JP2007158381A - Infrared ray communication device - Google Patents

Infrared ray communication device Download PDF

Info

Publication number
JP2007158381A
JP2007158381A JP2005346294A JP2005346294A JP2007158381A JP 2007158381 A JP2007158381 A JP 2007158381A JP 2005346294 A JP2005346294 A JP 2005346294A JP 2005346294 A JP2005346294 A JP 2005346294A JP 2007158381 A JP2007158381 A JP 2007158381A
Authority
JP
Japan
Prior art keywords
infrared
communication device
light emitting
emitting element
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005346294A
Other languages
Japanese (ja)
Inventor
Hitoshi Goto
仁 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Original Assignee
Hitachi Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP2005346294A priority Critical patent/JP2007158381A/en
Publication of JP2007158381A publication Critical patent/JP2007158381A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Optical Communication System (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared ray communication device capable of normally performing infrared ray communication even when an infrared ray receiving face directly receives the sunlight in its normal direction. <P>SOLUTION: The infrared ray communication device 10 comprising: a receiver side light receiving element 1; a transmitter side light emitting element 2; and a communication unit main body 3, uses the receiver side light receiving element 1 and the transmitter side light emitting element 2 whose infrared ray wavelength band ranges from 1,300 nm to 1,500 nm and that are InGaAs elements. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、赤外線通信装置に係り、特に太陽光下の屋外においても支障なく通信が行える赤外線通信装置に関する。   The present invention relates to an infrared communication device, and more particularly, to an infrared communication device capable of performing communication without hindrance even outdoors under sunlight.

一般に、赤外線通信装置は、リモートコントローラ(以下、「リモコン」と略称する。)や、コンピュータとプリンタや他の端末機器やPDA(Personal Digital Assistnt)と呼ばれる携帯情報機器等に組み込まれ、これらの送信専用や受信専用或いは送受信を行う通信手段として使用されている。   In general, an infrared communication device is incorporated in a remote controller (hereinafter abbreviated as “remote controller”), a computer, a printer, another terminal device, a portable information device called PDA (Personal Digital Assistant), and the like, and transmits them. It is used as a communication means for exclusive use, exclusive use for reception or transmission / reception.

これら従来の赤外線通信装置では、発光素子及び受光素子に940nmから950nm付近を主波長とした波長域に感度を有するシリコン素子(以下、「Si素子」と略称する。)を使用している。これは、赤外線通信装置の使用環境が、主に屋内であるために940nmから950nm付近の外乱光が存在せず、通信に影響を与えることが皆無であったことや、Si素子の発光ダイオード(Light Emittion Diode、以下「LED」と略称する。)が安価であることからが挙げられる。   In these conventional infrared communication apparatuses, a silicon element (hereinafter, abbreviated as “Si element”) having sensitivity in a wavelength region whose main wavelength is around 940 nm to 950 nm is used for the light emitting element and the light receiving element. This is because the environment in which the infrared communication device is used is mainly indoors, so that there is no disturbing light in the vicinity of 940 nm to 950 nm, and there is no influence on the communication. Light Emission Diode (hereinafter abbreviated as “LED”) is inexpensive.

Si素子の場合には、図5に示すように、940nmから950nmを主波長とした発光スペクトルであり、また図6に示すように相対感度特性は、900nmから1000nmまでの波長域に感度ピークが存在している。   In the case of an Si element, as shown in FIG. 5, the emission spectrum has a main wavelength from 940 nm to 950 nm, and the relative sensitivity characteristic has a sensitivity peak in the wavelength region from 900 nm to 1000 nm as shown in FIG. Existing.

ところが、屋外の地表面における太陽光のスペクトルは、940nmから950nm付近には大量の太陽の外乱光が存在していることが知られている。このため、屋外でSi素子を用いて赤外線通信を行う場合、地表面の太陽光のスペクトルが大量に存在する中での通信となるから、赤外線通信の情報が太陽光の赤外線中に埋没してしまい、赤外線通信が良好に行えないことになる。   However, it is known that a large amount of disturbance light from the sun exists in the vicinity of 940 nm to 950 nm in the spectrum of sunlight on the outdoor ground surface. For this reason, when infrared communication is performed outdoors using Si elements, communication is performed in the presence of a large amount of sunlight spectrum on the ground surface, so infrared communication information is buried in the infrared rays of sunlight. As a result, infrared communication cannot be performed satisfactorily.

