JP2007182196A - Vehicular driving auxiliary device - Google Patents

Vehicular driving auxiliary device Download PDF

Info

Publication number
JP2007182196A
JP2007182196A JP2006002936A JP2006002936A JP2007182196A JP 2007182196 A JP2007182196 A JP 2007182196A JP 2006002936 A JP2006002936 A JP 2006002936A JP 2006002936 A JP2006002936 A JP 2006002936A JP 2007182196 A JP2007182196 A JP 2007182196A
Authority
JP
Japan
Prior art keywords
reaction force
vehicle
accelerator pedal
operation amount
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006002936A
Other languages
Japanese (ja)
Other versions
JP5082243B2 (en
Inventor
Wataru Ike
渉 池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006002936A priority Critical patent/JP5082243B2/en
Publication of JP2007182196A publication Critical patent/JP2007182196A/en
Application granted granted Critical
Publication of JP5082243B2 publication Critical patent/JP5082243B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicular driving auxiliary device capable of controlling reaction force of an acceleration pedal so as to cause a driver to easily perform acceleration pedal operation suitable for fuel economy. <P>SOLUTION: In the vehicular driving auxiliary device for increasing reaction force of the acceleration pedal relative to an acceleration pedal angle at a constant variation ratio, the acceleration pedal operation of the driver is guided to the acceleration pedal angle in which fuel consumption of the vehicle is improved more than the predetermined fuel consumption reference by setting crest 1 constituted from a reaction force variation point of a reaction force value larger than the basic reaction force increased at a constant variation ratio or setting a valley 2 constituted from a reaction force variation point of a reaction force value smaller than the basic reaction force increased at a constant variation ratio. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アクセルペダルの踏み込みに対する反力を制御可能な車両用運転補助装置に関する。   The present invention relates to a vehicle driving assistance device capable of controlling a reaction force against depression of an accelerator pedal.

従来から、自動走行時にペダルの踏込み反力を増大させてフットレスト機能を備えるとともに、反力に抗して踏込まれた場合には加速制御を行う技術が知られている(例えば、特許文献1参照)。この技術は、車両の乗員による操作が無い自動走行の際には、反力によりアクセルペダルを所定の踏込保持位置に保持するものである。
特開2000−54860号公報
2. Description of the Related Art Conventionally, a technique is known in which a pedal depression reaction force is increased during automatic traveling to provide a footrest function, and acceleration control is performed when the pedal is depressed against the reaction force (see, for example, Patent Document 1). ). This technique is to hold the accelerator pedal at a predetermined depression holding position by reaction force during automatic traveling without operation by a vehicle occupant.
JP 2000-54860 A

ところで、車両の燃費向上にはドライバーの適切なアクセルペダル操作が寄与することが知られているが、ドライバーはどのようにアクセルペダルを操作すれば燃費が向上するのかを知るすべがなかった。   By the way, although it is known that an appropriate accelerator pedal operation by the driver contributes to an improvement in the fuel efficiency of the vehicle, the driver has no way of knowing how to operate the accelerator pedal to improve the fuel efficiency.

この点、上述の従来技術において、所定の踏込保持位置を燃費が良くなるアクセルペダル位置として設定すればドライバーは燃費が良くなるアクセルペダル位置を認識することができると推測される。しかしながら、自動走行の際にアクセルペダルを所定の踏込保持位置にて反力を付与する上述の従来技術では、自動走行ではなくドライバー自らがアクセルペダルを操作して運転する場合に所定のアクセルペダル位置を保とうとする時には、ドライバーはペダルの踏み込み力を自ら調整しなければならなかった。   In this regard, in the above-described prior art, it is presumed that the driver can recognize the accelerator pedal position where the fuel efficiency is improved if the predetermined depression holding position is set as the accelerator pedal position where the fuel efficiency is improved. However, in the above-described conventional technique in which the reaction force is applied to the accelerator pedal at a predetermined depression holding position during automatic traveling, the predetermined accelerator pedal position is not used when the driver operates the accelerator pedal instead of automatic traveling. When trying to maintain the driver, the driver had to adjust the pedaling force himself.

そこで、本発明は、ドライバーが燃費に良いアクセルペダル操作をしやすいようにアクセルペダル反力を制御することができる車両用運転補助装置の提供を目的とする。   Therefore, an object of the present invention is to provide a vehicle driving assistance device capable of controlling an accelerator pedal reaction force so that a driver can easily operate an accelerator pedal with good fuel efficiency.

上記課題を解決するため、第1の発明として、アクセルペダルと、アクセルペダル操作量に対して略一定の変化率でアクセルペダルの反力を増加させる反力制御手段とを有する車両用運転補助装置であって、車両の燃費が所定の燃費基準より良くなるアクセルペダル操作量を定めた燃費向上操作量範囲に、前記略一定の変化率で増加させた反力と異なる値の反力変化点を設定する設定手段を備え、前記反力制御手段は、前記設定手段によって設定された反力変化点に従って前記燃費向上操作量範囲における反力を変化させることを特徴とする、車両用運転補助装置を提供する。   In order to solve the above-mentioned problem, as a first invention, a vehicle driving assistance device having an accelerator pedal and a reaction force control means for increasing a reaction force of the accelerator pedal at a substantially constant rate of change with respect to an accelerator pedal operation amount. A reaction force change point having a value different from the reaction force increased at the substantially constant change rate is within a fuel consumption improvement operation amount range in which an accelerator pedal operation amount at which the fuel consumption of the vehicle is better than a predetermined fuel consumption standard is determined. A vehicle driving assistance device comprising: setting means for setting, wherein the reaction force control means changes a reaction force in the fuel consumption improvement operation amount range according to a reaction force change point set by the setting means. provide.

また、上記課題を解決するため、第2の発明として、アクセルペダルと、アクセルペダル操作量に対して略一定の変化率でアクセルペダルの反力を増加させる反力制御手段とを有する車両用運転補助装置であって、車両の燃費が所定の燃費基準より悪くなるアクセルペダル操作量を定めた燃費低下操作量範囲に、前記略一定の変化率で増加させた反力より大きい値の反力変化点を設定する設定手段を備え、前記反力制御手段は、前記設定手段によって設定された反力変化点に従って前記燃費低下操作量範囲における反力を変化させることを特徴とする、車両用運転補助装置を提供する。   In order to solve the above-mentioned problem, as a second invention, a vehicular driving comprising an accelerator pedal and a reaction force control means for increasing the reaction force of the accelerator pedal at a substantially constant rate of change with respect to the accelerator pedal operation amount. A change in reaction force that is larger than the reaction force increased at the substantially constant change rate within the range of the fuel consumption lowering operation amount range in which the accelerator pedal operation amount in which the fuel consumption of the vehicle becomes worse than a predetermined fuel consumption standard is determined. Vehicle driving assistance, characterized by comprising setting means for setting a point, wherein the reaction force control means changes the reaction force in the fuel consumption reduction operation amount range in accordance with the reaction force change point set by the setting means. Providing equipment.

また、第3の発明は、第1または第2の発明に係る車両用運転補助装置において、前記反力制御手段は、車速の時間変化率が略一定且つアクセルペダル操作量の時間変化率が略一定の場合に、前記反力変化点に従った反力変化を開始することを特徴とする。   According to a third aspect of the present invention, in the vehicle driving assistance device according to the first or second aspect of the invention, the reaction force control means has a substantially constant time change rate of the vehicle speed and a time change rate of the accelerator pedal operation amount. In a fixed case, the reaction force change according to the reaction force change point is started.

また、第4の発明は、第1から第3の発明のいずれかに係る車両用運転補助装置において、地図情報を記憶する記憶手段を備え、前記反力制御手段は、車両が前記地図情報に基づいて加速が要求される地点に存在する場合には、前記反力変化点に従った反力変化の開始を禁止することを特徴とする。   According to a fourth aspect of the present invention, in the vehicle driving assistance device according to any one of the first to third aspects, the vehicle includes a storage unit that stores map information, and the reaction force control unit includes: On the other hand, when the vehicle is present at a point where acceleration is required, the start of reaction force change according to the reaction force change point is prohibited.

また、第5の発明は、第1から第3の発明のいずれかに係る車両用運転補助装置において、前記反力制御手段は、前記反力変化点に対応するアクセルペダル操作量を超えるアクセルペダル操作量が検出された場合、前記反力変化点に従った反力変化を終了することを特徴とする。   According to a fifth aspect of the present invention, in the vehicular driving assistance apparatus according to any one of the first to third aspects, the reaction force control means exceeds an accelerator pedal operation amount corresponding to the reaction force change point. When the operation amount is detected, the reaction force change according to the reaction force change point is terminated.

また、第6の発明は、第5の発明に係る車両用運転補助装置において、前記反力制御手段は、前記反力変化点に従った反力変化を終了する前に、前記反力変化点の反力値のアクセルペダル操作量に対する変化率を一時的に変動させることを特徴とする。   According to a sixth aspect of the present invention, in the vehicular driving assistance device according to the fifth aspect of the present invention, the reaction force control means is configured to change the reaction force change point before ending the reaction force change according to the reaction force change point. The rate of change of the reaction force value with respect to the accelerator pedal operation amount is temporarily varied.

また、第7の発明は、第1の発明に係る車両用運転補助装置において、前記反力変化点の反力値は、前記略一定の変化率で増加させた反力より大きい値であることを特徴とする。   According to a seventh aspect of the present invention, in the vehicle driving assistance device according to the first aspect, the reaction force value at the reaction force change point is greater than the reaction force increased at the substantially constant rate of change. It is characterized by.

また、第8の発明は、第1の発明に係る車両用運転補助装置において、前記反力変化点の反力値は、前記略一定の変化率で増加させた反力より小さい値であることを特徴とする。   According to an eighth aspect of the present invention, in the vehicular driving assistance device according to the first aspect, a reaction force value at the reaction force change point is smaller than a reaction force increased at the substantially constant change rate. It is characterized by.

また、第9の発明は、第1の発明に係る車両用運転補助装置において、前記車両は、アクセルペダル操作量が前記燃費向上操作量範囲にある場合に駆動源であるエンジン及びモータが停止するハイブリッド車両であることを特徴とする。   According to a ninth aspect of the present invention, in the vehicle driving assistance device according to the first aspect of the present invention, when the accelerator pedal operation amount is in the fuel consumption improvement operation amount range, the vehicle stops the engine and the motor that are driving sources. It is a hybrid vehicle.

