JP2007179868A - Filter unit for fuel cell - Google Patents

Filter unit for fuel cell Download PDF

Info

Publication number
JP2007179868A
JP2007179868A JP2005376862A JP2005376862A JP2007179868A JP 2007179868 A JP2007179868 A JP 2007179868A JP 2005376862 A JP2005376862 A JP 2005376862A JP 2005376862 A JP2005376862 A JP 2005376862A JP 2007179868 A JP2007179868 A JP 2007179868A
Authority
JP
Japan
Prior art keywords
filter
activated carbon
filter unit
fuel cell
mixed paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005376862A
Other languages
Japanese (ja)
Inventor
Yasutaro Seto
保太郎 瀬戸
Tatsuo Nakamura
達男 中村
Yoshiharu Nishino
善春 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suminoe Textile Co Ltd
Original Assignee
Suminoe Textile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suminoe Textile Co Ltd filed Critical Suminoe Textile Co Ltd
Priority to JP2005376862A priority Critical patent/JP2007179868A/en
Publication of JP2007179868A publication Critical patent/JP2007179868A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a durable filter unit for a fuel cell having excellent air purifying capability, capable of efficiently decomposing and purifying oxidation gas such as NOx and SOx and sulfur-based gas such as H2S and methyl mercaptan which may exist in air although they are in minute amounts as well as removing impurity such as VOC gas of organic solvent and the like and particulate impurity such as dust. <P>SOLUTION: A first filter carries metallic phthalocyanine complex and alkalescence metallic salt in a honeycomb or corrugated filter consisting of activated carbon-mixed paper and a second filter which is a pleated filter including fibers carrying metallic zeolite are manufactured. By combining these, the durable filter unit for the fuel cell can be provided which can efficiently decompose and purify various gases in minute amounts and remove the particulate impurity such as dust. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、家庭用または業務用の燃料電池システムにおいて、陽極へ空気(酸素)を送る経路に配置し、空気中に微量存在するとされるNOx、SOx等の酸化ガス、HSやメチルメルカプタン等の硫黄系ガス、HCや有機溶剤等のVOC系ガス等の、燃料電池システムに有害となるガス物質を、効率的に分解除去することができる燃料電池用フィルターユニットに関する技術である。 In the fuel cell system for home use or business use, the present invention is arranged in a path for sending air (oxygen) to the anode, and is oxidized gas such as NOx and SOx, H 2 S and methyl mercaptan, which are supposed to exist in a minute amount in the air. This is a technology related to a fuel cell filter unit that can efficiently decompose and remove gas substances that are harmful to the fuel cell system, such as sulfur gas such as HC and VOC gases such as organic solvents.

燃料電池システムは、水素と酸素を化学反応させて発電するもので、騒音もなく空気を汚すことも無い理想的な発電システムとして開発がすすめられている。この燃料電池システムにおいて水素は水素ボンベや都市ガスを改質して供給されるが、酸素は大気中の酸素を使用するもので、大気中に含まれる可能性のあるNOx、SOx等の酸化ガス、HSやメチルメルカプタン等の硫黄系ガス、HCや有機溶剤等のVOC系ガスのような不純物は、極微量でも含まれていると、燃料電池の陽極が被毒し、燃料電池の特性に悪影響を及ぼすことから、これらの極微量の不純物を、相当な除去率で除去する必要がある。 The fuel cell system generates electricity by chemically reacting hydrogen and oxygen, and is being developed as an ideal power generation system that does not cause noise and does not pollute the air. In this fuel cell system, hydrogen is supplied by reforming hydrogen cylinders or city gas, but oxygen uses oxygen in the atmosphere, and oxidizing gases such as NOx and SOx that may be contained in the atmosphere. Impurities such as sulfur gases such as H 2 S and methyl mercaptan, VOC gases such as HC and organic solvents, are contained in trace amounts, and the anode of the fuel cell is poisoned. Therefore, it is necessary to remove these trace amounts of impurities at a considerable removal rate.

特許文献1においては、第1の汚染物除去手段としてパラジウムをアルミナに担持したものをペレット状に成型したものを用い、第2の汚染物除去手段として過マンガン酸カリをアルミナに担持したものをペレット状に成型したものと、活性炭のペレットの混合物に空気を供給して浄化する燃料電池用空気浄化装置に関する技術が開示されている。   In Patent Document 1, a material in which palladium is supported on alumina is used as the first contaminant removal means, and the pellet is shaped into a pellet, and potassium permanganate is supported on alumina as the second contaminant removal means. A technology relating to an air purification device for a fuel cell that supplies and purifies a mixture of pellets and activated carbon pellets is disclosed.

特許文献2においては、酸化剤ガス中に含まれるアルカリ性不純物を除去するアルカリ性不純物除去フィルターと、酸性不純物を除去する酸性不純物除去フィルターと、粉塵を除去する除塵フィルターからなる燃料電池用空気浄化装置が開示され、大気中に存在する可能性のあるアンモニア、トリメチルアミンなどのアルカリ性不純物、硫化水素、二酸化硫黄、二酸化窒素、塩化水素、フッ化水素などの酸性不純物、さらに粉塵などの粒子状不純物を除去する技術が開示され、これらの不純物による触媒の被毒や、イオン伝導性の低下を防ぎ、電池電圧の低下を抑制する耐久性に優れた燃料電池用空気浄化装置が記載されている。   In Patent Document 2, an air purification device for a fuel cell comprising an alkaline impurity removal filter for removing alkaline impurities contained in an oxidant gas, an acidic impurity removal filter for removing acidic impurities, and a dust removal filter for removing dust is disclosed. Removes alkaline impurities such as ammonia and trimethylamine that are disclosed and may be present in the atmosphere, acidic impurities such as hydrogen sulfide, sulfur dioxide, nitrogen dioxide, hydrogen chloride, and hydrogen fluoride, and particulate impurities such as dust A technology is disclosed, and a fuel cell air purifying apparatus excellent in durability that prevents poisoning of the catalyst by these impurities and a decrease in ion conductivity and suppresses a decrease in battery voltage is described.