屋内用の赤外線通信のうち、Si素子以外のLEDを用いる例としては、例えば波長の互いに異なるガリウム砒素アルミニウム化合物素子の高速用LED、及びガリウム砒素化合物素子の低速用LEDを設け、各高速用LED及び低速用LEDの発光波長に適合する情報信号を生成する高速信号生成部及び低速信号生成部と、生成された各高速用LED又は低速用LEDの発光波長に適合する各情報信号の出力を切り替える情報信号切替部とを設けることで、相手側の受信機の通信波長型式に応じて使い分けて通信することが提案されている(特許文献1参照)。   Examples of indoor infrared communication using LEDs other than Si elements include, for example, high-speed LEDs of gallium arsenide aluminum compound elements having different wavelengths and low-speed LEDs of gallium arsenide compound elements. And a high-speed signal generation unit and a low-speed signal generation unit that generate information signals that match the emission wavelength of the low-speed LED, and output of each information signal that matches the emission wavelength of each generated high-speed LED or low-speed LED By providing an information signal switching unit, it has been proposed to perform communication in accordance with the communication wavelength type of the other receiver (see Patent Document 1).

また、赤外線領域を含んだ光波長領域に感度を有する撮像部で目的の外部赤外線装置を含んだ小領域を撮像し、その結果は画像処理され、位置検出部によって画像処理で得られた画像データを基に、一定の赤外線光量以上の領域を検知し、所定の点滅パターンで赤外線を出力する外部赤外線装置が存在するか否かを判断している。そして、目的の外部赤外線装置が存在すると判断された場合は、位置情報提示部が、当該目的の外部赤外線装置の位置情報をユーザに提示することも知られている(特許文献2参照)。   In addition, the imaging unit having sensitivity in the optical wavelength region including the infrared region captures an image of a small region including the target external infrared device, and the result is subjected to image processing, and image data obtained by image processing by the position detection unit Based on the above, it is determined whether or not there is an external infrared device that detects an area that exceeds a certain amount of infrared light and outputs infrared light with a predetermined blinking pattern. When it is determined that the target external infrared device is present, it is also known that the position information presentation unit presents the position information of the target external infrared device to the user (see Patent Document 2).

更に、目的とする赤外線通信の実行中も撮像部をオンし、悪意の外部赤外線装置を監視し続け、撮像部による撮像結果を画像処理し、この画像処理で得られた画像データを基に、他の外部赤外線装置が存在するか否かを判断を行い、他の外部赤外線装置が存在すると判断された場合には、悪意の外部赤外線装置である可能性もあるため、直ちに赤外線通信部をオフすることで赤外線通信を中止し、赤外線通信を中止した旨を携帯電話の表示部への表示等によってユーザに報告することも知られている(特許文献3参照)。   Furthermore, while the target infrared communication is being performed, the imaging unit is turned on, the malicious external infrared device is continuously monitored, the imaging result of the imaging unit is image-processed, and based on the image data obtained by this image processing, It is determined whether there is another external infrared device. If it is determined that another external infrared device is present, the infrared communication unit may be turned off immediately because it may be a malicious external infrared device. It is also known that the infrared communication is stopped by this, and that the infrared communication is stopped is reported to the user by display on the display unit of the mobile phone (see Patent Document 3).

特開平9−181673号公報JP-A-9-181673 特許公開2004−112226号公報Japanese Patent Publication No. 2004-112226 特許公開2004−112227号公報Japanese Patent Publication No. 2004-112227

従来の赤外線通信装置では、屋外で赤外線通信を実施する際に、赤外線通信装置の発光素子部分は太陽光の強い赤外線を含んだ光の影響により、正常に通信ができなくなるという問題を抱えていた。これは、赤外線通信に使用される赤外線の波長域には地表面の太陽光のスペクトルが大量に存在するため、太陽光の赤外線情報の中に赤外線通信の情報が埋没するということに起因する。この傾向は、特に日差しの強い夏期の炎天下の屋外での赤外線通信の場合に著しくなる。   In the conventional infrared communication device, when performing infrared communication outdoors, the light emitting element part of the infrared communication device has a problem that it cannot communicate normally due to the influence of light including strong infrared rays of sunlight. . This is because infrared communication information is buried in infrared information of sunlight because a large amount of sunlight spectrum on the ground surface exists in the infrared wavelength region used for infrared communication. This tendency becomes remarkable particularly in the case of infrared communication outdoors under hot sun in the summer when the sunlight is strong.