また、第10の発明は、第2の発明に係る車両用運転補助装置において、前記車両は、エンジン及びモータを駆動源とするハイブリッド車両であることを特徴とする。   According to a tenth aspect of the invention, in the vehicle driving assistance device according to the second aspect of the invention, the vehicle is a hybrid vehicle having an engine and a motor as drive sources.

本発明によれば、ドライバーが燃費に良いアクセルペダル操作をしやすいようにアクセルペダル反力を制御することができる。   According to the present invention, the accelerator pedal reaction force can be controlled so that the driver can easily operate the accelerator pedal with good fuel efficiency.

以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。図10は、エンジンとモータを駆動源とするハイブリッド車両に本発明の車両用運転補助装置の一実施形態を適用したシステムのブロック図である。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 10 is a block diagram of a system in which an embodiment of the vehicle driving assistance device of the present invention is applied to a hybrid vehicle using an engine and a motor as drive sources.

アクセルポジションセンサ11は、アクセルペダル16の操作量であるペダル角(踏み込み量、ペダルストローク、ペダル位置などと同義)を検出する。その検出値に応じてアクセルポジションセンサ11から出力される信号に基づいて、ECU(Electronic Control Unit)10はアクセルペダル操作量を演算する。   The accelerator position sensor 11 detects a pedal angle (synonymous with a depression amount, a pedal stroke, a pedal position, and the like) that is an operation amount of the accelerator pedal 16. Based on a signal output from the accelerator position sensor 11 according to the detected value, an ECU (Electronic Control Unit) 10 calculates an accelerator pedal operation amount.

ペダル反力発生部15は、アクセルペダル16に減速機を介して反力を付与するモータ等を有し、ECU10からの制御信号に基づいてアクセルペダル16に反力を発生させる機構である。ECU10は、アクセルポジションセンサ11によって検出されたアクセルペダル操作量に応じた反力を発生させるようにペダル反力発生部15のモータを制御する。なお、本発明は、アクセルペダル16に反力を発生させる機構について詳細に特定するものではなく、如何なる構成や特徴を有するペダル反力発生機構に対しても適用可能であるため、当業者には明らかであるペダル反力発生機構については詳しい説明を省略する。   The pedal reaction force generator 15 includes a motor that applies a reaction force to the accelerator pedal 16 via a speed reducer, and is a mechanism that generates a reaction force on the accelerator pedal 16 based on a control signal from the ECU 10. The ECU 10 controls the motor of the pedal reaction force generator 15 so as to generate a reaction force corresponding to the accelerator pedal operation amount detected by the accelerator position sensor 11. It should be noted that the present invention does not specify the mechanism for generating the reaction force on the accelerator pedal 16 in detail, but can be applied to a pedal reaction force generation mechanism having any configuration and characteristics. Detailed description of the pedal reaction force generation mechanism that is apparent will be omitted.

車速センサ12は、車両の速度を検出する。その検出値に応じて車速センサ12から出力される信号に基づいて、ECU10は車速を演算する。   The vehicle speed sensor 12 detects the speed of the vehicle. Based on a signal output from the vehicle speed sensor 12 according to the detected value, the ECU 10 calculates the vehicle speed.

ナビゲーション装置13は、GPS装置と地図DB(データベース)を有している。GPS装置は、GPS受信機によるGPS衛星からの受信情報に基づいて、自車の位置を2次元若しくは3次元の座標データによって特定する装置である。一方、地図DBは、高精度の地図情報を記憶するデータベースである。高精度の地図情報には、コーナーの半径や曲率やカント、路面勾配、道路の車線数や車線幅、減速が必要な交差点や一時停止地点、標高等といった詳細な情報が含まれている。高精度の地図情報には、加速が要求される地点として、三叉路をはじめとする交差点、踏切、有料道路の料金所、ETC(Electronic Toll Collection)レーン、コーナー、合流地点、上り勾配などの情報がその地点の座標データとともに含まれている。これらの地点の出口や立ち上がり地点を、加速が要求される地点として、含めてよい。また、車車間通信や路車間通信や管理センターなど通信を介して、加速が要求される地点をその地図情報に反映してもよい。また、座標データだけでなく、カーブの半径や曲率やカント、路面勾配、道路の車線数や車線幅、右折/左折レーン、標高等といった加速要求地点に関する詳細な数値情報が含まれていてもよい。   The navigation device 13 has a GPS device and a map DB (database). The GPS device is a device that specifies the position of the vehicle by two-dimensional or three-dimensional coordinate data based on information received from a GPS satellite by a GPS receiver. On the other hand, map DB is a database which memorize | stores highly accurate map information. The high-precision map information includes detailed information such as corner radius, curvature, cant, road surface gradient, road lane number and lane width, intersections that need to be decelerated, temporary stop points, altitude, and the like. High-accuracy map information includes information such as intersections including three-way intersections, railroad crossings, toll road toll gates, ETC (Electronic Toll Collection) lanes, corners, merging points, and ascending slopes as points requiring acceleration. It is included with the coordinate data for that point. You may include the exit and rising point of these points as points where acceleration is required. Further, a point where acceleration is required may be reflected in the map information via communication such as inter-vehicle communication, road-to-vehicle communication, or a management center. Further, not only coordinate data, but also detailed numerical information regarding acceleration request points such as curve radius, curvature, cant, road gradient, road lane number and lane width, right / left turn lane, altitude, etc. .

ナビゲーション装置13は、GPS装置により検出された車両位置に基づいて車両の現在地点に対応する地図情報を地図DBから抽出する。ナビゲーション装置13は、抽出した地図情報や車両位置情報などECU10が必要とする情報をECU10に対して送信する。   The navigation device 13 extracts map information corresponding to the current location of the vehicle from the map DB based on the vehicle position detected by the GPS device. The navigation device 13 transmits information necessary for the ECU 10 such as the extracted map information and vehicle position information to the ECU 10.

内燃機関であるエンジン20の運転は、ECU(Electronic Control Unit)10により制御されている。ECU10は、アクセルポジションセンサ11や図示しないシフトポジションセンサ等からのセンサ信号に基づいてトータルトルクを算出する。ECU10は、算出されたトータルトルクに対し、所望の駆動力配分比に従い、エンジン要求回転数やエンジン要求トルクといったエンジン出力要求値などを算出して、必要に応じて、エンジン20や動力分割機構22やインバータ26などの制御を実行する。   The operation of the engine 20 which is an internal combustion engine is controlled by an ECU (Electronic Control Unit) 10. The ECU 10 calculates the total torque based on sensor signals from the accelerator position sensor 11 and a shift position sensor (not shown). The ECU 10 calculates an engine output request value such as an engine request speed and an engine request torque in accordance with a desired driving force distribution ratio with respect to the calculated total torque, and the engine 20 and the power split mechanism 22 as necessary. And controls the inverter 26 and the like.

動力分割機構22は、エンジン20の出力をディファレンシャル32に伝達して車輪を回転させることができ、また、エンジン20の出力をジェネレータ24に伝達して発電させることができる。動力分割機構22は、エンジン20の出力を、ディファレンシャル32とジェネレータ24に所望の駆動力配分比で振り分ける。つまり、動力分割機構22は、その配分比に応じて、エンジン20のみを駆動源とする「エンジン走行」をさせたり、ジェネレータ24を介して後述するモータ30のみを駆動源とする「モータ走行」をさせたり、エンジン20とモータ30を駆動源とする「エンジン+モータ走行」をさせたりすることができる。   The power split mechanism 22 can transmit the output of the engine 20 to the differential 32 to rotate the wheels, and can transmit the output of the engine 20 to the generator 24 to generate power. The power split mechanism 22 distributes the output of the engine 20 to the differential 32 and the generator 24 at a desired driving force distribution ratio. That is, the power split mechanism 22 performs “engine running” using only the engine 20 as a drive source according to the distribution ratio, or “motor running” using only the motor 30 described later via the generator 24 as a drive source. Or “engine + motor running” using the engine 20 and the motor 30 as drive sources.

ジェネレータ24は、エンジン20の出力やディファレンシャル32の運動エネルギーを使用して発電する。この発電によって、ジェネレータ24は、インバータ26を介してバッテリ28を充電したり、モータ30の駆動用の電力供給を行ったりする。   The generator 24 generates power using the output of the engine 20 and the kinetic energy of the differential 32. With this power generation, the generator 24 charges the battery 28 via the inverter 26 or supplies power for driving the motor 30.

モータ30は、インバータ26内の三相ブリッジ回路等により駆動され、エンジン20とは異なる駆動源として車輪を回転させる。また、回生ブレーキ作動時には、モータ30は、運動エネルギーを電気エネルギーに変換し、インバータ26を介してバッテリ28を充電する。   The motor 30 is driven by a three-phase bridge circuit or the like in the inverter 26 and rotates wheels as a drive source different from the engine 20. Further, when the regenerative brake is activated, the motor 30 converts kinetic energy into electric energy and charges the battery 28 via the inverter 26.

なお、ECU10は、エンジン20やモータ30等を制御するハイブリッド制御や後に詳述するアクセルペダル反力制御などの制御プログラムや制御データを記憶するROM、制御プログラムの処理データを一時的に記憶するRAM、制御プログラムを処理するCPU、外部と情報をやり取りするための入出力インターフェースなどの複数の回路要素によって構成されたものである。また、ECU10は一つの制御ユニットとは限らず、制御が分担されるように複数の制御ユニットであってよい。   The ECU 10 includes a ROM for storing control programs and control data such as hybrid control for controlling the engine 20, the motor 30 and the like, an accelerator pedal reaction force control to be described in detail later, and a RAM for temporarily storing control program processing data. The circuit is composed of a plurality of circuit elements such as a CPU for processing a control program and an input / output interface for exchanging information with the outside. The ECU 10 is not limited to one control unit, and may be a plurality of control units so that control is shared.

それでは、図を参照しながら、ドライバーが燃費に良いアクセルペダル操作をしやすくするための本実施例に係るアクセルペダル反力制御の動作フローについて説明する。   Now, an operation flow of accelerator pedal reaction force control according to the present embodiment for facilitating an accelerator pedal operation with good fuel efficiency will be described with reference to the drawings.

