JP2007163106A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2007163106A
JP2007163106A JP2005363739A JP2005363739A JP2007163106A JP 2007163106 A JP2007163106 A JP 2007163106A JP 2005363739 A JP2005363739 A JP 2005363739A JP 2005363739 A JP2005363739 A JP 2005363739A JP 2007163106 A JP2007163106 A JP 2007163106A
Authority
JP
Japan
Prior art keywords
refrigerant
air conditioner
stagnation
heat source
compression mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005363739A
Other languages
Japanese (ja)
Inventor
Tadashi Nishimura
忠史 西村
Shinichi Kasahara
伸一 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2005363739A priority Critical patent/JP2007163106A/en
Priority to US12/096,967 priority patent/US20090314017A1/en
Priority to PCT/JP2006/324806 priority patent/WO2007069624A1/en
Priority to ES06834561.0T priority patent/ES2636912T3/en
Priority to CN2006800473776A priority patent/CN101331366B/en
Priority to KR1020087015050A priority patent/KR20080071601A/en
Priority to AU2006324541A priority patent/AU2006324541B2/en
Priority to EP06834561.0A priority patent/EP1965150B1/en
Publication of JP2007163106A publication Critical patent/JP2007163106A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02743Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using three four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/28Means for preventing liquid refrigerant entering into the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To minimize error in estimating a refrigerant amount caused by difference in solubility to oil, of a refrigerant by solving stagnation of refrigerant to refrigerating machine oil in a compressing mechanism. <P>SOLUTION: This air conditioner 1 comprises the refrigerant circuit 7, refrigerant stagnation judging means 8a-8c, and operation control device 6a-6c. The refrigerant circuit is a circuit including heat source units 2a-2c, refrigerant communication piping 4, 5, heat source-side expansion valves 31a, 31b, and use-side expansion valves 29a-29c, use units 3a, 3b. The heat source units and the use units are connected with the refrigerant communication piping. The heat source units have compressing mechanisms 21a-21c and the heat source-side heat exchangers 24a-24c. The refrigerant stagnation judging means can judge a situation of refrigerant stagnation in the compressing mechanism. The operation control device performs a refrigerant stagnation releasing operation for releasing refrigerant stagnation when the refrigerant stagnation in the compressing mechanism is detected before the refrigerant amount determining operation for determining the refrigerant amount in the circuit is performed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空気調和装置の冷媒回路およびそれを備えた空気調和装置に関する。   The present invention relates to a refrigerant circuit of an air conditioner and an air conditioner including the refrigerant circuit.

従来の冷凍装置の冷媒漏れ検出装置として、特許文献1に開示されているようなものが存在する。この冷媒漏れ検出装置では、凝縮冷媒温度調整手段と蒸発冷媒温度調整手段とにより凝縮冷媒温度と蒸発冷媒温度とを一定値に調整し、吐出冷媒温度検出器の出力信号と設定値とを比較して温度差を算出する温度差算出手段により冷凍サイクルの冷媒漏れを検出する冷媒漏洩検知運転を行っている。したがって、凝縮器を流れる凝縮冷媒温度と蒸発器を流れる蒸発冷媒温度とを一定値に調整することで、適正な冷媒量の下での吐出冷媒温度を設定値としておき、設定値と吐出冷媒温度検出器の出力信号とを比較し、設定値より低い場合には冷媒漏洩が生じていないと判断し、設定値より高い場合には冷媒漏洩と判断している。
特開平11―211292号公報
As a refrigerant leakage detection device of a conventional refrigeration apparatus, there is one disclosed in Patent Document 1. In this refrigerant leak detection device, the condensed refrigerant temperature and the evaporated refrigerant temperature adjusting means adjust the condensed refrigerant temperature and the evaporated refrigerant temperature to constant values, and compare the output signal of the discharge refrigerant temperature detector with the set value. The refrigerant leak detection operation for detecting the refrigerant leak in the refrigeration cycle is performed by the temperature difference calculating means for calculating the temperature difference. Therefore, by adjusting the condensing refrigerant temperature flowing through the condenser and the evaporating refrigerant temperature flowing through the evaporator to a constant value, the discharge refrigerant temperature under an appropriate refrigerant amount is set as a set value, and the set value and the discharge refrigerant temperature The output signal of the detector is compared, and if it is lower than the set value, it is determined that refrigerant leakage has not occurred, and if it is higher than the set value, it is determined that refrigerant leaks.
Japanese Patent Application Laid-Open No. 11-211292

しかし、特許文献1の技術では、低外気温時には圧縮機構内の冷凍機油に溶解する冷媒量が多くなるため、冷媒量の予測誤差が大きくなる恐れがある。特に、圧縮機の起動直後で内部油温が低い場合や、圧縮機を複数有しながら冷媒漏洩検知運転の際に一部の圧縮機しか駆動しない場合に、冷媒漏洩の検知誤差が大きくなる。
本発明の課題は、圧縮機構内における冷凍機油に対する冷媒の寝込みを解消し、冷媒の油への溶解度の差による冷媒量の予測誤差を極小化することにある。
However, in the technique of Patent Document 1, since the amount of refrigerant that dissolves in the refrigerating machine oil in the compression mechanism increases at low outside air temperature, there is a risk that the prediction error of the refrigerant amount increases. In particular, when the internal oil temperature is low immediately after the start of the compressor, or when only some of the compressors are driven during the refrigerant leak detection operation while having a plurality of compressors, the refrigerant leak detection error increases.
An object of the present invention is to eliminate the stagnation of the refrigerant with respect to the refrigeration oil in the compression mechanism, and to minimize the prediction error of the refrigerant amount due to the difference in the solubility of the refrigerant in the oil.

第1発明に係る空気調和装置は、冷媒回路と、冷媒寝込み判断手段と、運転制御装置とを備えている。冷媒回路は、熱源ユニットと、冷媒連絡配管と、膨張機構と、利用ユニットとを含む回路である。熱源ユニットは、圧縮機構と熱源側熱交換器とを有する。冷媒連絡配管には、熱源ユニットが接続される。利用ユニットは、利用側熱交換器を有し、冷媒連絡配管に接続される。冷媒寝込み判断手段は、冷媒が圧縮機構内に寝込んでいるか否かを判断可能である。運転制御装置は、冷媒回路内の冷媒量を判定する冷媒量判定運転を行う際に、事前に、冷媒寝込み判断手段が圧縮機構内に冷媒が寝込んでいると判断した場合に、冷媒の寝込みを解消する冷媒寝込み解消運転を行う。   An air conditioner according to a first aspect of the present invention includes a refrigerant circuit, a refrigerant stagnation determining means, and an operation control device. The refrigerant circuit is a circuit including a heat source unit, a refrigerant communication pipe, an expansion mechanism, and a utilization unit. The heat source unit includes a compression mechanism and a heat source side heat exchanger. A heat source unit is connected to the refrigerant communication pipe. The usage unit has a usage-side heat exchanger and is connected to the refrigerant communication pipe. The refrigerant stagnation determining means can determine whether or not the refrigerant has stagnation in the compression mechanism. When performing the refrigerant amount determination operation for determining the refrigerant amount in the refrigerant circuit, the operation control device determines that the refrigerant stagnation determination unit determines in advance that the refrigerant has stagnation in the compression mechanism. Perform refrigerant stagnation elimination operation to eliminate.

この空気調和装置では、冷媒量判定運転を行う際に、事前に、冷媒寝込み判断手段により、冷媒が圧縮機構内の冷凍機油に寝込んでいるか否かの判定が行われる。そして、圧縮機構内の冷凍機油に冷媒が寝込んでいると冷媒寝込み判断手段が判断すると、運転制御装置により冷媒寝込み解消運転が行われる。
したがって、この空気調和装置では、圧縮機構内での冷凍機油に対する冷媒の寝込みを解消してから冷媒量判定運転を行うことが可能である。このため、冷媒量判定運転の際に、圧縮機構内の冷凍機油に溶解する冷媒量を極力少なくすることができ、冷媒量の予測誤差を小さくできる。これにより、冷媒量判定運転の際に、圧縮機構内の冷凍機油に対する冷媒の寝込みを解消できるので、より高精度な冷媒量判定運転が可能となる。
In this air conditioner, when the refrigerant amount determination operation is performed, it is determined in advance by the refrigerant stagnation determination means whether or not the refrigerant has stagnation in the refrigerating machine oil in the compression mechanism. Then, when the refrigerant stagnation determining means determines that the refrigerant has stagnated in the refrigerating machine oil in the compression mechanism, the operation control device performs the refrigerant stagnation elimination operation.
Therefore, in this air conditioner, the refrigerant amount determination operation can be performed after eliminating the stagnation of the refrigerant with respect to the refrigerating machine oil in the compression mechanism. For this reason, in the refrigerant quantity determination operation, the refrigerant quantity dissolved in the refrigeration machine oil in the compression mechanism can be reduced as much as possible, and the prediction error of the refrigerant quantity can be reduced. As a result, the refrigerant stagnation with respect to the refrigerating machine oil in the compression mechanism can be eliminated during the refrigerant quantity determination operation, so that a more accurate refrigerant quantity determination operation can be performed.

第2発明に係る空気調和装置は、第1発明に係る空気調和装置であって、冷媒寝込み判断手段は、圧縮機構内の温度に基づいて判断を行う。
この空気調和装置では、冷媒寝込み判断手段の判断は、圧縮機構内の温度に基づいて行われる。圧縮機構内の温度が低いと、冷媒は、冷凍機油に寝込み易くなる。したがって、圧縮機構内の温度が低い場合に、圧縮機構内の冷凍機油に対して冷媒が寝込んでいるという判断が可能となる。このため、圧縮機構内の温度に基づいて、圧縮機構内の冷凍機油に冷媒が寝込んでいるか否かの判断が可能となる。
An air conditioner according to a second aspect is the air conditioner according to the first aspect, wherein the refrigerant stagnation determining means makes a determination based on the temperature in the compression mechanism.
In this air conditioner, the determination by the refrigerant stagnation determination means is made based on the temperature in the compression mechanism. When the temperature in the compression mechanism is low, the refrigerant easily stagnates in the refrigeration oil. Therefore, when the temperature in the compression mechanism is low, it can be determined that the refrigerant has stagnated in the refrigerating machine oil in the compression mechanism. For this reason, based on the temperature in the compression mechanism, it is possible to determine whether or not the refrigerant has stagnated in the refrigerating machine oil in the compression mechanism.

第3発明に係る空気調和装置は、第1発明に係る空気調和装置であって、冷媒寝込み判断手段は、外気温度に基づいて判断を行う。
この空気調和装置では、冷媒寝込み判断手段の判断は、外気温度に基づいて行われる。圧縮機構内の温度が低いと、冷媒は、冷凍機油に寝込み易くなる。したがって、外気温度を測定できるため、圧縮機構内の温度を予測することが可能となる。このため、圧縮機構内の温度が低いと予測できる場合に、圧縮機構内の冷凍機油に対して冷媒が寝込んでいるという判断が可能となる。これにより、圧縮機構内の冷凍機油に対して冷媒の寝込みがあるか否かの判断が可能となる。
An air conditioner according to a third aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein the refrigerant stagnation determining means makes a determination based on the outside air temperature.
In this air conditioner, the determination by the refrigerant stagnation determination means is made based on the outside air temperature. When the temperature in the compression mechanism is low, the refrigerant easily stagnates in the refrigeration oil. Therefore, since the outside air temperature can be measured, the temperature in the compression mechanism can be predicted. For this reason, when it can be predicted that the temperature in the compression mechanism is low, it is possible to determine that the refrigerant has stagnated in the refrigerating machine oil in the compression mechanism. Thereby, it is possible to determine whether or not the refrigerant has stagnated in the refrigeration machine oil in the compression mechanism.

第4発明に係る空気調和装置は、第1発明に係る空気調和装置であって、冷媒寝込み判断手段は、気象情報に基づいて判断を行う。
この空気調和装置では、冷媒寝込み判断手段の判断は、冷媒寝込み判断手段に接続されているネットワークを介して得られる気象情報に基づいて行われる。したがって、気象情報から外気温度を取得することができ、圧縮機構内の温度を予測することが可能となる。このため、圧縮機構内の温度が低いと予測できる場合に、圧縮機構内の冷凍機油に対して冷媒が寝込んでいるという判断が可能となる。これにより、圧縮機構内の冷凍機油に対して冷媒の寝込みがあるか否かの判断が可能となる。
An air conditioner according to a fourth aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein the refrigerant stagnation determining means makes a determination based on weather information.
In this air conditioner, the determination by the refrigerant stagnation determination means is made based on weather information obtained via a network connected to the refrigerant stagnation determination means. Therefore, the outside air temperature can be acquired from the weather information, and the temperature in the compression mechanism can be predicted. For this reason, when it can be predicted that the temperature in the compression mechanism is low, it is possible to determine that the refrigerant has stagnated in the refrigerating machine oil in the compression mechanism. Thereby, it is possible to determine whether or not the refrigerant has stagnated in the refrigeration machine oil in the compression mechanism.