本発明の目的は、夏期の炎天下においてのように直射日光が赤外線受光面の法線方向から照射されているような場合でも、正常に赤外線通信を行うことができる赤外線通信装置を提供することにある。   An object of the present invention is to provide an infrared communication device capable of normally performing infrared communication even when direct sunlight is radiated from the normal direction of the infrared light receiving surface as in the hot weather in summer. is there.

本発明では、送信側の赤外線発光素子と通信部本体とを有する赤外線通信装置において、前記送信側の赤外線発光素子には、赤外線波長域が1300nmから1500nmの発光素子を用いて構成している。   In the present invention, in the infrared communication apparatus having the infrared light emitting element on the transmission side and the communication unit main body, the infrared light emitting element on the transmission side is configured using a light emitting element having an infrared wavelength range of 1300 nm to 1500 nm.

また本発明では、受信側の赤外線受光素子と通信部本体とを有する赤外線通信装置において、前記受信側の赤外線受光素子には、赤外線波長域が1300nmから1500nmの発光素子を用いて構成している。   According to the present invention, in the infrared communication device having the receiving side infrared light receiving element and the communication unit main body, the receiving side infrared light receiving element is configured using a light emitting element having an infrared wavelength range of 1300 nm to 1500 nm. .

更に本発明では、送信側の赤外線発光素子及び受信側の赤外線受光素子と通信部本体とを有する赤外線通信装置において、前記送信側の赤外線発光素子及び受信側の赤外線受光素子には、それぞれ赤外線波長域が1300nmから1500nmの受発光素子を用いて構成している。   Further, according to the present invention, in the infrared communication device having the infrared light emitting element on the transmission side, the infrared light receiving element on the reception side, and the communication unit main body, the infrared light emitting element on the transmission side and the infrared light receiving element on the reception side have infrared wavelengths respectively. A light receiving and emitting element having a wavelength range of 1300 nm to 1500 nm is used.

好ましくは、赤外線波長域が1300nmから1500nmの受発光素子としては、インジウムガリウム砒素素子(以下、「InGaAs素子」と称する。)を用いる。   Preferably, an indium gallium arsenide element (hereinafter referred to as an “InGaAs element”) is used as a light emitting / receiving element having an infrared wavelength range of 1300 nm to 1500 nm.

本発明のように赤外線通信装置を構成すれば、屋外の地表面では殆ど存在しない赤外線波長域が1300nmから1500nmの発光素子を用いたので、赤外線通信を確実に行え、夏期の炎天下において直射日光が赤外線受光面の法線方向から照射されているような場合であっても、支障なく赤外線通信を行うことができる。   If an infrared communication device is configured as in the present invention, a light emitting element having an infrared wavelength range of 1300 nm to 1500 nm that is hardly present on the outdoor ground surface is used. Even in the case of irradiation from the normal direction of the infrared light receiving surface, infrared communication can be performed without hindrance.

本発明の赤外線通信装置は、受信側及び送信側の受発光素子と通信部本体とで構成するとき、受信側及び送信側の受発光素子には、赤外線波長域が1300nmから1500nmの受発光素子を用いて赤外線通信を行うように構成する。   When the infrared communication device of the present invention is composed of a light emitting / receiving element on the receiving side and a transmitting side and a communication unit main body, the light receiving / emitting element on the receiving side and the transmitting side has an infrared wavelength range of 1300 nm to 1500 nm. Is configured to perform infrared communication.

以下、本発明の一実施例を、図1に示す赤外線通信装置10を用いて説明する。この赤外線通信装置10は、受信側の受光素子1及び送信側の発光素子2と、通信部本体3から構成されている。通信部本体3は、赤外線通信のアナログ情報をデジタル情報に変換するA/D変換器4と、受信情報を取り出す受信回路5、受信情報の処理を行う通信処理部6を備えている。   An embodiment of the present invention will be described below using an infrared communication device 10 shown in FIG. The infrared communication device 10 includes a light receiving element 1 on the receiving side, a light emitting element 2 on the transmitting side, and a communication unit main body 3. The communication unit body 3 includes an A / D converter 4 that converts analog information of infrared communication into digital information, a receiving circuit 5 that extracts received information, and a communication processing unit 6 that processes received information.