[第1の実施例]
ハイブリッド車両において、燃費に良い走行をするためには、惰性走行(惰行)するのが良いと知られている。ハイブリッド車両における惰性走行とは、駆動源であるエンジンとモータがともに停止したまま走行することをいう。エンジンを停止することでエンジンを駆動するために供給される燃料が抑制され、また、モータを停止することでジェネレータ24やバッテリ28からの電力供給が抑制され、結果的にエンジンに供給される燃料も抑制されることになる。ハイブリッド車両を惰性走行させるためには、アクセルペダル16のペダル角θ[%]をある微小な範囲(X1<θ<Y1)にする必要があるので、ドライバーには微妙なアクセル操作が要求される。
[First embodiment]
In a hybrid vehicle, it is known that coasting (coasting) is good for traveling with good fuel efficiency. Inertia traveling in a hybrid vehicle refers to traveling with both the engine and the motor that are driving sources stopped. By stopping the engine, the fuel supplied to drive the engine is suppressed, and by stopping the motor, the power supply from the generator 24 and the battery 28 is suppressed, and as a result, the fuel supplied to the engine Will also be suppressed. In order to make the hybrid vehicle coast, it is necessary to set the pedal angle θ [%] of the accelerator pedal 16 within a certain minute range (X1 <θ <Y1). Therefore, the driver is required to perform a delicate accelerator operation. .

図1は、ハイブリッド車両における燃費に良い走行パターンを説明するための図である。図1は、車両が停止状態から走行状態に移行した後に減速して再度停車状態に戻る状況を示している。このような状況では、発進地点から減速地点までアクセルペダル16を踏み込んだまま走行し減速地点に到達したらブレーキを利かせて車両を停止させるという走行態様ではなく、発進地点でアクセルペダル16を踏み込んで加速させた後に惰性走行を行って減速地点に到達したらブレーキを利かせて車両を停止させるという走行態様で走行することが、ハイブリッド車両の燃費向上に貢献すると知られている。すなわち、図1において、t0−t1区間はアクセルペダル16を踏み込んで加速している区間、t1−t2区間は惰性走行している区間、t2−t3区間はブレーキを利かせて減速している区間を示している。   FIG. 1 is a diagram for explaining a driving pattern with good fuel efficiency in a hybrid vehicle. FIG. 1 shows a situation where the vehicle decelerates and returns to the stopped state after the vehicle has shifted from the stopped state to the traveling state. In such a situation, it is not a driving mode in which the vehicle travels with the accelerator pedal 16 depressed from the starting point to the deceleration point and stops when the vehicle reaches the deceleration point, but the accelerator pedal 16 is depressed at the starting point. It is known that traveling in a traveling mode in which inertial traveling is performed after acceleration and the vehicle is stopped by using a brake when reaching a deceleration point contributes to improvement in fuel consumption of the hybrid vehicle. That is, in FIG. 1, the t0-t1 section is a section where the accelerator pedal 16 is depressed to accelerate, the t1-t2 section is a coasting section, and the t2-t3 section is a section where the brake is applied to decelerate. Is shown.

t1−t2区間において惰性走行させるためには、車両の仕様にもよるが、アクセルペダル16のペダル角θを0%より大きく10%未満(X1=0,Y1=10)に維持させなければならない。ペダル角が10%以上になると加速による燃料消費が増加する一方、ペダル角が0%になるとモータ30の回生動作による燃料消費が増加する(回生動作をすること自体も燃費低下の要因となる)。つまり、ハイブリッド車両の燃費を所定の燃費基準より向上させるためには、ドライバーはアクセルペダル16を0%より大きく10%未満のペダル角に操作することによって、加速も回生もしない走行状態を維持して車両を惰性走行させる必要がある。このようなアクセルペダル16の微妙な操作を行うことはドライバーにとって難しい。   In order to allow inertial running in the t1-t2 section, the pedal angle θ of the accelerator pedal 16 must be maintained at a value greater than 0% and less than 10% (X1 = 0, Y1 = 10), depending on vehicle specifications. . When the pedal angle exceeds 10%, fuel consumption due to acceleration increases, whereas when the pedal angle reaches 0%, fuel consumption increases due to the regenerative operation of the motor 30 (the regenerative operation itself also causes a reduction in fuel consumption). . In other words, in order to improve the fuel efficiency of the hybrid vehicle from the predetermined fuel efficiency standard, the driver maintains the driving state where neither acceleration nor regeneration is performed by operating the accelerator pedal 16 to a pedal angle greater than 0% and less than 10%. It is necessary to drive the vehicle by inertia. It is difficult for the driver to perform such a delicate operation of the accelerator pedal 16.

そこで、本第1の実施例では、図2に示すような反力特性に従ってアクセルペダル反力制御を実行する。図2は、ハイブリッド車両において惰性走行に誘導する反力特性の一例を示す図である。一般に、アクセルペダルの反力特性は、ペダル角の有効範囲(いわゆる「あそび」を除く範囲)においては、ペダル角に対して一定の平均変化率で反力が増加する特性を有する。しかしながら、図2に示されるように、本第1の実施例で使用する反力特性は所定のペダル角範囲において平均変化率が他の範囲と異なっている。   Therefore, in the first embodiment, the accelerator pedal reaction force control is executed according to the reaction force characteristics as shown in FIG. FIG. 2 is a diagram illustrating an example of a reaction force characteristic that is induced to coasting in a hybrid vehicle. In general, the reaction force characteristic of an accelerator pedal has a characteristic that the reaction force increases at a constant average rate of change with respect to the pedal angle in the effective range of the pedal angle (a range excluding so-called “play”). However, as shown in FIG. 2, the reaction force characteristic used in the first embodiment has an average rate of change in a predetermined pedal angle range different from other ranges.

図2(a)では、a点からb点における平均変化率及びb点からc点における平均変化率が他のペダル角範囲における平均変化率と異なっており、a点からb点における平均変化率は他のペダル角範囲における平均変化率より大きく、b点からc点における平均変化率は他のペダル角範囲における平均変化率より小さく負値である。つまり、図2(a)に示される反力特性は、横軸のペダル角と縦軸の反力で規定された反力点から構成されており、一定の変化率で増加させた基本反力より大きい反力値の反力変化点から構成される山1が所定のペダル角範囲に生成されている。   In FIG. 2A, the average rate of change from point a to point b and the average rate of change from point b to point c are different from the average rate of change in other pedal angle ranges, and the average rate of change from point a to point b. Is larger than the average rate of change in the other pedal angle ranges, and the average rate of change from the points b to c is smaller than the average rate of change in the other pedal angle ranges and is a negative value. That is, the reaction force characteristic shown in FIG. 2 (a) is composed of reaction force points defined by the pedal angle on the horizontal axis and the reaction force on the vertical axis, and is based on the basic reaction force increased at a constant rate of change. A mountain 1 composed of reaction force change points having a large reaction force value is generated in a predetermined pedal angle range.

一方、図2(b)では、d点からe点における平均変化率、e点からf点における平均変化率が他のペダル角範囲における平均変化率と異なっており、d点からe点における平均変化率は他のペダル角範囲における平均変化率より小さく負値であり、e点からf点における平均変化率は他のペダル角範囲における平均変化率より大きい。つまり、図2(b)に示される反力特性は、横軸のペダル角と縦軸の反力で規定された反力点から構成されており、一定の変化率で増加させた基本反力より小さい反力値の反力変化点から構成される谷2が所定のペダル角範囲に生成されている。   On the other hand, in FIG. 2B, the average rate of change from the point d to the point e and the average rate of change from the point e to the point f are different from the average rate of change in other pedal angle ranges. The rate of change is smaller than the average rate of change in the other pedal angle ranges and is a negative value, and the average rate of change from point e to point f is greater than the average rate of change in the other pedal angle ranges. That is, the reaction force characteristic shown in FIG. 2B is composed of reaction force points defined by the pedal angle on the horizontal axis and the reaction force on the vertical axis, and is based on the basic reaction force increased at a constant rate of change. A valley 2 composed of reaction force change points having a small reaction force value is generated in a predetermined pedal angle range.

そして、ドライバーのペダル操作を0%より大きく10%未満のペダル角に誘導させて車両を惰性走行させるため、図2(a)における山1若しくは図2(b)における谷2は、惰性走行させるためのペダル角範囲の上限値Y1(=10%)付近に設定されている。例えば、図2(a)におけるa点やb点並びに図2(b)におけるd点やe点は、上限値Y1未満のペダル角に設定される。したがって、図2(a)に示される反力特性に従ってアクセルペダル反力制御を実行すると、アクセルペダル16を軽く踏むと引っかかり上限値Y1の手前で足を止めておくことができ、感覚的には反力の山1に足を載せた状態で惰性走行させることが可能になる。あるいは、図2(b)に示される反力特性に従ってアクセルペダル反力制御を実行すると、アクセルペダル16を軽く踏むとアクセルペダル16の操作が軽くなる谷2に足が誘導され上限値Y1の手前で足を止めておくことができ、惰性走行させることが可能になる。   Then, in order to guide the driver's pedal operation to a pedal angle greater than 0% and less than 10% to cause the vehicle to coast, the mountain 1 in FIG. 2A or the valley 2 in FIG. 2B is coasted. Therefore, the upper limit value Y1 (= 10%) of the pedal angle range is set. For example, points a and b in FIG. 2A and points d and e in FIG. 2B are set to pedal angles less than the upper limit value Y1. Therefore, when the accelerator pedal reaction force control is executed in accordance with the reaction force characteristic shown in FIG. 2A, when the accelerator pedal 16 is stepped lightly, it can be caught and the foot can be stopped in front of the upper limit value Y1. It becomes possible to carry out inertial running with a foot on the reaction mountain 1. Alternatively, when the accelerator pedal reaction force control is executed in accordance with the reaction force characteristics shown in FIG. 2B, when the accelerator pedal 16 is stepped lightly, the foot is guided to the valley 2 where the operation of the accelerator pedal 16 becomes light, and before the upper limit Y1 It is possible to stop the foot and to allow inertial running.