第5発明に係る空気調和装置は、第1発明に係る空気調和装置であって、冷媒寝込み判断手段は、冷媒が圧縮機構内に寝込み易いと予測される冷媒寝込み期間に基づいて判断を行う。
この空気調和装置では、冷媒寝込み判断手段の判断は、あらかじめ設定された期間に基づいて行われる。圧縮機構内の温度が低いと、冷媒は、冷凍機油に寝込み易くなる。この判断は、圧縮機構内の温度が低いと予測される期間を設けることで行われる。
したがって、利用者が圧縮機構内の温度が低いと予測される期間を設定することで、圧縮機構内の温度を測定することなく冷媒の寝込みを予測することが可能となる。これにより、圧縮機構内の冷凍機油に対して冷媒の寝込みがあるか否かの判断が可能となる。また、温度センサなどを設置する必要が無くなるため、生産コストを削減することができる。
An air conditioner according to a fifth aspect of the present invention is the air conditioner according to the first aspect of the present invention, wherein the refrigerant stagnation determining means makes a determination based on a refrigerant stagnation period in which the refrigerant is predicted to easily stagnate in the compression mechanism.
In this air conditioner, the determination by the refrigerant stagnation determination means is made based on a preset period. When the temperature in the compression mechanism is low, the refrigerant easily stagnates in the refrigeration oil. This determination is made by providing a period during which the temperature in the compression mechanism is predicted to be low.
Therefore, the user can predict the stagnation of the refrigerant without measuring the temperature in the compression mechanism by setting a period during which the temperature in the compression mechanism is predicted to be low. Thereby, it is possible to determine whether or not the refrigerant has stagnated in the refrigeration machine oil in the compression mechanism. Moreover, since it is not necessary to install a temperature sensor or the like, the production cost can be reduced.

第6発明に係る空気調和装置は、第1発明から第5発明のいずれかに係る空気調和装置であって、運転制御装置は、冷媒寝込み解消運転として圧縮機構を第1所定時間駆動する制御を行う。
この空気調和装置では、冷媒寝込み解消運転は、圧縮機を第1所定時間駆動させることによる暖機運転である。したがって、この冷媒寝込み解消運転では、圧縮機を第1所定時間運転させることで、圧縮機構内を暖めることができる。このため、圧縮機構内の冷凍機油に対する冷媒の寝込みを解消することが可能となる。
An air conditioner according to a sixth aspect of the present invention is the air conditioner according to any of the first to fifth aspects of the invention, wherein the operation control unit performs control for driving the compression mechanism for a first predetermined time as the refrigerant stagnation elimination operation. Do.
In this air conditioner, the refrigerant stagnation elimination operation is a warm-up operation by driving the compressor for a first predetermined time. Therefore, in this refrigerant stagnation elimination operation, the inside of the compression mechanism can be warmed by operating the compressor for the first predetermined time. For this reason, it becomes possible to eliminate the stagnation of the refrigerant with respect to the refrigerating machine oil in the compression mechanism.

第7発明に係る空気調和装置は、第1発明から第6発明のいずれかに係る空気調和装置であって、熱源ユニットは、複数存在する。
この空気調和装置では、熱源ユニットが複数存在する。したがって、システム内の熱源ユニットを1ユニットずつ一定時間ローテーションさせて駆動することができるため、低負荷時でも1ユニットに負担が偏らず、システム全体の寿命を延ばすことができる。
An air conditioner according to a seventh aspect of the present invention is the air conditioner according to any one of the first to sixth aspects, wherein there are a plurality of heat source units.
In this air conditioner, there are a plurality of heat source units. Therefore, since the heat source units in the system can be driven by rotating each unit for a certain period of time, the load is not biased to one unit even at a low load, and the life of the entire system can be extended.

第8発明に係る空気調和装置は、第1発明から第7発明のいずれかに係る空気調和装置であって、圧縮機構は、複数の圧縮機を有する。   An air conditioner according to an eighth aspect of the present invention is the air conditioner according to any one of the first to seventh aspects, wherein the compression mechanism has a plurality of compressors.

この空気調和装置では、圧縮機構は複数の圧縮機を有している。したがって、圧縮機の台数制御による圧縮機構の容量変更を行うことができるため、利用ユニットの運転負荷が小さくなった場合でも、全ての熱源ユニットを運転継続させることが可能になり、冷媒回路での冷媒や油の溜まり込みを極力防ぐことができる。また、複数の圧縮機の内1台が故障しても残りの圧縮機が対応可能である。このため、空調の完全停止を回避することができる。   In this air conditioner, the compression mechanism has a plurality of compressors. Therefore, since the capacity of the compression mechanism can be changed by controlling the number of compressors, even when the operating load of the utilization unit is reduced, it becomes possible to continue the operation of all the heat source units. Retention of refrigerant and oil can be prevented as much as possible. Further, even if one of the plurality of compressors breaks down, the remaining compressors can cope. For this reason, complete stop of air conditioning can be avoided.

第9発明に係る空気調和装置は、第8発明に係る空気調和装置であって、冷媒寝込み解消運転は、冷媒量判定運転の際に駆動しない圧縮機を少なくとも駆動する運転である。
この空気調和装置では、圧縮機が複数存在する場合に、冷媒量判定で駆動する圧縮機は冷媒量判定運転時に十分に暖めることができるため、事前運転をする際の圧縮機は少なくとも冷媒量判定で駆動しない圧縮機を駆動する。したがって、全ての圧縮機を駆動する必要が無くなるため、使用するエネルギーを削減することが可能となる。また、冷媒寝込み解消運転に要する時間を短縮することができる。
An air conditioner according to a ninth aspect is the air conditioner according to the eighth aspect, wherein the refrigerant stagnation elimination operation is an operation for driving at least a compressor that is not driven during the refrigerant amount determination operation.
In this air conditioner, when there are a plurality of compressors, the compressor driven by the refrigerant amount determination can be sufficiently warmed during the refrigerant amount determination operation. Drive the compressor not driven by. Therefore, it is not necessary to drive all the compressors, so that the energy used can be reduced. Moreover, the time required for the refrigerant stagnation elimination operation can be shortened.

第10発明に係る空気調和装置は、第8発明に係る空気調和装置であって、冷媒寝込み解消運転は、運転制御装置が全ての圧縮機の駆動を1台ずつ第2所定時間の間隔で順に行う運転である。
この空気調和装置では、圧縮機が複数存在する場合に、全ての圧縮機を1台ずつローテーションさせて第2所定時間駆動させる。そして、冷媒寝込み解消運転の際に、低外気温時に冷房運転させるため、低負荷のために1度に全ての圧縮機を行動させることは難しい。このため、1台ずつ第2所定時間運転させることにより、全ての圧縮機を事前に駆動させることが可能となる。
An air conditioner according to a tenth aspect of the present invention is the air conditioner according to the eighth aspect of the present invention, wherein the refrigerant stagnation elimination operation is carried out in order by the operation control device to drive all the compressors one by one at intervals of a second predetermined time. It is driving to be performed.
In this air conditioner, when there are a plurality of compressors, all the compressors are rotated one by one and driven for a second predetermined time. In the cooling stagnation elimination operation, since the cooling operation is performed at a low outside air temperature, it is difficult to act on all the compressors at a time because of a low load. For this reason, it is possible to drive all the compressors in advance by operating them one by one for the second predetermined time.

第11発明に係る空気調和装置は、第1発明に係る空気調和装置であって、圧縮機構を暖めるヒータをさらに備える。冷媒寝込み解消運転は、圧縮機構をヒータで暖める運転である。
この空気調和装置では、冷媒寝込み解消運転は、圧縮機構をヒータで暖めることで行う。したがって、圧縮機を駆動させることなく冷媒の寝込みを解消することが可能である。このため、冷媒寝込み解消運転の際に圧縮機を駆動させる必要が無くなるため、圧縮機の駆動時間を短縮することができ、圧縮機の寿命を延ばすことが可能となる。
An air conditioner according to an eleventh aspect of the invention is the air conditioner according to the first aspect of the invention, further comprising a heater that warms the compression mechanism. The refrigerant stagnation elimination operation is an operation in which the compression mechanism is warmed by the heater.
In this air conditioner, the refrigerant stagnation elimination operation is performed by warming the compression mechanism with a heater. Therefore, it is possible to eliminate the stagnation of the refrigerant without driving the compressor. For this reason, since it is not necessary to drive the compressor during the refrigerant stagnation elimination operation, the drive time of the compressor can be shortened and the life of the compressor can be extended.

第12発明に係る空気調和装置は、第1発明から第11発明のいずれかに係る空気調和装置であって、運転制御装置は、冷媒寝込み解消運転の直後に油戻し運転をさらに行う。油戻し運転は、冷媒回路内に溜まっている油を圧縮機構内に戻す運転である。
この空気調和装置では、冷媒寝込み解消運転の後に、さらに油戻し運転を行う。したがって、油戻し運転をさらに行うことで、冷媒回路内に溜まり込んでいる油を圧縮機構内に戻すことが可能となる。このため、より高精度な冷媒量判定運転が可能となる。
An air conditioner according to a twelfth aspect of the present invention is the air conditioner according to any of the first to eleventh aspects of the present invention, wherein the operation control device further performs an oil return operation immediately after the refrigerant stagnation elimination operation. The oil return operation is an operation for returning the oil accumulated in the refrigerant circuit into the compression mechanism.
In this air conditioner, an oil return operation is further performed after the refrigerant stagnation elimination operation. Therefore, by further performing the oil return operation, the oil accumulated in the refrigerant circuit can be returned to the compression mechanism. For this reason, more accurate refrigerant quantity determination operation is possible.

第13発明に係る空気調和装置は、第12発明に係る空気調和装置であって、油戻し運転は、冷媒回路を流れる冷媒の配管内冷媒流速を所定流速以上になるように制御する運転である。
この空気調和装置では、油戻し運転は、配管内冷媒流速が所定流速以上になるように制御する運転である。したがって、確実に冷媒回路内に溜まり込んでいる油を圧縮機構内に戻すことが可能となる。このため、より高精度な冷媒量判定運転が可能となる。
An air conditioner according to a thirteenth aspect of the present invention is the air conditioner according to the twelfth aspect of the present invention, wherein the oil return operation is an operation for controlling the refrigerant flow rate in the pipe of the refrigerant flowing through the refrigerant circuit to be equal to or higher than a predetermined flow rate. .
In this air conditioner, the oil return operation is an operation for controlling the refrigerant flow rate in the pipe to be equal to or higher than a predetermined flow rate. Therefore, it is possible to reliably return the oil accumulated in the refrigerant circuit into the compression mechanism. For this reason, more accurate refrigerant quantity determination operation is possible.

第1発明に係る空気調和装置では、圧縮機構内での冷凍機油に対する冷媒の寝込みを解消してから冷媒量判定運転を行うことが可能である。このため、冷媒量判定運転の際に、圧縮機構内の冷凍機油に溶解する冷媒量を極力少なくすることができ、冷媒量の予測誤差を小さくできる。これにより、冷媒量判定運転の際に、圧縮機構内の冷凍機油に対する冷媒の寝込みを解消できるので、より高精度な冷媒量判定運転が可能となる。   In the air conditioner according to the first aspect of the present invention, the refrigerant amount determination operation can be performed after eliminating the stagnation of the refrigerant with respect to the refrigerating machine oil in the compression mechanism. For this reason, in the refrigerant quantity determination operation, the refrigerant quantity dissolved in the refrigeration machine oil in the compression mechanism can be reduced as much as possible, and the prediction error of the refrigerant quantity can be reduced. As a result, the refrigerant stagnation with respect to the refrigerating machine oil in the compression mechanism can be eliminated during the refrigerant quantity determination operation, so that a more accurate refrigerant quantity determination operation can be performed.

第2発明に係る空気調和装置では、圧縮機構内の温度が低い場合に、圧縮機構内の冷凍機油に対して冷媒が寝込んでいるという判断が可能となる。このため、圧縮機構内の温度に基づいて、圧縮機構内の冷凍機油に冷媒が寝込んでいるか否かの判断が可能となる。
第3発明に係る空気調和装置では、外気温度を測定できるため、圧縮機構内の温度を予測することが可能となる。このため、圧縮機構内の温度が低いと予測できる場合に、圧縮機構内の冷凍機油に対して冷媒が寝込んでいるという判断が可能となる。これにより、圧縮機構内の冷凍機油に対して冷媒の寝込みがあるか否かの判断が可能となる。
In the air conditioner according to the second aspect of the present invention, when the temperature in the compression mechanism is low, it is possible to determine that the refrigerant is stagnant with respect to the refrigerating machine oil in the compression mechanism. For this reason, based on the temperature in the compression mechanism, it is possible to determine whether or not the refrigerant has stagnated in the refrigerating machine oil in the compression mechanism.
In the air conditioner according to the third aspect of the invention, the temperature inside the compression mechanism can be predicted because the outside air temperature can be measured. For this reason, when it can be predicted that the temperature in the compression mechanism is low, it is possible to determine that the refrigerant has stagnated in the refrigerating machine oil in the compression mechanism. Thereby, it is possible to determine whether or not the refrigerant has stagnated in the refrigeration machine oil in the compression mechanism.

第4発明に係る空気調和装置では、気象情報から外気温度を取得することができ、圧縮機構内の温度を予測することが可能となる。このため、圧縮機構内の温度が低いと予測できる場合に、圧縮機構内の冷凍機油に対して冷媒が寝込んでいるという判断が可能となる。これにより、圧縮機構内の冷凍機油に対して冷媒の寝込みがあるか否かの判断が可能となる。   In the air conditioning apparatus according to the fourth aspect of the invention, the outside air temperature can be acquired from the weather information, and the temperature in the compression mechanism can be predicted. For this reason, when it can be predicted that the temperature in the compression mechanism is low, it is possible to determine that the refrigerant has stagnated in the refrigerating machine oil in the compression mechanism. Thereby, it is possible to determine whether or not the refrigerant has stagnated in the refrigeration machine oil in the compression mechanism.

第5発明に係る空気調和装置では、利用者が圧縮機構内の温度が低いと予測される期間を設定することで、圧縮機構内の温度を測定することなく冷媒の寝込みを予測することが可能となる。これにより、圧縮機構内の冷凍機油に対して冷媒の寝込みがあるか否かの判断が可能となる。また、温度センサなどを設置する必要が無くなるため、生産コストを削減することができる。   In the air conditioning apparatus according to the fifth aspect of the invention, the user can predict the stagnation of the refrigerant without measuring the temperature in the compression mechanism by setting a period during which the temperature in the compression mechanism is predicted to be low. It becomes. Thereby, it is possible to determine whether or not the refrigerant has stagnated in the refrigeration machine oil in the compression mechanism. Moreover, since it is not necessary to install a temperature sensor or the like, the production cost can be reduced.

第6発明に係る空気調和装置では、この冷媒寝込み解消運転では、圧縮機を第1所定時間運転させることで、圧縮機構内を暖めることができる。このため、圧縮機構内の冷凍機油に対する冷媒の寝込みを解消することが可能となる。
第7発明に係る空気調和装置では、システム内の熱源ユニットを1ユニットずつ一定時間ローテーションさせて駆動することができるため、低負荷時でも1ユニットに負担が偏らず、システム全体の寿命を延ばすことができる。
In the air conditioner according to the sixth aspect of the present invention, in the refrigerant stagnation elimination operation, the inside of the compression mechanism can be warmed by operating the compressor for the first predetermined time. For this reason, it becomes possible to eliminate the stagnation of the refrigerant with respect to the refrigerating machine oil in the compression mechanism.
In the air conditioner according to the seventh aspect of the invention, the heat source unit in the system can be driven by rotating for one unit at a time for a certain period of time, so that the load is not biased to one unit even at low loads, thereby extending the life of the entire system. Can do.

第8発明に係る空気調和装置では、圧縮機の台数制御による圧縮機構の容量変更を行うことができるため、利用ユニットの運転負荷が小さくなった場合でも、全ての熱源ユニットを運転継続させることが可能になり、冷媒回路での冷媒や油の溜まり込みを極力防ぐことができる。また、複数の圧縮機の内1台が故障しても残りの圧縮機が対応可能である。このため、空調の完全停止を回避することができる。   In the air conditioner according to the eighth aspect of the invention, since the capacity of the compression mechanism can be changed by controlling the number of compressors, all the heat source units can be continuously operated even when the operating load of the utilization unit is reduced. This makes it possible to prevent the accumulation of refrigerant and oil in the refrigerant circuit as much as possible. Further, even if one of the plurality of compressors breaks down, the remaining compressors can cope. For this reason, complete stop of air conditioning can be avoided.

第9発明に係る空気調和装置では、全ての圧縮機を駆動する必要が無くなるため、使用するエネルギーを削減することが可能となる。また、冷媒寝込み解消運転に要する時間を短縮することができる。
第10発明に係る空気調和装置では、1台ずつ第2所定時間運転させることにより、全ての圧縮機を事前に駆動させることが可能となる。
In the air conditioner according to the ninth aspect of the present invention, it is not necessary to drive all the compressors, so that the energy used can be reduced. Moreover, the time required for the refrigerant stagnation elimination operation can be shortened.
In the air conditioning apparatus according to the tenth aspect of the invention, it is possible to drive all the compressors in advance by operating them one by one for the second predetermined time.

第11発明に係る空気調和装置では、圧縮機を駆動させることなく冷媒の寝込みを解消することが可能である。このため、冷媒寝込み解消運転の際に圧縮機を駆動させる必要が無くなるため、圧縮機の駆動時間を短縮することができ、圧縮機の寿命を延ばすことが可能となる。
第12発明に係る空気調和装置では、油戻し運転をさらに行うことで、冷媒回路内に溜まり込んでいる油を圧縮機構内に戻すことが可能となる。このため、より高精度な冷媒量判定運転が可能となる。
In the air conditioner according to the eleventh aspect of the present invention, it is possible to eliminate the refrigerant stagnation without driving the compressor. For this reason, since it is not necessary to drive the compressor during the refrigerant stagnation elimination operation, the drive time of the compressor can be shortened and the life of the compressor can be extended.
In the air conditioner according to the twelfth aspect of the present invention, it is possible to return the oil accumulated in the refrigerant circuit to the compression mechanism by further performing the oil return operation. For this reason, more accurate refrigerant quantity determination operation is possible.

第13発明に係る空気調和装置では、確実に冷媒回路内に溜まり込んでいる油を圧縮機構内に戻すことが可能となる。このため、より高精度な冷媒量判定運転が可能となる。   In the air conditioner according to the thirteenth aspect of the present invention, it is possible to reliably return the oil accumulated in the refrigerant circuit into the compression mechanism. For this reason, more accurate refrigerant quantity determination operation is possible.

(1)空気調和装置の構成
図1に本発明の第1実施形態の空気調和装置1の概略冷媒回路図を示す。空気調和装置1は、ビル等の空気調和に使用されるものであって、複数(本実施形態では、3台)の空冷式の熱源ユニット2a〜2cと、多数の利用ユニット3a,3b,・・・とが冷媒液連絡配管4および冷媒ガス連絡配管5に対して、それぞれ、並列に接続されて構成されている。ここでは、利用ユニットは2台3a,3bのみ図示する。複数の熱源ユニット2a〜2cは、それぞれ1台の容量可変式の圧縮機22a〜22cと複数(本実施形態では、2台)の容量一定式の圧縮機27a〜27c,28a〜28cとを有する圧縮機構21a〜21cを備える。
(1) Configuration of Air Conditioner FIG. 1 is a schematic refrigerant circuit diagram of the air conditioner 1 according to the first embodiment of the present invention. The air conditioner 1 is used for air conditioning of a building or the like, and includes a plurality of (in this embodiment, three) air-cooled heat source units 2a to 2c and a large number of utilization units 3a, 3b,. .. Are configured to be connected in parallel to the refrigerant liquid communication pipe 4 and the refrigerant gas communication pipe 5, respectively. Here, only two units 3a and 3b are shown. Each of the plurality of heat source units 2a to 2c includes one variable capacity compressor 22a to 22c and a plurality (two in this embodiment) of constant capacity compressors 27a to 27c, 28a to 28c. The compression mechanism 21a-21c is provided.

利用ユニット3a,3b,・・・は、それぞれ、主に、利用側膨張弁31a,31b,・・・と、利用側熱交換器32a,32b,・・・と、これらを接続する配管とから構成されている。本実施形態において、利用側膨張弁31a,31b,・・・は、冷媒圧力の調節や冷媒流量の調節等を行うために、利用側熱交換器32a,32b,・・・の冷媒液連絡配管4側(以下液側とする)に接続された電動膨張弁である。本実施形態において、利用側熱交換器32a,32b,・・・は、クロスフィンチューブ式の熱交換器であり、室内の空気と熱交換するための機器である。本実施形態において、利用ユニット3a,3b,・・・は、ユニット内に室内の空気を取り込み、送り出すための室内ファン(図示せず)を備えており、室内の空気と利用側熱交換器32a,32b,・・・を流れる冷媒とを熱交換させることが可能である。   The usage units 3a, 3b,... Are mainly composed of usage-side expansion valves 31a, 31b,..., Usage-side heat exchangers 32a, 32b,. It is configured. In the present embodiment, the use side expansion valves 31a, 31b,... Are connected to the refrigerant liquid connection pipes of the use side heat exchangers 32a, 32b,. This is an electric expansion valve connected to the 4th side (hereinafter referred to as the liquid side). In the present embodiment, the use side heat exchangers 32a, 32b,... Are cross fin tube type heat exchangers, and are devices for exchanging heat with indoor air. In the present embodiment, the utilization units 3a, 3b,... Include an indoor fan (not shown) for taking in and sending out indoor air into the unit, and the indoor air and utilization side heat exchanger 32a. , 32b,... Can exchange heat with the refrigerant flowing through them.

熱源ユニット2a〜2cは、それぞれ、主に、圧縮機構21a〜21cと、四路切換弁23a〜23cと、熱源側熱交換器24a〜24cと、液側閉鎖弁25a〜25cと、ガス側閉鎖弁26a〜26cと、熱源側膨張弁29a〜29cと、これらを接続する配管とから構成されている。本実施形態において、熱源側膨張弁29a〜29cは、冷媒圧力の調節や冷媒流量の調節等を行うために、熱源側膨張弁29a〜29cの冷媒液連絡配管4側(以下液側とする)に接続された電動膨張弁である。圧縮機構21a〜21cは、容量可変式の圧縮機22a〜22cと2台の容量一定式の圧縮機27a〜27c,28a〜28cと油分離器(図示せず)とを有する。   The heat source units 2a to 2c mainly include compression mechanisms 21a to 21c, four-way switching valves 23a to 23c, heat source side heat exchangers 24a to 24c, liquid side closing valves 25a to 25c, and gas side closing, respectively. It consists of valves 26a to 26c, heat source side expansion valves 29a to 29c, and piping connecting them. In the present embodiment, the heat source side expansion valves 29a to 29c adjust the refrigerant pressure, adjust the flow rate of the refrigerant, and the like, so that the refrigerant liquid communication pipe 4 side (hereinafter referred to as the liquid side) of the heat source side expansion valves 29a to 29c. It is an electric expansion valve connected to. The compression mechanisms 21a to 21c include variable capacity compressors 22a to 22c, two constant capacity compressors 27a to 27c, 28a to 28c, and an oil separator (not shown).

圧縮機22a〜22c,27a〜27c,28a〜28cは、吸入した冷媒ガスを圧縮するための機器であり、本実施形態において、インバータ制御により運転容量を変更することが可能な容量可変式の1台の圧縮機および容量一定式の2台の圧縮機である。
四路切換弁23a〜23cは、冷房運転と暖房運転との切り換え時に、冷媒の流れの方向を切り換えるための弁であり、冷房運転時には圧縮機構21a〜21cと熱源側熱交換器24a〜24cの冷媒ガス連絡配管5側(以下ガス側とする)とを接続するとともに圧縮機構21a〜21cの吸入側と冷媒ガス連絡配管5とを接続し(図1の四路切換弁23a〜23cの実線を参照)、暖房運転時には圧縮機構21a〜21cの出口と冷媒ガス連絡配管5とを接続するとともに圧縮機構21a〜21cの吸入側と熱源側熱交換器24a〜24cのガス側とを接続することが可能である(図1の四路切換弁23a〜23cの破線を参照)。
The compressors 22a to 22c, 27a to 27c, and 28a to 28c are devices for compressing the sucked refrigerant gas. In this embodiment, the variable capacity type 1 that can change the operation capacity by inverter control. One compressor and two compressors with constant capacity.
The four-way switching valves 23a to 23c are valves for switching the direction of the refrigerant flow when switching between the cooling operation and the heating operation. During the cooling operation, the four-way switching valves 23a to 23c are connected to the compression mechanisms 21a to 21c and the heat source side heat exchangers 24a to 24c. The refrigerant gas communication pipe 5 side (hereinafter referred to as the gas side) is connected and the suction side of the compression mechanisms 21a to 21c and the refrigerant gas communication pipe 5 are connected (the solid lines of the four-way switching valves 23a to 23c in FIG. 1). In the heating operation, the outlets of the compression mechanisms 21a to 21c and the refrigerant gas communication pipe 5 are connected and the suction sides of the compression mechanisms 21a to 21c and the gas sides of the heat source side heat exchangers 24a to 24c are connected. It is possible (see the broken lines of the four-way switching valves 23a-23c in FIG. 1).

熱源側熱交換器24a〜24cは、本実施形態において、クロスフィンチューブ式の熱交換器であり、空気を熱源として冷媒と熱交換するための機器である。本実施形態において、熱源ユニット2a〜2cは、ユニット内に屋外の空気を取り込み、送り出すための室外ファン(図示せず)を備えており、屋外の空気と熱源側熱交換器24a〜24cを流れる冷媒とを熱交換させることが可能である。   In the present embodiment, the heat source side heat exchangers 24a to 24c are cross fin tube type heat exchangers, and are devices for exchanging heat with a refrigerant using air as a heat source. In the present embodiment, the heat source units 2a to 2c include an outdoor fan (not shown) for taking in and sending outdoor air into the unit, and flows through the outdoor air and the heat source side heat exchangers 24a to 24c. It is possible to exchange heat with the refrigerant.

各熱源ユニット2a〜2cの液側閉鎖弁25a〜25cおよびガス側閉鎖弁26a〜26cは、冷媒液連絡配管4および冷媒ガス連絡配管5に並列に接続されている。冷媒液連絡配管4は、利用ユニット3a,3b,・・・の利用側熱交換器32a,32b,・・・の液側と熱源ユニット2a〜2cの熱源側熱交換器24a〜24cの液側との間を接続している。冷媒ガス連絡配管5は、利用ユニット3a,3b,・・・の利用側熱交換器32a,32b,・・・のガス側と熱源ユニット2a〜2cの四路切換弁23a〜23cとの間を接続している。   The liquid side closing valves 25a to 25c and the gas side closing valves 26a to 26c of the heat source units 2a to 2c are connected in parallel to the refrigerant liquid communication pipe 4 and the refrigerant gas communication pipe 5, respectively. The refrigerant liquid communication pipe 4 includes the liquid side of the use side heat exchangers 32a, 32b,... Of the use units 3a, 3b,... And the liquid side of the heat source side heat exchangers 24a to 24c of the heat source units 2a to 2c. Is connected. The refrigerant gas communication pipe 5 is between the gas side of the use side heat exchangers 32a, 32b,... Of the use units 3a, 3b,... And the four-way switching valves 23a-23c of the heat source units 2a-2c. Connected.

空気調和装置1は、冷媒寝込み判断手段8a〜8cと運転制御装置6a〜6cをさらに備えている。冷媒寝込み判断手段8a〜8cは、圧縮機構21a〜21c内に冷媒が寝込んでいるか否かの判断を行う。運転制御装置6a〜6cは、冷媒回路7内の冷媒量を判定する冷媒量判定運転を行う際に、事前に、圧縮機構21a〜21c内に冷媒が寝込んでいる場合に、冷媒の寝込みを解消する冷媒寝込み解消運転を行う。本実施形態において、冷媒寝込み判断手段と運転制御装置6a〜6cとは、各熱源ユニット2a〜2cに内蔵されている。そして、親機として設定された熱源ユニット(ここでは、2a)の運転制御装置(ここでは、6a)のみを使用して、上記のような運転制御を行うことが可能である。そして、他の子機として設定された熱源ユニット(ここでは、2a,2b)の運転制御装置(ここでは、6b,6c)は、圧縮機構等の機器の運転状態や各種センサにおける検出データを親機の運転制御装置6aに電送したり、親機の運転制御装置6aからの指令により、圧縮機構等の機器への運転および停止指令を行うように機能したりすることが可能である。ここでは、温度センサ61a〜61c(図1参照)が設けられ、この温度センサにより外気温が計測され、その温度データは親機の運転制御装置6aに電送される。そして、運転制御装置6aでは、冷媒寝込み解消運転を行うか否かの判断を行う。   The air conditioner 1 further includes refrigerant stagnation determining means 8a to 8c and operation control devices 6a to 6c. The refrigerant stagnation determination means 8a to 8c determine whether or not the refrigerant has stagnation in the compression mechanisms 21a to 21c. When the operation control devices 6a to 6c perform the refrigerant amount determination operation for determining the refrigerant amount in the refrigerant circuit 7, if the refrigerant is already sleeping in the compression mechanisms 21a to 21c, the operation control devices 6a to 6c cancel the refrigerant stagnation. Perform the refrigerant stagnation elimination operation. In the present embodiment, the refrigerant stagnation determining means and the operation control devices 6a to 6c are incorporated in the heat source units 2a to 2c. Then, it is possible to perform the operation control as described above using only the operation control device (here 6a) of the heat source unit (here 2a) set as the master unit. Then, the operation control device (here 6b, 6c) of the heat source unit (here 2a, 2b) set as the other slave unit is the parent of the operation state of the device such as the compression mechanism and the detection data of various sensors. It is possible to transmit the power to the operation control device 6a of the machine, or to perform an operation and stop command to a device such as a compression mechanism by a command from the operation control device 6a of the parent machine. Here, temperature sensors 61a to 61c (see FIG. 1) are provided, the outside air temperature is measured by this temperature sensor, and the temperature data is transmitted to the operation control device 6a of the master unit. Then, the operation control device 6a determines whether or not to perform the refrigerant stagnation elimination operation.

(2)空気調和装置の動作
次に、空気調和装置1の動作について、図1を用いて説明する。
<通常運転>
(冷房運転)
まず、冷房運転について説明する。冷房運転時は、すべての熱源ユニット2a〜2cにおいて、四路切換弁23a〜23cが図1の実線で示される状態、すなわち、各圧縮機構21a〜21cの吐出側が熱源側熱交換器24a〜24cのガス側に接続され、かつ、各圧縮機構21a〜21cの吸入側が冷媒ガス連絡配管5を介して利用側熱交換器32a,32b,・・・のガス側に接続された状態となっている。また、液側閉鎖弁25a〜25c、ガス側閉鎖弁26a〜26cは開にされ、利用側膨張弁31a,31b,・・・は冷媒を減圧するように開度調節されている。
(2) Operation | movement of an air conditioning apparatus Next, operation | movement of the air conditioning apparatus 1 is demonstrated using FIG.
<Normal operation>
(Cooling operation)
First, the cooling operation will be described. During the cooling operation, in all the heat source units 2a to 2c, the four-way switching valves 23a to 23c are in the state indicated by the solid line in FIG. 1, that is, the discharge side of each compression mechanism 21a to 21c is the heat source side heat exchanger 24a to 24c. And the suction side of each compression mechanism 21a to 21c is connected to the gas side of the use side heat exchangers 32a, 32b,... . Further, the liquid side closing valves 25a to 25c and the gas side closing valves 26a to 26c are opened, and the opening degrees of the use side expansion valves 31a, 31b,... Are adjusted so as to depressurize the refrigerant.

この空気調和装置1の冷媒回路7の状態で、各熱源ユニット2a〜2cの室外ファン(図示せず)、利用ユニット3a,3b,・・・の室内ファン(図示せず)および各圧縮機構21a〜21cを起動すると、冷媒ガスは、各圧縮機構21a〜21cに吸入されて圧縮された後、四路切換弁23a〜23cを経由して熱源側熱交換器24a〜24cに送られて、外気と熱交換して凝縮される。この凝縮した冷媒液は、冷媒液連絡配管4に合流されて、利用ユニット3a,3b,・・・側に送られる。そして、利用ユニット3a,3b,・・・に送られた冷媒液は、利用側膨張弁31a,31b,・・・で減圧された後、利用側熱交換器32a,32b,・・・で室内空気と熱交換して蒸発される。この蒸発した冷媒ガスは、冷媒ガス連絡配管5を通じて熱源ユニット2a〜2c側に送られる。冷媒ガス連絡配管5を流れる冷媒ガスは、各熱源ユニット2a〜2cの四路切換弁23a〜23cを通過した後、再び、各圧縮機構21a〜21cに吸入される。このようにして、冷房運転が行われる。   In the state of the refrigerant circuit 7 of the air conditioner 1, outdoor fans (not shown) of the heat source units 2a to 2c, indoor fans (not shown) of the utilization units 3a, 3b,... And the compression mechanisms 21a. When 21 to 21c is started, the refrigerant gas is sucked into the compression mechanisms 21a to 21c and compressed, and then sent to the heat source side heat exchangers 24a to 24c via the four-way switching valves 23a to 23c, so that the outside air Heat is exchanged and condensed. The condensed refrigerant liquid is merged into the refrigerant liquid communication pipe 4 and sent to the use units 3a, 3b,. And the refrigerant | coolant liquid sent to utilization unit 3a, 3b, ... is pressure-reduced by utilization side expansion valve 31a, 31b, ..., and indoors by utilization side heat exchanger 32a, 32b, ... Evaporates by heat exchange with air. The evaporated refrigerant gas is sent to the heat source units 2 a to 2 c through the refrigerant gas communication pipe 5. The refrigerant gas flowing through the refrigerant gas communication pipe 5 passes through the four-way switching valves 23a to 23c of the heat source units 2a to 2c, and is again sucked into the compression mechanisms 21a to 21c. In this way, the cooling operation is performed.

(暖房運転)
次に、暖房運転について説明する。暖房運転時は、すべての熱源ユニット2a〜2cにおいて、四路切換弁23a〜23cが図1の破線で示される状態、すなわち、各圧縮機構21a〜21cの吐出側が冷媒ガス連絡配管5を介して利用側熱交換器32a,32b,・・・のガス側に接続され、かつ、各圧縮機構21a〜21cの吸入側が熱源側熱交換器24a〜24cのガス側に接続された状態となっている。また、液側閉鎖弁25a〜25c、ガス側閉鎖弁26a〜26cは開にされ、熱源側膨張弁29a〜29cは冷媒を減圧するように開度調節されている。
(Heating operation)
Next, the heating operation will be described. During the heating operation, in all the heat source units 2a to 2c, the four-way switching valves 23a to 23c are in the state indicated by the broken lines in FIG. 1, that is, the discharge sides of the compression mechanisms 21a to 21c are connected via the refrigerant gas communication pipe 5. Are connected to the gas side of the use side heat exchangers 32a, 32b,... And the suction side of each compression mechanism 21a to 21c is connected to the gas side of the heat source side heat exchangers 24a to 24c. . Further, the liquid side closing valves 25a to 25c and the gas side closing valves 26a to 26c are opened, and the opening degrees of the heat source side expansion valves 29a to 29c are adjusted so as to depressurize the refrigerant.

この空気調和装置1の冷媒回路7の状態で、各熱源ユニット2a〜2cの室外ファン(図示せず)、各利用ユニット3a,3b,・・・の室内ファン(図示せず)および各圧縮機構21a〜21cを起動すると、冷媒ガスは、各圧縮機構21a〜21cに吸入されて圧縮された後、各熱源ユニット2a〜2cの四路切換弁23a〜23cを経由して冷媒ガス連絡配管5に合流されて、利用ユニット3a,3b,・・・側に送られる。そして、利用ユニット3a,3b,・・・に送られた冷媒ガスは、利用側熱交換器32a,32b,・・・で室内空気と熱交換して凝縮される。この凝縮した冷媒液は、利用側膨張弁31a,31b,・・・を経由して、冷媒液連絡配管4に合流し、熱源ユニット2a〜2c側に送られる。冷媒液連絡配管4を流れる冷媒液は、各熱源ユニット2a〜2cの熱源側熱交換器24a〜24cで外気と熱交換して蒸発される。この蒸発した冷媒ガスは、各熱源ユニット2a〜2cの四路切換弁23a〜23cを経由して、再び、圧縮機構21a〜21cに吸入される。このようにして、暖房運転が行われる。   In the state of the refrigerant circuit 7 of the air conditioner 1, outdoor fans (not shown) of the heat source units 2a to 2c, indoor fans (not shown) of the use units 3a, 3b,. When 21a-21c is started, the refrigerant gas is sucked into the compression mechanisms 21a-21c and compressed, and then is supplied to the refrigerant gas communication pipe 5 via the four-way switching valves 23a-23c of the heat source units 2a-2c. They are merged and sent to the usage units 3a, 3b,. And the refrigerant gas sent to utilization unit 3a, 3b, ... is condensed by exchanging heat with indoor air by utilization side heat exchanger 32a, 32b, .... The condensed refrigerant liquid joins the refrigerant liquid communication pipe 4 via the use side expansion valves 31a, 31b,... And is sent to the heat source units 2a to 2c side. The refrigerant liquid flowing through the refrigerant liquid communication pipe 4 is evaporated by exchanging heat with the outside air in the heat source side heat exchangers 24a to 24c of the heat source units 2a to 2c. The evaporated refrigerant gas is again sucked into the compression mechanisms 21a to 21c via the four-way switching valves 23a to 23c of the heat source units 2a to 2c. In this way, the heating operation is performed.

<冷媒量判定運転>
次に、冷媒量判定運転について説明する。冷媒量判定運転には、冷媒漏洩検知運転と冷媒自動充填運転とがある。
(冷媒漏洩検知運転)
冷媒量判定運転の1つである冷媒漏洩検知運転について、図1、図2を用いて説明する。ここで、図2は、冷媒漏洩検知運転時のフローチャートである。
<Refrigerant amount judgment operation>
Next, the refrigerant quantity determination operation will be described. The refrigerant quantity determination operation includes a refrigerant leakage detection operation and an automatic refrigerant charging operation.
(Refrigerant leak detection operation)
A refrigerant leakage detection operation, which is one of the refrigerant quantity determination operations, will be described with reference to FIGS. 1 and 2. Here, FIG. 2 is a flowchart at the time of the refrigerant leak detection operation.

通常運転における冷房運転や暖房運転時に、定期的(例えば、毎月1回、空調空間に負荷処理を必要としないとき等)に、冷媒量判定運転の1つである冷媒漏洩検知運転に切り換えて運転を行うことによって、不測の原因により冷媒回路7内の冷媒が外部に漏洩していないかどうかを検知する場合を例にして説明する。
まず、ステップS1では、冷媒漏洩検知運転を行う前に冷媒量判定準備運転を行う。この冷媒量判定準備運転については後述する。
During cooling operation or heating operation in normal operation, switch to the refrigerant leakage detection operation, which is one of the refrigerant amount determination operations, periodically (for example, once every month, when load processing is not required in the air-conditioned space) An example will be described in which it is detected whether or not the refrigerant in the refrigerant circuit 7 has leaked to the outside due to an unexpected cause.
First, in step S1, the refrigerant amount determination preparation operation is performed before the refrigerant leakage detection operation. This refrigerant quantity determination preparation operation will be described later.

次に、ステップS2では、上記の冷房運転や暖房運転のような通常運転における運転が一定時間(例えば、1ヶ月等)経過したかどうかを判定し、通常運転における運転が一定時間経過した場合には、次のステップS2に移行する。
ステップS3では、通常運転における運転が一定時間経過した場合に、冷媒回路7が、熱源ユニット2a〜2cの四路切換弁23a〜23cが図1の実線で示される状態で、かつ、利用ユニット3a,3b,・・・の利用側膨張弁31a,31b,・・・が開けられた状態となり、圧縮機構21a〜21c、室外ファン(図示せず)が起動されて、利用ユニット3a,3b,・・・の全てについて強制的に冷房運転が行われる。
Next, in step S2, it is determined whether or not a certain time (for example, one month) has elapsed in a normal operation such as the cooling operation or the heating operation, and when a certain time has elapsed in the normal operation. Moves to the next step S2.
In step S3, when the operation in the normal operation has passed for a fixed time, the refrigerant circuit 7 is in a state where the four-way switching valves 23a to 23c of the heat source units 2a to 2c are shown by the solid line in FIG. , 3b,..., The use side expansion valves 31a, 31b,... Are opened, the compression mechanisms 21a to 21c and the outdoor fan (not shown) are activated, and the use units 3a, 3b,.・ All of these are forcibly cooled.

ステップS4では、室外ファンによる凝縮圧力制御、利用側膨張弁31a,31b,・・・による過熱度制御、圧縮機構21a〜21cによる蒸発圧力制御が行われて、冷媒回路7内を循環する冷媒の状態が安定させられる。
ステップS5では、熱源側熱交換器24a〜24cの出口における過冷却度を検出する。
In step S4, the condensation pressure control by the outdoor fan, the superheat degree control by the use side expansion valves 31a, 31b,... And the evaporation pressure control by the compression mechanisms 21a to 21c are performed, and the refrigerant circulating in the refrigerant circuit 7 is controlled. The state is stabilized.
In step S5, the degree of supercooling at the outlets of the heat source side heat exchangers 24a to 24c is detected.

ステップS6では、ステップS5において検出された過冷却度の値から冷媒量の適否を判定する。ここで、ステップS5における過冷却度の検出の際には、利用ユニット3a,3b,・・・の形態や冷媒液連絡配管4および冷媒ガス連絡配管5の長さとは無関係に、熱源側熱交換器24a〜24cの出口における冷媒の過冷却度によって冷媒回路7内に充填されている冷媒量の適否が判定できるようになっている。   In step S6, the suitability of the refrigerant quantity is determined from the value of the degree of supercooling detected in step S5. Here, when detecting the degree of supercooling in step S5, the heat source side heat exchange is performed irrespective of the form of the utilization units 3a, 3b,... And the lengths of the refrigerant liquid communication pipe 4 and the refrigerant gas communication pipe 5. Appropriateness of the amount of refrigerant filled in the refrigerant circuit 7 can be determined by the degree of supercooling of the refrigerant at the outlets of the containers 24a to 24c.

追加充填される冷媒量が少なく必要冷媒量に達していない場合においては、熱源側熱交換器24a〜24cにおける冷媒量が少ない状態となる(具体的には、ステップS5において検出された過冷却度値が、熱源側熱交換器24a〜24cの凝縮圧力における必要冷媒量に対応する過冷却度値よりも小さいことを意味する。)。このため、ステップS5において検出された過冷却度値が目標過冷却度値とほぼ同じ値(例えば、検出された過冷却度値と目標過冷却度値との差が所定値未満)である場合には、冷媒の漏洩がないものと判定して、冷媒漏洩検知運転を終了する。   When the amount of refrigerant to be additionally charged is small and has not reached the necessary amount of refrigerant, the amount of refrigerant in the heat source side heat exchangers 24a to 24c is small (specifically, the degree of supercooling detected in step S5). This means that the value is smaller than the degree of supercooling corresponding to the required refrigerant amount at the condensation pressure of the heat source side heat exchangers 24a to 24c.) For this reason, when the supercooling degree value detected in step S5 is substantially the same value as the target supercooling degree value (for example, the difference between the detected supercooling degree value and the target supercooling degree value is less than a predetermined value). Therefore, it is determined that there is no refrigerant leakage, and the refrigerant leakage detection operation is terminated.

一方、ステップS5において検出された過冷却度値が目標過冷却度値とよりも小さい値(例えば、検出された過冷却度値と目標過冷却度値との差が所定値以上)である場合には、冷媒の漏洩が発生しているものと判定して、ステップS7の処理に移行して、冷媒漏洩を検知したことを知らせる警告表示を行った後、冷媒漏洩検知運転を終了する。
(冷媒自動充填運転)
冷媒量判定運転の1つである冷媒自動充填運転について、図1、図3を用いて説明する。ここで、図3は、冷媒自動充填運転時のフローチャートである。
On the other hand, when the supercooling degree value detected in step S5 is smaller than the target supercooling degree value (for example, the difference between the detected supercooling degree value and the target supercooling degree value is a predetermined value or more). In step S7, it is determined that a refrigerant leak has occurred, the process proceeds to step S7, and a warning display informing that the refrigerant leak has been detected is performed. Then, the refrigerant leak detection operation is terminated.
(Automatic refrigerant charging operation)
The refrigerant automatic charging operation, which is one of the refrigerant quantity determination operations, will be described with reference to FIGS. 1 and 3. Here, FIG. 3 is a flowchart at the time of the automatic refrigerant charging operation.

現地において、冷媒があらかじめ充填された熱源ユニット2a〜2cと、利用ユニット3a,3b,・・・とを冷媒液連絡配管4および冷媒ガス連絡配管5を介して接続して冷媒回路7を構成した後に、冷媒液連絡配管4および冷媒ガス連絡配管5の長さに応じて不足する冷媒を冷媒回路7内に追加充填する場合を例にして説明する。
まず、熱源ユニット2a〜2cの液側閉鎖弁25a〜25cおよびガス側閉鎖弁26a〜26cを開けて、熱源ユニット2a〜2cにあらかじめ充填された冷媒を冷媒回路7内に充満させる。
The refrigerant circuit 7 is configured by connecting the heat source units 2a to 2c preliminarily filled with the refrigerant and the utilization units 3a, 3b,... Via the refrigerant liquid communication pipe 4 and the refrigerant gas communication pipe 5. Later, an example in which the refrigerant circuit 7 is additionally filled with a refrigerant that is insufficient according to the lengths of the refrigerant liquid communication pipe 4 and the refrigerant gas communication pipe 5 will be described.
First, the liquid side shut-off valves 25a to 25c and the gas side shut-off valves 26a to 26c of the heat source units 2a to 2c are opened, and the refrigerant circuit 7 is filled with the refrigerant previously filled in the heat source units 2a to 2c.

次に、冷媒充填作業を行う者が、リモコン(図示せず)を通じて、または、利用ユニット3a,3b,・・・の利用側制御部(図示せず)や熱源ユニット2a〜2cの運転制御装置6a〜6cに対して直接に、冷媒量判定運転の一つである冷媒自動充填運転を行うように指令を出すと、ステップS11からステップS14の手順で冷媒自動充填運転が行われる。   Next, a person who performs the refrigerant charging operation uses a remote controller (not shown), or a use side control unit (not shown) of the use units 3a, 3b,... And an operation control device for the heat source units 2a to 2c. When a command is issued directly to 6a to 6c to perform the automatic refrigerant charging operation, which is one of the refrigerant quantity determination operations, the automatic refrigerant charging operation is performed in the procedure from step S11 to step S14.

ステップS11では、冷媒自動充填運転を行う前に冷媒量判定準備運転を行う。この冷媒量判定準備運転については後述する。
ステップS12では、冷媒自動充填運転の開始指令がなされると、冷媒回路7が、熱源ユニット2a〜2cの四路切換弁23a〜23cが図1の実線で示される状態で、かつ、利用ユニット3a,3b,・・・の利用側膨張弁31a,31b,・・・が開けられた状態となり、圧縮機構21a〜21c、室外ファン(図示せず)が起動されて、利用ユニット3a,3b,・・・の全てについて強制的に冷房運転が行われる。
In step S11, a refrigerant quantity determination preparation operation is performed before the refrigerant automatic charging operation. This refrigerant quantity determination preparation operation will be described later.
In step S12, when an instruction to start the automatic refrigerant charging operation is made, the refrigerant circuit 7 is in a state where the four-way switching valves 23a to 23c of the heat source units 2a to 2c are indicated by solid lines in FIG. , 3b,..., The use side expansion valves 31a, 31b,... Are opened, the compression mechanisms 21a to 21c and the outdoor fan (not shown) are activated, and the use units 3a, 3b,.・ All of these are forcibly cooled.

ステップS13では、室外ファンによる凝縮圧力制御、利用側膨張弁31a,31b,・・・による過熱度制御、圧縮機構21a〜21cによる蒸発圧力制御が行われて、冷媒回路7内を循環する冷媒の状態が安定させられる。
ステップS14では、熱源側熱交換器24a〜24cの出口における過冷却度を検出する。
In step S13, the condensation pressure control by the outdoor fan, the superheat degree control by the use side expansion valves 31a, 31b,... And the evaporation pressure control by the compression mechanisms 21a to 21c are performed, and the refrigerant circulating in the refrigerant circuit 7 is controlled. The state is stabilized.
In step S14, the degree of supercooling at the outlets of the heat source side heat exchangers 24a to 24c is detected.

ステップS15では、ステップS14において検出された過冷却度の値から冷媒量の適否を判定する。具体的には、ステップS14において検出された過冷却度値が目標過冷却度値よりも小さく冷媒充填が完了していない場合には、過冷却度値が目標過冷却度値に達するまで、上記のステップS13およびステップS14の処理が繰り返される。
なお、この冷媒自動充填運転は、現地施工後の試運転時の冷媒充填だけでなく、冷媒の漏洩等によって冷媒回路7内に充填されている冷媒量が減少した場合の冷媒の追加充填にも使用することが可能である。
In step S15, the suitability of the refrigerant amount is determined from the value of the degree of supercooling detected in step S14. Specifically, when the supercooling degree value detected in step S14 is smaller than the target supercooling degree value and the refrigerant charging is not completed, the above-described process is continued until the supercooling degree value reaches the target supercooling degree value. Steps S13 and S14 are repeated.
This automatic refrigerant charging operation is used not only for refrigerant charging during trial operation after on-site construction, but also for additional charging of refrigerant when the amount of refrigerant charged in the refrigerant circuit 7 decreases due to refrigerant leakage or the like. Is possible.

<冷媒量判定準備運転>
上記の冷媒量判定運転において、冷媒寝込み判断手段8a〜8cは、温度センサ61a〜61cが感知した温度が所定温度よりも低い場合に、圧縮機構21a〜21c内に冷媒が寝込んでいると判断し、運転制御装置6aに冷媒の寝込みがあるという信号を送る。冷媒寝込み判断手段8a〜8cより信号を受けた運転制御装置6aは、圧縮機22a〜22c,27a〜27c,28a〜28cが十分に暖まるように事前運転(冷媒寝込み解消運転)を行う制御をしている。
<Refrigerant amount determination preparation operation>
In the refrigerant amount determination operation, the refrigerant stagnation determination means 8a to 8c determine that the refrigerant is stagnation in the compression mechanisms 21a to 21c when the temperature detected by the temperature sensors 61a to 61c is lower than the predetermined temperature. Then, a signal indicating that the refrigerant has stagnated is sent to the operation control device 6a. The operation control device 6a that has received a signal from the refrigerant stagnation judging means 8a to 8c performs control to perform a preliminary operation (refrigerant stagnation elimination operation) so that the compressors 22a to 22c, 27a to 27c, and 28a to 28c are sufficiently warmed. ing.

図4において、ステップS21では、運転制御装置6aは、各温度センサ61a〜61cにより測定された圧縮機構21a〜21c内温度が所定温度よりも低いか否かを判断し、圧縮機温度が所定温度よりも低い場合にはステップS22へ移行し、そうでない場合にはステップS23へ移行する。ステップS22では、冷媒寝込み解消運転を行いステップS23へ移行する。ステップ23では油戻し運転を行い、油戻し運転が終了すると、冷媒量判定運転が冷媒漏洩検知運転の場合にはステップS2へ移行し、冷媒量判定運転が冷媒自動充填運転の場合にはステップS12へ移行する。   In FIG. 4, in step S21, the operation control device 6a determines whether or not the temperatures in the compression mechanisms 21a to 21c measured by the temperature sensors 61a to 61c are lower than a predetermined temperature, and the compressor temperature is the predetermined temperature. If it is lower, the process proceeds to step S22, and if not, the process proceeds to step S23. In step S22, the refrigerant stagnation elimination operation is performed and the process proceeds to step S23. In step 23, an oil return operation is performed. When the oil return operation is completed, the process proceeds to step S2 if the refrigerant amount determination operation is a refrigerant leak detection operation, and step S12 if the refrigerant amount determination operation is an automatic refrigerant charging operation. Migrate to

(冷媒寝込み解消運転)
ここでは、上記のステップS22の冷媒寝込み解消運転について説明する。運転制御装置6aは、冷媒寝込み判断手段8a〜8cより信号を受信すると、熱源ユニット2a〜2cの圧縮機構21a〜21cの全てに対して、駆動するように指令を出す。ただし、熱源ユニット2b,2cについては、親機の運転制御装置6aの指令を子機の運転制御装置6b,6cが受け、子機の運転制御装置6b,6cが圧縮機構21b,21cに対して駆動するように指令を出す。
(Refrigerant stagnation operation)
Here, the refrigerant stagnation elimination operation in step S22 will be described. When the operation control device 6a receives signals from the refrigerant stagnation determination means 8a to 8c, it gives a command to drive all of the compression mechanisms 21a to 21c of the heat source units 2a to 2c. However, for the heat source units 2b and 2c, the operation control devices 6b and 6c of the slave units receive commands from the operation control device 6a of the master unit, and the operation control devices 6b and 6c of the slave units receive the compression mechanisms 21b and 21c. Command to drive.

図5において、ステップS31では、圧縮機22a〜22cを駆動させ、ステップS32へ移行する。ステップS32では、ステップS31から15分後に圧縮機22a〜22cを停止させ、圧縮機27a〜27cを駆動させ、ステップS33へ移行する。ステップS33では、ステップS32から15分後に圧縮機27a〜27cを停止させ、圧縮機28a〜28cを駆動させ、ステップS34へ移行する。ステップS34では、ステップS33から15分後に圧縮機28a〜28cを停止させ、冷媒寝込み解消運転を終了する。   In FIG. 5, in step S31, the compressors 22a to 22c are driven, and the process proceeds to step S32. In step S32, the compressors 22a to 22c are stopped 15 minutes after step S31, the compressors 27a to 27c are driven, and the process proceeds to step S33. In step S33, the compressors 27a to 27c are stopped 15 minutes after step S32, the compressors 28a to 28c are driven, and the process proceeds to step S34. In step S34, the compressors 28a to 28c are stopped 15 minutes after step S33, and the refrigerant stagnation elimination operation is terminated.

(油戻し運転)
上記の冷媒寝込み解消運転が終了した場合、もしくは、ステップS21において圧縮機温度が所定温度よりも高い場合には、ステップS23の油戻し運転が行われる。ここでは、図6により油戻し運転について説明する。
ステップS41では、運転制御装置6aは、各熱源ユニット2a〜2cの圧縮機の内の1台(ここでは、圧縮機22a〜22c)を駆動するように指令を出す。ただし、熱源ユニット2b,2cについては、親機の運転制御装置6aの指令を子機の運転制御装置6b,6cが受け、子機の運転制御装置6b,6cが圧縮機22b,22cに対して駆動するように指令を出す。ステップS41が終了すると、ステップS42へ移行する。そして、ステップS42では、運転制御装置6aは、圧縮機22a〜22cを5分間駆動させた後に停止するように指令を出す。これにより、冷媒回路7内に溜まり込んでいる油を圧縮機構21a〜21c内に戻すことができる。
(Oil return operation)
When the refrigerant stagnation elimination operation is completed, or when the compressor temperature is higher than the predetermined temperature in step S21, the oil return operation in step S23 is performed. Here, the oil return operation will be described with reference to FIG.
In step S41, the operation control device 6a issues a command to drive one of the compressors of the heat source units 2a to 2c (here, the compressors 22a to 22c). However, for the heat source units 2b and 2c, the operation control devices 6b and 6c of the slave units receive commands from the operation control device 6a of the master unit, and the operation control devices 6b and 6c of the slave units are in response to the compressors 22b and 22c. Command to drive. When step S41 ends, the process proceeds to step S42. In step S42, the operation control device 6a issues a command to stop after driving the compressors 22a to 22c for 5 minutes. Thereby, the oil accumulated in the refrigerant circuit 7 can be returned to the compression mechanisms 21a to 21c.

<特徴>
(1)
この空気調和装置1では、冷媒量判定運転を行う際に、事前に、冷媒寝込み判断手段により、冷媒が圧縮機22a〜22c,27a〜27c,28a〜28c内部の冷凍機油に寝込んでいるか否かの判定が行われる。そして、冷媒寝込み判断手段が圧縮機構21a〜21c内の冷凍機油に冷媒が寝込んでいると判断すると、運転制御装置6aにより冷媒寝込み解消運転が行われる。したがって、この空気調和装置1では、圧縮機構21a〜21c内での冷凍機油に対する冷媒溜まり込みを解消してから判定運転を行うことが可能である。このため、冷媒量判定運転の際に、圧縮機構21a〜21c内の冷凍機油に溶解する冷媒量を少なくすることができ、冷媒量の予測誤差を小さくできる。このため、冷媒量判定運転の際に、圧縮機構21a〜21c内での冷凍機油に対する冷媒の寝込みを防止できるので、高精度な冷媒量判定運転が可能となる。
<Features>
(1)
In the air conditioner 1, when the refrigerant amount determination operation is performed, whether or not the refrigerant has stagnated in the refrigerating machine oil inside the compressors 22a to 22c, 27a to 27c, and 28a to 28c in advance by the refrigerant stagnation determining means. Is determined. When the refrigerant stagnation determining means determines that the refrigerant is sleeping in the refrigeration machine oil in the compression mechanisms 21a to 21c, the operation control device 6a performs the refrigerant stagnation elimination operation. Therefore, in this air conditioner 1, it is possible to perform the determination operation after eliminating the refrigerant accumulation in the refrigerating machine oil in the compression mechanisms 21a to 21c. For this reason, at the time of refrigerant | coolant amount determination driving | operation, the refrigerant | coolant amount melt | dissolved in the refrigeration oil in compression mechanism 21a-21c can be decreased, and the prediction error of a refrigerant | coolant amount can be made small. For this reason, in the refrigerant quantity determination operation, the refrigerant stagnation with respect to the refrigerating machine oil in the compression mechanisms 21a to 21c can be prevented, so that a highly accurate refrigerant quantity determination operation can be performed.

(2)
この空気調和装置1では、冷媒寝込み判断手段の判断は、圧縮機構21a〜21c内の温度に基づいて行われる。このため、圧縮機22a〜22c,27a〜27c,28a〜28c内部の温度の測定が可能となり、圧縮機構21a〜21c内の冷凍機油に対して冷媒の寝込みがあるか否かの判断が可能となる。
(2)
In the air conditioner 1, the determination by the refrigerant stagnation determination means is performed based on the temperature in the compression mechanisms 21a to 21c. For this reason, it becomes possible to measure the temperatures inside the compressors 22a to 22c, 27a to 27c, and 28a to 28c, and to determine whether or not refrigerant has stagnated in the refrigerating machine oil in the compression mechanisms 21a to 21c. Become.

(3)
この空気調和装置1では、冷媒寝込み解消運転において、圧縮機22a〜22c,27a〜27c,28a〜28cを第1所定時間暖機運転させる。したがって、この冷媒寝込み解消運転は、圧縮機22a〜22c,27a〜27c,28a〜28cを第1所定時間運転させることで、圧縮機構21a〜21c内を暖めることができる(暖機運転)。このため、圧縮機構21a〜21c内を十分に暖めることができ、圧縮機構21a〜21c内の冷凍機油に対する冷媒の寝込みを解消することができる。
(3)
In the air conditioner 1, in the refrigerant stagnation elimination operation, the compressors 22a to 22c, 27a to 27c, and 28a to 28c are warmed up for a first predetermined time. Therefore, this refrigerant stagnation elimination operation can warm the inside of the compression mechanisms 21a to 21c by operating the compressors 22a to 22c, 27a to 27c, and 28a to 28c for the first predetermined time (warm-up operation). For this reason, the inside of compression mechanism 21a-21c can fully be warmed, and the stagnation of the refrigerant | coolant with respect to the refrigerator oil in compression mechanism 21a-21c can be eliminated.

(4)
この空気調和装置1では、熱源ユニット2a〜2cが複数存在する。したがって、システム内の熱源ユニット2a〜2cを一定時間ローテーションすることで、低負荷時でも1ユニットに負担が偏らず、システム全体の寿命を延ばすことができる。
(5)
この空気調和装置1では、圧縮機構21a〜21cが複数の圧縮機22a〜22c,27a〜27c,28a〜28cを有している。したがって、圧縮機22a〜22c,27a〜27c,28a〜28cの台数制御による圧縮機構21a〜21cの容量変更を行うことができるため、利用ユニット3a,3b,・・・の運転負荷が小さくなった場合でも、全ての熱源ユニット2a〜2cを運転継続させることが可能になり、冷媒回路7での冷媒や油の溜まり込みを極力防ぐことができる。また、複数の圧縮機22a〜22c,27a〜27c,28a〜28cの内1台が故障しても残りの圧縮機が対応可能である。このため、空調の完全停止を回避することができる。
(4)
In the air conditioner 1, there are a plurality of heat source units 2a to 2c. Therefore, by rotating the heat source units 2a to 2c in the system for a certain period of time, the load is not biased to one unit even at a low load, and the life of the entire system can be extended.
(5)
In the air conditioner 1, the compression mechanisms 21a to 21c have a plurality of compressors 22a to 22c, 27a to 27c, and 28a to 28c. Therefore, since the capacity of the compression mechanisms 21a to 21c can be changed by controlling the number of the compressors 22a to 22c, 27a to 27c, and 28a to 28c, the operation load of the utilization units 3a, 3b,. Even in this case, it becomes possible to continue the operation of all the heat source units 2a to 2c, and the accumulation of refrigerant and oil in the refrigerant circuit 7 can be prevented as much as possible. Further, even if one of the plurality of compressors 22a to 22c, 27a to 27c, 28a to 28c breaks down, the remaining compressors can be handled. For this reason, complete stop of air conditioning can be avoided.

(6)
この空気調和装置1では、圧縮機22a〜22c,27a〜27c,28a〜28cが複数存在する場合に、全ての圧縮機22a〜22c,27a〜27c,28a〜28cを1台ずつ交代で第2所定時間運転させる。冷媒寝込み解消運転の際に、低外気温時に冷房運転させるため、低負荷のために1度に全ての圧縮機22a〜22c,27a〜27c,28a〜28cを運転させることは難しい。このため、1台ずつ第2所定時間運転させることにより、全ての圧縮機22a〜22c,27a〜27c,28a〜28cを事前に駆動させることが可能となる。
(6)
In this air conditioner 1, when there are a plurality of compressors 22a to 22c, 27a to 27c, and 28a to 28c, all the compressors 22a to 22c, 27a to 27c, and 28a to 28c are replaced one by one. Let it run for a predetermined time. Since the cooling operation is performed at a low outside air temperature during the refrigerant stagnation elimination operation, it is difficult to operate all the compressors 22a to 22c, 27a to 27c, and 28a to 28c at a time because of a low load. Therefore, it is possible to drive all the compressors 22a to 22c, 27a to 27c, and 28a to 28c in advance by operating them one by one for the second predetermined time.

(7)
この空気調和装置1では、冷媒寝込み解消運転の後に、さらに油戻し運転を行う。また、この油戻し運転では、配管内冷媒流速が所定流速以上になるような制御が行われる。したがって、油戻し運転をさらに行うことで、冷媒回路7内に溜まり込んでいる油を戻すことが可能となる。また、確実に冷媒回路7内に溜まり込んでいる油を圧縮機22a〜22c,27a〜27c,28a〜28c内部に戻すことが可能となる。このため、冷媒量判定運転をさらに精度良く運転することが可能となる。
(7)
In the air conditioner 1, an oil return operation is further performed after the refrigerant stagnation elimination operation. Further, in this oil return operation, control is performed so that the refrigerant flow rate in the pipe is equal to or higher than a predetermined flow rate. Therefore, the oil accumulated in the refrigerant circuit 7 can be returned by further performing the oil return operation. In addition, the oil accumulated in the refrigerant circuit 7 can be reliably returned to the compressors 22a to 22c, 27a to 27c, and 28a to 28c. For this reason, it becomes possible to operate the refrigerant quantity determination operation with higher accuracy.

<他の実施形態>
以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
(A)
前記実施形態においては、空気調和装置1の熱源ユニット2a〜2cとして外気を熱源とした空冷式の熱源ユニット2a〜2cを使用しているが、水冷式や氷蓄熱式の熱源ユニットを使用しても良い。
<Other embodiments>
As mentioned above, although embodiment of this invention was described based on drawing, a specific structure is not restricted to these embodiment, It can change in the range which does not deviate from the summary of invention.
(A)
In the embodiment, air-cooled heat source units 2a to 2c using outside air as the heat source are used as the heat source units 2a to 2c of the air conditioner 1. However, a water-cooled or ice heat storage type heat source unit is used. Also good.

(B)
前記実施形態においては、冷暖切換運転が可能な空気調和装置1であったが、冷房専用の空気調和装置や冷暖同時運転が可能な空気調和装置であっても良い。
(C)
前記実施形態においては、同じ空調能力を有する3台の熱源ユニット2a〜2cを並列接続しているが、異なる空調能力を有する熱源ユニットを並列接続しても良いし、3台に限らず2台以上の熱源ユニットを並列接続しても良い。
(B)
In the embodiment, the air conditioner 1 is capable of switching between cooling and heating, but may be an air conditioner dedicated to cooling or an air conditioner capable of simultaneous cooling and heating.
(C)
In the embodiment, the three heat source units 2a to 2c having the same air conditioning capability are connected in parallel. However, the heat source units having different air conditioning capabilities may be connected in parallel. The above heat source units may be connected in parallel.

(D)
前記実施形態においては、運転制御装置6a〜6cが各熱源ユニット2a〜2cに内蔵されているが、空気調和装置全体として1つの運転制御装置を有するものであっても良い。
(E)
前記実施形態においては、冷媒寝込み判断手段は、外気温度に基づいて圧縮機22a〜22c,27a〜27c,28a〜28c内部に冷媒が寝込んでいるか否かを判断するが、圧縮機構21a〜21c内の温度に基づいて判断しても良いし、インターネットなどの通信回線9を利用して気象情報提供外部サーバ10より気象情報を取得しその気象情報に基づいて判断しても良いし(図7参照)、予測される冷媒が圧縮機22a〜22c,27a〜27c,28a〜28c内部に寝込み易い冷媒寝込み期間に基づいて判断しても良い。
(D)
In the said embodiment, although the operation control apparatuses 6a-6c are incorporated in each heat source unit 2a-2c, you may have one operation control apparatus as the whole air conditioning apparatus.
(E)
In the above embodiment, the refrigerant stagnation determining means determines whether or not the refrigerant is stagnation inside the compressors 22a to 22c, 27a to 27c, and 28a to 28c based on the outside air temperature. May be determined based on the temperature of the weather, or may be determined based on the weather information obtained from the weather information providing external server 10 using the communication line 9 such as the Internet (see FIG. 7). ), The predicted refrigerant may be determined based on the refrigerant stagnation period in which the refrigerant 22a-22c, 27a-27c, 28a-28c is likely to stagnate.

(F)
前記実施形態においては、熱源ユニット2a〜2cは複数台であったが、複数台に限らず1台でも良い。
(G)
前記実施形態においては、冷媒寝込み解消運転の際に、3台の圧縮機22a〜22c,27a〜27c,28a〜28cを15分間ずつ駆動させたが、15分間に限らず5,10,20,30分間などでもよい。また、圧縮機22a〜22c,27a〜27c,28a〜28c全てを駆動しなくとも良く、冷媒量判定運転の際に駆動しない圧縮機を少なくとも駆動する運転であればよい。
(F)
In the embodiment described above, the heat source units 2a to 2c are plural. However, the heat source units 2a to 2c are not limited to plural and may be one.
(G)
In the above-described embodiment, the three compressors 22a to 22c, 27a to 27c, and 28a to 28c are driven for 15 minutes at the time of the refrigerant stagnation elimination operation, but not limited to 15 minutes, 5, 10, 20, It may be 30 minutes. Further, it is not necessary to drive all of the compressors 22a to 22c, 27a to 27c, and 28a to 28c, as long as it is an operation that at least drives a compressor that is not driven during the refrigerant amount determination operation.

(H)
前記実施形態においては、冷媒寝込み解消運転は圧縮機22a〜22c,27a〜27c,28a〜28cを駆動させて圧縮機構21a〜21cを暖める暖機運転により行ったが、これに限らず、圧縮機構21a〜21cをヒータで暖めることにより行っても良い。
(I)
前記実施形態においては、冷媒寝込み解消運転の直後に油戻し運転を行ったが、必ずしも油戻し運転を行わなくとも良い。
(H)
In the above-described embodiment, the refrigerant stagnation elimination operation is performed by the warm-up operation that drives the compressors 22a to 22c, 27a to 27c, and 28a to 28c to warm the compression mechanisms 21a to 21c. You may carry out by heating 21a-21c with a heater.
(I)
In the embodiment, the oil return operation is performed immediately after the refrigerant stagnation elimination operation, but the oil return operation is not necessarily performed.

本発明に係る空気調和装置は、冷媒量判定運転の前に圧縮機構内における冷凍機油に対する冷媒の寝込みを解消することができ、高精度な冷媒量判定運転が可能となるため、空気調和装置の冷媒回路およびそれを備えた空気調和装置等として有用である。   The air conditioner according to the present invention can eliminate the stagnation of the refrigerant with respect to the refrigerating machine oil in the compression mechanism before the refrigerant amount determination operation, and enables a highly accurate refrigerant amount determination operation. It is useful as a refrigerant circuit and an air conditioner equipped with the refrigerant circuit.

本発明の実施の形態に係る空気調和装置の概略冷媒回路図。The schematic refrigerant circuit figure of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る冷媒漏洩検知運転の流れを示すフローチャート。The flowchart which shows the flow of the refrigerant | coolant leak detection driving | operation which concerns on embodiment of this invention. 本発明の実施の形態に係る冷媒自動充填運転の流れを示すフローチャート。The flowchart which shows the flow of the refrigerant | coolant automatic charging operation which concerns on embodiment of this invention. 本発明の実施の形態に係る冷媒判定準備運転の流れを示すフローチャート。The flowchart which shows the flow of the refrigerant | coolant determination preparation operation which concerns on embodiment of this invention. 本発明の実施の形態に係る冷媒寝込み解消運転の流れを示すフローチャート。The flowchart which shows the flow of the refrigerant | coolant stagnation elimination driving which concerns on embodiment of this invention. 本発明の実施の形態に係る油戻し運転の流れを示すフローチャート。The flowchart which shows the flow of the oil return driving | running which concerns on embodiment of this invention. 本発明の実施の形態の変形例(E)に係る空気調和装置の気象情報取得ネットワーク概略図。The weather information acquisition network schematic diagram of the air conditioning apparatus which concerns on the modification (E) of embodiment of this invention.

符号の説明Explanation of symbols

1 空気調和装置
2a〜2c 熱源ユニット
3a,3b,・・・ 利用ユニット
4,5 冷媒連絡配管
6a〜6c 運転制御装置
8a〜8c 冷媒寝込み判断手段
21a〜21c 圧縮機構
22a〜22c,27a〜27c,28a〜28c 圧縮機
24a〜24c 熱源側熱交換器
29a〜29c 熱源側膨張弁
31a,31b,・・・ 利用側膨張弁
32a,32c,・・・ 利用側熱交換器
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2a-2c Heat source unit 3a, 3b, ... Usage unit 4,5 Refrigerant communication piping 6a-6c Operation control apparatus 8a-8c Refrigerant stagnation judgment means 21a-21c Compression mechanism 22a-22c, 27a-27c, 28a to 28c Compressor 24a to 24c Heat source side heat exchanger 29a to 29c Heat source side expansion valve 31a, 31b, ... Usage side expansion valve 32a, 32c, ... Usage side heat exchanger

Claims (13)