特開2004−327429号公報JP 2004-327429 A 特開2005−322506号公報JP 2005-322506 A

しかしながら、これらの従来技術は、いずれも化学吸着型のフィルターを用い、吸着体に付着したガスを、化学的に固定することから濃度や温度により一旦付着したガスを再び脱着することがなく、また、活性炭は、トルエン、メチルエチルケトン、トリクロロエチレンなどの有機溶剤も吸着することができることから、燃料電池用空気浄化フィルターとして有用な方法である。しかしながら、従来技術では空気浄化能力の耐久性や極微量ガスの除去率に満足のいくものではなく、さらに安価で、各種極微量ガスの除去効果の大きい燃料電池用空気浄化フィルターが求められている。
本発明の課題は、上述の事情に鑑み、NOx、SOx等の酸化ガス、HSやメチルメルカプタン等の硫黄系ガスの各種極微量ガスを同時に効率よく分解浄化することができ、またさらに、有機溶剤等のVOC系ガスのような不純物を除去することと、粉塵などの粒子状不純物を除去することができ、優れた空気浄化能力と耐久性のあるフィルターを、安価に提供することにある。
However, each of these conventional techniques uses a chemisorption type filter, and the gas adhering to the adsorbent is chemically fixed so that the gas once adhering to the concentration and temperature does not desorb again. Since activated carbon can also adsorb organic solvents such as toluene, methyl ethyl ketone, and trichloroethylene, it is a useful method as an air purification filter for fuel cells. However, the conventional technology does not satisfy the durability of air purification ability and the removal rate of trace gases, and there is a need for an air purification filter for fuel cells that is cheaper and has a large effect of removing various trace gases. .
In view of the above-described circumstances, the problem of the present invention is that it is possible to efficiently decompose and purify various trace gases such as oxidizing gases such as NOx and SOx, and sulfur-based gases such as H 2 S and methyl mercaptan at the same time. An object of the present invention is to provide an inexpensive filter with excellent air purification ability and durability that can remove impurities such as VOC gases such as organic solvents and particulate impurities such as dust. .

本発明は、大気中に存在する可能性のあるNOx、SOx等の酸化ガス、HSやメチルメルカプタン等の硫黄系ガスの各種極微量ガスを同時に効率よく分解浄化でき、有機溶剤等のVOC系ガスや粉塵などの粒子状不純物を除去することができるフィルターを提供すべく検討を行なった結果、金属フタロシアニン錯体と弱アルカリ性金属塩を、活性炭混抄紙で構成したハニカムまたはコルゲート形状のフィルターに担持させた第1フィルターと、金属ゼオライトを担持した繊維を含むプリーツフィルターの第2フィルターを作成し、これらを組み合わすことによって、各種極微量ガスを効率よく分解浄化でき、さらに粉塵などの粒子状不純物を除去することができるフィルターを、安価に提供できることを見出し、本発明に至ったものである。前記課題を解決するために、本発明は以下の手段を提供する。 The present invention is capable of simultaneously efficiently decomposing and purifying various trace gases such as NOx, SOx and other oxidizing gases that may exist in the atmosphere, and sulfur-based gases such as H 2 S and methyl mercaptan, and VOCs such as organic solvents. As a result of investigating the provision of a filter that can remove particulate impurities such as system gases and dust, the honeycomb or corrugated filter made of activated carbon mixed paper carries the metal phthalocyanine complex and weakly alkaline metal salt. By making a first pleated filter and a second pleated filter filter containing fibers carrying metal zeolite, and combining them, various trace gases can be efficiently decomposed and purified, and particulate impurities such as dust It has been found that a filter capable of removing water can be provided at low cost and has led to the present invention. That. In order to solve the above problems, the present invention provides the following means.

[1]金属フタロシアニン錯体と弱アルカリ性金属塩とを活性炭混抄紙に担持させた第1フィルターと、金属ゼオライトを担持した繊維を含む第2フィルターを組み合わせたことに特徴のある燃料電池用フィルターユニット。   [1] A fuel cell filter unit characterized by combining a first filter in which a metal phthalocyanine complex and a weak alkaline metal salt are supported on activated carbon mixed paper and a second filter including a fiber in which metal zeolite is supported.

[2]前記金属フタロシアニン錯体がコバルトフタロシアニン、鉄フタロシアニン、マンガンフタロシアニンの群から選択される1種または複数の金属フタロシアニン錯体で、弱アルカリ性金属塩が炭酸ナトリウム、炭酸水素ナトリウム、クエン酸ナトリウム、炭酸カリウム、炭酸水素カリウム、クエン酸カリウムの群から選択される1種または複数の弱アルカリ性金属塩である前項1記載の燃料電池用フィルターユニット。   [2] The metal phthalocyanine complex is one or more metal phthalocyanine complexes selected from the group of cobalt phthalocyanine, iron phthalocyanine, and manganese phthalocyanine, and the weak alkaline metal salt is sodium carbonate, sodium hydrogen carbonate, sodium citrate, potassium carbonate 2. The fuel cell filter unit according to 1 above, which is one or more weakly alkaline metal salts selected from the group consisting of potassium bicarbonate and potassium citrate.

[3]前記金属フタロシアニン錯体を200〜20000μg/g活性炭混抄紙に担持させ、弱アルカリ性金属塩を5〜50mg/g活性炭混抄紙に担持させてなる前項1または2に記載の燃料電池用フィルターユニット。   [3] The filter unit for a fuel cell according to item 1 or 2, wherein the metal phthalocyanine complex is supported on 200 to 20000 μg / g activated carbon mixed paper and a weak alkaline metal salt is supported on 5 to 50 mg / g activated carbon mixed paper. .

[4]前記活性炭混抄紙は、活性炭を40〜80重量%担持させてなる活性炭混抄紙である前項1乃至3に記載の燃料電池用フィルターユニット。   [4] The fuel cell filter unit according to any one of [1] to [3], wherein the activated carbon mixed paper is an activated carbon mixed paper having 40 to 80% by weight of activated carbon supported thereon.

[5]前記金属ゼオライトが銅ゼオライト、銀ゼオライト、亜鉛ゼオライト、白金ゼオライトの群から選択される1種または複数の金属ゼオライトで、繊維への担持量が50〜200mg/g繊維に担持させてなる前項1乃至4に記載の燃料電池用フィルターユニット。   [5] The metal zeolite is one or a plurality of metal zeolites selected from the group consisting of copper zeolite, silver zeolite, zinc zeolite, and platinum zeolite, and the amount supported on the fiber is 50 to 200 mg / g. 5. The fuel cell filter unit according to any one of the preceding items 1 to 4.

[6]前記第1フィルターがハニカムまたはコルゲートフィルターからなり、前記第2フィルターがプリーツフィルターであることに特徴のある前項1乃至5に記載の燃料電池用フィルターユニット。   [6] The fuel cell filter unit according to any one of [1] to [5], wherein the first filter is a honeycomb or corrugated filter, and the second filter is a pleated filter.