図7は、第1の実施例におけるアクセルペダル反力制御の動作フローである。ECU10は、アクセルポジションセンサ11からの信号に基づいてペダル角の所定時間に対する変化量が小さいか否か(すなわち、ペダル角速度が零近傍にあるか否か)を判断する(ステップ10)とともに車速センサ12からの信号に基づいて車速の所定時間に対する変化量が小さいか否か(すなわち、車両の加速度が零近傍にあるか否か)を判断する(ステップ12)。すなわち、以下に記載の[数1]と[数2]のAND条件が成立した場合に、ステップ14に移行し、ECU10は、図2(a)あるいは図2(b)に示される反力特性に従ってペダル角に対する反力を制御する惰行誘導ペダル反力制御を開始する(ステップ14)。一方、[数1]及び[数2]のいずれか一方でも成立しない場合には、ECU10は、惰行誘導ペダル反力制御の動作を停止もしくは開始しない(ステップ16)。
[数1]
−α<(dθ/dt)<α
[数2]
−β<(dV/dt)<β
なお、α,βは、零近傍の所定の正数である。
FIG. 7 is an operation flow of accelerator pedal reaction force control in the first embodiment. The ECU 10 determines whether or not the change amount of the pedal angle with respect to a predetermined time is small based on the signal from the accelerator position sensor 11 (that is, whether or not the pedal angular velocity is near zero) (step 10) and the vehicle speed sensor. Based on the signal from 12, it is determined whether or not the amount of change of the vehicle speed with respect to a predetermined time is small (that is, whether or not the acceleration of the vehicle is near zero) (step 12). That is, when the AND condition of [Equation 1] and [Equation 2] described below is satisfied, the routine proceeds to step 14 where the ECU 10 performs reaction force characteristics shown in FIG. 2 (a) or FIG. 2 (b). The coasting induction pedal reaction force control for controlling the reaction force against the pedal angle is started (step 14). On the other hand, if either [Equation 1] or [Equation 2] is not satisfied, the ECU 10 does not stop or start the coasting guidance pedal reaction force control (step 16).
[Equation 1]
-Α <(dθ / dt) <α
[Equation 2]
−β <(dV / dt) <β
Α and β are predetermined positive numbers near zero.

すなわち、図7の動作フローによれば、発進時や加速をするときには反力の変化はドライバーにとってむしろ煩わしいと考えられるので、定速走行しているとみなせる場合に(すなわち、[数1]と[数2]のAND条件が成立した場合に)、図2(a)あるいは図2(b)に示される反力特性に従ってペダル角に対する反力を制御する惰行誘導ペダル反力制御を実行するようにしている。車速の変位が少なく、且つ、アクセルペダル16の操作が急峻でない場合には、ドライバーに加速の意思が無く定速で走行させたい意思があるとみなすことができる。   That is, according to the operation flow of FIG. 7, when starting or accelerating, the change of the reaction force is considered to be rather troublesome for the driver, so when it can be considered that the vehicle is traveling at a constant speed (ie, [Equation 1] When the AND condition of [Equation 2] is satisfied, coasting induction pedal reaction force control for controlling the reaction force against the pedal angle according to the reaction force characteristic shown in FIG. 2A or 2B is executed. I have to. When the displacement of the vehicle speed is small and the operation of the accelerator pedal 16 is not steep, it can be considered that the driver has no intention of acceleration and wants to drive at a constant speed.

[第2の実施例]
上述の第1の実施例では、所定の燃費基準に対し燃費が良くなるペダル角にドライバーのペダル操作を誘導するアクセルペダル反力制御について説明した。本第2の実施例では、所定の燃費基準に対し燃費が悪くなるペダル角範囲に踏み込みにくくするようにドライバーのペダル操作を補助するアクセルペダル反力制御について説明する。なお、本第2の実施例は、ハイブリッド車両に限らず、エンジンのみを駆動源とするガソリン車両にも適用可能である。
[Second Embodiment]
In the first embodiment described above, the accelerator pedal reaction force control for guiding the driver's pedal operation to the pedal angle at which the fuel efficiency is improved with respect to the predetermined fuel efficiency standard has been described. In the second embodiment, accelerator pedal reaction force control for assisting the driver in pedal operation so as to make it difficult to step into the pedal angle range where the fuel efficiency becomes worse than a predetermined fuel efficiency standard will be described. The second embodiment can be applied not only to a hybrid vehicle but also to a gasoline vehicle using only an engine as a drive source.

本第2の実施例では、燃費が悪くなるペダル角範囲までアクセルペダル16を踏み込みにくくするため、燃費が悪くなり始めるペダル角に反力による壁感を生成する。その壁感を生成したペダル角にドライバーのペダル操作が達すると、ドライバーはペダルを踏み込みにくくなったと感じることになる。そして、ドライバーがその壁感にかまわずアクセルペダル16を踏み増すと、ドライバーのアクセルペダル16を踏み込みたい意思を優先して、壁感を生成した反力が消えるように制御される。つまり、ドライバーの意図的な踏み込み操作を妨げないようにする。   In the second embodiment, in order to make it difficult for the accelerator pedal 16 to be depressed to the pedal angle range where the fuel consumption is deteriorated, a wall feeling due to reaction force is generated at the pedal angle at which the fuel consumption starts to deteriorate. When the driver's pedal operation reaches the pedal angle that generated the wall feeling, the driver feels that it is difficult to step on the pedal. When the driver depresses the accelerator pedal 16 regardless of the wall feeling, priority is given to the driver's intention to depress the accelerator pedal 16, and the reaction force that generated the wall feeling is controlled to disappear. In other words, it should not interfere with the driver's intentional stepping operation.

そこで、本第2の実施例では、図3に示されるような反力特性に従ってアクセルペダル反力制御を実行する。図3は、燃費が悪くなるペダル角範囲への踏み込みを抑制する反力特性を説明するための図である。本第2の実施例で使用する反力特性も、図2で示される第1の実施例の反力特性と同様に、所定のペダル角範囲において平均変化率が他の範囲と異なっている。図3(a)に示されるように、g点からl点までの平均変化率が他のペダル角範囲における平均変化率と異なっている。つまり、図3(a)に示される反力特性は、横軸のペダル角と縦軸の反力で規定された反力点から構成されており、一定の変化率で増加させた基本反力より大きい反力値の反力変化点から構成される壁3が所定のペダル角範囲に生成されている。   Therefore, in the second embodiment, the accelerator pedal reaction force control is executed according to the reaction force characteristics as shown in FIG. FIG. 3 is a diagram for explaining a reaction force characteristic that suppresses the stepping into the pedal angle range in which the fuel efficiency is deteriorated. Similarly to the reaction force characteristic of the first embodiment shown in FIG. 2, the reaction force characteristic used in the second embodiment has an average rate of change different from the other ranges in a predetermined pedal angle range. As shown in FIG. 3A, the average rate of change from the point g to the point l is different from the average rate of change in other pedal angle ranges. That is, the reaction force characteristic shown in FIG. 3A is composed of reaction force points defined by the pedal angle on the horizontal axis and the reaction force on the vertical axis, and is based on the basic reaction force increased at a constant rate of change. A wall 3 composed of reaction force change points having a large reaction force value is generated in a predetermined pedal angle range.

ここで、車両の燃費が悪くなるペダル角範囲の下限値が80%であるならば、例えば図3(a)におけるg点やh点は、その下限値80%近傍のペダル角に設定される。g点やh点を80%未満のペダル角に設定すれば、車両の燃費が悪くなる前に確実にドライバーは反力の壁感を感じることができる。g点やh点を80%以上のペダル角に設定すれば、車両の燃費が少し悪くなり始めてからドライバーは反力の壁感を感じることができる。さらに、図3(a)に示される反力特性は、ドライバーがその壁感を踏み越えることによって壁感を生成した反力が消滅することをドライバーに感覚的に知らせるために、壁感の反力生成を終了するペダル角の直前に、壁3における平均変化率を一時的に変動させた谷4(クリック感)を設けている。壁感の反力生成が終了すると、図3(b)に示されるように、壁感を生成する反力は消え、アクセルペダルの反力特性は、ペダル角の有効範囲においては、ペダル角に対して一定の平均変化率で反力が増加する特性に変更される。   Here, if the lower limit value of the pedal angle range in which the fuel efficiency of the vehicle becomes worse is 80%, for example, the points g and h in FIG. 3A are set to pedal angles in the vicinity of the lower limit value 80%. . If the g point and the h point are set to a pedal angle of less than 80%, the driver can surely feel a wall of reaction force before the fuel consumption of the vehicle deteriorates. If the g point and the h point are set to a pedal angle of 80% or more, the driver can feel a wall of reaction force after the fuel efficiency of the vehicle starts to deteriorate a little. Further, the reaction force characteristic shown in FIG. 3 (a) is the reaction of the wall feeling in order to inform the driver sensibly that the reaction force that generated the wall feeling disappears when the driver steps over the wall feeling. Immediately before the pedal angle at which force generation is terminated, a trough 4 (click feeling) is provided in which the average rate of change in the wall 3 is temporarily changed. When the generation of the reaction force for the wall feeling is completed, as shown in FIG. 3B, the reaction force for generating the wall feeling disappears, and the reaction force characteristic of the accelerator pedal is equal to the pedal angle within the effective range of the pedal angle. On the other hand, it is changed to a characteristic in which the reaction force increases at a constant average rate of change.

図8は、第2の実施例におけるアクセルペダル反力制御の動作フローである。ECU10は、車速センサ12からの信号に基づいて現在の実車速を検出する(ステップ20)。ステップ20で検出された実車速に基づきマップ等に応じて車両の燃費が悪くなるペダル角範囲を決定し、図3(a)に示されるような壁感を生成するペダル反力特性を決定する(ステップ22)。そして、ECU10はドライバーが壁3を踏み越えたか否かをアクセルポジションセンサ11からの信号に基づいて判断する(ステップ24)。例えば、ステップ22で決定したペダル反力特性が90%のペダル角で壁感を生成する反力を終了する特性の場合、アクセルポジションセンサ11からの信号に基づいてペダル角が90%を越えるか否かを判断することによって、ドライバーの壁踏み越えについて判断することができる。   FIG. 8 is an operation flow of accelerator pedal reaction force control in the second embodiment. The ECU 10 detects the current actual vehicle speed based on the signal from the vehicle speed sensor 12 (step 20). Based on the actual vehicle speed detected in step 20, a pedal angle range in which the fuel efficiency of the vehicle is deteriorated is determined according to a map or the like, and a pedal reaction force characteristic that generates a wall feeling as shown in FIG. (Step 22). Then, the ECU 10 determines whether or not the driver has stepped over the wall 3 based on a signal from the accelerator position sensor 11 (step 24). For example, if the pedal reaction force characteristic determined in step 22 is a characteristic that terminates the reaction force that generates a wall feeling at a pedal angle of 90%, does the pedal angle exceed 90% based on the signal from the accelerator position sensor 11? By judging whether or not, it is possible to judge whether the driver has stepped over the wall.