また、この赤外線通信装置10には、通信処理部6で生成した送信情報をデジタル情報に変換する送信回路7と、デジタル情報をアナログ情報に変換するD/A変換器8を備えており、発光素子2から赤外線で情報を送信する構成としている。   The infrared communication device 10 includes a transmission circuit 7 that converts transmission information generated by the communication processing unit 6 into digital information, and a D / A converter 8 that converts digital information into analog information. Information is transmitted from the element 2 by infrared rays.

そして、本発明では、これら受信側及び送信側の受発光素子1、2は、赤外線波長域が1300nmから1500nmの受発光素子を使用している。赤外線波長域が1300nmから1500nmの受発光素子としては、例えばInGaAs素子を用いることができる。   In the present invention, the light receiving and emitting elements 1 and 2 on the receiving side and the transmitting side use light receiving and emitting elements having an infrared wavelength range of 1300 nm to 1500 nm. For example, an InGaAs element can be used as a light emitting / receiving element having an infrared wavelength range of 1300 nm to 1500 nm.

地表面における太陽光スペクトルの波長と分光放射照度の関係は、図2の特性図に示すように線Aの晴天時と、線Bの曇天時で異なっており、いずれも500nmの前後にピークがあり、これを過ぎると太陽光の波長は大気による吸収分光が著しく次第に減衰し、晴天時の地表面では、太陽光の波長が1300nmから1500nm近辺の範囲Wでは殆ど存在せず、また曇天時の地表面では、太陽光の波長が1500nm付近に若干の存在するだけとなっている。このため、本発明の赤外線通信装置10では、赤外線通信を良好に行うために、赤外線波長域が1300nmから1500nmの受発光素子を使用するようにしたものである。   The relationship between the wavelength of the sunlight spectrum on the ground surface and the spectral irradiance is different between the clear sky of line A and the cloudy sky of line B as shown in the characteristic diagram of FIG. Exceeding this, the wavelength of sunlight is attenuated by the absorption spectrum by the atmosphere, and on the ground surface in fine weather, there is almost no wavelength of sunlight in the range W around 1300 nm to 1500 nm, and in cloudy weather On the ground surface, the wavelength of sunlight is only slightly present in the vicinity of 1500 nm. For this reason, in the infrared communication device 10 of the present invention, in order to perform infrared communication satisfactorily, a light emitting / receiving element having an infrared wavelength range of 1300 nm to 1500 nm is used.

赤外線波長域が1300nmから1500nmの発光素子の例であるInGaAs素子の場合、相対分光感度は線Gで示すように1250nmから1600nm付近までピークを有しているから、線Sで示すSi素子のように940nmから950nm近辺に相対分光感度のピークを有するものと大きく異なっている。   In the case of an InGaAs element which is an example of a light emitting element having an infrared wavelength range of 1300 nm to 1500 nm, the relative spectral sensitivity has a peak from 1250 nm to around 1600 nm as indicated by a line G. Is significantly different from those having a peak of relative spectral sensitivity in the vicinity of 940 nm to 950 nm.

また、InGaAs素子の発光スペクトルは、図3に示すように1450nm付近を主波長とした発光スペクトルであり、InGaAs素子の分光絶対感度の特性は、図4に示すように1500nmを主波長とした感度ピークを示している。   Further, the emission spectrum of the InGaAs element is an emission spectrum having a main wavelength near 1450 nm as shown in FIG. 3, and the spectral absolute sensitivity characteristic of the InGaAs element is a sensitivity having a main wavelength of 1500 nm as shown in FIG. It shows a peak.

したがって、InGaAs素子は、赤外線通信装置10の赤外線波長域が1300nmから1500nmの発光素子として用いると、屋外の太陽光下であっても赤外線の安定した通信を良好に行うことができることになる。InGaAs素子を用いる場合、当然のことながら赤外線通信装置10の通信部本体3の構成も、この素子で通信可能なものにして使用する。   Therefore, when the InGaAs element is used as a light emitting element having an infrared wavelength range of 1300 nm to 1500 nm of the infrared communication device 10, stable infrared communication can be performed even under outdoor sunlight. In the case of using an InGaAs element, as a matter of course, the configuration of the communication unit main body 3 of the infrared communication apparatus 10 is also set to be communicable with this element.

InGaAs素子は、1400nmから1500nmの波長域の感度は良好であり、この波長域の地表面における太陽光スペクトルは、上記したように大気による吸収分光が著しく、晴天時においては殆ど存在せず、曇天時においては1500nm付近に若干の存在が認められるが、1400nmから1450nm付近の波長域は、晴天時も曇天時の双方とも殆ど存在していない。   The InGaAs device has good sensitivity in the wavelength range of 1400 nm to 1500 nm, and the sunlight spectrum on the ground surface in this wavelength range has a remarkable absorption spectrum by the atmosphere as described above. In some cases, a slight presence is observed near 1500 nm, but the wavelength range from 1400 nm to 1450 nm hardly exists during both fine weather and cloudy weather.

このことから、InGaAs素子を赤外線通信装置の発光素子や受光素子とした使用とした場合、太陽光下における屋外での赤外線の通信が、Si素子を用いる場合のような問題を全く起こすことなく、例え夏期の炎天下であっても良好に行うことができる。   From this, when the InGaAs element is used as a light emitting element or a light receiving element of an infrared communication device, infrared communication outdoors under sunlight does not cause any problems as in the case of using an Si element, This can be done well even under hot weather in summer.

赤外線波長域が1300nmから1500nmの受発光素子、特にInGaAs素子を使用する図1の構成の赤外線通信装置10は、一般的なコンピュータと周辺機器や携帯情報機器等に組み込み、これらの機器での屋外での双方向の情報通信に使用できる。   The infrared communication device 10 having the configuration shown in FIG. 1 using a light emitting / receiving element having an infrared wavelength range of 1300 nm to 1500 nm, particularly an InGaAs element, is incorporated in a general computer and peripheral devices, portable information devices, etc. Can be used for two-way information communication.

また、リモコン等のように送信専用の場合には、赤外線通信装置10の受光側の各部分を省き、逆に受信専用よして使用する携帯情報機器等の場合は、受光側の各部分を省いて構成し、屋外における一方向の情報通信に使用することができる。   In addition, in the case of exclusive use for transmission such as a remote controller, each part on the light receiving side of the infrared communication device 10 is omitted. Conversely, in the case of a portable information device used exclusively for reception, each part on the light receiving side is omitted. And can be used for one-way information communication outdoors.

本発明の一実施例である赤外線通信装置を示すブロック図である。1 is a block diagram illustrating an infrared communication device according to an embodiment of the present invention. 晴天時及び曇天時における地表面における太陽光スペクトルの波長と分光放射照度の関係と、InGaAs素子及びSi素子の相対分光感度の関係を示す特性図である。It is a characteristic view which shows the relationship between the wavelength of the sunlight spectrum and the spectral irradiance on the ground surface at the time of fine weather and cloudy weather, and the relative spectral sensitivity of the InGaAs element and the Si element. InGaAs素子の発光スペクトル図である。It is an emission spectrum figure of an InGaAs element. InGaAs素子の分光感度特性図である。It is a spectral sensitivity characteristic figure of an InGaAs element. Si素子の発光スペクトル図である。It is an emission spectrum figure of Si element. Si素子の分光感度特性図である。It is a spectral sensitivity characteristic figure of Si element.

符号の説明Explanation of symbols

1…受光素子、2…発光素子、3…通信部本体、4…A/D変換器、5…受信回路、6…通信処理部、7…送信回路、8…D/A変換器、10…赤外線通信装置。
DESCRIPTION OF SYMBOLS 1 ... Light receiving element, 2 ... Light emitting element, 3 ... Communication part main body, 4 ... A / D converter, 5 ... Reception circuit, 6 ... Communication processing part, 7 ... Transmission circuit, 8 ... D / A converter, 10 ... Infrared communication device.

Claims (4)

送信側の赤外線発光素子と通信部本体とを有する赤外線通信装置において、前記送信側の赤外線発光素子には、赤外線波長域が1300nmから1500nmの発光素子を用いて構成したことを特徴とする赤外線通信装置。   An infrared communication apparatus having an infrared light emitting element on a transmission side and a communication unit main body, wherein the infrared light emitting element on the transmission side is configured using a light emitting element having an infrared wavelength range of 1300 nm to 1500 nm. apparatus. 受信側の赤外線受光素子と通信部本体とを有する赤外線通信装置において、前記受信側の赤外線受光素子には、赤外線波長域が1300nmから1500nmの受光素子を用いて構成したことを特徴とする赤外線通信装置。   An infrared communication device having an infrared light receiving element on a receiving side and a communication unit main body, wherein the infrared light receiving element on the receiving side is configured using a light receiving element having an infrared wavelength range of 1300 nm to 1500 nm. apparatus. 送信側の赤外線発光素子及び受信側の赤外線受光素子と通信部本体とを有する赤外線通信装置において、前記送信側の赤外線発光素子及び受信側の赤外線受光素子には、それぞれ赤外線波長域が1300nmから1500nmの受発光素子を用いて構成したことを特徴とする赤外線通信装置。   In the infrared communication device including the infrared light emitting element on the transmission side, the infrared light receiving element on the reception side, and the communication unit main body, the infrared light emitting element on the transmission side and the infrared light receiving element on the reception side each have an infrared wavelength range of 1300 nm to 1500 nm. An infrared communication device comprising: a light receiving and emitting element. 請求項1から3において、前記赤外線波長域が1300nmから1500nmの受発光素子には、インジウムガリウム砒素素子を用いて構成したことを特徴とする赤外線通信装置。
4. The infrared communication device according to claim 1, wherein the light receiving and emitting element having an infrared wavelength range of 1300 nm to 1500 nm is formed using an indium gallium arsenide element.
JP2005346294A 2005-11-30 2005-11-30 Infrared ray communication device Pending JP2007158381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005346294A JP2007158381A (en) 2005-11-30 2005-11-30 Infrared ray communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005346294A JP2007158381A (en) 2005-11-30 2005-11-30 Infrared ray communication device

Publications (1)

Publication Number Publication Date
JP2007158381A true JP2007158381A (en) 2007-06-21

Family

ID=38242219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005346294A Pending JP2007158381A (en) 2005-11-30 2005-11-30 Infrared ray communication device

Country Status (1)

Country Link
JP (1) JP2007158381A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110294A1 (en) * 2008-03-03 2009-09-11 シャープ株式会社 Display device with photosensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110294A1 (en) * 2008-03-03 2009-09-11 シャープ株式会社 Display device with photosensor
US8416227B2 (en) 2008-03-03 2013-04-09 Sharp Kabushiki Kaisha Display device having optical sensors

Similar Documents

Publication Publication Date Title
Otte et al. Low-power wireless infrared communications
GB2558792B (en) Display apparatus
KR100617679B1 (en) Mobile Terminal Accomplishing Visible Light Communication using Camera Apparatus
US9294201B2 (en) Optical communication systems and methods
US7889998B2 (en) Optical receiver for visible light communication and light communication system using the same
US20170366278A1 (en) Underwater bi-directional wireless image data communication system based on illumination diffusion support
CN105827309A (en) Indoor LED visible light communication system
EP4166988A1 (en) Radar system, mobile device and radar detection method
Xu et al. Petahertz communication: Harmonizing optical spectra for wireless communications
EP2846324A1 (en) Device having light intensity measurement in presence of shadows
JPH09200152A (en) Data transceiver
CN106123113A (en) A kind of indoor wireless CCD controls Intelligent purifying device
Sharda et al. Modeling of a vehicle-to-vehicle based visible light communication system under shadowing and investigation of the diversity-multiplexing tradeoff
JP2007158381A (en) Infrared ray communication device
Al-rubaiai Design and development of an LED-based optical communication system
CN106100729A (en) A kind of short-distance wireless communication CCD energy-saving control device
Liu et al. DarkVLP:“Lights-Off” Visible-Light Positioning
KR20170000515A (en) Underwater bidirectional wireless data communication system and communication method by detecting weak light amount change in underwater turbidity condition diffused light
JP2007281882A (en) Optical transmitter/receiver apparatus
CN112671467B (en) Optical communication identification device
Ijeh et al. Ergodic Capacity of a Vertical Underwater Wireless Optical Communication Link Subject to Misalignment
WO2021040626A1 (en) Li-fi communication device
Pauluzzi et al. Free-space, undirected infrared (IR) voice and data communications with a comparison to RF systems
US20230283374A1 (en) A receiving system for high speed and large coverage optical wireless communication
Singh et al. Performance Evaluation of Visible Light Communication System based on Optical Power Distribution with Channel Delay Spread and SNR