 (en) * 2009-03-24 2010-09-30 株式会社神戸製鋼所 Aluminum fin material for heat exchanger
WO2017179348A1 (en) * 2016-04-14 2017-10-19 昭和電工パッケージング株式会社 Electrode material for improving beverage and electrode unit for improving beverage

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234352A (en) * 2000-02-22 2001-08-31 Nippon Paint Co Ltd Method for producing fin material made of aluminum, and fin material made of aluminum produced by the method
JP2001303267A (en) * 2000-04-20 2001-10-31 Nippon Paint Co Ltd Non-chromium rust-preventive treating agent for aluminum, rust preventive treating method and aluminum product subjected to rust preventive treatment
WO2002103080A1 (en) * 2001-06-15 2002-12-27 Nihon Parkerizing Co., Ltd. Treating solution for surface treatment of metal and surface treatment method
JP2004190121A (en) * 2002-12-13 2004-07-08 Nippon Parkerizing Co Ltd Treatment liquid for surface treating metal, and surface treatment method
JP2004218075A (en) * 2002-12-24 2004-08-05 Nippon Paint Co Ltd Chemical conversion coating agent and surface-treated metal
JP2005264230A (en) * 2004-03-18 2005-09-29 Nippon Parkerizing Co Ltd Surface treatment composition for metal, surface treatment liquid for metal, surface treatment method for metal, and metallic material
WO2006098359A1 (en) * 2005-03-16 2006-09-21 Nihon Parkerizing Co., Ltd. Surface-treated metallic material
JP2006255540A (en) * 2005-03-15 2006-09-28 Nippon Parkerizing Co Ltd Coating method of metal material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234352A (en) * 2000-02-22 2001-08-31 Nippon Paint Co Ltd Method for producing fin material made of aluminum, and fin material made of aluminum produced by the method
JP2001303267A (en) * 2000-04-20 2001-10-31 Nippon Paint Co Ltd Non-chromium rust-preventive treating agent for aluminum, rust preventive treating method and aluminum product subjected to rust preventive treatment
WO2002103080A1 (en) * 2001-06-15 2002-12-27 Nihon Parkerizing Co., Ltd. Treating solution for surface treatment of metal and surface treatment method
JP2004190121A (en) * 2002-12-13 2004-07-08 Nippon Parkerizing Co Ltd Treatment liquid for surface treating metal, and surface treatment method
JP2004218075A (en) * 2002-12-24 2004-08-05 Nippon Paint Co Ltd Chemical conversion coating agent and surface-treated metal
JP2005264230A (en) * 2004-03-18 2005-09-29 Nippon Parkerizing Co Ltd Surface treatment composition for metal, surface treatment liquid for metal, surface treatment method for metal, and metallic material
JP2006255540A (en) * 2005-03-15 2006-09-28 Nippon Parkerizing Co Ltd Coating method of metal material
WO2006098359A1 (en) * 2005-03-16 2006-09-21 Nihon Parkerizing Co., Ltd. Surface-treated metallic material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050640A (en) * 2006-08-23 2008-03-06 Jfe Steel Kk Surface treated metallic plate and method of manufacturing the same, resin-coated metallic plate, metallic can and metallic lid
WO2010110332A1 (en) * 2009-03-24 2010-09-30 株式会社神戸製鋼所 Aluminum fin material for heat exchanger
EP2413085A4 (en) * 2009-03-24 2014-09-10 Kobe Steel Ltd Aluminum fin material for heat exchanger
WO2017179348A1 (en) * 2016-04-14 2017-10-19 昭和電工パッケージング株式会社 Electrode material for improving beverage and electrode unit for improving beverage

Similar Documents

Publication Publication Date Title
US8475930B2 (en) Composite coated metal sheet, treatment agent and method of manufacturing composite coated metal sheet
TWI521095B (en) A metal surface treatment agent and a metal material treated with the treatment agent
CN101545107B (en) Surface treatment liquid, surface treatment method and tin-plated steel sheet by surface treatment
WO2011118588A1 (en) Steel sheet for container and method for producing same
JP5075321B2 (en) Aqueous treatment agent for metal surface
WO2004055237A1 (en) Treating fluid for surface treatment of metal and method for surface treatment
JP4344222B2 (en) Chemical conversion metal plate
JP3967519B2 (en) Zn-Mg electroplated metal plate and method for producing the same
JP2008202149A (en) Treatment liquid for metal surface treatment, and surface treatment method
JP5638191B2 (en) Chemical conversion treated metal plate and manufacturing method thereof
JP4615807B2 (en) Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, and resin-coated surface-treated steel sheet
JP5334499B2 (en) Surface-treated metal plate with excellent paint adhesion and method for producing the same
JP2009299145A (en) Metal (hydro)oxide coated metallic material
JP2007182626A (en) Composite coated metal sheet, treatment agent for composite coating, and method of manufacturing composite coated metal sheet
JP5338195B2 (en) Surface-treated galvanized steel sheet and method for producing the same
CN105579616B (en) Steel plate for container
WO2000061835A1 (en) Method for production of surface treated steel sheet, surface treated steel sheet, and surface treated steel sheet coated with resin comprising surface treated steel sheet and organic resin coating the steel sheet
WO2005053949A1 (en) Coated metal plate with excellent corrosion resistance and reduced environmental impact
JP4207536B2 (en) Surface treatment metal plate and surface treatment agent
CN105408526A (en) Steel sheet for container
JP4864670B2 (en) Surface-treated metal plate and method for producing surface-treated metal plate
JP4179527B2 (en) Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, and resin-coated surface-treated steel sheet obtained by coating surface-treated steel sheet with organic resin
JP4490677B2 (en) Painted metal plate with low environmental impact
JP4283698B2 (en) Precoated steel sheet having excellent end face corrosion resistance and method for producing the same
TWI391529B (en) Metal surface treatment agent and its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Effective date: 20111017

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20120508

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120628

A131 Notification of reasons for refusal

Effective date: 20121106

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

A02 Decision of refusal

Effective date: 20130806

Free format text: JAPANESE INTERMEDIATE CODE: A02