壁踏み越えが検出されなければ(ステップ24;No)、ステップ20に戻り、車速に応じたペダル反力特性の決定と壁踏み越え判断が繰り返される。一方、壁踏み越えが検出された場合(ステップ24;Yes)、図3(b)に示されるように、壁感を生成する反力は消え、アクセルペダルの反力特性は、ペダル角の有効範囲においては、ペダル角に対して一定の平均変化率で反力が増加する特性に変更される。(ステップ26)。   If a wall overstep is not detected (step 24; No), the process returns to step 20, and the determination of the pedal reaction force characteristic according to the vehicle speed and the wall overstep determination are repeated. On the other hand, when the stepping over the wall is detected (step 24; Yes), as shown in FIG. 3B, the reaction force that generates the wall feeling disappears, and the reaction force characteristic of the accelerator pedal is the effective range of the pedal angle. Is changed to a characteristic in which the reaction force increases at a constant average rate of change with respect to the pedal angle. (Step 26).

ステップ28以降は、ステップ26で終了した壁感の反力生成を再開するためのステップ群である。ドライバーが壁3の反力に抗して踏み込む場面とは、周囲の交通状況や地形の影響によって一時的に加速が必要なときであると考えられる。例えば、追い越し走行する場面や上り勾配を走行する場面で加速が必要な場合がある。このような場面における一時的な加速操作を終了させた後、燃費が悪くなるペダル角に再度踏み込みにくくするように、壁感の反力生成を自動的に再開すると効果的である。そこで、ECU10は、車速とペダル角の時間微分を用いて、上述の[数1]と[数2]をいずれも成立した場合に、ドライバーが定速で車両を走行させ始めたものとみなし、壁感の反力生成を再開する。   Step 28 and the subsequent steps are a group of steps for resuming the generation of the reaction force of the wall feeling that was ended in step 26. The scene where the driver steps against the reaction force of the wall 3 is considered to be a time when acceleration is required temporarily due to the influence of surrounding traffic conditions and topography. For example, there is a case where acceleration is necessary in a scene where the vehicle is overtaking or a vehicle is traveling uphill. It is effective to automatically resume reaction force generation of the wall feeling after finishing the temporary acceleration operation in such a scene so as to make it difficult to step on the pedal angle at which the fuel efficiency deteriorates again. Therefore, the ECU 10 considers that the driver has started running the vehicle at a constant speed when the above [Equation 1] and [Equation 2] are both established using time differentiation of the vehicle speed and the pedal angle. Resumes generation of reaction force for the wall feeling.

ただし、定速走行中であっても、上り勾配や合流地点など加速が必要な場合には、壁感の反力生成を再開しないようにするため、ECU10は、ナビゲーション装置13から取得される地図情報を取得して、上り勾配や合流地点など加速が必要な地点に関する地物情報が更新された場合に(加速が必要でない地点に車両が移動した場合に)、反力制御を再開する。これにより、追い越しや上り坂走行などで一時的な加速をした後で定速走行に戻ったタイミングで壁感の反力生成を再開できる。   However, the ECU 10 obtains a map acquired from the navigation device 13 in order to prevent the reaction force generation of the wall feeling from being resumed when acceleration is required, such as an ascending slope or a merging point, even during constant speed traveling. When the information is acquired and the feature information related to the point requiring acceleration such as the uphill slope or the junction point is updated (when the vehicle moves to a point where acceleration is not necessary), the reaction force control is resumed. Thereby, the reaction force generation of the wall feeling can be resumed at the timing when the vehicle returns to the constant speed after temporarily accelerating by overtaking or traveling uphill.

図8において、ECU10は、壁感の反力生成を再開するために、まず、定速走行しているか否かを判断する(ステップ28)。定速走行中でなければ(ステップ28;No)、まだ加速中もしくは減速中であるとして、壁感の反力生成の再開をしない。一方、定速走行中であれば(ステップ28;Yes)、ナビゲーション装置13から取得される地図情報に基づいて、加速が必要な地点(たとえば、上り勾配や合流地点)を走行しているのか否かを判断する(ステップ30)。加速が必要な地点を走行していると判断した場合には、地物情報の更新確認をする(ステップ32)。地物情報が更新されていなければステップ26以降が繰り返される。ステップ30において加速が必要な地点を走行していないと判断した場合あるいはステップ32において地物情報が更新されている場合には、ステップ20に戻り、壁感の反力生成が再開し、車速に応じたペダル反力特性の決定と壁踏み越え判断が繰り返される。   In FIG. 8, the ECU 10 first determines whether or not the vehicle is traveling at a constant speed in order to resume the reaction force generation of the wall feeling (step 28). If the vehicle is not traveling at a constant speed (step 28; No), it is determined that the vehicle is still accelerating or decelerating. On the other hand, if the vehicle is traveling at a constant speed (step 28; Yes), based on the map information acquired from the navigation device 13, whether or not the vehicle is traveling at a point that requires acceleration (for example, an ascending slope or a merging point). (Step 30). If it is determined that the vehicle is traveling at a point where acceleration is required, the feature information is updated (step 32). If the feature information has not been updated, step 26 and subsequent steps are repeated. If it is determined in step 30 that the vehicle is not traveling at a point where acceleration is required, or if the feature information is updated in step 32, the process returns to step 20, and the reaction force generation of the wall feeling is resumed, and the vehicle speed is increased. The determination of the pedal reaction force characteristic and the determination of stepping over the wall are repeated.

[第3の実施例]
上述の第1の実施例では、ハイブリッド車両における、燃費に良いペダル角にドライバーのペダル操作を誘導するアクセルペダル反力制御について説明した。本第3の実施例では、ガソリン車両における、燃費に良いペダル角にドライバーのペダル操作を誘導するアクセルペダル反力制御について説明する。なお、ガソリン車両に本発明の車両用運転補助装置の一実施形態を適用したシステムのブロック図は、ハイブリッド車両に関する図10を流用し、動力分割機構22を含めそれより先に接続される構成を図10から省いたものとする。
[Third embodiment]
In the first embodiment described above, the accelerator pedal reaction force control for guiding the driver's pedal operation to the pedal angle with good fuel efficiency in the hybrid vehicle has been described. In the third embodiment, accelerator pedal reaction force control for guiding a driver's pedal operation to a pedal angle with good fuel efficiency in a gasoline vehicle will be described. In addition, the block diagram of the system which applied one Embodiment of the driving assistance device for vehicles of this invention to the gasoline vehicle diverts FIG. 10 regarding a hybrid vehicle, and the structure connected before it including the power split mechanism 22 is shown. Assume that it is omitted from FIG.

図4は、ガソリン車両における燃費の良い走行パターンを示す図である。図4に示されるように、ガソリン車両において、燃費に良い走行をするためには、一定速走行するのが良いと知られている。特に高速域(例えば、60km/h以上)の車速で一定速走行するのが良い。ガソリン車両を一定速に走行させる場合、路面状態や風速などによって走行抵抗が変化するために一定速に車両を走行させるには、アクセルペダル16のペダル角θをある微小な範囲A<θ<B(A,Bは車速やロードトルク等に応じて変化)にする必要があるので、ドライバーには微妙なアクセル操作が要求される。つまり、走行抵抗は一様ではないため、燃費に良いペダル角範囲は変動し、このペダル角範囲になるようにアクセルペダル16の微妙な操作を行うことはドライバーにとって難しい。   FIG. 4 is a diagram showing a traveling pattern with good fuel consumption in a gasoline vehicle. As shown in FIG. 4, it is known that a gasoline vehicle should travel at a constant speed in order to travel with good fuel efficiency. In particular, it is preferable to drive at a constant speed at a vehicle speed in a high speed range (for example, 60 km / h or more). When the gasoline vehicle is driven at a constant speed, the travel resistance varies depending on the road surface condition, the wind speed, etc., so that the vehicle is driven at a constant speed, the pedal angle θ of the accelerator pedal 16 is set to a very small range A <θ <B. Since A and B need to be changed according to the vehicle speed, road torque, etc., the driver is required to perform a delicate accelerator operation. That is, since the running resistance is not uniform, the pedal angle range that is good for fuel consumption varies, and it is difficult for the driver to perform a delicate operation of the accelerator pedal 16 so as to be within this pedal angle range.

そこで、本第3の実施例では、図5に示すような反力特性に従ってアクセルペダル反力制御を実行する。図5は、ガソリン車両において一定速走行に誘導する反力特性の一例を示す図である。アクセルペダルの反力特性は、図5からも明らかなように、図1と同様である。したがって、図5(a)に示される反力特性に従ってアクセルペダル反力制御を実行すると、アクセルペダル16を軽く踏むと引っかかり上限値Bの手前で足を止めておくことができ、感覚的には反力の山5に足を載せた状態で一定速走行させることが可能になる。あるいは、図5(b)に示される反力特性に従ってアクセルペダル反力制御を実行すると、アクセルペダル16を軽く踏むとアクセルペダル16の操作が軽くなる谷6に足が誘導され上限値Bの手前で足を止めておくことができ、一定速走行させることが可能になる。   Therefore, in the third embodiment, accelerator pedal reaction force control is executed in accordance with the reaction force characteristics as shown in FIG. FIG. 5 is a diagram illustrating an example of a reaction force characteristic that is induced to travel at a constant speed in a gasoline vehicle. The reaction force characteristic of the accelerator pedal is the same as in FIG. 1 as is apparent from FIG. Therefore, when the accelerator pedal reaction force control is executed according to the reaction force characteristics shown in FIG. 5A, the accelerator pedal 16 can be caught lightly and the foot can be stopped before the upper limit value B. It becomes possible to run at a constant speed with the foot placed on the reaction force mountain 5. Alternatively, when the accelerator pedal reaction force control is executed according to the reaction force characteristic shown in FIG. 5B, when the accelerator pedal 16 is lightly depressed, the foot is guided to the valley 6 where the operation of the accelerator pedal 16 is lightened, and before the upper limit B. It is possible to stop the foot and to run at a constant speed.

