JP2007182286A - Picking method and picking system - Google Patents

Picking method and picking system Download PDF

Info

Publication number
JP2007182286A
JP2007182286A JP2006000922A JP2006000922A JP2007182286A JP 2007182286 A JP2007182286 A JP 2007182286A JP 2006000922 A JP2006000922 A JP 2006000922A JP 2006000922 A JP2006000922 A JP 2006000922A JP 2007182286 A JP2007182286 A JP 2007182286A
Authority
JP
Japan
Prior art keywords
robot hand
picking
storage unit
dimensional position
guiding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006000922A
Other languages
Japanese (ja)
Inventor
Seigo Komatsu
聖吾 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006000922A priority Critical patent/JP2007182286A/en
Publication of JP2007182286A publication Critical patent/JP2007182286A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a picking method reducing preparation man-hour and instruction man-hour etc. and having excellent versatility. <P>SOLUTION: This picking method includes a receiving stage to receive radio signals transmitted from a first radio terminal provided in the vicinity of a storing part for storing picking target members and a second radio terminal provided in the vicinity of a robot hand for picking the picking target members; a position calculating stage to calculate three-dimensional positions of the storing part and the robot hand, based on the reception results of the radio signals transmitted from the first and second radio terminals; and a guiding stage to guide the robot hand toward the storing part, based on the calculated three-dimensional positions of the storing part and robot hand. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ピッキング方法およびピッキングシステムに関する。特に、本発明は、ピッキング対象部材が収納される収納部に向かってロボットハンドを誘導するピッキング方法およびピッキングシステムに関する。   The present invention relates to a picking method and a picking system. In particular, the present invention relates to a picking method and a picking system for guiding a robot hand toward a storage unit in which a picking target member is stored.

近年、車両の組立工程において、サプライヤからの供給部品を生産順序に並べ替え、組立ラインに同期させて供給するロットピッキングが実施されている。   2. Description of the Related Art In recent years, lot picking is performed in a vehicle assembly process, in which parts supplied from a supplier are rearranged in a production order and supplied in synchronization with an assembly line.

一般的なピッキング作業とは、部品棚をピッキングエリアに並べ、生産順序工程にしたがって、作業者が、組立ラインへ供給されるキットおよび同期台車などにそれぞれの部品をセットしてゆく作業のことをいう。   General picking work refers to the work in which parts shelves are arranged in a picking area, and the worker sets each part in a kit and a synchronous cart supplied to the assembly line according to the production sequence process. Say.

生産効率の向上を目的として、ピッキング作業の自動化を図ろうとする場合、種々の部品および棚の形状、大きさ、および色などの要件に対応した自動化システムが必要となる。このような種々の部品および棚に対応した専用設備を適用しようとすると、ピッキングエリア毎に設備が設計されなければならず、設備の設計および準備工数がピッキング作業の自動化による工数削減の効果を上回り、目的が果たせないという問題がある。   In order to automate the picking operation for the purpose of improving production efficiency, an automation system that meets requirements such as the shape, size, and color of various parts and shelves is required. If it is going to apply special equipment corresponding to such various parts and shelves, the equipment must be designed for each picking area, and the design and preparation man-hours exceed the effect of man-hour reduction by automation of picking work. There is a problem that the purpose cannot be achieved.

また、部品および棚の要件に対して汎用的なティーチングプレイバックロボットを使用することによるピッキング作業の自動化が考えられる。しかしながら、この場合、種々の部品および棚毎にピッキング動作を実現するために、ロボットに多くの動作を教示しなければならない。したがって、膨大な教示工数が必要となるという問題がある。   In addition, it is conceivable to automate picking work by using a general-purpose teaching playback robot for the requirements of parts and shelves. However, in this case, many operations must be taught to the robot in order to realize a picking operation for each of various parts and shelves. Therefore, there is a problem that enormous teaching man-hours are required.

以上の問題により、ピッキング作業は作業者によって実施されているのが現状である(たとえば、特許文献1)。
特開2002−338014号公報
Due to the above problems, picking work is currently performed by an operator (for example, Patent Document 1).
JP 2002-338814 A

本発明は、上記の問題点を解決するためになされたものである。したがって、本発明の目的は、準備工数および教示工数などが低減された、汎用性に優れたピッキング方法およびピッキングシステムを提供することである。   The present invention has been made to solve the above problems. Accordingly, an object of the present invention is to provide a picking method and a picking system excellent in versatility in which preparation man-hours, teaching man-hours, and the like are reduced.

本発明の上記目的は、下記の手段によって達成される。   The above object of the present invention is achieved by the following means.

本発明のピッキング方法は、ピッキング対象部材が収納されている収納部の近傍に設けられた第1の無線端末と、当該ピッキング対象部材をピッキングするロボットハンドの近傍に設けられた第2の無線端末とからそれぞれ送信される無線信号を受信する受信段階と、前記第1および第2の無線端末から送信される無線信号の受信結果から、前記収納部およびロボットハンドの3次元位置を算出する位置算出段階と、前記算出された収納部およびロボットハンドの3次元位置に基づいて、当該ロボットハンドを当該収納部に向かって誘導する誘導段階と、を有することを特徴とする。   The picking method of the present invention includes a first wireless terminal provided in the vicinity of the storage unit in which the picking target member is stored, and a second wireless terminal provided in the vicinity of the robot hand picking the picking target member. Receiving a wireless signal transmitted from each of the first and second wireless terminals, and a position calculation for calculating a three-dimensional position of the storage unit and the robot hand from the reception results of the wireless signals transmitted from the first and second wireless terminals. And a guiding step of guiding the robot hand toward the storage unit based on the calculated three-dimensional position of the storage unit and the robot hand.

本発明のピッキングシステムは、ピッキング対象部材が収納されている収納部の近傍に設けられた第1の無線端末と、当該ピッキング対象部材をピッキングするロボットハンドの近傍に設けられた第2の無線端末とからそれぞれ送信される無線信号を受信するアンテナ手段と、前記第1および第2の無線端末から送信される無線信号の受信結果から、前記収納部およびロボットハンドの3次元位置を算出する位置算出手段と、前記算出された収納部およびロボットハンドの3次元位置に基づいて、当該ロボットハンドを当該収納部に向かって誘導する誘導手段と、を有することを特徴とする。   The picking system of the present invention includes a first wireless terminal provided in the vicinity of the storage unit in which the picking target member is stored, and a second wireless terminal provided in the vicinity of the robot hand picking the picking target member. Position calculation for calculating the three-dimensional positions of the storage unit and the robot hand from the antenna means for receiving the radio signals respectively transmitted from the first and second radio terminals and the reception results of the radio signals transmitted from the first and second radio terminals. And a guiding unit for guiding the robot hand toward the storage unit based on the calculated three-dimensional position of the storage unit and the robot hand.

本発明のピッキング方法およびピッキングシステムによれば、無線信号の受信結果から算出される3次元位置に基づいて、ロボットハンドが収納部に誘導される。したがって、ロボットへの動作の教示工数を省略することができるとともに、設備の設計などが不要な汎用性に優れたピッキング方法およびピッキングシステムを得ることができる。   According to the picking method and picking system of the present invention, the robot hand is guided to the storage unit based on the three-dimensional position calculated from the reception result of the radio signal. Therefore, it is possible to omit the teaching man-hour of the operation to the robot, and it is possible to obtain a picking method and a picking system excellent in versatility that do not require equipment design.

以下、添付の図面を参照して、本発明の実施の形態について詳細に説明する。本実施の形態では、車両などの生産ラインに部品を供給するために、部品棚に設けられた部品箱(収納部)からロボットハンドがピッキング対象部品(ピッキング対象部材)をピッキングし、供給用容器に収容する場合を例にとって説明する。なお、図中、同様の部材には同一の符号を用いた。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this embodiment, in order to supply parts to a production line such as a vehicle, the robot hand picks a picking target part (picking target member) from a parts box (storage section) provided on the parts shelf, and a supply container An example of the case of housing in the case will be described. In addition, the same code | symbol was used for the same member in the figure.

図1は、本発明の一実施の形態におけるピッキングシステムを示す図である。図1に示されるとおり、本実施の形態におけるピッキングシステムは、ロボットアーム100、アンテナユニット200、位置算出部300、制御部400、および部品指示受付部500を有する。   FIG. 1 is a diagram showing a picking system according to an embodiment of the present invention. As shown in FIG. 1, the picking system in the present embodiment includes a robot arm 100, an antenna unit 200, a position calculation unit 300, a control unit 400, and a component instruction receiving unit 500.

ロボットアーム100は、部品箱600に収納されるピッキング対象部品をピッキングするものである。ロボットアーム100は、ロボット本体部110およびロボット本体部110の先端部に設けられたロボットハンド120を有する。ロボット本体部110は、後述する制御部400によって制御され、ロボットハンド120は、ピッキング対象部品が収納されている部品箱600aに向かって誘導される。ロボットハンド120の近傍には、アンテナユニット200に無線信号(たとえば、電波)を送信する無線端末(第2の無線端末)220aが設けられている。同様に、複数の部品箱600それぞれの近傍にも、アンテナユニット200に無線信号を送信する無線端末(第1の無線端末)220が設けられている。なお、本実施の形態のロボットアーム100自体は、一般的な多関節型のロボットアームであるため、詳細な説明は省略する。   The robot arm 100 picks a picking target component stored in the component box 600. The robot arm 100 includes a robot main body 110 and a robot hand 120 provided at the tip of the robot main body 110. The robot body 110 is controlled by the control unit 400 described later, and the robot hand 120 is guided toward the component box 600a in which the picking target component is stored. In the vicinity of the robot hand 120, a wireless terminal (second wireless terminal) 220a that transmits a wireless signal (for example, a radio wave) to the antenna unit 200 is provided. Similarly, a wireless terminal (first wireless terminal) 220 that transmits a wireless signal to the antenna unit 200 is also provided in the vicinity of each of the plurality of component boxes 600. Note that the robot arm 100 according to the present embodiment is a general articulated robot arm, and a detailed description thereof will be omitted.

アンテナユニット200は、ロボットハンド120の近傍に設けられた無線端末220aと、複数の部品箱600それぞれの近傍に設けられた無線端末220とから送信される無線信号を受信するものである。アンテナユニット200は、少なくとも3つのアンテナ210a,210b,210c(以下、総称してアンテナ210と称する)を含み、各アンテナ210は、たとえば、ピッキングエリアが設けられている建屋の天井に設けられている。各アンテナ210は、それぞれ無線端末220から送信される無線信号を受信する。アンテナユニット200と複数の無線端末220とは、所定の時間間隔で常時通信されている。   The antenna unit 200 receives radio signals transmitted from the radio terminal 220 a provided in the vicinity of the robot hand 120 and the radio terminal 220 provided in the vicinity of each of the plurality of component boxes 600. The antenna unit 200 includes at least three antennas 210a, 210b, and 210c (hereinafter collectively referred to as antennas 210), and each antenna 210 is provided, for example, on the ceiling of a building where a picking area is provided. . Each antenna 210 receives a radio signal transmitted from the radio terminal 220. The antenna unit 200 and the plurality of wireless terminals 220 are always in communication at predetermined time intervals.

位置算出部300は、アンテナユニット200の受信結果から、ロボットハンド120および部品箱600の3次元位置を算出するものである。より具体的には、たとえば、3つのアンテナ210が受信した無線信号の受信結果から、各アンテナ210と無線端末220との距離を算出し、いわゆる3点測量の原理から、ロボットハンド120および部品箱600の3次元位置を算出する。位置算出部300は、特定手段として、複数の部品箱600のそれぞれに設けられた無線端末220から送信される複数の無線信号の中から、ピッキング対象部品が収納されている部品箱600aに対応した無線信号を特定する。   The position calculation unit 300 calculates the three-dimensional positions of the robot hand 120 and the component box 600 from the reception result of the antenna unit 200. More specifically, for example, the distance between each antenna 210 and the radio terminal 220 is calculated from the reception results of radio signals received by the three antennas 210, and the robot hand 120 and the component box are calculated from the principle of so-called three-point surveying. 600 three-dimensional positions are calculated. The position calculation unit 300 corresponds to the component box 600a in which a picking target component is stored from among a plurality of wireless signals transmitted from the wireless terminals 220 provided in each of the plurality of component boxes 600 as a specifying unit. Identify radio signals.

制御部400は、位置算出部300が算出した3次元位置に基づいて、ロボットハンド120を部品箱600aに向かって誘導するものである。より具体的には、制御部400は、算出された部品箱600aの3次元位置とロボットハンド120の3次元位置との差分から位置偏差を算出し、当該算出された位置偏差がゼロとなるようにロボットアーム100を制御する。ロボットアーム100の制御方法の詳細については後述する。   The control unit 400 guides the robot hand 120 toward the component box 600a based on the three-dimensional position calculated by the position calculation unit 300. More specifically, the control unit 400 calculates a position deviation from the difference between the calculated three-dimensional position of the component box 600a and the three-dimensional position of the robot hand 120 so that the calculated position deviation becomes zero. The robot arm 100 is controlled. Details of the control method of the robot arm 100 will be described later.

部品指示受付部500は、上位の部品指示システムからピッキング対象部品についての指示を受け付けるものである。部品指示システムは、より上位の生産指示システムから生産ラインを流れる車両についての指示を受け付け、受け付けた指示に基づいてピッキング対象部品についての指示を位置算出部300に伝達する。   The component instruction receiving unit 500 receives an instruction regarding a picking target component from a higher-level component instruction system. The parts instruction system receives an instruction about a vehicle flowing through a production line from a higher-order production instruction system, and transmits an instruction about a picking target part to the position calculation unit 300 based on the received instruction.

以上のとおり、構成される本実施の形態におけるピッキングシステムでは、上位の部品指示システムからピッキング対象部品についての指示を受け付けた後、ロボットアーム100が制御されて、ピッキング対象部品をピッキングする。それから、ロボットアーム100は、ピッキング対象部品をピッキングした後、離れた場所にある供給用容器610にピッキング対象部品を収容する。以下、本実施の形態のピッキングシステムにおけるピッキング処理について述べる。   As described above, in the picking system according to the present embodiment configured, the robot arm 100 is controlled to pick the picking target part after receiving an instruction regarding the picking target part from the host part instruction system. Then, after picking the picking target part, the robot arm 100 stores the picking target part in the supply container 610 at a remote location. Hereinafter, the picking process in the picking system of the present embodiment will be described.

図2は、本実施の形態におけるピッキング処理の流れを示すフローチャートである。図2に示されるとおり、まず、部品指示受付部500が、上位の部品指示システムからピッキング対象部品についての指示を受け付ける(ステップS101)。次に、指示を受け付けたピッキング対象部品が収納される部品箱600aに向かってロボットハンド120が誘導される(ステップS102)。なお、部品箱600aに向かってロボットハンド120が誘導される誘導処理についての詳細な説明は後述する。   FIG. 2 is a flowchart showing a flow of picking processing in the present embodiment. As shown in FIG. 2, first, the component instruction receiving unit 500 receives an instruction for a picking target component from a higher-level component instruction system (step S101). Next, the robot hand 120 is guided toward the component box 600a in which the picking target component that has received the instruction is stored (step S102). A detailed description of the guidance process in which the robot hand 120 is guided toward the component box 600a will be described later.

そして、ロボットハンド120が部品箱600aに誘導されると、ロボットハンド120は、部品箱600aに収納されるピッキング対象部品に接近(アプローチ)し、ピッキング対象部品をクランプする(ステップS103)。次に、ピッキング対象部品がクランプされたか否かが判断される(ステップS104)。ピッキング対象部品がクランプされたか否かの判断は、たとえば、カメラ(画像処理)、接触センサ、および力センサ(部品の重さ)などを用いて判断される。   When the robot hand 120 is guided to the component box 600a, the robot hand 120 approaches (approaches) the picking target component stored in the component box 600a and clamps the picking target component (step S103). Next, it is determined whether or not the picking target part has been clamped (step S104). The determination as to whether or not the picking target part has been clamped is made using, for example, a camera (image processing), a contact sensor, a force sensor (part weight), and the like.

ピッキング対象部品がクランプされた場合(ステップS104:YES)、ロボットアーム100は部品を引き上げる(ステップS105)。一方、部品がクランプされていない場合(ステップS104:NO)、処理が終了される。なお、部品がクランプされない場合、リトライ処理として、再度、クランプ処理が実行されることができる。あるいは、アラーム警報などによって管理者に状況が報知される。   When the picking target part is clamped (step S104: YES), the robot arm 100 pulls up the part (step S105). On the other hand, when the component is not clamped (step S104: NO), the process is terminated. If the component is not clamped, the clamping process can be executed again as the retry process. Alternatively, the situation is notified to the administrator by an alarm warning or the like.

次に、ピッキング対象部品をクランプした状態のロボットハンド120は、供給用容器610に向かって誘導される(ステップS106)。この誘導処理は、ステップS102に示される誘導処理と同様であるため、詳細な説明は省略する。次に、供給用容器610上に誘導されたロボットハンド120は、ピッキング対象部品をアンクランプする(ステップS107)。そして、ステップS104に示す処理と同様に、部品がアンクランプされたか否かが判断される(ステップS108)。   Next, the robot hand 120 in a state where the picking target component is clamped is guided toward the supply container 610 (step S106). Since this guidance process is the same as the guidance process shown in step S102, detailed description is omitted. Next, the robot hand 120 guided onto the supply container 610 unclamps the picking target component (step S107). Then, similarly to the processing shown in step S104, it is determined whether or not the component has been unclamped (step S108).