圧縮機構(21a〜21c)と熱源側熱交換器(24a〜24c)とを有する熱源ユニット(2a〜2c)と、前記熱源ユニットが接続される冷媒連絡配管(4,5)と、膨張機構(29a〜29c,31a,31b,・・・)と、利用側熱交換器(32a,32b,・・・)を有し前記冷媒連絡配管に接続される利用ユニット(3a,3b,・・・)と、を含む冷媒回路(7)と、
前記冷媒が前記圧縮機構内に寝込んでいるか否かを判断可能な冷媒寝込み判断手段(8a〜8c)と、
前記冷媒回路内の冷媒量を判定する冷媒量判定運転を行う際に、事前に、前記冷媒寝込み判断手段が前記圧縮機構内に前記冷媒が寝込んでいると判断した場合に、前記冷媒の寝込みを解消する冷媒寝込み解消運転を行う運転制御装置(6a〜6c)と、
を備えた空気調和装置(1)。
A heat source unit (2a-2c) having a compression mechanism (21a-21c) and a heat source side heat exchanger (24a-24c), a refrigerant communication pipe (4, 5) to which the heat source unit is connected, and an expansion mechanism ( 29a to 29c, 31a, 31b,...) And use side heat exchangers (32a, 32b,...) And use units (3a, 3b,...) Connected to the refrigerant communication pipe. A refrigerant circuit (7) including:
Refrigerant stagnation determining means (8a to 8c) capable of determining whether or not the refrigerant is stagnation in the compression mechanism;
When performing the refrigerant amount determination operation for determining the refrigerant amount in the refrigerant circuit, if the refrigerant stagnation determining means determines in advance that the refrigerant is stagnation in the compression mechanism, the refrigerant stagnation is performed. An operation control device (6a to 6c) for performing the refrigerant stagnation elimination operation to be eliminated;
An air conditioner (1) comprising:
前記冷媒寝込み判断手段(8a〜8c)は、前記圧縮機構(21a〜21c)内の温度に基づいて判断を行う、
請求項1に記載の空気調和装置(1)。
The refrigerant stagnation determining means (8a to 8c) makes a determination based on the temperature in the compression mechanism (21a to 21c).
The air conditioner (1) according to claim 1.
前記冷媒寝込み判断手段(8a〜8c)は、外気温度に基づいて判断を行う、
請求項1に記載の空気調和装置(1)。
The refrigerant stagnation determining means (8a to 8c) makes a determination based on the outside air temperature.
The air conditioner (1) according to claim 1.
前記冷媒寝込み判断手段(8a〜8c)は、ネットワーク(9)と接続されており、前記ネットワークを介して気象情報を取得し前記気象情報に基づいて判断を行う、
請求項1に記載の空気調和装置(1)。
The refrigerant stagnation determining means (8a to 8c) is connected to a network (9), acquires weather information via the network, and makes a determination based on the weather information.
The air conditioner (1) according to claim 1.
前記冷媒寝込み判断手段(8a〜8c)は、前記冷媒が圧縮機構(21a〜21c)内に寝込み易いと予測される冷媒寝込み期間に基づいて判断を行う、
請求項1に記載の空気調和装置(1)。
The refrigerant stagnation determining means (8a to 8c) makes a determination based on a refrigerant stagnation period in which the refrigerant is predicted to easily stagnate in the compression mechanism (21a to 21c).
The air conditioner (1) according to claim 1.
前記運転制御装置(6a〜6c)は、前記冷媒寝込み解消運転として前記圧縮機構(21a〜21c)を第1所定時間駆動する制御を行う、
請求項1から5のいずれかに記載の空気調和装置(1)。
The operation control devices (6a to 6c) perform control for driving the compression mechanisms (21a to 21c) for a first predetermined time as the refrigerant stagnation elimination operation.
The air conditioner (1) according to any one of claims 1 to 5.
前記熱源ユニット(2a〜2c)は、複数存在する、
請求項1から6のいずれかに記載の空気調和装置(1)。
There are a plurality of the heat source units (2a to 2c).
The air conditioner (1) according to any one of claims 1 to 6.
前記圧縮機構(21a〜21c)は、複数の圧縮機(22a〜22c,27a〜27c,28a〜28c)を有している、
請求項1から7のいずれかに記載の空気調和装置(1)。
The compression mechanism (21a-21c) has a plurality of compressors (22a-22c, 27a-27c, 28a-28c),
The air conditioner (1) according to any one of claims 1 to 7.
前記冷媒寝込み解消運転は、前記冷媒量判定運転の際に駆動しない圧縮機を少なくとも駆動する運転である、
請求項8に記載の空気調和装置(1)。
The refrigerant stagnation elimination operation is an operation that drives at least a compressor that is not driven during the refrigerant amount determination operation.
The air conditioner (1) according to claim 8.
前記冷媒寝込み解消運転は、前記運転制御装置(6a〜6c)が全ての前記圧縮機(22a〜22c,27a〜27c,28a〜28c)の運転を1台ずつ第2所定時間の間隔で順に行う運転である、
請求項8に記載の空気調和装置(1)。
In the refrigerant stagnation elimination operation, the operation control devices (6a to 6c) sequentially operate all the compressors (22a to 22c, 27a to 27c, 28a to 28c) one by one at intervals of a second predetermined time. Driving
The air conditioner (1) according to claim 8.
前記圧縮機構(21a〜21c)を暖めるヒータをさらに備え、
前記冷媒寝込み解消運転は、前記圧縮機構を前記ヒータで暖める運転である、
請求項1に記載の空気調和装置(1)。
A heater for heating the compression mechanism (21a to 21c);
The refrigerant stagnation elimination operation is an operation of heating the compression mechanism with the heater.
The air conditioner (1) according to claim 1.
前記運転制御装置(6a〜6c)は、前記冷媒寝込み解消運転の直後に油戻し運転をさらに行う、
請求項1から11のいずれかに記載の空気調和装置(1)。
The operation control devices (6a to 6c) further perform an oil return operation immediately after the refrigerant stagnation elimination operation.
The air conditioner (1) according to any one of claims 1 to 11.
前記油戻し運転は、前記冷媒回路(7)を流れる前記冷媒の配管内冷媒流速を所定流速以上になるように制御する運転である、
請求項12に記載の空気調和装置(1)。
The oil return operation is an operation for controlling the refrigerant flow rate in the pipe of the refrigerant flowing through the refrigerant circuit (7) so as to be equal to or higher than a predetermined flow rate.
The air conditioner (1) according to claim 12.
JP2005363739A 2005-12-16 2005-12-16 Air conditioner Pending JP2007163106A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2005363739A JP2007163106A (en) 2005-12-16 2005-12-16 Air conditioner
US12/096,967 US20090314017A1 (en) 2005-12-16 2006-12-13 Air conditioner
PCT/JP2006/324806 WO2007069624A1 (en) 2005-12-16 2006-12-13 Air conditioner
ES06834561.0T ES2636912T3 (en) 2005-12-16 2006-12-13 Air conditioner
CN2006800473776A CN101331366B (en) 2005-12-16 2006-12-13 Air conditioner
KR1020087015050A KR20080071601A (en) 2005-12-16 2006-12-13 Air conditioner
AU2006324541A AU2006324541B2 (en) 2005-12-16 2006-12-13 Air conditioner
EP06834561.0A EP1965150B1 (en) 2005-12-16 2006-12-13 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005363739A JP2007163106A (en) 2005-12-16 2005-12-16 Air conditioner

Publications (1)

Publication Number Publication Date
JP2007163106A true JP2007163106A (en) 2007-06-28

Family

ID=38162931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005363739A Pending JP2007163106A (en) 2005-12-16 2005-12-16 Air conditioner

Country Status (8)

Country Link
US (1) US20090314017A1 (en)
EP (1) EP1965150B1 (en)
JP (1) JP2007163106A (en)
KR (1) KR20080071601A (en)
CN (1) CN101331366B (en)
AU (1) AU2006324541B2 (en)
ES (1) ES2636912T3 (en)
WO (1) WO2007069624A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065958A (en) * 2008-09-12 2010-03-25 Hitachi Appliances Inc Air-conditioning system
WO2011058726A1 (en) * 2009-11-11 2011-05-19 三菱電機株式会社 Air conditioner
WO2011096059A1 (en) * 2010-02-04 2011-08-11 株式会社前川製作所 Heat pump and method for operating heat pump
WO2011151985A1 (en) * 2010-05-31 2011-12-08 ダイキン工業株式会社 Freezing device
WO2012059957A1 (en) * 2010-11-04 2012-05-10 三菱電機株式会社 Air conditioner
WO2013021963A1 (en) * 2011-08-11 2013-02-14 カヤバ工業株式会社 Vibration damping device for railway vehicle
JP2014129987A (en) * 2012-12-28 2014-07-10 Daikin Ind Ltd Refrigeration device
JP2015124893A (en) * 2013-12-25 2015-07-06 株式会社富士通ゼネラル Air conditioning device
JP2017180894A (en) * 2016-03-29 2017-10-05 株式会社富士通ゼネラル Air conditioner
JPWO2020188753A1 (en) * 2019-03-19 2021-10-14 三菱電機株式会社 Outdoor unit and refrigeration cycle device equipped with it

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562650B2 (en) * 2005-12-16 2010-10-13 ダイキン工業株式会社 Air conditioner
KR101488390B1 (en) 2008-02-05 2015-01-30 엘지전자 주식회사 Method for calculating the mass of a refrigerant in air conditioning apparatus
KR101545488B1 (en) 2008-03-21 2015-08-21 엘지전자 주식회사 Method for charging of refrigerant of air conditioner
JP5263522B2 (en) * 2008-12-11 2013-08-14 株式会社富士通ゼネラル Refrigeration equipment
JP5183609B2 (en) 2009-10-23 2013-04-17 三菱電機株式会社 Refrigeration air conditioner
CN102792108B (en) * 2010-03-12 2015-02-18 三菱电机株式会社 Refrigeration air conditioning device
US9759465B2 (en) * 2011-12-27 2017-09-12 Carrier Corporation Air conditioner self-charging and charge monitoring system
JP5288020B1 (en) * 2012-03-30 2013-09-11 ダイキン工業株式会社 Refrigeration equipment
JP2014185786A (en) * 2013-03-22 2014-10-02 Mitsubishi Electric Corp Drive control device for refrigeration cycle compressor
CN103912958B (en) * 2014-04-10 2017-12-01 安徽美芝精密制造有限公司 Control method, control device and the air-conditioning system of air-conditioning system
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
JP6238876B2 (en) * 2014-11-21 2017-11-29 三菱電機株式会社 Refrigeration cycle equipment
US10641268B2 (en) * 2015-08-11 2020-05-05 Emerson Climate Technologies, Inc. Multiple compressor configuration with oil-balancing system
AU2016420272B2 (en) * 2016-08-16 2019-07-04 Mitsubishi Electric Corporation Air-conditioning apparatus
US10571171B2 (en) 2017-01-27 2020-02-25 Emerson Climate Technologies, Inc. Low charge detection system for cooling systems
WO2019159335A1 (en) * 2018-02-16 2019-08-22 東芝キヤリア株式会社 Refrigeration cycle device
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
CN110553440B (en) * 2019-09-04 2021-07-27 广东美的暖通设备有限公司 Multi-split system, liquid impact prevention control method and device and readable storage medium

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101755U (en) * 1986-12-23 1988-07-02
JPH0618103A (en) * 1992-06-30 1994-01-25 Toshiba Corp Air conditioner
KR19990039709A (en) * 1997-11-13 1999-06-05 최진호 Refrigeration system design method
JP2001263885A (en) * 2000-03-24 2001-09-26 Japan Climate Systems Corp Device for detecting insufficient quantity of refrigerant for air-conditioning vehicle
JP2002350014A (en) * 2001-05-22 2002-12-04 Daikin Ind Ltd Refrigerating equipment
JP2004028503A (en) * 2002-06-27 2004-01-29 Mitsubishi Heavy Ind Ltd Vehicle-transporting freezing device
US6886354B2 (en) * 2003-04-04 2005-05-03 Carrier Corporation Compressor protection from liquid hazards
JP2005043008A (en) * 2003-07-24 2005-02-17 Denso Corp Refrigerating cycle device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065958A (en) * 2008-09-12 2010-03-25 Hitachi Appliances Inc Air-conditioning system
WO2011058726A1 (en) * 2009-11-11 2011-05-19 三菱電機株式会社 Air conditioner
US9528733B2 (en) 2009-11-11 2016-12-27 Mitsubishi Electric Corporation Air-conditioning apparatus
JP5464615B2 (en) * 2010-02-04 2014-04-09 株式会社前川製作所 HEAT PUMP DEVICE AND HEAT PUMP DEVICE OPERATION METHOD
WO2011096059A1 (en) * 2010-02-04 2011-08-11 株式会社前川製作所 Heat pump and method for operating heat pump
JP2011252623A (en) * 2010-05-31 2011-12-15 Daikin Industries Ltd Refrigerating device
WO2011151985A1 (en) * 2010-05-31 2011-12-08 ダイキン工業株式会社 Freezing device
WO2012059957A1 (en) * 2010-11-04 2012-05-10 三菱電機株式会社 Air conditioner
JP5734306B2 (en) * 2010-11-04 2015-06-17 三菱電機株式会社 Air conditioner
US9372021B2 (en) 2010-11-04 2016-06-21 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2013021963A1 (en) * 2011-08-11 2013-02-14 カヤバ工業株式会社 Vibration damping device for railway vehicle
JP2013035527A (en) * 2011-08-11 2013-02-21 Kyb Co Ltd Vibration damping device for railway vehicle
US9328789B2 (en) 2011-08-11 2016-05-03 Kyb Corporation Vibration damping device for railway vehicle
JP2014129987A (en) * 2012-12-28 2014-07-10 Daikin Ind Ltd Refrigeration device
JP2015124893A (en) * 2013-12-25 2015-07-06 株式会社富士通ゼネラル Air conditioning device
JP2017180894A (en) * 2016-03-29 2017-10-05 株式会社富士通ゼネラル Air conditioner
JPWO2020188753A1 (en) * 2019-03-19 2021-10-14 三菱電機株式会社 Outdoor unit and refrigeration cycle device equipped with it
JP7282157B2 (en) 2019-03-19 2023-05-26 三菱電機株式会社 Outdoor unit and refrigeration cycle device provided with the same

Also Published As

Publication number Publication date
EP1965150B1 (en) 2017-07-26
EP1965150A1 (en) 2008-09-03
AU2006324541B2 (en) 2009-11-12
US20090314017A1 (en) 2009-12-24
ES2636912T3 (en) 2017-10-10
EP1965150A4 (en) 2014-07-02
KR20080071601A (en) 2008-08-04
AU2006324541A1 (en) 2007-06-21
CN101331366B (en) 2010-09-22
WO2007069624A1 (en) 2007-06-21
CN101331366A (en) 2008-12-24

Similar Documents

Publication Publication Date Title
JP2007163106A (en) Air conditioner
JP4120676B2 (en) Air conditioner
JP4155313B2 (en) Air conditioner
JP4114691B2 (en) Air conditioner
JP4705878B2 (en) Air conditioner
JP4124228B2 (en) Air conditioner
JP4165566B2 (en) Air conditioner
JP4075933B2 (en) Air conditioner
JP2007212134A (en) Air conditioner
JP4957243B2 (en) Air conditioner
JP3933179B1 (en) Air conditioner
JP4562650B2 (en) Air conditioner
JP2008064456A (en) Air conditioner
JP5104225B2 (en) Air conditioner
JP2007255738A (en) Air conditioning system
JP4665748B2 (en) Air conditioner
JP4892954B2 (en) Air conditioner
JP2007198680A (en) Air conditioner
JP4311470B2 (en) Air conditioner
JP4655107B2 (en) Air conditioner
JP4826247B2 (en) Air conditioner
JP2008025936A (en) Air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080610

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830