第1の発明では、金属フタロシアニン錯体と弱アルカリ性金属塩とを活性炭混抄紙に担持させた第1フィルターと、金属ゼオライトを担持した繊維を含む第2フィルターを組み合わせたことにより、大気中に極微量含まれるとされるNOx、SOx等の酸化ガスや、HSやメチルメルカプタン等の硫黄系ガスは、第1フィルターの弱アルカリ性金属塩と活性炭に吸着され、金属フタロシアニン錯体の酸化力によって分解される。また、第2フィルターでは金属ゼオライトの強い吸着力によって、有機溶剤等のVOC系ガスが吸着される。このように酸化ガスや硫黄系ガスとVOC系のガスとは、それぞれ選択的に第1および第2フィルターに吸着され効率的に分解除去されるものである。また、第1フィルターでは、金属フタロシアニン錯体を活性炭混抄紙に担持させているので、活性炭の強力な吸着力によって吸着したガスを、金属フタロシアニン錯体の強力な酸化力によって分解することから、除去率もおおきく、1〜5ppb程度の濃度まで除去することができる。 In the first invention, the first filter in which the metal phthalocyanine complex and the weak alkaline metal salt are supported on the activated carbon mixed paper and the second filter including the fiber in which the metal zeolite is supported are combined. Oxidized gases such as NOx and SOx and sulfur gases such as H 2 S and methyl mercaptan are adsorbed on the weak alkaline metal salt and activated carbon of the first filter and decomposed by the oxidizing power of the metal phthalocyanine complex. The Further, the second filter adsorbs a VOC-based gas such as an organic solvent due to the strong adsorption force of the metal zeolite. As described above, the oxidizing gas, sulfur-based gas, and VOC-based gas are selectively adsorbed by the first and second filters and efficiently decomposed and removed. In the first filter, since the metal phthalocyanine complex is supported on the activated carbon mixed paper, the gas adsorbed by the strong adsorption force of the activated carbon is decomposed by the strong oxidation force of the metal phthalocyanine complex, so the removal rate is also high. It can be removed to a concentration of about 1 to 5 ppb.

第2の発明では、前記金属フタロシアニン錯体がコバルトフタロシアニン、鉄フタロシアニン、マンガンフタロシアニンの群から選択される1種または複数の金属フタロシアニン錯体であるので、NOx、SOx等の酸化ガス、HSやメチルメルカプタン等の硫黄系ガスの各種極微量ガスを同時に効率よく分解浄化することができる。また前記弱アルカリ性金属塩が炭酸ナトリウム、炭酸水素ナトリウム、クエン酸ナトリウム、炭酸カリウム、炭酸水素カリウム、クエン酸カリウムの群から選択される1種または複数の弱アルカリ性金属塩であるので、NOx、SOx等の酸化ガス、HSやメチルメルカプタン等の硫黄系ガスの各種極微量ガスを効率よく活性炭混抄紙に吸着することができる。 In the second invention, since the metal phthalocyanine complex is one or a plurality of metal phthalocyanine complexes selected from the group of cobalt phthalocyanine, iron phthalocyanine, and manganese phthalocyanine, the oxidizing gas such as NOx and SOx, H 2 S and methyl Various ultra-trace gases such as mercaptans can be decomposed and purified at the same time. Further, since the weak alkaline metal salt is one or more weak alkaline metal salts selected from the group consisting of sodium carbonate, sodium hydrogen carbonate, sodium citrate, potassium carbonate, potassium hydrogen carbonate and potassium citrate, NOx, SOx It is possible to efficiently adsorb various trace gases such as oxidizing gases such as H 2 S and methyl mercaptan on activated carbon mixed paper.

第3の発明では、金属フタロシアニン錯体を200〜20000μg/g活性炭混抄紙に担持させてあるので、NOx、SOx等の酸化ガス、HSやメチルメルカプタン等の硫黄系ガスの各種極微量ガスに対し、十分な分解効果が得られる。 In the third invention, since the metal phthalocyanine complex is supported on 200 to 20000 μg / g activated carbon mixed paper, it can be used in various trace gases such as oxidizing gas such as NOx and SOx, and sulfur-based gas such as H 2 S and methyl mercaptan. On the other hand, a sufficient decomposition effect can be obtained.

第4の発明では、前記活性炭混抄紙は活性炭を40〜80重量%担持させてあるので、NOx、SOx等の酸化ガス、HSやメチルメルカプタン等の硫黄系ガスの各種極微量ガスに十分な吸着効果が得られる。 In the fourth invention, since the activated carbon mixed paper carries 40 to 80% by weight of activated carbon, it is sufficient for various trace gases such as oxidizing gas such as NOx and SOx and sulfur-based gas such as H 2 S and methyl mercaptan. A good adsorption effect.

第5の発明では、前記金属ゼオライトが銅ゼオライト、銀ゼオライト、亜鉛ゼオライト、白金ゼオライトの群から選択される1種または複数の金属ゼオライトであって、繊維への担持量が50〜200mg/g繊維であるので、有機溶剤等のVOC系ガスのような不純物を十分に吸着し分解除去することができる。   In the fifth invention, the metal zeolite is one or more metal zeolites selected from the group consisting of copper zeolite, silver zeolite, zinc zeolite, and platinum zeolite, and the amount supported on the fiber is 50 to 200 mg / g fiber. Therefore, impurities such as VOC gases such as organic solvents can be sufficiently adsorbed and decomposed and removed.

第6の発明では、前記第1フィルターがハニカムまたはコルゲートフィルターからなるので、圧力損失を極力抑えることができ、前記第2フィルターがプリーツフィルターであるので、粉塵などの粒子状不純物も除去することができる。   In the sixth invention, since the first filter is formed of a honeycomb or corrugated filter, pressure loss can be suppressed as much as possible, and since the second filter is a pleated filter, particulate impurities such as dust can be removed. it can.

本発明の燃料電池用フィルターユニットについて、図面を参照して詳細に説明する。図1は本発明の燃料電池用フィルターユニットの一実施形態を示す概略断面図である。同図において、第1フィルター2が空気取り入れ口側4で、第2フィルター3を空気出口側5に配置した燃料電池用フィルターユニット1を構成している。   The fuel cell filter unit of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic sectional view showing an embodiment of a filter unit for a fuel cell of the present invention. In the figure, a fuel cell filter unit 1 is configured in which the first filter 2 is disposed on the air intake side 4 and the second filter 3 is disposed on the air outlet side 5.

本発明の第1フィルター2を構成する活性炭混抄紙は通常の湿式抄紙法により製造できる。例えば活性炭と天然パルプを水に添加し、水スラリーを作成する。そのスラリーを攪拌しながら所定の固形分濃度に調整し、その後カチオン系ポリマー又はアニオン系ポリマーを添加し、得られた凝集体水分散液から、抄紙機を使い湿式抄紙法によりシート化し、乾燥処理を行ない活性炭混抄紙を得る。この活性炭混抄紙を、コルゲート加工機を用いハニカム形状やコルゲート形状に加工しフィルターの形状にする。フィルターの形状をハニカム形状やコルゲート形状にすることにより、反応面積が大きくなり、圧力損失を少なくすることができるので、効率的なフィルターとすることができる。   The activated carbon mixed paper constituting the first filter 2 of the present invention can be produced by a normal wet paper making method. For example, activated carbon and natural pulp are added to water to create a water slurry. The slurry is adjusted to a predetermined solid content concentration while stirring, and then a cationic polymer or an anionic polymer is added, and the resulting agglomerate aqueous dispersion is formed into a sheet by a wet paper making method using a paper machine and dried. To obtain an activated carbon mixed paper. This activated carbon mixed paper is processed into a honeycomb or corrugated shape using a corrugating machine to obtain a filter shape. By making the shape of the filter into a honeycomb shape or a corrugated shape, the reaction area is increased and the pressure loss can be reduced, so that an efficient filter can be obtained.