なお、ナビゲーション装置13からの取得できる地図情報を用いて、道路環境の影響により加減速する分を考慮して、燃費に良いペダル角範囲の下限値Aと上限値Bを補正してもよい。これにより正確な一定速走行をすることが可能になる。図6は、燃費に良いペダル角範囲の限界値の補正を説明するための図である。例えば、上り勾配の場合には、燃費に良いペダル角範囲の上限値BをB’の位置に変更することにより、山7を山8の位置に移動させる。上り勾配で一定速走行をするためには、下り勾配や無勾配で一定速走行をする場合に比べアクセルペダル16を踏み増してペダル角を大きくしなければならないからである。逆に、下り勾配の場合には、ペダル角が小さくなる方向に山7の位置をずらせばよい。なお、上述の上限値Bの変更と同様の考えで、下限値Aの位置を変更してもよい。   Note that the map information that can be acquired from the navigation device 13 may be used to correct the lower limit value A and the upper limit value B of the pedal angle range that is good for fuel efficiency in consideration of acceleration / deceleration due to the influence of the road environment. This makes it possible to travel accurately at a constant speed. FIG. 6 is a diagram for explaining correction of the limit value of the pedal angle range that is good in fuel efficiency. For example, in the case of an ascending slope, the mountain 7 is moved to the mountain 8 position by changing the upper limit value B of the pedal angle range, which is good for fuel efficiency, to the position B ′. This is because in order to travel at a constant speed on an ascending slope, it is necessary to increase the pedal angle by increasing the accelerator pedal 16 as compared with the case of traveling at a constant speed on a descending slope or no slope. Conversely, in the case of a downward slope, the position of the mountain 7 may be shifted in the direction in which the pedal angle becomes smaller. The position of the lower limit value A may be changed based on the same idea as the change of the upper limit value B described above.

図9は、第3の実施例におけるアクセルペダル反力制御の動作フローである。第3の実施例におけるアクセルペダル反力制御の停止や開始をするための動作フローは、図7と同様にすればよいので、省略する。図9は、燃費に良いペダル角範囲を補正するための動作フローを表す。ECU10は、車速センサ12からの信号に基づいて現在の実車速を検出する(ステップ40)。ステップ40で検出された実車速に基づきマップ等に応じて車両の燃費が良いペダル角範囲を決定し、図5に示されるようなペダル反力特性を決定する(ステップ42)。そして、ステップ42で決定したペダル反力特性を補正するために、ECU10はナビゲーション装置13から地図情報を取得する(ステップ44)。ECU10は、その取得した地図情報に基づいて、上り勾配を走行している場合には燃費に良いペダル角範囲の上限値Bを大きくなる方向に補正し、下り勾配を走行している場合には燃費に良いペダル角範囲の上限値Bを小さくなる方向に補正する(ステップ46)。   FIG. 9 is an operation flow of accelerator pedal reaction force control in the third embodiment. The operation flow for stopping or starting the accelerator pedal reaction force control in the third embodiment may be the same as in FIG. FIG. 9 shows an operation flow for correcting a pedal angle range that is good for fuel consumption. The ECU 10 detects the current actual vehicle speed based on the signal from the vehicle speed sensor 12 (step 40). Based on the actual vehicle speed detected in step 40, a pedal angle range in which the fuel efficiency of the vehicle is good is determined according to a map or the like, and a pedal reaction force characteristic as shown in FIG. 5 is determined (step 42). Then, in order to correct the pedal reaction force characteristic determined in step 42, the ECU 10 acquires map information from the navigation device 13 (step 44). Based on the acquired map information, the ECU 10 corrects the upper limit value B of the pedal angle range, which is good for fuel efficiency, when traveling on an ascending slope, and increases it when traveling on a descending slope. The upper limit value B of the pedal angle range that is good for fuel consumption is corrected to be smaller (step 46).

したがって、上述の本発明の車両用運転補助装置の実施形態によれば、ドライバーが燃費に良いアクセルペダル操作をしやすいようにアクセルペダル16の反力を制御することによって、燃費に良いペダル角をドライバーに対し容易に認識させることができる。また、燃費に悪いペダル角をドライバーに対し容易に認識させることもできる。   Therefore, according to the above-described embodiment of the vehicle driving assistance device of the present invention, by controlling the reaction force of the accelerator pedal 16 so that the driver can easily operate the accelerator pedal with good fuel efficiency, a pedal angle with good fuel efficiency can be obtained. The driver can be easily recognized. It is also possible to make the driver easily recognize a pedal angle that is poor in fuel efficiency.

また、上述の本発明の車両用運転補助装置の実施形態によれば、反力を変化させることによって燃費に良い適切なペダル角をドライバーは維持することができるとともに、その維持状態を超えてアクセルペダルが踏み込まれた場合にはその反力の変化を終了させることによってドライバーは違和感のないアクセルペダル操作を行うことができる。   Further, according to the above-described embodiment of the vehicle driving assistance device of the present invention, the driver can maintain an appropriate pedal angle that is good in fuel consumption by changing the reaction force, and the accelerator is exceeded beyond the maintained state. When the pedal is depressed, the driver can operate the accelerator pedal without feeling uncomfortable by ending the change of the reaction force.

以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiments, and various modifications and substitutions can be made to the above-described embodiments without departing from the scope of the present invention. Can be added.

例えば、上述の第1の実施例において、第2の実施例と同様に、ドライバーが山1や谷2にかまわずアクセルペダル16を踏み増すと、ドライバーのアクセルペダル16を踏み込みたい意思を優先して、山1や谷2を生成した反力が消えるようにECU10によって制御されてもよい。   For example, in the first embodiment, as in the second embodiment, when the driver depresses the accelerator pedal 16 regardless of the mountain 1 or the valley 2, the driver's intention to depress the accelerator pedal 16 is given priority. Thus, the ECU 10 may be controlled so that the reaction force that generates the peaks 1 and the valleys 2 disappears.

また、本発明の車両用運転補助装置は、内燃機関の種類を問わず、ガソリンエンジンだけでなくディーゼルエンジンやそれ以外のエンジンを搭載する車両にも適用可能である。   Further, the vehicle driving assistance device of the present invention can be applied not only to a gasoline engine but also to a vehicle equipped with a diesel engine or other engines, regardless of the type of the internal combustion engine.

ハイブリッド車両における燃費に良い走行パターンを説明するための図である。It is a figure for demonstrating the driving | running | working pattern with favorable fuel consumption in a hybrid vehicle. ハイブリッド車両において惰性走行に誘導する反力特性の一例を示す図である。It is a figure which shows an example of the reaction force characteristic induced to coasting in a hybrid vehicle. 燃費が悪くなるペダル角範囲への踏み込みを抑制する反力特性を説明するための図である。It is a figure for demonstrating the reaction force characteristic which suppresses depression to the pedal angle range from which fuel consumption worsens. ガソリン車両における燃費の良い走行パターンを示す図である。It is a figure which shows the driving | running | working pattern with favorable fuel consumption in a gasoline vehicle. ガソリン車両において一定速走行に誘導する反力特性の一例を示す図である。It is a figure which shows an example of the reaction force characteristic induced | guided | derived to constant speed driving | running | working in a gasoline vehicle. 燃費に良いペダル角範囲の限界値の補正を説明するための図である。It is a figure for demonstrating correction | amendment of the limit value of the pedal angle range favorable for a fuel consumption. 第1の実施例におけるアクセルペダル反力制御の動作フローである。It is an operation | movement flow of the accelerator pedal reaction force control in a 1st Example. 第2の実施例におけるアクセルペダル反力制御の動作フローである。It is an operation | movement flow of the accelerator pedal reaction force control in a 2nd Example. 第3の実施例におけるアクセルペダル反力制御の動作フローである。It is an operation | movement flow of the accelerator pedal reaction force control in a 3rd Example. エンジンとモータを駆動源とするハイブリッド車両に本発明の車両用運転補助装置の一実施形態を適用したシステムのブロック図である。1 is a block diagram of a system in which an embodiment of a vehicle driving assistance device of the present invention is applied to a hybrid vehicle using an engine and a motor as drive sources.

符号の説明Explanation of symbols

10 ECU
11 アクセルポジションセンサ
12 車速センサ
13 ナビゲーション装置
15 ペダル反力発生部
16 アクセルペダル
20 エンジン
30 モータ
10 ECU
DESCRIPTION OF SYMBOLS 11 Acceleration position sensor 12 Vehicle speed sensor 13 Navigation apparatus 15 Pedal reaction force generation part 16 Accelerator pedal 20 Engine 30 Motor

Claims (10)