部品がアンクランプされた場合(ステップS108:YES)、ロボットアーム100の位置がリセットされ、処理が終了される(ステップS109)。一方、部品がアンクランプされていない場合(ステップS108:NO)、処理が終了される。なお、部品がアンクランプされない場合、リトライ処理として、再度、アンクランプ処理が実行されることができる。あるいは、アラーム警報などによって管理者に状況が報知される。   If the part is unclamped (step S108: YES), the position of the robot arm 100 is reset, and the process ends (step S109). On the other hand, when the component is not unclamped (step S108: NO), the process is terminated. If the component is not unclamped, the unclamping process can be executed again as the retry process. Alternatively, the situation is notified to the administrator by an alarm warning or the like.

以上のとおり、図2に示されるピッキング処理によれば、ピッキング対象部品が収納される部品箱600aに向かってロボットハンド120が誘導され、ピッキング対象部品がクランプされた後、供給用容器610上でアンクランプされて供給用容器610に収容される。以下、図2のステップS102に示す誘導処理について詳細に説明する。上述したとおり、ステップS102に示す誘導処理では、ロボットハンド120が部品箱600aに向かって誘導される。   As described above, according to the picking process shown in FIG. 2, after the robot hand 120 is guided toward the component box 600 a in which the picking target component is stored and the picking target component is clamped, the picking processing is performed on the supply container 610. Unclamped and accommodated in the supply container 610. Hereinafter, the guidance process shown in step S102 of FIG. 2 will be described in detail. As described above, in the guidance process shown in step S102, the robot hand 120 is guided toward the component box 600a.

図3は、図2のステップS102に示すロボットハンドの誘導処理を示すフローチャートであり、図4は、本実施の形態における誘導処理を説明するための図である。   FIG. 3 is a flowchart showing the guidance process of the robot hand shown in step S102 of FIG. 2, and FIG. 4 is a diagram for explaining the guidance process in the present embodiment.

まず、アンテナユニット200は、ロボットハンド120および部品箱600の近傍に設けられた複数の無線端末220から送信される信号を受信する(ステップS201)。次に、複数の部品箱600近傍にそれぞれ設けられた無線端末220から送信される複数の無線信号の中から、指示を受け付けたピッキング対象部品が収納される部品箱600aおよびロボットハンド120に対応した無線信号が特定される(ステップS202)。なお、無線信号はID信号を含んでおり、当該ID信号から無線信号が特定される。   First, the antenna unit 200 receives signals transmitted from a plurality of wireless terminals 220 provided in the vicinity of the robot hand 120 and the component box 600 (step S201). Next, among the plurality of wireless signals transmitted from the wireless terminals 220 provided in the vicinity of the plurality of parts boxes 600, the parts corresponding to the parts box 600a and the robot hand 120 in which the picking target parts that have received instructions are stored. A radio signal is identified (step S202). Note that the radio signal includes an ID signal, and the radio signal is specified from the ID signal.

次に、特定された無線信号の受信結果からロボットハンド120および部品箱600aの3次元位置が算出される(ステップS203)。より具体的には、ロボットハンド120および部品箱600aの近傍に設けられた無線端末220a,220bから送信される無線信号の受信結果に基づいて、いわゆる3点測量の原理から、無線端末220a,220bの3次元位置A’,B’が算出される。   Next, the three-dimensional positions of the robot hand 120 and the parts box 600a are calculated from the reception result of the specified radio signal (step S203). More specifically, based on the reception result of radio signals transmitted from the radio terminals 220a and 220b provided in the vicinity of the robot hand 120 and the parts box 600a, the radio terminals 220a and 220b are based on the principle of so-called three-point surveying. The three-dimensional positions A ′ and B ′ are calculated.

次に、算出された3次元位置A’,B’に基づいて、ロボットハンド120の移動が開始される(ステップS204)。より具体的には、図4に示されるとおり、たとえば、ロボットハンド120近傍の無線端末220aの3次元位置A’と部品箱600a近傍の無線端末220bの三次元位置B’とから、ロボットハンド120および部品箱600aの正確な3次元位置A,Bが算出される。そして、ロボットハンド120の正確な3次元位置Aと部品箱600aの正確な3次元位置Bとの差分から、ロボットハンド120を誘導するためのベクトル(位置偏差)が算出され、当該ベクトル方向に、かつベクトル長がゼロになるようにロボットハンド120が直線補間動作で誘導される。なお、無線端末220aの3次元位置A’とロボットハンド120の3次元位置Aとの位置関係、および、無線端末220bの3次元位置B’と部品箱600aの3次元位置Bとの位置関係は既知であり、予め位置算出部300に記憶されている。また、それぞれの位置関係は、3次元位置A,Bのベクトル長がゼロになったときに、ロボットハンド120と部品箱600およびその周辺設備とが干渉せず、さらに、ロボットハンド120による部品のクランプのアプローチが可能な位置となることを条件とする。また、ロボット本体部110は、ロボットハンド120の3次元位置から関節角度などを逆算することにより制御される。   Next, the movement of the robot hand 120 is started based on the calculated three-dimensional positions A ′ and B ′ (step S <b> 204). More specifically, as shown in FIG. 4, for example, from the three-dimensional position A ′ of the wireless terminal 220a near the robot hand 120 and the three-dimensional position B ′ of the wireless terminal 220b near the parts box 600a, the robot hand 120 And the exact three-dimensional positions A and B of the parts box 600a are calculated. A vector (position deviation) for guiding the robot hand 120 is calculated from the difference between the accurate three-dimensional position A of the robot hand 120 and the accurate three-dimensional position B of the component box 600a. In addition, the robot hand 120 is guided by linear interpolation so that the vector length becomes zero. The positional relationship between the three-dimensional position A ′ of the wireless terminal 220a and the three-dimensional position A of the robot hand 120 and the positional relationship between the three-dimensional position B ′ of the wireless terminal 220b and the three-dimensional position B of the component box 600a are as follows. It is known and stored in the position calculation unit 300 in advance. In addition, when the vector length of the three-dimensional positions A and B becomes zero, the positional relationship between the robot hand 120 and the parts box 600 and its peripheral equipment does not interfere with each other. The condition is that the clamp approach is possible. The robot body 110 is controlled by calculating back the joint angle from the three-dimensional position of the robot hand 120.

あるいは、3次元位置A,B間の差分をLとすると、L=B−A…(1)の関係が成立する。また、ロボットハンド120の正確な3次元位置Aと無線端末220aの3次元位置A’との差分をLA、および、部品箱600aの正確な3次元位置Bと無線端末220bの3次元位置B’との差分をLBとすると、以下の(2)および(3)式が成立する。LA=A’−A…(2)、LB=B’−B…(3)。そして、(1)〜(3)式より、L=(B’−LB)−(A’−LA)=0とすれば、B’−A’=LB−LA…(4)の関係が成立する。すなわち、本実施の形態では、無線端末220a,220bの3次元位置A’,B’の差分が、既知のLBとLAの差分と一致するように、ロボットハンド120は制御されてもよい。そして、このように制御すると、部品箱600aの3次元位置とロボットハンド120の3次元位置とを結ぶ直線に沿って、部品箱600aに近づく方向にロボットハンド120は直線補間動作で誘導される。   Alternatively, if the difference between the three-dimensional positions A and B is L, the relationship L = B−A (1) is established. Further, the difference between the accurate three-dimensional position A of the robot hand 120 and the three-dimensional position A ′ of the wireless terminal 220a is LA, and the accurate three-dimensional position B of the parts box 600a and the three-dimensional position B ′ of the wireless terminal 220b are used. When the difference between the two is LB, the following equations (2) and (3) are established. LA = A′−A (2), LB = B′−B (3). From the equations (1) to (3), if L = (B′−LB) − (A′−LA) = 0, the relationship B′−A ′ = LB−LA (4) is established. To do. That is, in the present embodiment, the robot hand 120 may be controlled so that the difference between the three-dimensional positions A ′ and B ′ of the wireless terminals 220 a and 220 b matches the known difference between LB and LA. When controlled in this way, the robot hand 120 is guided by a linear interpolation operation in a direction approaching the component box 600a along a straight line connecting the three-dimensional position of the component box 600a and the three-dimensional position of the robot hand 120.

次に、ロボットハンド120が誘導された状態で、アンテナユニット200の受信結果から、ロボットハンド120および部品箱600aの3次元位置が再び算出される(ステップS205,S206)。上述したとおり、無線端末220a,220bとアンテナユニット200とは、所定の時間間隔で常時通信されており、位置算出部300は、たとえば、この所定の時間間隔でロボットハンド120および部品箱600aの3次元位置を算出することができる。なお、このステップS205およびS206に示す処理では、ロボットハンド120の3次元位置のみが算出されてもよい。   Next, with the robot hand 120 guided, the three-dimensional positions of the robot hand 120 and the component box 600a are calculated again from the reception result of the antenna unit 200 (steps S205 and S206). As described above, the radio terminals 220a and 220b and the antenna unit 200 are always in communication at a predetermined time interval, and the position calculation unit 300, for example, 3 of the robot hand 120 and the component box 600a at the predetermined time interval. The dimension position can be calculated. In the processing shown in steps S205 and S206, only the three-dimensional position of the robot hand 120 may be calculated.

次に、算出されたロボットハンド120および部品箱600aの3次元位置に基づいて、ロボットハンド120と部品箱600aとの位置偏差が算出される(ステップS207)。そして、算出された位置偏差がゼロか否かが判断される(ステップS208)。位置偏差がゼロでない場合(ステップS208:NO)、算出される位置偏差がゼロになるまで、ロボットハンド120が移動されつつ、ステップS205以下の処理が繰り返される。一方、算出された位置偏差がゼロの場合(ステップS208:YES)、ロボットハンド120の移動が停止し、処理が終了される(ステップS209)。したがって、図3に示されるフローチャートの誘導処理によれば、ピッキング対象部品が収納されている部品箱600a上までロボットハンド120が誘導される。   Next, based on the calculated three-dimensional positions of the robot hand 120 and the component box 600a, the positional deviation between the robot hand 120 and the component box 600a is calculated (step S207). Then, it is determined whether or not the calculated position deviation is zero (step S208). When the position deviation is not zero (step S208: NO), the process after step S205 is repeated while the robot hand 120 is moved until the calculated position deviation becomes zero. On the other hand, when the calculated position deviation is zero (step S208: YES), the movement of the robot hand 120 is stopped and the process is ended (step S209). Therefore, according to the guidance process of the flowchart shown in FIG. 3, the robot hand 120 is guided to the part box 600a in which the picking target part is stored.

なお、図2のステップS106に示される誘導処理は、ロボットハンド120の誘導先が供給用容器610であることを除けば、上述した誘導処理と同様であるため、詳細な説明は省略する。このとき、供給用容器610近傍に設けられた無線端末(第3の無線端末)220cを介して、位置算出部300は、供給用容器610の3次元位置C’を算出することができる。   The guidance process shown in step S106 of FIG. 2 is the same as the guidance process described above except that the guidance destination of the robot hand 120 is the supply container 610, and thus detailed description thereof is omitted. At this time, the position calculation unit 300 can calculate the three-dimensional position C ′ of the supply container 610 via the wireless terminal (third wireless terminal) 220 c provided in the vicinity of the supply container 610.

以上のとおり説明された本実施の形態のピッキングシステムでは、ロボットハンド120は、位置偏差がゼロになるように直線補間動作で制御される。しかしながら、ロボットハンド120は、直線補間動作のみならず、直線補間動作と他の動作とを組み合わせて制御されてもよい。   In the picking system of the present embodiment described as described above, the robot hand 120 is controlled by a linear interpolation operation so that the positional deviation becomes zero. However, the robot hand 120 may be controlled by combining not only the linear interpolation operation but also the linear interpolation operation and other operations.

図5は、本実施の形態におけるロボットハンドの誘導処理の変形例を示すフローチャートである。図5に示すフローチャートでは、ロボットハンド120と部品箱600aとの間に、少なくとも一つの経由点(teaching point)が設定される。ロボットハンド120は、当該経由点まで、PTP(Point To Point)制御により最短時間で誘導され、経由点から部品箱600aまでCP(Continuous Path)制御により直線補間動作で誘導される。   FIG. 5 is a flowchart showing a modification of the guidance process of the robot hand in the present embodiment. In the flowchart shown in FIG. 5, at least one waypoint is set between the robot hand 120 and the component box 600a. The robot hand 120 is guided to the via point in the shortest time by PTP (Point To Point) control, and is guided from the via point to the component box 600a by a linear interpolation operation by CP (Continuous Path) control.

より具体的には、まず、アンテナユニット200は、ロボットハンド120および部品箱600aの近傍に設けられた無線端末220a,220bから送信される信号を受信する(ステップS301)。次に、無線信号の受信結果からロボットハンド120および部品箱600aの3次元位置が算出される(ステップS302)。次に、算出された部品箱600aの3次元位置に基づいて、経由点が設定される(ステップS303)。なお、経由点は、設定手段としての制御部400によって、たとえば、部品箱600aから所定の距離に設定される。   More specifically, first, the antenna unit 200 receives signals transmitted from the wireless terminals 220a and 220b provided in the vicinity of the robot hand 120 and the parts box 600a (step S301). Next, the three-dimensional positions of the robot hand 120 and the parts box 600a are calculated from the reception result of the radio signal (step S302). Next, a waypoint is set based on the calculated three-dimensional position of the component box 600a (step S303). The waypoint is set, for example, at a predetermined distance from the component box 600a by the control unit 400 as setting means.

そして、ロボットアーム100は、PTP動作命令にしたがって、経由点を目標点として、最短時間で経由点に到達するように移動を開始する(ステップS304)。次に、ロボットハンド120および部品箱600aの近傍に設けられた無線端末220a,220bから送信される無線信号が受信され、受信結果からロボットハンド120および部品箱600aの3次元位置が算出される(ステップS305,S306)。そして、ロボットハンド120が経由点に到達したか否かが判断される(ステップS307)。ロボットハンド120が経由点に到達していない場合(ステップS307:NO)、ロボットハンド120が経由点に到達するまでステップS305以下の処理が繰り返される。   Then, according to the PTP operation command, the robot arm 100 starts moving so as to reach the via point in the shortest time with the via point as a target point (step S304). Next, wireless signals transmitted from the wireless terminals 220a and 220b provided in the vicinity of the robot hand 120 and the parts box 600a are received, and the three-dimensional positions of the robot hand 120 and the parts box 600a are calculated from the reception results ( Steps S305 and S306). Then, it is determined whether or not the robot hand 120 has reached the waypoint (step S307). When the robot hand 120 has not reached the waypoint (step S307: NO), the processing from step S305 is repeated until the robot hand 120 has reached the waypoint.

一方、ロボットハンド120が経由点に到達した場合(ステップS307:YES)、ロボットアーム100は直線補間動作命令にしたがって移動を開始する(ステップS308)。次に、ロボットハンド120および部品箱600aの近傍に設けられた無線端末220a,220bから送信される無線信号が受信され、受信結果からロボットハンド120および部品箱600aの3次元位置が算出される(ステップS309,S310)。次に、ロボットハンド120および部品箱600aの位置偏差が算出される(ステップS311)。そして、算出された位置偏差がゼロになるまで、ステップS309以下の処理が繰り返されて、位置偏差がゼロになったところでロボットアーム100の移動が停止し、処理が終了される(ステップS312,S313)。   On the other hand, when the robot hand 120 reaches the waypoint (step S307: YES), the robot arm 100 starts moving according to the linear interpolation operation command (step S308). Next, wireless signals transmitted from the wireless terminals 220a and 220b provided in the vicinity of the robot hand 120 and the parts box 600a are received, and the three-dimensional positions of the robot hand 120 and the parts box 600a are calculated from the reception results ( Steps S309 and S310). Next, the positional deviation between the robot hand 120 and the parts box 600a is calculated (step S311). Then, the processes in and after step S309 are repeated until the calculated position deviation becomes zero. When the position deviation becomes zero, the movement of the robot arm 100 is stopped and the processes are terminated (steps S312 and S313). ).

以上のとおり、ロボットハンド120と部品箱600aとの間に経由点を設定し、当該経由点までロボットハンド120をPTP動作で誘導すると、直線補間動作で誘導する場合よりも短い時間で経由点に到達することができる。また、経由点から部品箱600aまで、ロボットハンド120を直線補間動作で誘導すると、ロボットハンド120と部品箱600との干渉問題が回避され、システムの安全性が向上される。   As described above, when a via point is set between the robot hand 120 and the component box 600a and the robot hand 120 is guided to the via point by the PTP operation, the via point is set in a shorter time than when the linear hand interpolation is used. Can be reached. Further, when the robot hand 120 is guided from the via point to the component box 600a by the linear interpolation operation, the problem of interference between the robot hand 120 and the component box 600 is avoided, and the safety of the system is improved.

以上のとおり、説明された本実施の形態は、以下の効果を奏する。   As described above, the described embodiment has the following effects.

本実施の形態のピッキングシステムは、ピッキング対象部品が収納されている部品箱の近傍に設けられた無線端末と、当該ピッキング対象部品をピッキングするロボットハンドの近傍に設けられた無線端末とからそれぞれ送信される無線信号を受信するアンテナユニットと、無線端末から送信される無線信号の受信結果から、部品箱およびロボットハンドの3次元位置を算出する位置算出部と、算出された部品箱およびロボットハンドの3次元位置に基づいて、ロボットハンドを部品箱に向かって誘導する制御部と、を有する。したがって、部品箱毎のロボットアームへの教示工程が不要となり、準備期間が短縮される。また、ピッキングエリアの移動にともなう設定が不要であり、移動期間が短縮される。さらに、部品箱の追加にともなう設定が不要となり、部品箱(部品棚)の追加期間が短縮される。   The picking system according to the present embodiment transmits data from a wireless terminal provided in the vicinity of a parts box in which a picking target part is stored and a wireless terminal provided in the vicinity of a robot hand picking the picking target part. An antenna unit for receiving a radio signal, a position calculation unit for calculating a three-dimensional position of the component box and the robot hand from the reception result of the radio signal transmitted from the radio terminal, and the calculated component box and the robot hand And a control unit for guiding the robot hand toward the component box based on the three-dimensional position. Therefore, the teaching process to the robot arm for each component box is not required, and the preparation period is shortened. In addition, the setting associated with the movement of the picking area is unnecessary, and the movement period is shortened. Furthermore, the setting associated with the addition of the component box becomes unnecessary, and the addition period of the component box (component shelf) is shortened.

位置算出部は、少なくともロボットハンドの3次元位置を所定の時間間隔で算出し、制御部は、所定の時間間隔で算出されるロボットハンドの3次元位置に基づいて、当該ロボットハンドを誘導する。したがって、部品箱の3次元位置を特定するためのセンシング工順が不要となるため、サイクルタイムを向上することができる。また、ロボットハンドの3次元位置の特定および補正は、ロボット動作と同時に実行することができ、サイクルタイムをさらに向上することができる。   The position calculation unit calculates at least the three-dimensional position of the robot hand at a predetermined time interval, and the control unit guides the robot hand based on the three-dimensional position of the robot hand calculated at the predetermined time interval. Therefore, the sensing process for specifying the three-dimensional position of the component box is not necessary, and the cycle time can be improved. Further, the specification and correction of the three-dimensional position of the robot hand can be performed simultaneously with the robot operation, and the cycle time can be further improved.

制御部は、算出された部品箱の3次元位置とロボットハンドの3次元位置とを結ぶ直線に沿って、部品箱に近づく方向にロボットハンドを誘導する。したがって、ロボットハンドの位置決めおよび補正ロジックが簡易であり、高い信頼性が確保され、実装コストを節約することができる。また、処理の高速化が可能となる。さらに、ロボットハンドと障害物との干渉を回避することができる。   The control unit guides the robot hand in a direction approaching the component box along a straight line connecting the calculated three-dimensional position of the component box and the three-dimensional position of the robot hand. Therefore, the positioning and correction logic of the robot hand is simple, high reliability is ensured, and the mounting cost can be saved. In addition, the processing speed can be increased. Furthermore, interference between the robot hand and the obstacle can be avoided.

制御部は、ロボットハンドと部品箱との間に、少なくとも一つの経由点を設定し、経由点を目標点として、経由点までロボットハンドを最短時間で誘導し、経由点から部品箱まで、経由点の3次元位置と部品箱の3次元位置とを結ぶ直線に沿って、部品箱に近づく方向にロボットハンドを誘導する。したがって、干渉などの問題がない経路では、短時間でロボットハンドを誘導することができ、部品箱近傍では、ロボットハンドと障害物との干渉を回避することができる。   The control unit sets at least one waypoint between the robot hand and the parts box, guides the robot hand to the waypoint in the shortest time using the waypoint as the target point, and passes from the waypoint to the parts box. The robot hand is guided in a direction approaching the component box along a straight line connecting the three-dimensional position of the point and the three-dimensional position of the component box. Therefore, the robot hand can be guided in a short time on a route having no problem such as interference, and interference between the robot hand and an obstacle can be avoided in the vicinity of the component box.

無線端末は、複数の部品箱のそれぞれに設けられており、位置算出部は、複数の無線端末から送信される複数の無線信号の中から、ピッキング対象部品が収納されている部品箱に対応した無線信号を特定する。したがって、生産ラインを流れる車両(あるいは、製品)に対応した部品を生産ラインに供給することができる。   The wireless terminal is provided in each of the plurality of component boxes, and the position calculation unit corresponds to the component box in which the picking target component is stored among the plurality of wireless signals transmitted from the plurality of wireless terminals. Identify radio signals. Therefore, parts corresponding to the vehicle (or product) flowing through the production line can be supplied to the production line.

本実施の形態のピッキングシステムでは、ロボットハンドがピッキング対象部品をピッキングした後、ピッキングされたピッキング対象部品を供給用容器に収容する。したがって、部品のロットピッキングを自動化することができる。   In the picking system of the present embodiment, after the robot hand picks the picking target part, the picked target part is accommodated in the supply container. Therefore, lot picking of parts can be automated.

アンテナユニットは、供給用容器の近傍に設けられた無線端末から送信される無線信号を受信し、位置算出部は、無線端末から送信される無線信号の受信結果から、供給用容器の3次元位置を算出する。そして、位置算出部で算出された供給用容器およびロボットハンドの3次元位置に基づいて、ロボットハンドが供給用容器に向かって誘導される。したがって、部品のピッキング処理と同様の処理で部品を供給用容器に供給することができ、処理を簡素化することができる。   The antenna unit receives a radio signal transmitted from a radio terminal provided in the vicinity of the supply container, and the position calculation unit calculates the three-dimensional position of the supply container from the reception result of the radio signal transmitted from the radio terminal. Is calculated. Then, the robot hand is guided toward the supply container based on the three-dimensional position of the supply container and the robot hand calculated by the position calculation unit. Therefore, the component can be supplied to the supply container by the same process as the component picking process, and the process can be simplified.

以上のとおり、本発明の実施の形態において、本発明のピッキング方法およびピッキングシステムについて説明した。しかしながら、本発明は、その技術思想の範囲内において当業者が適宜に追加、変形、省略することができることはいうまでもない。   As described above, in the embodiment of the present invention, the picking method and picking system of the present invention have been described. However, it goes without saying that the present invention can be appropriately added, modified, and omitted by those skilled in the art within the scope of the technical idea.

本発明の一実施の形態におけるピッキングシステムを示す図である。It is a figure which shows the picking system in one embodiment of this invention. 図1に示すピッキングシステムにおけるピッキング処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the picking process in the picking system shown in FIG. 図2のステップS102に示すロボットハンドの誘導処理を示すフローチャートである。It is a flowchart which shows the guidance process of the robot hand shown to step S102 of FIG. 図3に示すロボットハンドの誘導処理を説明するための図である。It is a figure for demonstrating the guidance process of the robot hand shown in FIG. 図2のステップS102に示すロボットハンドの誘導処理の変形例を示すフローチャートである。It is a flowchart which shows the modification of the guidance process of the robot hand shown to step S102 of FIG.

符号の説明Explanation of symbols

100 ロボットアーム、
110 ロボット本体部、
120 ロボットハンド、
200 アンテナユニット、
210 アンテナ、
220 無線端末、
300 位置算出部、
400 制御部、
500 部品指示受付部、
600 部品箱、
610 供給用容器。
100 robot arm,
110 Robot body,
120 robot hand,
200 antenna unit,
210 antenna,
220 wireless terminal,
300 position calculation unit,
400 control unit,
500 parts instruction receiving part,
600 parts box,
610 Supply container.

Claims (10)

ピッキング対象部材が収納されている収納部の近傍に設けられた第1の無線端末と、当該ピッキング対象部材をピッキングするロボットハンドの近傍に設けられた第2の無線端末とからそれぞれ送信される無線信号を受信する受信段階と、
前記第1および第2の無線端末から送信される無線信号の受信結果から、前記収納部およびロボットハンドの3次元位置を算出する位置算出段階と、
前記算出された収納部およびロボットハンドの3次元位置に基づいて、当該ロボットハンドを当該収納部に向かって誘導する誘導段階と、を有することを特徴とするピッキング方法。
Radio transmitted respectively from a first wireless terminal provided in the vicinity of the storage unit in which the picking target member is stored and a second wireless terminal provided in the vicinity of the robot hand picking the picking target member A receiving stage for receiving the signal;
A position calculating step of calculating a three-dimensional position of the storage unit and the robot hand from reception results of wireless signals transmitted from the first and second wireless terminals;
A picking method comprising: a guiding step of guiding the robot hand toward the storage unit based on the calculated three-dimensional position of the storage unit and the robot hand.
前記位置算出段階は、少なくとも前記ロボットハンドの3次元位置を所定の時間間隔で算出し、
前記誘導段階は、前記所定の時間間隔で算出される前記ロボットハンドの3次元位置に基づいて、当該ロボットハンドを誘導することを特徴とする請求項1に記載のピッキング方法。
The position calculating step calculates at least a three-dimensional position of the robot hand at a predetermined time interval,
The picking method according to claim 1, wherein the guiding step guides the robot hand based on a three-dimensional position of the robot hand calculated at the predetermined time interval.
前記誘導段階は、前記算出された収納部の3次元位置とロボットハンドの3次元位置とを結ぶ直線に沿って、当該収納部に近づく方向に当該ロボットハンドを誘導することを特徴とする請求項1に記載のピッキング方法。   The guidance step includes guiding the robot hand in a direction approaching the storage unit along a straight line connecting the calculated three-dimensional position of the storage unit and the three-dimensional position of the robot hand. 2. The picking method according to 1. 前記誘導段階は、前記ロボットハンドと前記収納部との間に、少なくとも一つの経由点を設定する設定段階と、
前記経由点を目標点として、当該経由点まで前記ロボットハンドを最短時間で誘導する第1の誘導段階と、
前記経由点から前記収納部まで、当該経由点の3次元位置と当該収納部の3次元位置とを結ぶ直線に沿って、当該収納部に近づく方向に当該ロボットハンドを誘導する第2の誘導段階と、を有することを特徴とする請求項1に記載のピッキング方法。
The guiding step includes a setting step of setting at least one waypoint between the robot hand and the storage unit;
A first guidance stage for guiding the robot hand to the via point as a target point in the shortest time;
A second guidance stage for guiding the robot hand from the via point to the storage unit along a straight line connecting the three-dimensional position of the via point and the three-dimensional position of the storage unit in a direction approaching the storage unit The picking method according to claim 1, further comprising:
前記第1の無線端末は、複数の収納部のそれぞれに設けられており、
前記位置算出段階は、前記複数の第1の無線端末から送信される複数の無線信号の中から、ピッキング対象部材が収納されている収納部に対応した無線信号を特定する特定段階を有することを特徴とする請求項1に記載のピッキング方法。
The first wireless terminal is provided in each of a plurality of storage units,
The position calculating step includes a specifying step of specifying a radio signal corresponding to a storage unit in which a picking target member is stored from a plurality of wireless signals transmitted from the plurality of first wireless terminals. The picking method according to claim 1, wherein the picking method is performed.
前記誘導段階の後に、
前記ロボットハンドが前記ピッキング対象部材をピッキングするピッキング段階と、
前記ピッキングされたピッキング対象部材を供給用容器に収容する収容段階と、をさらに有することを特徴とする請求項1に記載のピッキング方法。
After the induction step,
A picking stage in which the robot hand picks the picking target member;
The picking method according to claim 1, further comprising a storing step of storing the picked picking target member in a supply container.
前記収容段階は、前記供給用容器の近傍に設けられた第3の無線端末と、前記第2の無線端末とからそれぞれ送信される無線信号を受信する段階と、
前記第2および第3の無線端末から送信される無線信号の受信結果から、前記ロボットハンドおよび供給用容器の3次元位置を算出する段階と、
前記算出されたロボットハンドおよび供給用容器の3次元位置に基づいて、当該ロボットハンドを当該供給用容器に向かって誘導する段階と、を有することを特徴とする請求項6に記載のピッキング方法。
The accommodating step includes receiving a wireless signal transmitted from each of the third wireless terminal provided in the vicinity of the supply container and the second wireless terminal; and
Calculating the three-dimensional positions of the robot hand and the supply container from reception results of radio signals transmitted from the second and third radio terminals;
The picking method according to claim 6, further comprising a step of guiding the robot hand toward the supply container based on the calculated three-dimensional position of the robot hand and the supply container.
ピッキング対象部材が収納されている収納部の近傍に設けられた第1の無線端末と、当該ピッキング対象部材をピッキングするロボットハンドの近傍に設けられた第2の無線端末とからそれぞれ送信される無線信号を受信するアンテナ手段と、
前記第1および第2の無線端末から送信される無線信号の受信結果から、前記収納部およびロボットハンドの3次元位置を算出する位置算出手段と、
前記算出された収納部およびロボットハンドの3次元位置に基づいて、当該ロボットハンドを当該収納部に向かって誘導する誘導手段と、を有することを特徴とするピッキングシステム。
Radio transmitted respectively from a first wireless terminal provided in the vicinity of the storage unit in which the picking target member is stored and a second wireless terminal provided in the vicinity of the robot hand picking the picking target member Antenna means for receiving a signal;
Position calculation means for calculating a three-dimensional position of the storage unit and the robot hand from reception results of wireless signals transmitted from the first and second wireless terminals;
A picking system comprising: guiding means for guiding the robot hand toward the storage unit based on the calculated three-dimensional position of the storage unit and the robot hand.
前記誘導手段は、前記ロボットハンドと前記収納部との間に、少なくとも一つの経由点を設定する設定手段を有し、
前記経由点を目標点として、当該経由点まで前記ロボットハンドを最短時間で誘導し、前記経由点から前記収納部まで、当該経由点の3次元座標と当該収納部の3次元座標とを結ぶ直線に沿って、当該収納部に近づく方向に当該ロボットハンドを誘導することを特徴とする請求項8に記載のピッキングシステム。
The guiding means has setting means for setting at least one waypoint between the robot hand and the storage unit,
Using the via point as a target point, the robot hand is guided to the via point in the shortest time, and the straight line connecting the 3D coordinate of the via point and the 3D coordinate of the storage unit from the via point to the storage unit The picking system according to claim 8, wherein the robot hand is guided along a direction in which the robot hand approaches the storage unit.
前記第1の無線端末は、複数の収納部のそれぞれに設けられており、
前記位置算出手段は、前記複数の第1の無線端末から送信される複数の無線信号の中から、ピッキング対象部材が収納されている収納部に対応した無線信号を特定する特定手段を有することを特徴とする請求項8に記載のピッキングシステム。
The first wireless terminal is provided in each of a plurality of storage units,
The position calculating means includes specifying means for specifying a radio signal corresponding to a storage unit in which a picking target member is stored from a plurality of wireless signals transmitted from the plurality of first wireless terminals. The picking system according to claim 8, characterized in that:
JP2006000922A 2006-01-05 2006-01-05 Picking method and picking system Pending JP2007182286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000922A JP2007182286A (en) 2006-01-05 2006-01-05 Picking method and picking system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000922A JP2007182286A (en) 2006-01-05 2006-01-05 Picking method and picking system

Publications (1)

Publication Number Publication Date
JP2007182286A true JP2007182286A (en) 2007-07-19

Family

ID=38338693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000922A Pending JP2007182286A (en) 2006-01-05 2006-01-05 Picking method and picking system

Country Status (1)

Country Link
JP (1) JP2007182286A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018083246A (en) * 2016-11-22 2018-05-31 パナソニックIpマネジメント株式会社 Picking system and method for controlling the same
WO2018175902A1 (en) * 2017-03-23 2018-09-27 Berkshire Grey, Inc. Systems and methods for processing objects, including automated linear processing stations
WO2018176033A1 (en) * 2017-03-24 2018-09-27 Berkshire Gray, Inc. Systems and methods for processing objects, including automated processing
US10350755B2 (en) 2016-02-08 2019-07-16 Berkshire Grey, Inc. Systems and methods for providing processing of a variety of objects employing motion planning
US10576621B2 (en) 2017-03-23 2020-03-03 Berkshire Grey, Inc. Systems and methods for processing objects, including automated mobile matrix bins
US10583553B2 (en) 2017-03-20 2020-03-10 Berkshire Grey, Inc. Systems and methods for processing objects including an auto-shuttle system
US10611021B2 (en) 2017-03-23 2020-04-07 Berkshire Grey, Inc. Systems and methods for processing objects, including automated mobile matrix carriers
US10621402B2 (en) 2015-09-11 2020-04-14 Berkshire Grey, Inc. Robotic systems and methods for identifying and processing a variety of objects
US10618745B2 (en) 2016-12-09 2020-04-14 Berkshire Grey, Inc. Systems and methods for processing objects provided in vehicles
US10625432B2 (en) 2015-11-13 2020-04-21 Berkshire Grey, Inc. Processing systems and methods for providing processing of a variety of objects
US10625305B2 (en) 2015-12-04 2020-04-21 Berkshire Grey, Inc. Systems and methods for dynamic processing of objects
US10632610B2 (en) 2017-03-20 2020-04-28 Berkshire Grey, Inc. Systems and methods for processing objects including a zone gantry system
US10649445B2 (en) 2017-03-15 2020-05-12 Berkshire Grey, Inc. Systems and methods for storing, retrieving and processing objects including stackable semicircular towers
US10723019B2 (en) 2017-08-02 2020-07-28 Berkshire Grey, Inc. Systems and methods for acquiring and moving objects having complex outer surfaces
US10730078B2 (en) 2015-12-04 2020-08-04 Berkshire Grey, Inc. Systems and methods for dynamic sortation of objects
US10730077B2 (en) 2015-12-18 2020-08-04 Berkshire Grey, Inc. Perception systems and methods for identifying and processing a variety of objects
US10793375B2 (en) 2016-11-08 2020-10-06 Berkshire Grey, Inc. Systems and methods for processing objects
US10792706B2 (en) 2017-04-24 2020-10-06 Berkshire Grey, Inc. Systems and methods for providing singulation of objects for processing using object movement redistribution
US10807795B2 (en) 2017-03-20 2020-10-20 Berkshire Grey, Inc. Systems and methods for processing objects including mobile matrix carrier systems
US10843333B2 (en) 2018-03-05 2020-11-24 Berkshire Grey, Inc. Systems and methods for processing objects, including automated re-circulating processing stations
US10875057B2 (en) 2016-12-06 2020-12-29 Berkshire Grey, Inc. Systems and methods for providing for the processing of objects in vehicles
US10894674B2 (en) 2017-03-20 2021-01-19 Berkshire Grey, Inc. Systems and methods for processing objects including transport vehicles
US10906740B2 (en) 2017-03-22 2021-02-02 Berkshire Grey, Inc. Systems and methods for processing objects, including automated radial processing stations
US10913615B2 (en) 2016-11-28 2021-02-09 Berkshire Grey, Inc. Systems and methods for providing singulation of objects for processing
US10913612B2 (en) 2017-10-27 2021-02-09 Berkshire Grey, Inc. Discontinuous grid system for use in systems and methods for processing objects including mobile matrix carrier systems
US11055504B2 (en) 2017-04-18 2021-07-06 Berkshire Grey, Inc. Systems and methods for separating objects using a vacuum roller with one or more object processing systems
US11080496B2 (en) 2017-04-18 2021-08-03 Berkshire Grey, Inc. Systems and methods for separating objects using vacuum diverts with one or more object processing systems
US11126807B2 (en) 2017-04-18 2021-09-21 Berkshire Grey, Inc. Systems and methods for processing objects including space efficient distribution stations and automated output processing
US11200390B2 (en) 2017-04-18 2021-12-14 Berkshire Grey, Inc. Systems and methods for separating objects using drop conveyors with one or more object processing systems
US11205059B2 (en) 2017-04-18 2021-12-21 Berkshire Grey, Inc. Systems and methods for separating objects using conveyor transfer with one or more object processing systems
US11301654B2 (en) 2017-04-18 2022-04-12 Berkshire Grey Operating Company, Inc. Systems and methods for limiting induction of objects to one or more object processing systems
US11373134B2 (en) 2018-10-23 2022-06-28 Berkshire Grey Operating Company, Inc. Systems and methods for dynamic processing of objects with data verification
US11416695B2 (en) 2017-04-18 2022-08-16 Berkshire Grey Operating Company, Inc. Systems and methods for distributing induction of objects to a plurality of object processing systems
US11866269B2 (en) 2021-10-06 2024-01-09 Berkshire Grey Operating Company, Inc. Dynamic processing of objects provided in elevated vehicles with evacuation systems and methods for receiving objects
US11866224B2 (en) 2019-06-24 2024-01-09 Berkshire Grey Operating Company, Inc. Systems and methods for providing shipping of orders in an order fulfillment center

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10621402B2 (en) 2015-09-11 2020-04-14 Berkshire Grey, Inc. Robotic systems and methods for identifying and processing a variety of objects
US11494575B2 (en) 2015-09-11 2022-11-08 Berkshire Grey Operating Company, Inc. Systems and methods for identifying and processing a variety of objects
US11420329B2 (en) 2015-11-13 2022-08-23 Berkshire Grey Operating Company, Inc. Processing systems and methods for providing processing of a variety of objects
US10625432B2 (en) 2015-11-13 2020-04-21 Berkshire Grey, Inc. Processing systems and methods for providing processing of a variety of objects
US10730078B2 (en) 2015-12-04 2020-08-04 Berkshire Grey, Inc. Systems and methods for dynamic sortation of objects
US11839902B2 (en) 2015-12-04 2023-12-12 Berkshire Grey Operating Company, Inc. Systems and methods for dynamic sortation of objects
US11400491B2 (en) 2015-12-04 2022-08-02 Berkshire Grey Operating Company, Inc. Systems and methods for dynamic sortation of objects
US11458507B2 (en) 2015-12-04 2022-10-04 Berkshire Grey Operating Company, Inc. Systems and methods for dynamic processing of objects
US10625305B2 (en) 2015-12-04 2020-04-21 Berkshire Grey, Inc. Systems and methods for dynamic processing of objects
US10737299B2 (en) 2015-12-18 2020-08-11 Berkshire Grey, Inc. Perception systems and methods for identifying and processing a variety of objects
US10730077B2 (en) 2015-12-18 2020-08-04 Berkshire Grey, Inc. Perception systems and methods for identifying and processing a variety of objects
US11351575B2 (en) 2015-12-18 2022-06-07 Berkshire Grey Operating Company, Inc. Perception systems and methods for identifying and processing a variety of objects
US11986859B2 (en) 2015-12-18 2024-05-21 Berkshire Grey Operating Company, Inc. Perception systems and methods for identifying and processing a variety of objects
US11213949B2 (en) 2016-02-08 2022-01-04 Berkshire Grey, Inc. Systems and methods for providing processing of a variety of objects employing motion planning
US11724394B2 (en) 2016-02-08 2023-08-15 Berkshire Grey Operating Company, Inc. Systems and methods for providing processing of a variety of objects employing motion planning
US11123866B2 (en) 2016-02-08 2021-09-21 Berkshire Grey, Inc. Systems and methods for providing processing of a variety of objects employing motion planning
US10350755B2 (en) 2016-02-08 2019-07-16 Berkshire Grey, Inc. Systems and methods for providing processing of a variety of objects employing motion planning
US11780684B2 (en) 2016-11-08 2023-10-10 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects
US10793375B2 (en) 2016-11-08 2020-10-06 Berkshire Grey, Inc. Systems and methods for processing objects
JP2018083246A (en) * 2016-11-22 2018-05-31 パナソニックIpマネジメント株式会社 Picking system and method for controlling the same
US10913615B2 (en) 2016-11-28 2021-02-09 Berkshire Grey, Inc. Systems and methods for providing singulation of objects for processing
US10913614B2 (en) 2016-11-28 2021-02-09 Berkshire Grey, Inc. Systems and methods for providing singulation of objects for processing
US11492210B2 (en) 2016-11-28 2022-11-08 Berkshire Grey Operating Company, Inc. Systems and methods for providing singulation of objects for processing
US11820605B2 (en) 2016-11-28 2023-11-21 Berkshire Grey Operating Company, Inc. Systems and methods for providing singulation of objects for processing
US11471917B2 (en) 2016-12-06 2022-10-18 Berkshire Grey Operating Company, Inc. Systems and methods for providing for the processing of objects in vehicles
US10875057B2 (en) 2016-12-06 2020-12-29 Berkshire Grey, Inc. Systems and methods for providing for the processing of objects in vehicles
US11945003B2 (en) 2016-12-06 2024-04-02 Berkshire Grey Operating Company, Inc. Systems and methods for providing for the processing of objects in vehicles
US11400493B2 (en) 2016-12-06 2022-08-02 Berkshire Grey Operating Company, Inc. Systems and methods for providing for the processing of objects in vehicles
US10618745B2 (en) 2016-12-09 2020-04-14 Berkshire Grey, Inc. Systems and methods for processing objects provided in vehicles
US11884495B2 (en) 2016-12-09 2024-01-30 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects provided in vehicles
US11034529B2 (en) 2016-12-09 2021-06-15 Berkshire Grey, Inc. Systems and methods for processing objects provided in vehicles
US11554916B2 (en) 2017-03-15 2023-01-17 Berkshire Grey Operating Company, Inc. Systems and methods for storing, retrieving and processing objects including stackable semicircular towers
US10649445B2 (en) 2017-03-15 2020-05-12 Berkshire Grey, Inc. Systems and methods for storing, retrieving and processing objects including stackable semicircular towers
US11365051B2 (en) 2017-03-20 2022-06-21 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects including an auto-shuttle system
US10632610B2 (en) 2017-03-20 2020-04-28 Berkshire Grey, Inc. Systems and methods for processing objects including a zone gantry system
US10807795B2 (en) 2017-03-20 2020-10-20 Berkshire Grey, Inc. Systems and methods for processing objects including mobile matrix carrier systems
US10894674B2 (en) 2017-03-20 2021-01-19 Berkshire Grey, Inc. Systems and methods for processing objects including transport vehicles
US11932489B2 (en) 2017-03-20 2024-03-19 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects including an auto-shuttle system
US11492212B2 (en) 2017-03-20 2022-11-08 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects including transport vehicles
US11478923B2 (en) 2017-03-20 2022-10-25 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects including a zone gantry system
US11390459B2 (en) 2017-03-20 2022-07-19 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects including mobile matrix carrier systems
US10583553B2 (en) 2017-03-20 2020-03-10 Berkshire Grey, Inc. Systems and methods for processing objects including an auto-shuttle system
US11814245B2 (en) 2017-03-20 2023-11-14 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects including mobile matrix carrier systems
US10906740B2 (en) 2017-03-22 2021-02-02 Berkshire Grey, Inc. Systems and methods for processing objects, including automated radial processing stations
US11718479B2 (en) 2017-03-22 2023-08-08 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects, including automated radial processing stations
US10576621B2 (en) 2017-03-23 2020-03-03 Berkshire Grey, Inc. Systems and methods for processing objects, including automated mobile matrix bins
CN114148666B (en) * 2017-03-23 2024-01-05 伯克希尔格雷营业股份有限公司 System and method for processing objects including an automated linear processing station
CN114148666A (en) * 2017-03-23 2022-03-08 伯克希尔格雷股份有限公司 System and method for processing objects including an automated linear processing station
US10941000B2 (en) 2017-03-23 2021-03-09 Berkshire Grey, Inc. Systems and methods for processing objects, including automated linear processing stations
US11827453B2 (en) 2017-03-23 2023-11-28 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects, including automated linear processing stations
CN110446672B (en) * 2017-03-23 2021-12-14 伯克希尔格雷股份有限公司 System and method for processing objects including an automated linear processing station
WO2018175902A1 (en) * 2017-03-23 2018-09-27 Berkshire Grey, Inc. Systems and methods for processing objects, including automated linear processing stations
US10611021B2 (en) 2017-03-23 2020-04-07 Berkshire Grey, Inc. Systems and methods for processing objects, including automated mobile matrix carriers
US11402831B2 (en) 2017-03-23 2022-08-02 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects, including automated mobile matrix bins
CN110446672A (en) * 2017-03-23 2019-11-12 伯克希尔格雷股份有限公司 The system and method for handling object including auto linear treating stations
US11493910B2 (en) 2017-03-23 2022-11-08 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects, including automated mobile matrix carriers
WO2018176033A1 (en) * 2017-03-24 2018-09-27 Berkshire Gray, Inc. Systems and methods for processing objects, including automated processing
US10646991B2 (en) 2017-03-24 2020-05-12 Berkshire Grey, Inc. Systems and methods for processing objects, including automated processing
US11472022B2 (en) 2017-03-24 2022-10-18 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects, including automated processing
US11537807B2 (en) 2017-04-18 2022-12-27 Berkshire Grey Operating Company, Inc. Systems and methods for separating objects using vacuum diverts with one or more object processing systems
US11200390B2 (en) 2017-04-18 2021-12-14 Berkshire Grey, Inc. Systems and methods for separating objects using drop conveyors with one or more object processing systems
US11080496B2 (en) 2017-04-18 2021-08-03 Berkshire Grey, Inc. Systems and methods for separating objects using vacuum diverts with one or more object processing systems
US11126807B2 (en) 2017-04-18 2021-09-21 Berkshire Grey, Inc. Systems and methods for processing objects including space efficient distribution stations and automated output processing
US11416695B2 (en) 2017-04-18 2022-08-16 Berkshire Grey Operating Company, Inc. Systems and methods for distributing induction of objects to a plurality of object processing systems
US11868840B2 (en) 2017-04-18 2024-01-09 Berkshire Grey Operating Company, Inc. Systems and methods for separating objects using a vacuum roller with one or more object processing systems
US11847513B2 (en) 2017-04-18 2023-12-19 Berkshire Grey Operating Company, Inc. Systems and methods for separating objects using vacuum diverts with one or more object processing systems
US11481566B2 (en) 2017-04-18 2022-10-25 Berkshire Grey Operating Company, Inc. Systems and methods for separating objects using a vacuum roller with one or more object processing systems
US11842248B2 (en) 2017-04-18 2023-12-12 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects including space efficient distribution stations and automated output processing
US11205059B2 (en) 2017-04-18 2021-12-21 Berkshire Grey, Inc. Systems and methods for separating objects using conveyor transfer with one or more object processing systems
US11055504B2 (en) 2017-04-18 2021-07-06 Berkshire Grey, Inc. Systems and methods for separating objects using a vacuum roller with one or more object processing systems
US11301654B2 (en) 2017-04-18 2022-04-12 Berkshire Grey Operating Company, Inc. Systems and methods for limiting induction of objects to one or more object processing systems
US11748584B2 (en) 2017-04-18 2023-09-05 Berkshire Grey Operating Company, Inc. Systems and methods for separating objects using drop conveyors with one or more object processing systems
US11681884B2 (en) 2017-04-18 2023-06-20 Berkshire Grey Operating Company, Inc. Systems and methods for separating objects using conveyor transfer with one or more object processing systems
US11734526B2 (en) 2017-04-18 2023-08-22 Berkshire Grey Operating Company, Inc. Systems and methods for distributing induction of objects to a plurality of object processing systems
US11826787B2 (en) 2017-04-24 2023-11-28 Berkshire Grey Operating Company, Inc. Systems and methods for providing singulation of objects for processing using object movement redistribution
US10792706B2 (en) 2017-04-24 2020-10-06 Berkshire Grey, Inc. Systems and methods for providing singulation of objects for processing using object movement redistribution
US11724389B2 (en) 2017-08-02 2023-08-15 Berkshire Grey Operating Company, Inc. Systems and methods for acquiring and moving objects having complex outer surfaces
US10723019B2 (en) 2017-08-02 2020-07-28 Berkshire Grey, Inc. Systems and methods for acquiring and moving objects having complex outer surfaces
US11577920B2 (en) 2017-10-27 2023-02-14 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects including mobile matrix carrier systems
US10913612B2 (en) 2017-10-27 2021-02-09 Berkshire Grey, Inc. Discontinuous grid system for use in systems and methods for processing objects including mobile matrix carrier systems
US11117760B2 (en) 2017-10-27 2021-09-14 Berkshire Grey, Inc. Systems and methods for processing objects including mobile matrix carrier systems
US11814246B2 (en) 2017-10-27 2023-11-14 Berkshire Grey Operating Company, Inc. Bin infeed and removal systems and methods for processing objects including mobile matrix carrier systems
US11661275B2 (en) 2017-10-27 2023-05-30 Berkshire Grey Operating Company, Inc. Maintenance systems for use in systems and methods for processing objects including mobile matrix carrier systems
US11597615B2 (en) 2017-10-27 2023-03-07 Berkshire Grey Operating Company, Inc. Discontinuous grid system for use in systems and methods for processing objects including mobile matrix carrier systems
US11148890B2 (en) 2017-10-27 2021-10-19 Berkshire Grey, Inc. Mobile carriers for use in systems and methods for processing objects including mobile matrix carrier systems
US11673742B2 (en) 2017-10-27 2023-06-13 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects including mobile matrix carrier systems
US10988323B2 (en) 2017-10-27 2021-04-27 Berkshire Grey, Inc. Maintenance systems for use in systems and methods for processing objects including mobile matrix carrier systems
US11866255B2 (en) 2017-10-27 2024-01-09 Berkshire Grey Operating Company, Inc. Discontinuous grid system for use in systems and methods for processing objects including mobile matrix carrier systems
US11084660B2 (en) 2017-10-27 2021-08-10 Berkshire Grey, Inc. Bin infeed and removal systems and methods for processing objects including mobile matrix carrier systems
US11161689B2 (en) 2017-10-27 2021-11-02 Berkshire Grey, Inc. Movement systems and method for processing objects including mobile matrix carrier systems
US11801597B2 (en) 2018-03-05 2023-10-31 Berkshire Grey Operating Company, Inc. Systems and methods for dynamic processing of objects using box tray assemblies
US11198532B2 (en) 2018-03-05 2021-12-14 Berkshire Grey, Inc. Systems and methods for dynamic processing of objects using box tray assemblies
US11673255B2 (en) 2018-03-05 2023-06-13 Berkshire Grey Operating Company, Inc. Systems and methods for dynamic processing of objects using box tray assemblies
US10843333B2 (en) 2018-03-05 2020-11-24 Berkshire Grey, Inc. Systems and methods for processing objects, including automated re-circulating processing stations
US11813744B2 (en) 2018-03-05 2023-11-14 Berkshire Grey Operating Company, Inc. Systems and methods for processing objects, including automated re-circulating processing stations
US11373134B2 (en) 2018-10-23 2022-06-28 Berkshire Grey Operating Company, Inc. Systems and methods for dynamic processing of objects with data verification
US11866224B2 (en) 2019-06-24 2024-01-09 Berkshire Grey Operating Company, Inc. Systems and methods for providing shipping of orders in an order fulfillment center
US11866269B2 (en) 2021-10-06 2024-01-09 Berkshire Grey Operating Company, Inc. Dynamic processing of objects provided in elevated vehicles with evacuation systems and methods for receiving objects

Similar Documents

Publication Publication Date Title
JP2007182286A (en) Picking method and picking system
CN106940183B (en) A kind of AGV accurate positioning method based on PSD ranging
JP6267157B2 (en) Production system with robot with position correction function
JP4087841B2 (en) Robot controller
WO2018213931A1 (en) Systems and methods for process tending with a robot arm
CN110355788B (en) Large-scale space high-precision online calibration system of mobile operation robot
US10228686B2 (en) Robot programming device for teaching robot program
CN104238557A (en) Automated Guided Vehicle And Method Of Operating An Automated Guided Vehicle
CN109000647B (en) Robot indoor navigation method, device, system, equipment and medium
JP2005342832A (en) Robot system
JP7145851B2 (en) work system
CN105264724A (en) Terminal insertion device and terminal insertion method
CN105388915A (en) Position detection device and method of connector shell
JP2021121974A (en) Route data creation device, route data creation system and route data creation method
CN105437230A (en) Tool coordinate calibration device and method for industrial robot
JP2009143716A (en) Mixed flow work line system using automated guided vehicle
JP2009220248A (en) Robot installation method and robot production system
JP4997615B2 (en) Map creation method and robot movement route determination method
CN117087792A (en) Method and system for a vehicle trim process associated with manufacturing a vehicle
CN217530907U (en) AGV secondary accurate positioning equipment based on laser ranging
US20200326175A1 (en) Device for Measuring Objects
CN109883419B (en) Robot navigation method and system
US20210069911A1 (en) Robot controller
CN110936184B (en) Parts processing apparatus and method
JP7138041B2 (en) moving body