この活性炭混抄紙によるハニカムフィルターは活性炭の強い吸着力によって各種極微量ガスの吸着体の役割をなすものである。本発明に使用する活性炭としては、椰子殻活性炭、石油ピッチ系球状活性炭、活性炭素繊維、木質系活性炭等の活性炭系炭素多孔質体が、吸着比表面積が非常に高いことから好ましく用いられる。中でも、椰子殻活性炭が好ましい。また、この活性炭混抄紙に使用する繊維は天然パルプ、ポリオレフィン及びアクリル繊維などのフィブリル化繊維を用いればよいが、金属フタロシアニン錯体の担持のし易さからも天然パルプが好ましい。   This honeycomb filter made of activated carbon mixed paper serves as an adsorbent for various trace gases due to the strong adsorption power of activated carbon. As the activated carbon used in the present invention, activated carbon-based carbon porous bodies such as coconut shell activated carbon, petroleum pitch-based spherical activated carbon, activated carbon fiber, and wood-based activated carbon are preferably used because of their very high specific adsorption surface area. Of these, coconut shell activated carbon is preferable. The fibers used in the activated carbon mixed paper may be fibrillated fibers such as natural pulp, polyolefin, and acrylic fiber, but natural pulp is preferable from the viewpoint of easy loading of the metal phthalocyanine complex.

活性炭の抄紙への担持する量は、抄紙の40〜80重量%担持させることが好ましい。40重量%を下回る担持量では十分な吸着力を得ることができず、80重量%を上回る担持量では活性炭の滑落が発生し好ましくない。より好ましい活性炭の担持量は、60〜75重量%である。   The amount of activated carbon supported on the paper is preferably 40 to 80% by weight of the paper. When the loading amount is less than 40% by weight, a sufficient adsorptive power cannot be obtained, and when the loading amount exceeds 80% by weight, the activated carbon slips off. A more preferable activated carbon loading is 60 to 75% by weight.

本発明の消臭フィルターに使われる金属フタロシアニン錯体は、特に限定されるものではないが、例えば鉄フタロシアニン錯体、コバルトフタロシアニン錯体、マンガンフタロシアニン錯体が挙げられる。これらの中でもコバルトフタロシアニン錯体を用いるのが好ましく、この場合には、特にメチルメルカプタンやNOx、SOx等の酸化ガスに対する除去性能をさらに向上させることができる利点がある。前記コバルトフタロシアニン錯体としては、特に限定されるものではないが、例えばコバルトフタロシアニンポリスルホン酸ナトリウム、コバルトフタロシアニンオクタカルボン酸、コバルトフタロシアニンテトラカルボン酸等が挙げられる。   Although the metal phthalocyanine complex used for the deodorizing filter of this invention is not specifically limited, For example, an iron phthalocyanine complex, a cobalt phthalocyanine complex, and a manganese phthalocyanine complex are mentioned. Among these, a cobalt phthalocyanine complex is preferably used, and in this case, there is an advantage that the removal performance with respect to oxidizing gas such as methyl mercaptan, NOx, SOx and the like can be further improved. Although it does not specifically limit as said cobalt phthalocyanine complex, For example, cobalt phthalocyanine polysulfonate sodium, cobalt phthalocyanine octacarboxylic acid, cobalt phthalocyanine tetracarboxylic acid etc. are mentioned.

金属フタロシアニン錯体を活性炭混抄紙に担持する前に、活性炭混抄紙をカチオン化処理することが望ましい。これは、金属フタロシアニン錯体の担持量を増大するための処理で、カチオン化処理は活性炭混抄紙の化学構造中にカチオン基を導入付与し得るものであればどのような処理であっても良いが、中でも4級アンモニウム塩によりカチオン化処理が行われるのが好ましい。この場合には、金属フタロシアニン錯体の担持量をより増大させることができる利点がある。前記4級アンモニウム塩としては、例えば3―クロロ―2−ヒドロキシプロピルトリメチルアンモニウムクロライド、グリシジルトリメチルアンモニウムクロライド、3―クロロ―2−ヒドロキシプロピルトリメチルアンモニウムクロライドの縮合ポリマー等が挙げられる。   Prior to supporting the metal phthalocyanine complex on the activated carbon mixed paper, it is desirable to cationize the activated carbon mixed paper. This is a treatment for increasing the amount of metal phthalocyanine complex supported, and the cationization treatment may be any treatment as long as it can introduce and impart a cation group into the chemical structure of the activated carbon mixed paper. Of these, cationization is preferably performed with a quaternary ammonium salt. In this case, there is an advantage that the loading amount of the metal phthalocyanine complex can be further increased. Examples of the quaternary ammonium salt include 3-chloro-2-hydroxypropyltrimethylammonium chloride, glycidyltrimethylammonium chloride, and 3-chloro-2-hydroxypropyltrimethylammonium chloride condensation polymer.

前述のような方法によって、金属フタロシアニン錯体の活性炭混抄紙へ担持させる量は、200〜20000μg/g活性炭混抄紙に担持させるのが好ましい。200μg/g活性炭混抄紙を下回る、金属フタロシアニン錯体の活性炭混抄紙への担持量では、十分な除去性能を得ることがてきなく、20000μg/g活性炭混抄紙を超える金属フタロシアニン錯体の活性炭混抄紙へ担持量では、徒にコストがかさむだけで経済的な担持量とはいえない。より好ましい金属フタロシアニン錯体の活性炭混抄紙への担持量は、500〜5000μg/g活性炭混抄紙である。   The amount of the metal phthalocyanine complex supported on the activated carbon mixed paper by the method as described above is preferably supported on 200 to 20000 μg / g activated carbon mixed paper. When the loading amount of the metal phthalocyanine complex on the activated carbon mixed paper is less than 200 μg / g activated carbon mixed paper, sufficient removal performance cannot be obtained, and the metal phthalocyanine complex exceeding 20000 μg / g activated carbon mixed paper is supported on the activated carbon mixed paper. In terms of amount, it is not an economical load because it only costs money. A more preferable loading amount of the metal phthalocyanine complex on the activated carbon mixed paper is 500 to 5000 μg / g activated carbon mixed paper.