アクセルペダルと、
アクセルペダル操作量に対して略一定の変化率でアクセルペダルの反力を増加させる反力制御手段とを有する車両用運転補助装置であって、
車両の燃費が所定の燃費基準より良くなるアクセルペダル操作量を定めた燃費向上操作量範囲に、前記略一定の変化率で増加させた反力と異なる値の反力変化点を設定する設定手段を備え、
前記反力制御手段は、前記設定手段によって設定された反力変化点に従って前記燃費向上操作量範囲における反力を変化させることを特徴とする、車両用運転補助装置。
An accelerator pedal,
A driving assistance device for a vehicle having reaction force control means for increasing a reaction force of the accelerator pedal at a substantially constant rate of change with respect to an accelerator pedal operation amount,
Setting means for setting a reaction force change point having a value different from the reaction force increased at the substantially constant change rate in a fuel consumption improvement operation amount range in which an accelerator pedal operation amount at which the fuel consumption of the vehicle is better than a predetermined fuel consumption standard is determined. With
The vehicle driving assistance device according to claim 1, wherein the reaction force control means changes a reaction force in the fuel consumption improvement operation amount range according to a reaction force change point set by the setting means.
アクセルペダルと、
アクセルペダル操作量に対して略一定の変化率でアクセルペダルの反力を増加させる反力制御手段とを有する車両用運転補助装置であって、
車両の燃費が所定の燃費基準より悪くなるアクセルペダル操作量を定めた燃費低下操作量範囲に、前記略一定の変化率で増加させた反力より大きい値の反力変化点を設定する設定手段を備え、
前記反力制御手段は、前記設定手段によって設定された反力変化点に従って前記燃費低下操作量範囲における反力を変化させることを特徴とする、車両用運転補助装置。
An accelerator pedal,
A driving assistance device for a vehicle having reaction force control means for increasing a reaction force of the accelerator pedal at a substantially constant rate of change with respect to an accelerator pedal operation amount,
Setting means for setting a reaction force change point having a value larger than the reaction force increased at the substantially constant change rate in a fuel consumption lowering operation amount range in which an accelerator pedal operation amount at which the fuel consumption of the vehicle becomes worse than a predetermined fuel consumption standard is determined. With
The vehicle driving assistance device according to claim 1, wherein the reaction force control means changes a reaction force in the fuel consumption reduction operation amount range in accordance with a reaction force change point set by the setting means.
前記反力制御手段は、車速の時間変化率が略一定且つアクセルペダル操作量の時間変化率が略一定の場合に、前記反力変化点に従った反力変化を開始する、請求項1または2記載の車両用運転補助装置。   The reaction force control means starts the reaction force change according to the reaction force change point when the time change rate of the vehicle speed is substantially constant and the time change rate of the accelerator pedal operation amount is substantially constant. The vehicle driving assistance device according to 2. 地図情報を記憶する記憶手段を備え、
前記反力制御手段は、車両が前記地図情報に基づいて加速が要求される地点に存在する場合には、前記反力変化点に従った反力変化の開始を禁止する、請求項1から3のいずれかに記載の車両用運転補助装置。
Comprising storage means for storing map information;
The said reaction force control means prohibits the start of the reaction force change according to the said reaction force change point, when a vehicle exists in the point where acceleration is requested | required based on the said map information. The driving assistance device for a vehicle according to any one of the above.
前記反力制御手段は、前記反力変化点に対応するアクセルペダル操作量を超えるアクセルペダル操作量が検出された場合、前記反力変化点に従った反力変化を終了する、請求項1から3のいずれかに記載の車両用運転補助装置。   The reaction force control means terminates the reaction force change according to the reaction force change point when an accelerator pedal operation amount exceeding the accelerator pedal operation amount corresponding to the reaction force change point is detected. 4. The vehicle driving assistance device according to any one of 3 above. 前記反力制御手段は、前記反力変化点に従った反力変化を終了する前に、前記反力変化点の反力値のアクセルペダル操作量に対する変化率を一時的に変動させる、請求項5記載の車両用運転補助装置。   The reaction force control means temporarily varies the rate of change of the reaction force value at the reaction force change point with respect to an accelerator pedal operation amount before ending the reaction force change according to the reaction force change point. The vehicle driving assistance device according to claim 5. 前記反力変化点の反力値は、前記略一定の変化率で増加させた反力より大きい値である、請求項1記載の車両用運転補助装置。   The vehicle driving assistance device according to claim 1, wherein a reaction force value at the reaction force change point is larger than a reaction force increased at the substantially constant change rate. 前記反力変化点の反力値は、前記略一定の変化率で増加させた反力より小さい値である、請求項1記載の車両用運転補助装置。   The vehicle driving assistance device according to claim 1, wherein a reaction force value at the reaction force change point is smaller than a reaction force increased at the substantially constant change rate. 前記車両は、アクセルペダル操作量が前記燃費向上操作量範囲にある場合に駆動源であるエンジン及びモータが停止するハイブリッド車両である、請求項1記載の車両用運転補助装置。   The vehicle driving assistance device according to claim 1, wherein the vehicle is a hybrid vehicle in which an engine and a motor that are driving sources stop when an accelerator pedal operation amount is in the fuel consumption improvement operation amount range. 前記車両は、エンジン及びモータを駆動源とするハイブリッド車両である、請求項2記載の車両用運転補助装置。   The vehicle driving assistance device according to claim 2, wherein the vehicle is a hybrid vehicle having an engine and a motor as drive sources.
JP2006002936A 2006-01-10 2006-01-10 Vehicle driving assistance device Expired - Fee Related JP5082243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006002936A JP5082243B2 (en) 2006-01-10 2006-01-10 Vehicle driving assistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006002936A JP5082243B2 (en) 2006-01-10 2006-01-10 Vehicle driving assistance device

Publications (2)

Publication Number Publication Date
JP2007182196A true JP2007182196A (en) 2007-07-19
JP5082243B2 JP5082243B2 (en) 2012-11-28

Family

ID=38338634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006002936A Expired - Fee Related JP5082243B2 (en) 2006-01-10 2006-01-10 Vehicle driving assistance device

Country Status (1)

Country Link
JP (1) JP5082243B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7603228B2 (en) 2006-05-25 2009-10-13 Ford Global Technologies, Llc Haptic apparatus and coaching method for improving vehicle fuel economy
JP2009262846A (en) * 2008-04-28 2009-11-12 Honda Motor Co Ltd Vehicular traveling controller and driver intention detection method
JP2009286180A (en) * 2008-05-27 2009-12-10 Honda Motor Co Ltd Vehicle traveling control device and vehicle traveling control method
JP2010030548A (en) * 2008-07-31 2010-02-12 Nissan Motor Co Ltd Accelerator pedal depressing force control device
JP2010052719A (en) * 2008-07-31 2010-03-11 Nissan Motor Co Ltd Accelerator pedalling force control device
WO2010067154A1 (en) * 2008-12-11 2010-06-17 Toyota Jidosha Kabushiki Kaisha Driving condition evaluation device and evaluation method
JP2010137584A (en) * 2008-12-09 2010-06-24 Nissan Motor Co Ltd Accelerator stepping force control device
JP2010203420A (en) * 2009-03-06 2010-09-16 Honda Motor Co Ltd Driving support device for vehicle
JP2010247692A (en) * 2009-04-16 2010-11-04 Honda Motor Co Ltd Gas pedal reaction force control device
EP2261071A1 (en) * 2009-03-27 2010-12-15 Nissan Motor Co., Ltd. Reacting force imparting system and reacting force imparting method of vehicle accelerator pedal
JP2011005929A (en) * 2009-06-25 2011-01-13 Nissan Motor Co Ltd Reaction force control device of accelerator pedal for vehicle and method of controlling reaction force of accelerator pedal for vehicle
NL2003198C2 (en) * 2009-07-14 2011-01-17 Verhey Van Wijk Beheer B V Tactile feedback on fuel economy to car driver.
WO2011033353A1 (en) * 2009-09-18 2011-03-24 Nissan Motor Co., Ltd. Accelerator reaction force control apparatus
EP2318228A1 (en) * 2008-07-29 2011-05-11 Nissan Motor Co., Ltd. Accelerator reaction force control apparatus
WO2011092886A1 (en) * 2010-01-28 2011-08-04 日産自動車株式会社 Device to control force required to depress accelerator pedal
WO2011148753A1 (en) * 2010-05-25 2011-12-01 日産自動車株式会社 Hybrid vehicle accelerator pedal depressing force control device
US8108136B2 (en) 2007-08-09 2012-01-31 Ford Global Technologies, Llc. Driver advisory system for fuel economy improvement of a hybrid electric vehicle
JP2012086795A (en) * 2010-10-22 2012-05-10 Nissan Motor Co Ltd Traveling control device for vehicle
US8190319B2 (en) 2010-06-08 2012-05-29 Ford Global Technologies, Llc Adaptive real-time driver advisory control for a hybrid electric vehicle to achieve fuel economy improvement
JP2012526943A (en) * 2009-05-15 2012-11-01 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツング Speed adjustment method and apparatus
JP2012533012A (en) * 2009-07-09 2012-12-20 コンティ・テミック・マイクロエレクトロニック・ゲーエムベーハー Device for generating additional restoring force with an accelerator pedal and method for its operation
JP2013006485A (en) * 2011-06-23 2013-01-10 Nissan Motor Co Ltd Device and method for supporting travelling
CN103228478A (en) * 2010-10-25 2013-07-31 蒂洛·弗雷 Actuation device for controlling the power of an internal combustion engine and method for controlling the power of the internal combustion engine
JP2013209084A (en) * 2013-04-25 2013-10-10 Mitsubishi Electric Corp Driving support system for vehicle
KR101338708B1 (en) * 2010-12-06 2013-12-16 현대자동차주식회사 Method for controlling accel pedal of vehicle
US8712661B2 (en) 2010-01-28 2014-04-29 Nissan Motor Co., Ltd. Device to control force required to depress accelerator pedal
JP2014121888A (en) * 2012-12-20 2014-07-03 Mitsubishi Motors Corp Determination operation device using pedal
US9726088B2 (en) 2007-10-30 2017-08-08 Ford Global Technologies, Llc System and method for obtaining an adjustable accelerator pedal response in a vehicle powertrain
JP2018086982A (en) * 2016-11-30 2018-06-07 トヨタ自動車株式会社 Accelerator pedal reaction applicator
JP2020138607A (en) * 2019-02-27 2020-09-03 学校法人日本大学 Electric vehicle, accelerator component and control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249043A (en) * 1996-03-18 1997-09-22 Nissan Motor Co Ltd Control device for accelerator reaction force by ascending and descending slope
JPH10136626A (en) * 1996-10-25 1998-05-22 Toyota Motor Corp Hybrid vehicle
JP2003205760A (en) * 2002-01-10 2003-07-22 Nissan Motor Co Ltd Auxiliary device for drive operation for vehicle
JP2003291682A (en) * 2002-04-03 2003-10-15 Honda Motor Co Ltd Vehicular accelerator pedal device
JP2005132225A (en) * 2003-10-30 2005-05-26 Nissan Motor Co Ltd Accelerator pedalling force control device
JP2005335648A (en) * 2004-05-31 2005-12-08 Nissan Motor Co Ltd Information presentation device and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249043A (en) * 1996-03-18 1997-09-22 Nissan Motor Co Ltd Control device for accelerator reaction force by ascending and descending slope
JPH10136626A (en) * 1996-10-25 1998-05-22 Toyota Motor Corp Hybrid vehicle
JP2003205760A (en) * 2002-01-10 2003-07-22 Nissan Motor Co Ltd Auxiliary device for drive operation for vehicle
JP2003291682A (en) * 2002-04-03 2003-10-15 Honda Motor Co Ltd Vehicular accelerator pedal device
JP2005132225A (en) * 2003-10-30 2005-05-26 Nissan Motor Co Ltd Accelerator pedalling force control device
JP2005335648A (en) * 2004-05-31 2005-12-08 Nissan Motor Co Ltd Information presentation device and method