前記カチオン化処理された活性炭混抄紙によるハニカムフィルターを水洗し乾燥したあと、金属フタロシアニン錯体で処理し、乾燥したあと、さらに弱アルカリ性金属塩水溶液に含浸させ、水洗し乾燥して高いpH環境の第1フィルター2を得る。弱アルカリ性金属塩としては、炭酸ナトリウム、炭酸水素ナトリウム、クエン酸ナトリウム、炭酸カリウム、炭酸水素カリウム、クエン酸カリウムの群から選択される1種または複数の弱アルカリ性金属塩が好適である。弱アルカリ性金属塩の活性炭混抄紙への担持量は、10〜200mg/g活性炭混抄紙に担持させるのが好ましい。弱アルカリ性金属塩は助剤の働きをするものであり、大気中に存在する可能性のあるNOx、SOx等の酸性ガス、HSやメチルメルカプタン等の硫黄系ガスの各種極微量ガスを吸着しやすい環境とする働きをするものである。 The honeycomb filter made of the activated carbon mixed paper subjected to the cationization treatment was washed with water and dried, then treated with a metal phthalocyanine complex, dried, further impregnated with a weak alkaline metal salt aqueous solution, washed with water and dried to obtain a high pH environment. 1 filter 2 is obtained. As the weak alkaline metal salt, one or more weak alkaline metal salts selected from the group consisting of sodium carbonate, sodium hydrogen carbonate, sodium citrate, potassium carbonate, potassium hydrogen carbonate and potassium citrate are suitable. The amount of the weak alkaline metal salt supported on the activated carbon mixed paper is preferably 10 to 200 mg / g on the activated carbon mixed paper. Weakly alkaline metal salt is intended to serve auxiliaries adsorbed NOx that may be present in the atmosphere, acid gases SOx etc., various trace amounts gases of sulfur-based gas such as H 2 S or methyl mercaptan It works to make it an easy environment.

次に第2フィルター3は、例えば目付け20〜150g/m、平均繊度20〜50dtexのポリプロピレン繊維製不織布を骨材層にし、その上にポリエステル繊維に銅ゼオライトをバインダー樹脂によって担持した吸着層を重ね、さらに、その上に静電処理した平均繊度0.8〜15dtexのポリエステル繊維製不織布を重ね合わせ、熱エンボス等の熱処理を施して一体化した後、厚さ0.5〜1.5mmのシートをプリーツ加工機にてひだ折りして得る。また除去するガスの種類、濃度によって第1フィルター2と第2フィルター3の枚数や厚さ等を変更して調整してもよい。 Next, for example, the second filter 3 has a non-woven fabric made of polypropylene fiber having a basis weight of 20 to 150 g / m 2 and an average fineness of 20 to 50 dtex as an aggregate layer, and an adsorption layer in which copper fibers are supported on a polyester fiber by a binder resin. Further, the polyester fiber non-woven fabric having an average fineness of 0.8 to 15 dtex which has been electrostatically treated is superimposed thereon, and subjected to heat treatment such as hot embossing to be integrated, and then the thickness is 0.5 to 1.5 mm. The sheet is obtained by pleating with a pleating machine. Further, the number and thickness of the first filter 2 and the second filter 3 may be changed and adjusted according to the type and concentration of the gas to be removed.

第2フィルター3の配置方向は、前記静電処理されたポリエステル繊維製不織布の面から、前記ポリプロピレン繊維製不織布の骨材層に空気が通過するように配置するのが好ましい。ポリエステル繊維製不織布は静電処理されているので、大気中の粉塵を捕らえ、銅ゼオライトの表面が粉塵で覆われるのを防ぐことができる。また、前記銅ゼオライトを担持する吸着層の繊維は、バインダー樹脂で銅ゼオライトを担持できるのであればどのような繊維でも用いることができる。銅ゼオライトには、大気中の有機溶剤等のVOC系ガスが強力に吸着される。また、前記ポリプロピレン繊維製不織布の骨材層は、シートがプリーツ加工されるための強度と硬さを付与するためのものである。   The arrangement direction of the second filter 3 is preferably arranged so that air passes from the surface of the non-woven fabric made of polyester fiber subjected to electrostatic treatment to the aggregate layer of the non-woven fabric made of polypropylene fiber. Since the polyester fiber nonwoven fabric is electrostatically treated, it can capture dust in the air and prevent the copper zeolite surface from being covered with dust. Moreover, the fiber of the adsorption layer which carries the said copper zeolite can be used as long as it can carry | support copper zeolite with binder resin. VOC-based gases such as organic solvents in the atmosphere are strongly adsorbed on copper zeolite. Moreover, the aggregate layer of the nonwoven fabric made of polypropylene fibers is for imparting strength and hardness for the sheet to be pleated.

次ぎに実施例により、本発明を具体的に説明する。なお実施例における各種ガス除去性能の測定は次のように行った。
(二酸化窒素ガス除去性能)
断面のサイズが70×70mm、厚さが60mmの第1フィルター2と、断面のサイズが70×70mm、厚さが50mmの第2フィルター3をフィルターユニットにし、内寸70×70mm角型の一過性ダクト試験器に前記フィルターユニットを配置して固定する。次に一過性ダクト試験器の空気取り入れ口4側から、毎分30リットルの通気を行なうファンをセットし、濃度が5ppmの二酸化窒素ガスをフィルターユニットに12時間連続して通気させる。12時間経過して第2フィルター3側の出口5における二酸化窒素ガスの残存濃度(ppm)を測定した。
Next, the present invention will be described specifically by way of examples. In addition, the measurement of various gas removal performance in an Example was performed as follows.
(Nitrogen dioxide gas removal performance)
A first filter 2 having a cross-sectional size of 70 × 70 mm and a thickness of 60 mm and a second filter 3 having a cross-sectional size of 70 × 70 mm and a thickness of 50 mm are used as a filter unit. Place and fix the filter unit in a transient duct tester. Next, a fan that ventilates 30 liters per minute is set from the air intake 4 side of the transient duct tester, and nitrogen dioxide gas having a concentration of 5 ppm is continuously ventilated through the filter unit for 12 hours. After 12 hours, the residual concentration (ppm) of nitrogen dioxide gas at the outlet 5 on the second filter 3 side was measured.

(二酸化硫黄ガス除去性能)
二酸化窒素ガスに代えて二酸化硫黄ガス(濃度5ppm)を用いて、一過性ダクト試験器に連続して通気させた以外は、上記二酸化窒素ガス除去性能試験と同様にして二酸化硫黄ガスの残存濃度(ppm)を測定した。
(Sulfur dioxide gas removal performance)
Residual concentration of sulfur dioxide gas in the same manner as the nitrogen dioxide gas removal performance test, except that sulfur dioxide gas (concentration 5 ppm) was used instead of nitrogen dioxide gas and a continuous duct tester was continuously vented. (Ppm) was measured.

(硫化水素ガス除去性能)
二酸化窒素ガスに代えて硫化水素ガス(濃度5ppm)を用いて、一過性ダクト試験器に連続して通気させた以外は、上記二酸化窒素ガス除去性能試験と同様にして硫化水素ガスの残存濃度(ppm)を測定した。
(Hydrogen sulfide gas removal performance)
Residual concentration of hydrogen sulfide gas in the same manner as the above nitrogen dioxide gas removal performance test, except that hydrogen sulfide gas (concentration 5 ppm) was used instead of nitrogen dioxide gas and aerated duct tester was continuously vented. (Ppm) was measured.

(トルエンガス除去性能)
二酸化窒素ガスに代えてトルエンガス(濃度5ppm)を用いて、一過性ダクト試験器に連続して通気させた以外は、上記二酸化窒素ガス除去性能試験と同様にしてトルエンガスの残存濃度(ppm)を測定した。
(Toluene gas removal performance)
The residual concentration of toluene gas (ppm) in the same manner as in the nitrogen dioxide gas removal performance test, except that toluene gas (concentration 5 ppm) was used instead of nitrogen dioxide gas and the aerated duct tester was continuously vented. ) Was measured.

そして、残存率が10%以下であるものを「◎」、残存率が10〜20%以下であるものを「○」、残存率が20〜40%以下であるものを「△」、残存率が40%以上であるものを「×」と評価した。   The residual rate is 10% or less, “」 ”, the residual rate is 10-20% or less,“ ◯ ”, the residual rate is 20-40% or less,“ Δ ”, the residual rate. The case where is 40% or more was evaluated as “x”.

<実施例1>
椰子殻活性炭70重量部と天然パルプ30重量部を水200重量部に添加し、水スラリーを作成する。得られた凝集体水分散液より、抄紙機を使い湿式抄紙法によってシート化し、乾燥処理を行ない、活性炭混抄紙を得る。その後得られた活性炭混抄紙を3―クロロ―2−ヒドロキシプロピルトリメチルアンモニウムクロライド水溶液にてカチオン化処理をし、乾燥した。次に、この活性炭混抄紙をコルゲート加工機によりハニカム形状に加工し、セル密度300セル/(インチ)のフィルター形状にした。次に0.5重量%のコバルトフタロシアニンポリスルホン酸ナトリウム水溶液に含浸させ、水洗し、乾燥し、次に10g/lの炭酸カリウム水溶液に含浸させ、水洗し、乾燥して、pH9.0のハニカム形状の断面サイズが70×70mm、厚さ60mmの第1フィルターを得た。コバルトフタロシアニンポリスルホン酸ナトリウムの活性炭混抄紙への担持量は400μg/g活性炭混抄紙であった。次に目付け40g/m、平均繊度40dtexのポリプロピレン繊維製ニードルパンチ不織布を骨材層にし、その上にポリエステル繊維に銅ゼオライトを150mg/gをアクリル樹脂によって担持した吸着層を重ね、さらに、その上に静電処理した平均繊度4dtexのポリエステル繊維製不織布を重ね合わせ、熱処理を施して一体化し、厚さ0.8mmのシートを作成した。つぎに、プリーツ加工機にて山数50にひだ折り加工してプリーツフィルターの形状にし、断面サイズが70×70mm、厚さ50mmの第2フィルターを得た。こうして得た第1フィルターと第2フィルターを、エチレンー酢酸ビニル共重合体で部分接着してフィルターユニットを作成し、第1フィルターを空気の取り入れ側に、第2フィルターを空気の出口側になるように、一過性ダクト試験器のサンプルホルダーに固定し、上記の各種ガスの除去試験をおこない残存率を表1に記載した。
<Example 1>
70 parts by weight of coconut shell activated carbon and 30 parts by weight of natural pulp are added to 200 parts by weight of water to prepare a water slurry. From the obtained aggregate aqueous dispersion, a sheet is formed by a wet papermaking method using a paper machine, followed by drying treatment to obtain an activated carbon mixed paper. Thereafter, the obtained activated carbon mixed paper was cationized with an aqueous 3-chloro-2-hydroxypropyltrimethylammonium chloride solution and dried. Next, the activated carbon mixed paper was processed into a honeycomb shape by a corrugating machine to obtain a filter shape having a cell density of 300 cells / (inch) 2 . Next, it was impregnated with 0.5% by weight aqueous solution of cobalt phthalocyanine polysulfonate, washed with water and dried, then impregnated with 10 g / l aqueous potassium carbonate solution, washed with water and dried to form a honeycomb having a pH of 9.0. A first filter having a cross-sectional size of 70 × 70 mm and a thickness of 60 mm was obtained. The amount of cobalt phthalocyanine polysulfonate sodium supported on the activated carbon mixed paper was 400 μg / g activated carbon mixed paper. Next, a needle punched nonwoven fabric made of polypropylene fiber having a basis weight of 40 g / m 2 and an average fineness of 40 dtex is used as an aggregate layer, on which an adsorption layer in which 150 mg / g of copper zeolite is supported by an acrylic resin on a polyester fiber is layered. A non-woven fabric made of polyester fibers having an average fineness of 4 dtex that had been electrostatically treated was superposed and integrated by heat treatment to produce a sheet having a thickness of 0.8 mm. Next, a pleat processing machine was used to fold and form the pleated filter into a pleated filter shape to obtain a second filter having a cross-sectional size of 70 × 70 mm and a thickness of 50 mm. The first filter and the second filter thus obtained are partially bonded with an ethylene-vinyl acetate copolymer to form a filter unit so that the first filter is on the air intake side and the second filter is on the air outlet side. Then, the sample was fixed to a sample holder of a transient duct tester, the above-mentioned various gas removal tests were conducted, and the residual ratio is shown in Table 1.

<実施例2>
次に、実施例1において、第1フィルターの作成時に、50g/lの炭酸水素ナトリウムのアルカリ水溶液に含浸させてpH10.0の第1フィルターを得た以外は実施例1と同様にして、フィルターユニットを得た。
<Example 2>
Next, in Example 1, the filter was prepared in the same manner as in Example 1 except that the first filter having a pH of 10.0 was obtained by impregnating with an alkaline aqueous solution of 50 g / l sodium bicarbonate at the time of producing the first filter. Got a unit.

<実施例3>
次に、実施例1において、2.5重量%コバルトフタロシアニンポリスルホン酸ナトリウム水溶液に含浸させてpH9.0の第1フィルターを得た以外は実施例1と同様にして、フィルターユニットを得た。コバルトフタロシアニンポリスルホン酸ナトリウムの活性炭混抄紙への担持量は2000μg/g活性炭混抄紙であった。
<Example 3>
Next, a filter unit was obtained in the same manner as in Example 1 except that in Example 1, a first filter having a pH of 9.0 was obtained by impregnation in a 2.5 wt% aqueous solution of cobalt phthalocyanine polysulfonate. The amount of cobalt phthalocyanine polysulfonate sodium supported on the activated carbon mixed paper was 2000 μg / g activated carbon mixed paper.

<実施例4>
次に、実施例1において、0.5重量%のコバルトフタロシアニンポリスルホン酸ナトリウムを0.5重量%の鉄フタロシアニンポリスルホン酸ナトリウムとした以外は実施例1と同様にして、フィルターユニットを得た。
<Example 4>
Next, a filter unit was obtained in the same manner as in Example 1 except that 0.5% by weight of sodium cobalt phthalocyanine polysulfonate was changed to 0.5% by weight of sodium phthalocyanine polysulfonate.

<実施例5>
次に、実施例1において、10g/lの炭酸カリウムを10g/lのクエン酸ナトリウムとした以外は実施例1と同様にして、フィルターユニットを得た。
<Example 5>
Next, a filter unit was obtained in the same manner as in Example 1, except that 10 g / l of potassium carbonate was changed to 10 g / l of sodium citrate.

<実施例6>
次に、実施例1において、椰子殻活性炭30重量部とした以外は実施例1と同様にして、フィルターユニットを得た。椰子殻活性炭の担持量は50重量%であった。
<Example 6>
Next, a filter unit was obtained in the same manner as in Example 1, except that 30 parts by weight of coconut shell activated carbon was used. The loaded amount of coconut shell activated carbon was 50% by weight.

<実施例7>
実施例1において得られた第1フィルター2枚を重ね続いて第2フィルター1枚を配置した以外は実施例1と同様にして、フィルターユニットを得た。
<Example 7>
A filter unit was obtained in the same manner as in Example 1 except that two first filters obtained in Example 1 were superposed and one second filter was arranged.

<実施例8>
実施例1において第2フィルターのポリエステル繊維に銅ゼオライトを50mg/g担持した以外は実施例1と同様にして、フィルターユニットを得た。
<Example 8>
A filter unit was obtained in the same manner as in Example 1 except that 50 mg / g of copper zeolite was supported on the polyester fiber of the second filter in Example 1.

<実施例9>
実施例1において第2フィルターの銅ゼオライトを銀ゼオライト150mg/gポリエステル繊維に担持した以外は実施例1と同様にして、フィルターユニットを得た。
<Example 9>
A filter unit was obtained in the same manner as in Example 1 except that the copper zeolite of the second filter was supported on 150 mg / g polyester fiber of silver zeolite in Example 1.

<比較例1>
実施例1において、0.5重量%コバルトフタロシアニンポリスルホン酸ナトリウムの水溶液に含浸させたのみでpH7.0の第1フィルターを得た(炭酸カリウム水溶液に含浸させない)以外は実施例1と同様にして、フィルターユニットを得た。
<Comparative Example 1>
In Example 1, a first filter having a pH of 7.0 was obtained only by impregnating with an aqueous solution of 0.5 wt% sodium cobalt phthalocyanine polysulfonate (not impregnated with an aqueous potassium carbonate solution). A filter unit was obtained.

<比較例2>
実施例1において、0.1重量%のコバルトフタロシアニンポリスルホン酸ナトリウム水溶液に含浸させ、水洗し乾燥した以外は実施例1と同様にして、フィルターユニットを得た。コバルトフタロシアニンポリスルホン酸ナトリウムの活性炭混抄紙への担持量は150μg/g活性炭混抄紙であった。
<Comparative example 2>
A filter unit was obtained in the same manner as in Example 1 except that it was impregnated with 0.1% by weight aqueous solution of cobalt phthalocyanine polysulfonate and washed with water and dried. The amount of cobalt phthalocyanine polysulfonate sodium supported on the activated carbon mixed paper was 150 μg / g activated carbon mixed paper.

<比較例3>
椰子殻活性炭を10重量部とした以外は実施例1と同様にして、フィルターユニットを得た。椰子殻活性炭の担持量は25重量%であった。
<Comparative Example 3>
A filter unit was obtained in the same manner as in Example 1 except that 10 parts by weight of coconut shell activated carbon was used. The loaded amount of coconut shell activated carbon was 25% by weight.

<比較例4>
実施例1において、第2フィルターのポリエステル繊維に銅ゼオライトを担持していない吸着層とした以外は実施例1と同様にして、フィルターユニットを得た。
<Comparative example 4>
A filter unit was obtained in the same manner as in Example 1 except that the adsorption layer in which the copper zeolite was not supported on the polyester fiber of the second filter was used.

<比較例5>
実施例1において、第1フィルターに5重量%リン酸水溶液に含浸させ、水洗し乾燥して低いpH1.5の第1フィルターを得た以外は実施例1と同様にして、フィルターユニットを得た。
<Comparative Example 5>
In Example 1, a filter unit was obtained in the same manner as in Example 1 except that the first filter was impregnated with 5% by weight phosphoric acid aqueous solution, washed with water and dried to obtain a first filter having a low pH of 1.5. .

<比較例6>
実施例1において、第1フィルターを二個重ねたのみでフィルターユニットとした。
<Comparative Example 6>
In Example 1, a filter unit was obtained by simply stacking two first filters.

<比較例7>
実施例1において得られた第2フィルターを二個重ねたのみでフィルターユニットとした。
<Comparative Example 7>
Only two second filters obtained in Example 1 were stacked to form a filter unit.

燃料電池用フィルターユニットの概略構成図Schematic configuration diagram of fuel cell filter unit

符号の説明Explanation of symbols

1 一過性ダクト試験器
2 第1フィルター
3 第2フィルター
4 空気取り入れ口
5 空気出口
6 燃料電池用フィルターユニット
DESCRIPTION OF SYMBOLS 1 Transient duct tester 2 1st filter 3 2nd filter 4 Air intake 5 Air outlet 6 Fuel cell filter unit

Claims (6)

金属フタロシアニン錯体と弱アルカリ性金属塩とを活性炭混抄紙に担持させた第1フィルターと、金属ゼオライトを担持した繊維を含む第2フィルターを組み合わせたことに特徴のある燃料電池用フィルターユニット。 A fuel cell filter unit characterized by combining a first filter in which a metal phthalocyanine complex and a weak alkaline metal salt are supported on activated carbon mixed paper and a second filter including a fiber in which metal zeolite is supported. 前記金属フタロシアニン錯体がコバルトフタロシアニン、鉄フタロシアニン、マンガンフタロシアニンの群から選択される1種または複数の金属フタロシアニン錯体で、弱アルカリ性金属塩が炭酸ナトリウム、炭酸水素ナトリウム、クエン酸ナトリウム、炭酸カリウム、炭酸水素カリウム、クエン酸カリウムの群から選択される1種または複数の弱アルカリ性金属塩である請求項1記載の燃料電池用フィルターユニット。 The metal phthalocyanine complex is one or more metal phthalocyanine complexes selected from the group of cobalt phthalocyanine, iron phthalocyanine, and manganese phthalocyanine, and the weak alkaline metal salt is sodium carbonate, sodium bicarbonate, sodium citrate, potassium carbonate, hydrogen carbonate 2. The fuel cell filter unit according to claim 1, wherein the filter unit is one or more weak alkaline metal salts selected from the group consisting of potassium and potassium citrate. 前記金属フタロシアニン錯体を200〜20000μg/g活性炭混抄紙に担持させ、弱アルカリ性金属塩を5〜50mg/g活性炭混抄紙に担持させてなる請求項1または2に記載の燃料電池用フィルターユニット。 The filter unit for a fuel cell according to claim 1 or 2, wherein the metal phthalocyanine complex is supported on 200 to 20000 µg / g activated carbon mixed paper, and a weak alkaline metal salt is supported on 5 to 50 mg / g activated carbon mixed paper. 前記活性炭混抄紙は、活性炭を40〜80重量%担持させてなる活性炭混抄紙である請求項1乃至3に記載の燃料電池用フィルターユニット。 4. The fuel cell filter unit according to claim 1, wherein the activated carbon mixed paper is an activated carbon mixed paper having 40 to 80% by weight of activated carbon supported thereon. 5. 前記金属ゼオライトが銅ゼオライト、銀ゼオライト、亜鉛ゼオライト、白金ゼオライトの群から選択される1種または複数の金属ゼオライトで、繊維への担持量が50〜200mg/g繊維に担持させてなる請求項1乃至4に記載の燃料電池用フィルターユニット。 The metal zeolite is one or more metal zeolites selected from the group consisting of copper zeolite, silver zeolite, zinc zeolite, and platinum zeolite, and the amount supported on the fiber is 50 to 200 mg / g. The filter unit for fuel cells of Claims 4-4. 前記第1フィルターがハニカムまたはコルゲートフィルターからなり、前記第2フィルターがプリーツフィルターであることに特徴のある請求項1乃至5に記載の燃料電池用フィルターユニット。 6. The fuel cell filter unit according to claim 1, wherein the first filter is a honeycomb or corrugated filter, and the second filter is a pleated filter.
JP2005376862A 2005-12-28 2005-12-28 Filter unit for fuel cell Pending JP2007179868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005376862A JP2007179868A (en) 2005-12-28 2005-12-28 Filter unit for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005376862A JP2007179868A (en) 2005-12-28 2005-12-28 Filter unit for fuel cell

Publications (1)

Publication Number Publication Date
JP2007179868A true JP2007179868A (en) 2007-07-12

Family

ID=38304845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005376862A Pending JP2007179868A (en) 2005-12-28 2005-12-28 Filter unit for fuel cell

Country Status (1)

Country Link
JP (1) JP2007179868A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013506546A (en) * 2009-09-30 2013-02-28 スリーエム イノベイティブ プロパティズ カンパニー Active particulate air filter having monolith main filter and polishing filter
JP2014503340A (en) * 2010-11-15 2014-02-13 コーニング インコーポレイテッド Carboxylate articles and methods of making and using the same
RU2761902C1 (en) * 2021-04-22 2021-12-13 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Power plant based on a fuel cell, hydrocarbon to hydrocarbon converter and oxygen concentrator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987928A (en) * 1995-09-21 1997-03-31 Kenji Nakamura Antimicrobial fiber product
JPH1156990A (en) * 1997-08-28 1999-03-02 Sharp Corp Manufacture of odor removing filter
JPH11226337A (en) * 1998-02-13 1999-08-24 Unitika Ltd Activated carbon fiber sheet for filter
JP2000079318A (en) * 1998-09-08 2000-03-21 Sharp Corp Deodorizing filter
JP2000334244A (en) * 1999-03-19 2000-12-05 Takasago Thermal Eng Co Ltd Air cleaning filter and its production and highly purifying device
JP2001219022A (en) * 2000-02-07 2001-08-14 Mitsubishi Electric Corp Nox removing filter and manufacturing method, air conditioning device
JP2004273311A (en) * 2003-03-10 2004-09-30 Honda Motor Co Ltd Air supply device of fuel cell
JP2005322506A (en) * 2004-05-10 2005-11-17 Matsushita Electric Ind Co Ltd Fuel cell power generating device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987928A (en) * 1995-09-21 1997-03-31 Kenji Nakamura Antimicrobial fiber product
JPH1156990A (en) * 1997-08-28 1999-03-02 Sharp Corp Manufacture of odor removing filter
JPH11226337A (en) * 1998-02-13 1999-08-24 Unitika Ltd Activated carbon fiber sheet for filter
JP2000079318A (en) * 1998-09-08 2000-03-21 Sharp Corp Deodorizing filter
JP2000334244A (en) * 1999-03-19 2000-12-05 Takasago Thermal Eng Co Ltd Air cleaning filter and its production and highly purifying device
JP2001219022A (en) * 2000-02-07 2001-08-14 Mitsubishi Electric Corp Nox removing filter and manufacturing method, air conditioning device
JP2004273311A (en) * 2003-03-10 2004-09-30 Honda Motor Co Ltd Air supply device of fuel cell
JP2005322506A (en) * 2004-05-10 2005-11-17 Matsushita Electric Ind Co Ltd Fuel cell power generating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013506546A (en) * 2009-09-30 2013-02-28 スリーエム イノベイティブ プロパティズ カンパニー Active particulate air filter having monolith main filter and polishing filter
JP2014503340A (en) * 2010-11-15 2014-02-13 コーニング インコーポレイテッド Carboxylate articles and methods of making and using the same
RU2761902C1 (en) * 2021-04-22 2021-12-13 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Power plant based on a fuel cell, hydrocarbon to hydrocarbon converter and oxygen concentrator

Similar Documents

Publication Publication Date Title
Suresh et al. Removal of formaldehyde on carbon-based materials: A review of the recent approaches and findings
EP1349638B2 (en) Filter assembly for fuel cell
JP2011233381A (en) Filter unit for fuel battery
Huang et al. Removal of typical industrial gaseous pollutants: From carbon, zeolite, and metal-organic frameworks to molecularly imprinted adsorbents
CN203829824U (en) Air purification filter element
JP2007260603A (en) Filter unit for air cleaner
JP4911706B2 (en) Deodorant filter
Shen et al. Catalytic oxidation of nitric oxide (NO) with carbonaceous materials
AU2005277882A1 (en) Reactive membrane process for the removal of vapor phase contaminants
JP2002177717A (en) Dust removing and deodorizing filter
CN204100533U (en) A kind of automobile air conditioner filter element
JP2007179868A (en) Filter unit for fuel cell
Yuan et al. CaCO3-ZnO loaded scrap rice-derived biochar for H2S removal at room-temperature: Characterization, performance and mechanism
JP2007229092A (en) Cigarette smoke deodorizing filter
JP4806108B2 (en) Deodorizing device
JP2006341150A (en) Treatment agent for removing acidic gas and acidic gas removing filter
CN203620410U (en) Filter for automobile air conditioner
US20070243112A1 (en) Deodorizing Filter
JP2008132089A (en) Filter for deodorizing odor of tobacco and its manufacturing method
JP6066176B2 (en) Cigarette odor deodorant filter
JP6575993B2 (en) Ammonia gas, sulfur dioxide gas and nitrogen dioxide gas removal filter
CN113423485B (en) Filter medium for depositing nitrogen oxides
CN101219336A (en) Reproducible microorganism metallic oxide complex adsorbing-desulphurizing agent and production method thereof
JP2010042334A (en) Automobile exhaust gas removal filter
CN220750324U (en) Air purification assembly and air purification equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403