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7603228B2 (en) 2006-05-25 2009-10-13 Ford Global Technologies, Llc Haptic apparatus and coaching method for improving vehicle fuel economy
US8290697B2 (en) 2006-05-25 2012-10-16 Ford Global Technologies Llc Haptic apparatus and coaching method for improving vehicle fuel economy
US8108136B2 (en) 2007-08-09 2012-01-31 Ford Global Technologies, Llc. Driver advisory system for fuel economy improvement of a hybrid electric vehicle
US9726088B2 (en) 2007-10-30 2017-08-08 Ford Global Technologies, Llc System and method for obtaining an adjustable accelerator pedal response in a vehicle powertrain
JP2009262846A (en) * 2008-04-28 2009-11-12 Honda Motor Co Ltd Vehicular traveling controller and driver intention detection method
JP2009286180A (en) * 2008-05-27 2009-12-10 Honda Motor Co Ltd Vehicle traveling control device and vehicle traveling control method
EP2318228A4 (en) * 2008-07-29 2014-02-26 Nissan Motor Accelerator reaction force control apparatus
EP2318228A1 (en) * 2008-07-29 2011-05-11 Nissan Motor Co., Ltd. Accelerator reaction force control apparatus
JP2010030548A (en) * 2008-07-31 2010-02-12 Nissan Motor Co Ltd Accelerator pedal depressing force control device
JP2010052719A (en) * 2008-07-31 2010-03-11 Nissan Motor Co Ltd Accelerator pedalling force control device
JP2010137584A (en) * 2008-12-09 2010-06-24 Nissan Motor Co Ltd Accelerator stepping force control device
WO2010067154A1 (en) * 2008-12-11 2010-06-17 Toyota Jidosha Kabushiki Kaisha Driving condition evaluation device and evaluation method
US8525656B2 (en) 2008-12-11 2013-09-03 Toyota Jidosha Kabushiki Kaisha Driving condition evaluation device and evaluation method
JP2010203420A (en) * 2009-03-06 2010-09-16 Honda Motor Co Ltd Driving support device for vehicle
EP2261071A1 (en) * 2009-03-27 2010-12-15 Nissan Motor Co., Ltd. Reacting force imparting system and reacting force imparting method of vehicle accelerator pedal
KR101075611B1 (en) 2009-03-27 2011-10-21 닛산 지도우샤 가부시키가이샤 Reaction force imparting system and reaction force imparting method of vehicle accelerator pedal
US8527171B2 (en) 2009-03-27 2013-09-03 Nissan Motor Co., Ltd. Reaction force imparting system and reaction force imparting method of vehicle accelerator pedal
JP2010247692A (en) * 2009-04-16 2010-11-04 Honda Motor Co Ltd Gas pedal reaction force control device
JP2012526943A (en) * 2009-05-15 2012-11-01 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツング Speed adjustment method and apparatus
JP2011005929A (en) * 2009-06-25 2011-01-13 Nissan Motor Co Ltd Reaction force control device of accelerator pedal for vehicle and method of controlling reaction force of accelerator pedal for vehicle
JP2012533012A (en) * 2009-07-09 2012-12-20 コンティ・テミック・マイクロエレクトロニック・ゲーエムベーハー Device for generating additional restoring force with an accelerator pedal and method for its operation
NL2003198C2 (en) * 2009-07-14 2011-01-17 Verhey Van Wijk Beheer B V Tactile feedback on fuel economy to car driver.
WO2011033353A1 (en) * 2009-09-18 2011-03-24 Nissan Motor Co., Ltd. Accelerator reaction force control apparatus
US8751126B2 (en) 2009-09-18 2014-06-10 Nissan Motor Co., Ltd. Accelerator reaction force control apparatus
JP2011063150A (en) * 2009-09-18 2011-03-31 Nissan Motor Co Ltd Accelerator pedalling force control device
US8712661B2 (en) 2010-01-28 2014-04-29 Nissan Motor Co., Ltd. Device to control force required to depress accelerator pedal
EP2529971A4 (en) * 2010-01-28 2018-04-18 Nissan Motor Co., Ltd Device to control force required to depress accelerator pedal
WO2011092886A1 (en) * 2010-01-28 2011-08-04 日産自動車株式会社 Device to control force required to depress accelerator pedal
US8783130B2 (en) 2010-01-28 2014-07-22 Nissan Motor Co., Ltd. Device to control force required to depress accelerator pedal
KR101421363B1 (en) 2010-01-28 2014-07-18 닛산 지도우샤 가부시키가이샤 Device to control force required to depress accelerator pedal
JP2011245919A (en) * 2010-05-25 2011-12-08 Nissan Motor Co Ltd Accelerator pedal pressing force control device of hybrid vehicle
WO2011148753A1 (en) * 2010-05-25 2011-12-01 日産自動車株式会社 Hybrid vehicle accelerator pedal depressing force control device
CN102905927A (en) * 2010-05-25 2013-01-30 日产自动车株式会社 Hybrid vehicle accelerator pedal depressing force control device
US8620566B2 (en) 2010-05-25 2013-12-31 Nissan Motor Co., Ltd. Hybrid vehicle accelerator pedal depressing force control device
US8190319B2 (en) 2010-06-08 2012-05-29 Ford Global Technologies, Llc Adaptive real-time driver advisory control for a hybrid electric vehicle to achieve fuel economy improvement
US8538619B2 (en) 2010-06-08 2013-09-17 Ford Global Technologies, Llc Adaptive real-time driver advisory control for a hybrid electric vehicle to achieve fuel economy improvement
US9361272B2 (en) 2010-06-08 2016-06-07 Ford Global Technologies, Llc Adaptive real-time driver advisory control for a hybrid electric vehicle to achieve fuel economy
JP2012086795A (en) * 2010-10-22 2012-05-10 Nissan Motor Co Ltd Traveling control device for vehicle
JP2013542369A (en) * 2010-10-25 2013-11-21 フレイ,ティロ Control device for controlling power of internal combustion engine and control method for power of internal combustion engine
CN103228478A (en) * 2010-10-25 2013-07-31 蒂洛·弗雷 Actuation device for controlling the power of an internal combustion engine and method for controlling the power of the internal combustion engine
KR20140026333A (en) * 2010-10-25 2014-03-05 딜로 프레이 Control device for controlling the power of an internal combustion engine and a method for controlling the power of the internal combustion engine
KR101924016B1 (en) * 2010-10-25 2019-02-22 딜로 프레이 Control device for controlling the power of an internal combustion engine and a method for controlling the power of the internal combustion engine
US9073429B2 (en) 2010-12-06 2015-07-07 Hyundai Motor Company Method for controlling acceleration pedal of vehicle
KR101338708B1 (en) * 2010-12-06 2013-12-16 현대자동차주식회사 Method for controlling accel pedal of vehicle
US10106035B2 (en) 2010-12-06 2018-10-23 Hyundai Motor Company Method for controlling acceleration pedal of vehicle
JP2013006485A (en) * 2011-06-23 2013-01-10 Nissan Motor Co Ltd Device and method for supporting travelling
JP2014121888A (en) * 2012-12-20 2014-07-03 Mitsubishi Motors Corp Determination operation device using pedal
JP2013209084A (en) * 2013-04-25 2013-10-10 Mitsubishi Electric Corp Driving support system for vehicle
JP2018086982A (en) * 2016-11-30 2018-06-07 トヨタ自動車株式会社 Accelerator pedal reaction applicator
JP7292705B2 (en) 2019-02-27 2023-06-19 学校法人日本大学 ELECTRIC VEHICLE, ACCEL MEMBER, AND CONTROL METHOD
JP2020138607A (en) * 2019-02-27 2020-09-03 学校法人日本大学 Electric vehicle, accelerator component and control method

Also Published As

Publication number Publication date
JP5082243B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5082243B2 (en) Vehicle driving assistance device
JP6569186B2 (en) Vehicle control device, vehicle control method, and vehicle control program
KR102274125B1 (en) Control method for inertia driving of eco-friendly vehicle
JP5598531B2 (en) Vehicle control device
JP6394497B2 (en) Automatic vehicle driving system
JP6748060B2 (en) Vehicle control device
EP2781722B1 (en) Driving assistance apparatus
JP4899914B2 (en) Convoy travel control device
US20190100209A1 (en) Method of controlling a prime mover of a vehicle, apparatus for controlling a prime mover of a vehicle, and a vehicle comprising such an apparatus
JPWO2017199751A1 (en) Vehicle control system, vehicle control method, and vehicle control program
JP2007187090A (en) Speed-maintaining control device
JP6546637B2 (en) Vehicle control device
JP2019084842A (en) Vehicle control device
JP6105439B2 (en) Deceleration setting system, method and program
JP2019215069A (en) Vehicular control apparatus
JP2005133682A (en) Constant-speed travel controller for hybrid vehicle
JP6659513B2 (en) Vehicle control device, vehicle control method, and vehicle control program
JP4821879B2 (en) Traveling locus calculation device and traveling locus calculation method
US11801868B2 (en) Hybrid vehicle, control method therefor, and storage medium
JP2009012495A (en) Driving force controller for vehicle
JP6986499B2 (en) Vehicle control device
JP6751729B2 (en) Vehicle control device
JP5229366B2 (en) Convoy travel control device
JP2006312997A (en) Shift control system of transmission
JP7464035B2 (en) Gear shift control device, gear shift control method, and gear shift control computer program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R151 Written notification of patent or utility model registration

Ref document number: 5082243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees