JP2007151433A - Method for pretreatment of lignocellulose and method for producing ethanol - Google Patents

Method for pretreatment of lignocellulose and method for producing ethanol Download PDF

Info

Publication number
JP2007151433A
JP2007151433A JP2005348982A JP2005348982A JP2007151433A JP 2007151433 A JP2007151433 A JP 2007151433A JP 2005348982 A JP2005348982 A JP 2005348982A JP 2005348982 A JP2005348982 A JP 2005348982A JP 2007151433 A JP2007151433 A JP 2007151433A
Authority
JP
Japan
Prior art keywords
lime
lignocellulose
treatment
solid
pretreatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005348982A
Other languages
Japanese (ja)
Inventor
Naoyuki Okuda
直之 奥田
Yuichi Ono
裕一 小野
Kenji Suzuki
健治 鈴木
Tomomoto Hayakawa
智基 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2005348982A priority Critical patent/JP2007151433A/en
Publication of JP2007151433A publication Critical patent/JP2007151433A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for pretreatment of lignocellulose for obtaining a syrup enabling efficient ethanol fermentation at low cost using a lignocellulose-containing feedstock such as waste construction materials, and to provide a method for producing ethanol. <P>SOLUTION: The method for the pretreatment of lignocellulose comprises the following process: A lignocellulose-containing feedstock is subjected to hydrolysis treatment in dilute sulfuric acid at 140-220°C for 3-20 min, the resultant hydrolyzate is subjected to solid/liquid separation into a primary syrup and a solid. The solid is incorporated with 0.5-20 mass% of quicklime on a dry basis heated at 90-200°C for 10-120 min to have calcification. Subsequently, cellulase is added to the resulting reaction product to be subjected to an enzymatic hydrolysis treatment to obtain a secondary syrup. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、廃建材などのリグノセルロース含有原料を用いて安価に効率よくエタノール発酵可能な糖液を得るリグノセルロースの前処理方法及び該糖液を用いてエタノールを製造するエタノール製造方法に関する。   The present invention relates to a lignocellulose pretreatment method for obtaining a sugar solution that can be efficiently and efficiently fermented with ethanol using a lignocellulose-containing raw material such as waste building materials, and an ethanol production method for producing ethanol using the sugar solution.

再生可能資源であるバガスや稲わら、木材チップなどの天然系のリグノセルロース含有原料からエタノールを製造し、エネルギーや化学原料として利用する試みが内外で進められている。
リグノセルロース含有原料の一つである木質系バイオマスでは、先ず酸やアルカリでヘミセルロースを加水分解し、ヘミセルロース由来の糖を得る。ヘミセルロースを構成する糖は、主にキシロース、アラビノースといった五単糖とグルコース、ガラクトース、マンノースといった六単糖であり、これらの量比率は木質系バイオマスの種類によって異なる。
Attempts to produce ethanol from natural lignocellulose-containing raw materials such as bagasse, rice straw, and wood chips, which are renewable resources, and to use them as energy and chemical raw materials are underway in Japan and overseas.
In woody biomass, which is one of lignocellulose-containing raw materials, hemicellulose is first hydrolyzed with acid or alkali to obtain hemicellulose-derived sugar. Saccharides constituting hemicellulose are mainly pentoses such as xylose and arabinose and hexoses such as glucose, galactose and mannose, and the ratio of these amounts varies depending on the type of woody biomass.

酸やアルカリでヘミセルロース由来の糖を得た後、残渣は酸や酵素で処理し、セルロース由来の糖(グルコース)を得るが、希硫酸を用いる方法は、グルコース収率が40%程度と低いことに加え、ギ酸やレブリン酸、ヒドロキシメチルフルフラール(HMF)などの糖の過分解物質が生じやすく、発酵に影響を与える。   After obtaining hemicellulose-derived sugar with acid or alkali, the residue is treated with acid or enzyme to obtain cellulose-derived sugar (glucose), but the method using dilute sulfuric acid has a low glucose yield of about 40%. In addition, sugar overdegradation substances such as formic acid, levulinic acid, and hydroxymethylfurfural (HMF) are likely to be produced, affecting fermentation.

リグノセルロース含有原料に共通する性質の一つに、ヘミセルロースとセルロースの分解条件に差があることが挙げられる。ヘミセルロースは比較的、酸、アルカリ、熱水処理で分解されやすく、90%以上の高い回収率で糖が得られるのに対し、セルロースはより厳しい条件で分解が行われ、そのような条件下では糖の過分解がほぼ同じ速度で生じるため、糖の回収率が低くなる。
そこで、酸やアルカリに代わる方法として、酵素による加水分解が研究されてきたが、酵素を有効に働かせるための前処理は原料によって適切な方法を選定する必要がある。
One of the properties common to lignocellulose-containing raw materials is that there is a difference in the decomposition conditions of hemicellulose and cellulose. Hemicellulose is relatively easy to be decomposed by acid, alkali, and hot water treatment, and sugar can be obtained with a high recovery rate of 90% or more, whereas cellulose is decomposed under more severe conditions. Sugar overdegradation occurs at approximately the same rate, resulting in low sugar recovery.
Thus, hydrolysis by enzymes has been studied as a method to replace acids and alkalis, but it is necessary to select an appropriate method for pretreatment for making the enzyme work effectively depending on the raw materials.

前述のように、ヘミセルロースからの糖回収率は酸、アルカリ、熱水処理で90%以上が可能であるので、原料に対して先ず、酵素加水分解の前処理を兼ねた一次加水分解を行うことによってヘミセルロース由来の糖をできるだけ回収する方法が望ましい。
酵素加水分解の前処理としてよく研究されている方法は、酸、アルカリ、熱水処理、爆砕を用いる方法である。前処理としては、いずれも効果があるが、一次加水分解として糖も得ようとする場合、アルカリ条件下では糖の分解が進みやすいため、酸、熱水処理、爆砕を用いた処理が有利である。その他に、原料に対する一次処理として、苛性ソーダ蒸煮、酸化条件下での石灰処理(例えば、非特許文献1〜4参照。)も報告されているが、ヘミセルロース由来の糖の収率は低い。
As described above, since the sugar recovery rate from hemicellulose can be 90% or more by acid, alkali, and hot water treatment, the raw material is first subjected to primary hydrolysis that also serves as pretreatment for enzyme hydrolysis. Thus, it is desirable to recover the hemicellulose-derived sugar as much as possible.
A well-studied method as a pretreatment for enzyme hydrolysis is a method using acid, alkali, hydrothermal treatment, and explosion. All of the pretreatments are effective, but when saccharides are to be obtained as primary hydrolysis, the decomposition of saccharides is likely to proceed under alkaline conditions, so treatment using acid, hydrothermal treatment, or explosion is advantageous. is there. In addition, as a primary treatment for raw materials, caustic soda cooking and lime treatment under oxidizing conditions (for example, see Non-Patent Documents 1 to 4) have been reported, but the yield of hemicellulose-derived sugar is low.

一方、酸処理では糖は回収できるが、原料によっては酵素加水分解の前処理として不十分な場合がある。
木材の中でも広葉樹を酸や爆砕で一次処理した後の残渣は、比較的容易に酵素で糖化されるが、針葉樹はリグニンを含む構造が広葉樹より強固なため、一次処理した後の残渣はそのままでは酵素加水分解率は低い。
国内で有効利用が望まれている廃建材は、スギ、ツガ、マツなどの針葉樹が主体であるため、針葉樹に対する前処理方法の確立は特に国内において重要である。
また、一次処理した残渣を酵素加水分解に供する前に二次処理を行い酵素加水分解率を高める方法も研究されている。例えば、オゾン、過酸化水素、亜塩素酸ナトリウムなどが報告されている。
Vincent S. Chang et al.,“Oxidative lime pretreatment of high-lignin biomass, Applied Biochemistry and Biotechnology”, Applied Biochemistry and Biotechnology, Vol.94(1), April, 1-28(2001) Alfredo Martinez, Maria E. Rodriguez, Sean W. York, James F. Preston, Lonnie O. Inggram,“Effects of Ca(OH)2 Treatments (“Overliming”) onthe Composition and Toxicity of Bagasse Hemicellulose Hydrolysates”, Biotechnology and Bioengineering, Vol.69, No.5, September 5, 526-536 (2000) Ria Millati, Claes Niklasson, Mohammad J. Taherzadeh,“Effect of pH, time and temperature of overliming on detoxification of dilute-acid hydrolyzates for fermentation by Saccharomyces cerevisiae”, Process Biochemistry, 38, 515-522 (2002) Maria de F. S. Barbosa et al., “ Efficient Fermentation of Pinus sp. Acid Hydrolysates by and Ethanologenic Strain of Escherichia coli” , Applied and Environmental Microbiology, Vol. 58, No. 4, 1382-1384 (1992)
On the other hand, sugar can be recovered by acid treatment, but depending on the raw material, it may be insufficient as a pretreatment for enzyme hydrolysis.
Among wood, the residue after primary treatment of hardwood with acid or blasting is relatively easily saccharified by enzymes, but conifers have a structure containing lignin that is stronger than hardwood, so the residue after primary treatment is not changed. Enzymatic hydrolysis rate is low.
Since waste building materials that are expected to be used effectively in Japan are mainly coniferous trees such as cedar, tsuga, and pine, establishment of a pretreatment method for coniferous trees is particularly important in Japan.
In addition, a method of increasing the enzyme hydrolysis rate by conducting a secondary treatment before subjecting the first treated residue to enzyme hydrolysis has been studied. For example, ozone, hydrogen peroxide, sodium chlorite and the like have been reported.
Vincent S. Chang et al., “Oxidative lime pretreatment of high-lignin biomass, Applied Biochemistry and Biotechnology”, Applied Biochemistry and Biotechnology, Vol. 94 (1), April, 1-28 (2001) Alfredo Martinez, Maria E. Rodriguez, Sean W. York, James F. Preston, Lonnie O. Inggram, “Effects of Ca (OH) 2 Treatments (“ Overliming ”) on the Composition and Toxicity of Bagasse Hemicellulose Hydrolysates”, Biotechnology and Bioengineering , Vol.69, No.5, September 5, 526-536 (2000) Ria Millati, Claes Niklasson, Mohammad J. Taherzadeh, “Effect of pH, time and temperature of overliming on detoxification of dilute-acid hydrolyzates for fermentation by Saccharomyces cerevisiae”, Process Biochemistry, 38, 515-522 (2002) Maria de FS Barbosa et al., “Efficient Fermentation of Pinus sp. Acid Hydrolysates by and Ethanologenic Strain of Escherichia coli”, Applied and Environmental Microbiology, Vol. 58, No. 4, 1382-1384 (1992)

しかしながら、前述した従来の二次処理を行う前処理方法は、コストが高いだけでなく、後段の発酵において微生物に阻害的に働く場合が懸念されるので、発酵前に薬剤を除去する工程を設ける必要がある。
二次処理で用いる薬剤は、安価であること、次工程の発酵を阻害しないこと、リサイクル可能なことなどが望まれる。
However, the above-described conventional pretreatment method for performing the secondary treatment is not only expensive, but there is a concern that it may act to inhibit microorganisms in the subsequent fermentation, so a step of removing the drug before fermentation is provided. There is a need.
It is desired that the chemical used in the secondary treatment is inexpensive, does not inhibit fermentation in the next step, and can be recycled.

本発明は前記事情に鑑みてなされ、廃建材などのリグノセルロース含有原料を用いて安価に効率よくエタノール発酵可能な糖液を得るリグノセルロースの前処理方法及び該糖液を用いてエタノールを製造するエタノール製造方法の提供を目的とする。   The present invention has been made in view of the above circumstances, and uses a lignocellulose-containing raw material such as waste building material to obtain a sugar solution that can be efficiently and efficiently fermented with ethanol, and produces ethanol using the sugar solution. An object is to provide a method for producing ethanol.

前記目的を達成するため、本発明は、リグノセルロース含有原料を、希硫酸中、140〜220℃、3〜20分間加水分解処理した後、該加水分解物を一次糖液と固形物に固液分離し、分離した固形物に対し、乾物換算で生石灰を0.5〜20質量%添加し、90〜200℃で10〜120分間加熱して石灰処理し、その後石灰処理した反応物にセルラーゼを加えて酵素加水分解処理し、二次糖液を得ることを特徴とするリグノセルロースの前処理方法を提供する。   In order to achieve the above-mentioned object, the present invention hydrolyzes a lignocellulose-containing raw material in dilute sulfuric acid at 140 to 220 ° C. for 3 to 20 minutes, and then converts the hydrolyzate into a primary saccharide liquid and a solid substance. Separated, 0.5-20 mass% of quicklime is added to the separated solid matter in terms of dry matter, heated at 90-200 ° C. for 10-120 minutes for lime treatment, and then cellulase is added to the lime-treated reaction product. In addition, the present invention provides a method for pretreatment of lignocellulose characterized in that a secondary sugar solution is obtained by enzymatic hydrolysis.

本発明のリグノセルロースの前処理方法において、石灰処理した反応物を固液分離し、分離した生石灰を含む液体は希硫酸を含む前記一次糖液の中和に使用することが好ましい。   In the lignocellulose pretreatment method of the present invention, the lime-treated reactant is preferably subjected to solid-liquid separation, and the separated liquid containing quicklime is preferably used for neutralization of the primary sugar liquid containing dilute sulfuric acid.

本発明のリグノセルロースの前処理方法において、石灰処理した後に反応物を固液分離せず、該反応物を全て希硫酸を含む前記一次糖液の中和に使用することもできる。   In the lignocellulose pretreatment method of the present invention, the reaction product is not subjected to solid-liquid separation after lime treatment, and the reaction product can be used for neutralization of the primary sugar solution containing dilute sulfuric acid.

本発明のリグノセルロースの前処理方法において、リグノセルロース含有原料は廃建材であることが好ましい。   In the lignocellulose pretreatment method of the present invention, the lignocellulose-containing raw material is preferably a waste building material.

また本発明は、前述した本発明に係るリグノセルロースの前処理方法により得られた糖液を用いてエタノール発酵を行い、エタノールを製造することを特徴とするエタノール製造方法を提供する。   The present invention also provides an ethanol production method characterized in that ethanol fermentation is carried out using the sugar solution obtained by the above-described lignocellulose pretreatment method according to the present invention to produce ethanol.

本発明のリグノセルロースの前処理方法は、リグノセルロース含有原料を希硫酸中で加水分解して一次糖液を得、分離した固形物に生石灰を添加、加熱して石灰処理し、この反応物を酵素加水分解処理して二次糖液を得る工程を備え、安価でリサイクル可能な生石灰を酵素加水分解前の二次前処理に用いることによって、リグノセルロース含有原料から安価に効率よくエタノール発酵可能な糖液を得ることができる。
また本発明のエタノール製造方法は、前述した本発明に係るリグノセルロースの前処理方法により得られた糖液を用いてエタノール発酵を行い、エタノールを製造することによって、低コストでエタノール収率の向上を達成することが可能となる。
In the method for pretreatment of lignocellulose of the present invention, a lignocellulose-containing raw material is hydrolyzed in dilute sulfuric acid to obtain a primary sugar solution, quick lime is added to the separated solid, heated to lime, and this reaction product is treated with lime. Equipped with a step to obtain secondary sugar solution by enzymatic hydrolysis, and by using quick and recyclable quick lime for secondary pretreatment before enzymatic hydrolysis, it is possible to efficiently and efficiently ferment ethanol from lignocellulose-containing raw materials A sugar solution can be obtained.
Moreover, the ethanol production method of the present invention improves ethanol yield at low cost by performing ethanol fermentation using the sugar solution obtained by the above-described lignocellulose pretreatment method according to the present invention and producing ethanol. Can be achieved.

以下、図面を参照して本発明の実施形態を説明する。なお、以下の記載において、質量%は、単に%と記載してある。
図1は、本発明の方法の第1実施形態を示すフロー図である。本実施形態では、リグノセルロース含有原料として、廃建材、木材チップなどの木質系バイオマスを用い、これを希硫酸中で加水分解して一次糖液を得、分離した固形物に生石灰(CaO)を添加して石灰処理し、この反応物を酵素加水分解処理して二次糖液を得る工程を備えている。なお、リグノセルロース含有原料としては、前記木質系バイオマスに限定されるものではなく、例えば稲わら、籾殻、バガスなどの各種のリグノセルロース含有原料を用いることができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, mass% is simply described as%.
FIG. 1 is a flow diagram illustrating a first embodiment of the method of the present invention. In this embodiment, woody biomass such as waste building materials and wood chips is used as a lignocellulose-containing raw material, which is hydrolyzed in dilute sulfuric acid to obtain a primary sugar solution, and quick lime (CaO) is added to the separated solid. It is provided with a step of adding lime treatment and enzymatic hydrolysis treatment of the reaction product to obtain a secondary sugar solution. The lignocellulose-containing raw material is not limited to the woody biomass, and various lignocellulose-containing raw materials such as rice straw, rice husk and bagasse can be used.

本実施形態では、まず、リグノセルロース含有原料である木質系バイオマスを準備する。木質系バイオマスとして廃建材等を用いる場合、廃建材等は、次工程の希硫酸による加水分解がスムーズに進行するように、1〜20mm、好ましくは5〜10mmのサイズに破砕しておくことが望ましい。チップサイズはできるだけ小さい方が糖化の効率が高くなるが、破砕のための所要エネルギーも大きくなるので、好ましいチップサイズは1〜20mm、より好ましくは5〜10mm程度である。また、廃建材を用いる場合、釘等の金属やプラスチックなどの余分な混入物を可能な限り除去しておくことが望ましい。廃建材は、主に木造家屋の解体によって発生し、用いられている樹種としては、スギ、マツ、ツガなどの針葉樹の比率が高い。   In this embodiment, first, woody biomass that is a lignocellulose-containing raw material is prepared. When using waste building materials as woody biomass, the waste building materials may be crushed to a size of 1 to 20 mm, preferably 5 to 10 mm, so that hydrolysis with dilute sulfuric acid in the next step proceeds smoothly. desirable. As the chip size is as small as possible, the efficiency of saccharification increases, but the energy required for crushing also increases, so the preferred chip size is about 1 to 20 mm, more preferably about 5 to 10 mm. Moreover, when using a waste building material, it is desirable to remove extraneous contaminants, such as metal, such as a nail, and plastic as much as possible. Waste building materials are mainly generated by the demolition of wooden houses, and the percentage of conifers such as cedar, pine and tsuga is high as the tree species used.

次に、廃建材等の木質系バイオマスを、希硫酸中で加熱し、加水分解処理する。この加水分解の条件は、硫酸濃度は好ましくは0.1〜5%、より好ましくは0.5〜3%程度、温度は140℃〜220℃、好ましくは160℃〜210℃程度、反応時間は3〜20分間、好ましくは5〜10分間程度である。これらの条件は、ヘミセルロースから最大限に糖を回収する条件でもある。この加水分解処理によって、木質系バイオマス中に含まれるヘミセルロースが加水分解され、ヘミセルロース由来の五単糖や六単糖が生成する。この加水分解処理は、オートクレーブなどを用いて行うことが好ましい。   Next, woody biomass such as waste building materials is heated in dilute sulfuric acid and hydrolyzed. The hydrolysis conditions are as follows: sulfuric acid concentration is preferably 0.1 to 5%, more preferably about 0.5 to 3%, temperature is 140 ° C to 220 ° C, preferably about 160 ° C to 210 ° C, and reaction time is It is 3 to 20 minutes, preferably about 5 to 10 minutes. These conditions are also conditions for maximally recovering sugar from hemicellulose. By this hydrolysis treatment, hemicellulose contained in the woody biomass is hydrolyzed to produce pentose and hexose derived from hemicellulose. This hydrolysis treatment is preferably performed using an autoclave or the like.

次に、加水分解反応物を固液分離する。固液分離の方法は、ろ過、遠心分離などを用いることができるが、エネルギー消費の小さいろ過を用いることが好ましい。固液分離したろ液には、ヘミセルロース由来の糖であるグルコース、キシロース、アラビノース、ガラクトース、マンノース(図1中、それぞれG,X,A,Ga,Mと略記してある。)が含まれる。   Next, the hydrolysis reaction product is subjected to solid-liquid separation. As the solid-liquid separation method, filtration, centrifugation, or the like can be used, but it is preferable to use filtration with low energy consumption. The filtrate obtained by solid-liquid separation includes glucose, xylose, arabinose, galactose, and mannose (hereinafter abbreviated as G, X, A, Ga, and M, respectively) that are sugars derived from hemicellulose.

このろ液(一次糖液)は酸性であるため、中和した後に発酵に供するが、前記の条件で加水分解した一次糖液には、糖の過分解物であるフルフラール、HMF、レブリン酸、ギ酸などが含まれる。これらの過分解物は微生物による発酵を阻害するため、前処理が必要であるが、消石灰または生石灰を加えて加温する方法では、前述のようにフルフラール、HMFの一部除去も行われる方法として知られている(例えば、非特許文献2,3,4参照。)。   Since this filtrate (primary sugar solution) is acidic, it is neutralized and then subjected to fermentation. However, the primary sugar solution hydrolyzed under the above conditions contains furfural, HMF, levulinic acid, Formic acid and the like are included. Since these overdegraded products inhibit fermentation by microorganisms, pretreatment is necessary. However, in the method of heating by adding slaked lime or quick lime, as described above, part of furfural and HMF is also removed. (For example, refer nonpatent literature 2,3,4).

消石灰または生石灰で中和したろ液(一次糖液)には、窒素、リンを含む栄養源とエタノール発酵微生物を添加し、適当な温度、pH等の条件下で微生物を培養してアルコール発酵を行い、糖をエタノールに変換し、エタノールを製造する。エタノール発酵微生物としては、サッカロミセス属酵母などの従来公知の各種エタノール発酵微生物を用いることができる。   Nitrogen and phosphorus-containing nutrient sources and ethanol-fermenting microorganisms are added to the filtrate (primary sugar solution) neutralized with slaked lime or quicklime, and the microorganisms are cultured under conditions of appropriate temperature, pH, etc. for alcoholic fermentation. And converting sugar to ethanol to produce ethanol. As the ethanol fermentation microorganism, various conventionally known ethanol fermentation microorganisms such as Saccharomyces yeast can be used.

一方、固液分離した残渣は、その残渣に対して生石灰を0.5〜20%、好ましくは1〜15%、より好ましくは4〜12%(いずれも残渣乾物換算)添加し、温度90〜200℃、好ましくは100〜180℃、より好ましくは100〜150℃で、10〜120分間、好ましくは10〜60分間、より好ましくは20〜40分間加熱して石灰処理する。この加熱は、生石灰を添加した残渣に蒸気を吹き込むことなどにより行うことが好ましい。
また、石灰処理においては、残渣の固形分濃度(スラリー濃度)を5〜30%とすることが好ましく、10〜20%とすることがより好ましい。
On the other hand, the residue obtained by solid-liquid separation is added with 0.5 to 20%, preferably 1 to 15%, more preferably 4 to 12% (both in terms of residue dry matter) of quick lime, and the temperature is 90 to 90%. The lime treatment is performed by heating at 200 ° C., preferably 100 to 180 ° C., more preferably 100 to 150 ° C., for 10 to 120 minutes, preferably 10 to 60 minutes, more preferably 20 to 40 minutes. This heating is preferably performed by blowing steam into the residue to which quicklime has been added.
In the lime treatment, the solid content concentration (slurry concentration) of the residue is preferably 5 to 30%, more preferably 10 to 20%.

消石灰または生石灰は、アルカリとしては安価であるため、希硫酸を用いた加水分解で得られた一次糖液を中和するためのアルカリとして一般的に用いられている。
また、消石灰または生石灰は硫酸と沈殿を生じ、難溶性の石膏を生じるため、溶存塩による発酵阻害を低減する効果があるだけでなく、やや過剰に消石灰または生石灰を添加し、60℃で30分〜数時間程度保持することによって、加水分解液中に含まれるフルフラールやHMFなどの糖が過分解して生成したフラン類の大部分を分解、除去する効果を持つ。
中和に用いられる消石灰または生石灰は、塩類と沈殿を生じやすく、菌体への毒性も小さい。
石灰処理で用いた後の生石灰は、全量を中和工程にリサイクルすることによって、反応で消費された分以外の生石灰は無駄なく有効利用することができる。
Since slaked lime or quicklime is inexpensive as an alkali, it is generally used as an alkali for neutralizing a primary sugar solution obtained by hydrolysis using dilute sulfuric acid.
In addition, slaked lime or quick lime causes precipitation with sulfuric acid, resulting in poorly soluble gypsum, which not only has the effect of reducing fermentation inhibition by dissolved salts, but also adds slaked lime or quick lime slightly in excess, at 60 ° C for 30 minutes Holding for about several hours has the effect of decomposing and removing most of the furans produced by excessive decomposition of sugars such as furfural and HMF contained in the hydrolyzate.
Slaked lime or quicklime used for neutralization tends to form salts and precipitates, and has little toxicity to cells.
The quick lime after being used in the lime treatment is recycled to the neutralization step so that the quick lime other than the amount consumed in the reaction can be effectively used without waste.

次に、生石灰処理した反応物を、石灰処理液と残渣とに固液分離する。固液分離の方法は、ろ過、遠心分離などを用いることができるが、エネルギー消費の小さいろ過を用いることが好ましい。固液分離したろ液は、一次糖液の中和に用いられる。残渣は、セルロース含有量が高く、セルラーゼを用いた酵素加水分解に供される。   Next, the reaction product subjected to the quicklime treatment is solid-liquid separated into a lime treatment solution and a residue. As the solid-liquid separation method, filtration, centrifugation, or the like can be used, but it is preferable to use filtration with low energy consumption. The filtrate obtained by solid-liquid separation is used for neutralization of the primary sugar solution. The residue has a high cellulose content and is subjected to enzymatic hydrolysis using cellulase.

酵素加水分解は、残渣を懸濁した液にセルラーゼを添加し、撹拌しながら、例えば、pH4〜6程度、温度35〜60℃程度、10〜100時間程度反応させることによって行われる。この酵素加水分解により得られる二次糖液には、セルロース由来の糖であるグルコース(G)が含まれる。   Enzymatic hydrolysis is carried out by adding cellulase to a liquid in which the residue is suspended and reacting, for example, with stirring at a pH of about 4-6, a temperature of about 35-60 ° C., for about 10-100 hours. The secondary sugar solution obtained by this enzymatic hydrolysis contains glucose (G), which is a sugar derived from cellulose.

この二次糖液は、前述した中和後の一次糖液と一緒に、或いはそれぞれ別個に、窒素、リンを含む栄養源と酵母などのエタノール発酵微生物を添加し、適当な温度、pH等の条件下で微生物を培養してアルコール発酵を行い、糖をエタノールに変換し、エタノールを製造する。エタノール発酵微生物としては、サッカロミセス属酵母などの従来公知の各種エタノール発酵微生物を用いることができる。   This secondary sugar solution is mixed with the above-described neutralized primary sugar solution or separately, and a nutrient source containing nitrogen and phosphorus and an ethanol-fermenting microorganism such as yeast are added, and an appropriate temperature, pH, etc. are added. Microorganisms are cultured under conditions to perform alcoholic fermentation, sugar is converted to ethanol, and ethanol is produced. As the ethanol fermentation microorganism, various conventionally known ethanol fermentation microorganisms such as Saccharomyces yeast can be used.

本実施形態のリグノセルロースの前処理方法は、リグノセルロース含有原料を希硫酸中で加水分解して一次糖液を得、分離した固形物に生石灰を添加、加熱して石灰処理し、この反応物を酵素加水分解処理して二次糖液を得る工程を備え、安価でリサイクル可能な生石灰を酵素加水分解前の二次前処理に用いることによって、リグノセルロース含有原料から安価に効率よくエタノール発酵可能な糖液を得ることができる。
また本実施形態のエタノール製造方法は、前記リグノセルロースの前処理方法により得られた糖液を用いてエタノール発酵を行い、エタノールを製造することによって、低コストでエタノール収率の向上を達成することが可能となる。
In the pretreatment method of lignocellulose of the present embodiment, a lignocellulose-containing raw material is hydrolyzed in dilute sulfuric acid to obtain a primary sugar solution, and quick lime is added to the separated solid, heated to lime, and this reaction product. It is possible to efficiently ferment ethanol from lignocellulose-containing raw materials by using low-cost and recyclable quick lime for secondary pretreatment before enzymatic hydrolysis. Can be obtained.
In addition, the ethanol production method of the present embodiment achieves an improvement in ethanol yield at low cost by performing ethanol fermentation using the sugar solution obtained by the lignocellulose pretreatment method and producing ethanol. Is possible.

図2は、本発明の方法の第2実施形態を示すフロー図である。本実施形態は、木質系バイオマスを用い、これを希硫酸中で加水分解して一次糖液を得、分離した固形物に生石灰を添加して石灰処理するまでは、前述した第1実施形態と同様に行われるが、石灰処理した反応物を固液分離することなく、石灰処理スラリーのまま前記一次糖液に加え、混合物を中和後にセルラーゼを用いた酵素加水分解を行って二次糖液を得ることを特徴としている。   FIG. 2 is a flow diagram illustrating a second embodiment of the method of the present invention. This embodiment uses woody biomass, hydrolyzes it in dilute sulfuric acid to obtain a primary sugar solution, and adds the quick lime to the separated solid to perform lime treatment with the above-described first embodiment. Although it is performed in the same manner, the lime-treated reactant is added to the primary sugar solution as a lime-treated slurry without solid-liquid separation, and the mixture is neutralized and then subjected to enzyme hydrolysis using cellulase to obtain a secondary sugar solution. It is characterized by obtaining.

本実施形態では、石灰処理して得られる石灰処理スラリーを全て一次糖液の中和に用いることから、石灰処理用に添加する生石灰のうち、石灰処理において消費される分を除く生石灰を一次糖液の中和に用いることができる。中和するために不足するアルカリは、別途添加する。それは、生石灰であっても、消石灰であっても、生石灰と消石灰の混合物であってもよい。一次糖液と石灰処理スラリーの混合物を中和後、セルラーゼを添加し、撹拌しながら、例えば、pH4〜6程度、温度35〜60℃程度、10〜100時間程度反応させることによって行われる。この酵素加水分解により得られる二次糖液には、一次糖液に含まれるヘミセルロース由来の糖であるグルコース、キシロース、アラビノース、ガラクトース、マンノース(G,X,A,Ga,M)と、酵素加水分解により生成したグルコース(G)が含まれる。   In this embodiment, since all the lime processing slurries obtained by lime treatment are used for neutralization of the primary sugar solution, among the quick lime added for lime treatment, quick lime excluding the portion consumed in the lime treatment is used as the primary sugar. It can be used for neutralization of the liquid. The alkali which is insufficient for neutralization is added separately. It may be quick lime, slaked lime, or a mixture of quick lime and slaked lime. After neutralizing the mixture of the primary sugar solution and the lime processing slurry, cellulase is added, and the reaction is performed, for example, by reacting for about 4 to 6 hours at a temperature of about 35 to 60 ° C. for about 10 to 100 hours with stirring. The secondary sugar solution obtained by this enzyme hydrolysis includes glucose, xylose, arabinose, galactose, mannose (G, X, A, Ga, M), which are sugars derived from hemicellulose contained in the primary sugar solution, and enzyme hydrolysis. The glucose (G) produced | generated by decomposition | disassembly is contained.

酵素加水分解終了後、得られた二次糖液に、窒素、リンを含む栄養源と酵母などのエタノール発酵微生物を添加し、適当な温度、pH等の条件下で微生物を培養してアルコール発酵を行い、糖をエタノールに変換し、エタノールを製造する。エタノール発酵微生物としては、サッカロミセス属酵母などの従来公知の各種エタノール発酵微生物を用いることができる。   After the enzymatic hydrolysis is completed, ethanol fermentation microorganisms such as yeast and other nutrient sources containing nitrogen and phosphorus are added to the resulting secondary sugar solution, and the microorganisms are cultured under conditions of appropriate temperature, pH, etc. To convert the sugar to ethanol to produce ethanol. As the ethanol fermentation microorganism, various conventionally known ethanol fermentation microorganisms such as Saccharomyces yeast can be used.

本実施形態によれば、前述した第1実施形態と同様の効果が得られ、さらに、石灰処理後の石灰処理スラリーを全量一次糖液と混合した後に酵素加水分解を行うことによって、加工工程を簡略化できる。また、石灰処理スラリーを全量一次糖液と混合し、一次糖液の中和のために用いるので、石灰処理用に添加する生石灰の無駄がなくなる。   According to this embodiment, the same effect as the first embodiment described above can be obtained, and further, the lime treatment slurry after lime treatment is mixed with the primary sugar solution and then the enzyme hydrolysis is performed, whereby the processing step is performed. It can be simplified. Moreover, since the lime processing slurry is mixed with the primary sugar solution and used for neutralization of the primary sugar solution, there is no waste of quick lime added for lime treatment.

なお、本実施形態において、一次糖液と石灰処理スラリーの混合物を中和後、この混合物にセルラーゼとエタノール発酵微生物を両方とも加え、酵素加水分解とアルコール発酵とを同時並行的に行うことも可能である。   In this embodiment, after neutralizing the mixture of the primary sugar solution and the lime treatment slurry, it is also possible to add both cellulase and ethanol-fermenting microorganisms to this mixture and simultaneously perform enzyme hydrolysis and alcohol fermentation. It is.

以下の実験条件でリグノセルロース含有原料を前処理した。
[共通条件]<原料>
ボード用廃建材(スギ、ツガ、マツを主成分とする)。
<一次加水分解条件>
硫酸濃度1%、170℃、10分間。
<ろ過>
一次加水分解後、吸引ろ過で固液分離し、残渣を水でよく洗浄し、二次処理用の原料とした。
<二次処理>
後述する各実施例及び各比較例に記載の条件で石灰処理を行った。
<酵素加水分解>
セルラーゼ:ジェネンコア・インターナショナルジャパン・リミテッド社製、SPEZYME CEを石灰処理後に分離した残渣中の固形物1gに対して0.4g添加した。
反応器:200mL三角フラスコに、残渣を固形物として2.5g、緩衝液とイオン交換水を残渣の付着水分と合わせて50mLになるよう添加した。
pH:緩衝液として0.2N酢酸ナトリウムを添加してpH4.5に調整した。
温度:45℃。
撹拌:100rpmで振とう。
The lignocellulose-containing raw material was pretreated under the following experimental conditions.
[Common conditions] <Raw materials>
Waste building materials for boards (mainly cedar, tsuga and pine).
<Primary hydrolysis conditions>
Sulfuric acid concentration 1%, 170 ° C., 10 minutes.
<Filtration>
After primary hydrolysis, solid-liquid separation was performed by suction filtration, and the residue was washed well with water to obtain a raw material for secondary treatment.
<Secondary processing>
Lime treatment was performed under the conditions described in each Example and each Comparative Example described below.
<Enzymatic hydrolysis>
Cellulase: 0.4 g of SPEZYME CE, manufactured by Genencor International Japan Limited, was added to 1 g of solids in the residue separated after lime treatment.
Reactor: To the 200 mL Erlenmeyer flask, 2.5 g of the residue was added as a solid, and a buffer solution and ion-exchanged water were added together with the adhering moisture of the residue to 50 mL.
pH: 0.2N sodium acetate was added as a buffer to adjust to pH 4.5.
Temperature: 45 ° C.
Agitation: Shake at 100 rpm.

[実験1:石灰処理温度の比較]
石灰処理の温度を次の実施例1〜4、比較例1のように設定して前処理を行い、さらに酵素加水分解を行って、得られる二次糖液のグルコース収量を調べ、比較した。なお、生石灰添加量は、残渣乾物に対する割合である。
・実施例1:石灰処理条件を、生石灰添加量4%、温度100℃、処理時間30分とした。
・実施例2:石灰処理条件を、生石灰添加量4%、温度121℃、処理時間30分とした。
・実施例3:石灰処理条件を、生石灰添加量4%、温度150℃、処理時間30分とした。
・実施例4:石灰処理条件を、生石灰添加量4%、温度180℃、処理時間30分とした。
・比較例1:石灰処理を行わず、残渣をそのまま酵素加水分解に供した。
グルコースの回収量を表1に示す。なお、表1中、「グルコース収量(g/100g−前処理物)」とは石灰処理後の残渣の固形分(乾燥重量)に対するグルコース収量のことであり、「グルコース収量(g/100g−前処理前の固形分)」とは石灰処理前の固形分(乾燥重量)に対するグルコース収量のことである。
[Experiment 1: Comparison of lime treatment temperature]
The temperature of the lime treatment was set as in the following Examples 1 to 4 and Comparative Example 1, pretreatment was performed, and further enzymatic hydrolysis was performed, and the glucose yield of the resulting secondary sugar solution was examined and compared. In addition, quick lime addition amount is a ratio with respect to a residue dry matter.
Example 1: The lime treatment conditions were a quick lime addition amount of 4%, a temperature of 100 ° C., and a treatment time of 30 minutes.
Example 2: The lime treatment conditions were a quick lime addition amount of 4%, a temperature of 121 ° C., and a treatment time of 30 minutes.
Example 3: The lime treatment conditions were a quick lime addition amount of 4%, a temperature of 150 ° C., and a treatment time of 30 minutes.
Example 4: The lime treatment conditions were a quick lime addition amount of 4%, a temperature of 180 ° C., and a treatment time of 30 minutes.
Comparative Example 1: The lime treatment was not performed, and the residue was directly subjected to enzymatic hydrolysis.
Table 1 shows the amount of glucose recovered. In Table 1, “glucose yield (g / 100 g—pretreated product)” refers to the glucose yield relative to the solid content (dry weight) of the residue after lime treatment, and “glucose yield (g / 100 g—pre-treatment). “Solid content before treatment” means the glucose yield relative to the solid content (dry weight) before lime treatment.

Figure 2007151433
Figure 2007151433

これらの結果より、二次前処理による固形分の質量ロスは、石灰処理の温度によって変化した。
固形分の質量ロスを加味したグルコース収量(一次処理した固形分基準)は、一次処理のみの場合(比較例1)の20gに対し、添加量4%、121℃、30分間の石灰処理によって33gと65%増加した。また、180℃の温度条件下でも、収量の増加が認められた。
From these results, the mass loss due to the secondary pretreatment varied depending on the temperature of the lime treatment.
The glucose yield (based on the solid content subjected to the primary treatment) taking into account the mass loss of the solid content is 33 g due to the lime treatment for 4 minutes at 121 ° C. for 30 minutes with respect to 20 g in the case of only the primary treatment (Comparative Example 1). Increased by 65%. In addition, an increase in yield was observed even at a temperature of 180 ° C.

[実験2:石灰添加量の比較]
石灰処理の生石灰添加量を次の実施例1〜3、比較例1〜2のように設定して前処理を行い、さらに酵素加水分解を行って、得られる二次糖液のグルコース収量を調べ、比較した。
・実施例1:石灰処理条件を、生石灰添加量4%、温度121℃、処理時間30分とした。
・実施例2:石灰処理条件を、生石灰添加量8%、温度121℃、処理時間30分とした。
・実施例3:石灰処理条件を、生石灰添加量12%、温度121℃、処理時間30分とした。
・比較例1:石灰処理条件を、生石灰添加量0%、温度121℃、処理時間30分とした。
・比較例2:石灰処理を行わず、残渣をそのまま酵素加水分解に供した。
グルコースの回収量を表2に示す。
[Experiment 2: Comparison of lime addition amount]
The amount of quicklime added to the lime treatment is set as in the following Examples 1 to 3 and Comparative Examples 1 and 2, pretreatment is performed, and further, enzymatic hydrolysis is performed, and the glucose yield of the resulting secondary sugar solution is examined. Compared.
Example 1: The lime treatment conditions were a quick lime addition amount of 4%, a temperature of 121 ° C., and a treatment time of 30 minutes.
Example 2: The lime treatment conditions were 8% quick lime addition, 121 ° C. temperature, and 30 minutes treatment time.
Example 3: The lime treatment conditions were a quick lime addition amount of 12%, a temperature of 121 ° C., and a treatment time of 30 minutes.
Comparative Example 1: The lime treatment conditions were 0% quick lime addition, a temperature of 121 ° C., and a treatment time of 30 minutes.
Comparative Example 2: The lime treatment was not performed, and the residue was directly subjected to enzymatic hydrolysis.
Table 2 shows the amount of glucose recovered.

Figure 2007151433
Figure 2007151433

二次前処理による固形分の質量ロスは、石灰添加量によって変化したが、温度の場合より変化量は小さかった。固形分の質量ロスを加味したグルコース収量(一次処理した固形物基準)は、一次処理のみの場合(比較例2)の20gに対し、添加量4%、121℃、30分間の石灰処理によって33gと65%増加した。生石灰添加量を8%、12%に上げても収量は増加しなかった。また、生石灰無添加で加熱のみ行った場合は、無処理の場合よりトータルの収量は低下した。   Although the mass loss due to the secondary pretreatment changed depending on the amount of lime added, the amount of change was smaller than that in the case of temperature. The glucose yield (based on the solid material subjected to the primary treatment) taking into account the mass loss of the solid content is 33 g due to the lime treatment for 4 minutes at 121 ° C. for 30 minutes with respect to 20 g in the case of only the primary treatment (Comparative Example 2). Increased by 65%. The yield did not increase even when the amount of quicklime was increased to 8% or 12%. In addition, when only heating was performed without adding quicklime, the total yield was lower than when no treatment was performed.

[実験3:石灰処理と苛性ソーダ処理との比較]
石灰処理時に生石灰を添加した場合(実施例1〜2)と苛性ソーダを添加した場合(比較例1〜2)のそれぞれの前処理を行い、さらに酵素加水分解を行って、得られる二次糖液のグルコース収量を調べ、比較した。
・実施例1:石灰処理条件を、生石灰添加量4%、温度121℃、処理時間30分とした。
・実施例2:石灰処理条件を、生石灰添加量8%、温度121℃、処理時間30分とした。
・比較例1:生石灰に代えて苛性ソーダを用い、処理条件を、苛性ソーダ添加量8%、温度121℃、処理時間30分とした。
・比較例2:生石灰に代えて苛性ソーダを用い、処理条件を、苛性ソーダ添加量12%、温度121℃、処理時間30分とした。
・比較例3:石灰処理を行わず、残渣をそのまま酵素加水分解に供した。
グルコースの回収量を表3に示す。
[Experiment 3: Comparison between lime treatment and caustic soda treatment]
A secondary sugar solution obtained by performing pretreatment of each of cases where quick lime is added during lime treatment (Examples 1 and 2) and when caustic soda is added (Comparative Examples 1 and 2), and further enzymatic hydrolysis is performed. The glucose yields were examined and compared.
Example 1: The lime treatment conditions were a quick lime addition amount of 4%, a temperature of 121 ° C., and a treatment time of 30 minutes.
Example 2: The lime treatment conditions were 8% quick lime addition, 121 ° C. temperature, and 30 minutes treatment time.
Comparative Example 1: Caustic soda was used in place of quick lime, and the treatment conditions were 8% caustic soda addition, temperature 121 ° C., and treatment time 30 minutes.
Comparative Example 2: Caustic soda was used in place of quick lime, and the treatment conditions were a caustic soda addition amount of 12%, a temperature of 121 ° C., and a treatment time of 30 minutes.
Comparative Example 3: The lime treatment was not performed, and the residue was directly subjected to enzymatic hydrolysis.
Table 3 shows the amount of glucose recovered.

Figure 2007151433
Figure 2007151433

苛性ソーダで二次前処理を行った場合、一次処理のみの場合(比較例3)よりグルコース収量は低下した。   When the secondary pretreatment was performed with caustic soda, the glucose yield was lower than in the case of only the primary treatment (Comparative Example 3).

[実験4:反応後の石灰の中和工程へのリサイクル]
実験3において実施例1の条件(生石灰添加量4%、121℃、30分間)で石灰処理した二次処理物を一次糖液の中和に使用した。この中和は、消石灰を用いて、発酵阻害物質の除去効果が出るpH10に達するまで行った(実施例1)。
原料1000gあたりの消石灰使用量を表4に示す。なお、原料1000gに対して一次加水分解で得られる一次糖液は3200g、一次加水分解残渣は固形物として750gであった。
[Experiment 4: Recycling lime after reaction to neutralization process]
In Experiment 3, the secondary treatment product treated with lime under the conditions of Example 1 (calcified lime addition amount 4%, 121 ° C., 30 minutes) was used for neutralization of the primary sugar solution. This neutralization was performed using slaked lime until reaching a pH of 10 at which the effect of removing the fermentation inhibitor was obtained (Example 1).
Table 4 shows the amount of slaked lime used per 1000 g of raw material. In addition, the primary sugar liquid obtained by primary hydrolysis with respect to 1000g of raw materials was 3200g, and the primary hydrolysis residue was 750g as a solid substance.

Figure 2007151433
Figure 2007151433

生石灰による二次前処理の処理物を一次糖液の中和に用いることによって、一次糖液の中和で新たに使用する消石灰は、石灰処理を行わなかった場合(比較例1)よりも12g削減された。   By using the processed product of the secondary pretreatment with quick lime for neutralization of the primary sugar solution, the slaked lime newly used for neutralization of the primary sugar solution is 12 g than when the lime treatment was not performed (Comparative Example 1). Reduced.

本発明の方法の第1実施形態を示すフロー図である。It is a flowchart which shows 1st Embodiment of the method of this invention. 本発明の方法の第2実施形態を示すフロー図である。It is a flowchart which shows 2nd Embodiment of the method of this invention.

Claims (5)

リグノセルロース含有原料を、希硫酸中、140〜220℃、3〜20分間加水分解処理した後、該加水分解物を一次糖液と固形物に固液分離し、分離した固形物に対し、乾物換算で生石灰を0.5〜20質量%添加し、90〜200℃で10〜120分間加熱して石灰処理し、その後石灰処理した反応物にセルラーゼを加えて酵素加水分解処理し、二次糖液を得ることを特徴とするリグノセルロースの前処理方法。   The lignocellulose-containing raw material is hydrolyzed in dilute sulfuric acid at 140 to 220 ° C. for 3 to 20 minutes, and then the hydrolyzate is solid-liquid separated into a primary sugar solution and a solid, and the separated solid is dried. 0.5-20 mass% of quicklime is added in conversion, heated at 90-200 ° C. for 10-120 minutes for lime treatment, and then cellulase is added to the lime-treated reaction product to carry out enzyme hydrolysis treatment, secondary sugar A method for pretreating lignocellulose, comprising obtaining a liquid. 石灰処理した反応物を固液分離し、分離した生石灰を含む液体は希硫酸を含む前記一次糖液の中和に使用することを特徴とする請求項1に記載のリグノセルロースの前処理方法。   2. The lignocellulose pretreatment method according to claim 1, wherein the lime-treated reactant is subjected to solid-liquid separation, and the liquid containing the separated quick lime is used for neutralization of the primary sugar solution containing dilute sulfuric acid. 石灰処理した後に反応物を固液分離せず、該反応物を全て希硫酸を含む前記一次糖液の中和に使用することを特徴とする請求項1に記載のリグノセルロースの前処理方法。   The method for pretreatment of lignocellulose according to claim 1, wherein the reaction product is used for neutralization of the primary sugar solution containing dilute sulfuric acid without solid-liquid separation after the lime treatment. リグノセルロース含有原料が廃建材であることを特徴とする請求項1〜3のいずれかに記載のリグノセルロースの前処理方法。   The pretreatment method for lignocellulose according to any one of claims 1 to 3, wherein the lignocellulose-containing raw material is a waste building material. 請求項1〜4のいずれかに記載のリグノセルロースの前処理方法により得られた糖液を用いてエタノール発酵を行い、エタノールを製造することを特徴とするエタノール製造方法。
An ethanol production method, wherein ethanol is fermented using the sugar solution obtained by the lignocellulose pretreatment method according to any one of claims 1 to 4 to produce ethanol.
JP2005348982A 2005-12-02 2005-12-02 Method for pretreatment of lignocellulose and method for producing ethanol Withdrawn JP2007151433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005348982A JP2007151433A (en) 2005-12-02 2005-12-02 Method for pretreatment of lignocellulose and method for producing ethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005348982A JP2007151433A (en) 2005-12-02 2005-12-02 Method for pretreatment of lignocellulose and method for producing ethanol

Publications (1)

Publication Number Publication Date
JP2007151433A true JP2007151433A (en) 2007-06-21

Family

ID=38236582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005348982A Withdrawn JP2007151433A (en) 2005-12-02 2005-12-02 Method for pretreatment of lignocellulose and method for producing ethanol

Country Status (1)

Country Link
JP (1) JP2007151433A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069323A1 (en) * 2007-11-28 2009-06-04 Jfe Engineering Corporation Process for producing ethanol from oil-palm empty fruit bunch, process for producing ethanol from plant biomass, and method of plant biomass pretreatment before saccharization
WO2009110374A1 (en) * 2008-03-05 2009-09-11 東レ株式会社 Method of producing compound originating from polysaccharide-based biomass
JP2010136702A (en) * 2008-12-15 2010-06-24 Forestry & Forest Products Research Institute Method for producing ethanol
JP2010207102A (en) * 2009-03-06 2010-09-24 Toyota Motor Corp Method for saccharification of plant fiber material
WO2010134455A1 (en) * 2009-05-22 2010-11-25 独立行政法人農業・食品産業技術総合研究機構 Method for converting lignocellulose-based biomass
JP2011502526A (en) * 2007-11-14 2011-01-27 アールト・ユニバーシティ・ファウンデイション Lipid production method
CN102605020A (en) * 2012-03-29 2012-07-25 天津大学 Method for improving lignocellulose enzymolysis and saccharification efficiency
JP2013500727A (en) * 2009-08-06 2013-01-10 アニッキ ゲーエムベーハー Process for producing carbohydrate degradation products from lignocellulose raw materials
WO2013190876A1 (en) * 2012-06-21 2013-12-27 月島機械株式会社 Biomass processing system and processing method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011502526A (en) * 2007-11-14 2011-01-27 アールト・ユニバーシティ・ファウンデイション Lipid production method
JP2009125050A (en) * 2007-11-28 2009-06-11 Jfe Engineering Corp Pretreatment method for enzymatic hydrolysis of herbaceous biomass, ethanol production method using herbaceous biomass as raw material and ethanol production method using palm hollow bunch
WO2009069323A1 (en) * 2007-11-28 2009-06-04 Jfe Engineering Corporation Process for producing ethanol from oil-palm empty fruit bunch, process for producing ethanol from plant biomass, and method of plant biomass pretreatment before saccharization
US8497091B2 (en) 2008-03-05 2013-07-30 Toray Industries, Inc. Method of producing compound originating from polysaccharide-based biomass
JP5077346B2 (en) * 2008-03-05 2012-11-21 東レ株式会社 Method for producing polysaccharide-based biomass-derived compound
US9157107B2 (en) 2008-03-05 2015-10-13 Toray Industries, Inc. Method of producing compound originating from polysaccharide-based bio-mass
US20110008826A1 (en) * 2008-03-05 2011-01-13 Toray Industries, Inc. Method of producing compound originating from polysaccharide-based biomass
WO2009110374A1 (en) * 2008-03-05 2009-09-11 東レ株式会社 Method of producing compound originating from polysaccharide-based biomass
JPWO2009110374A1 (en) * 2008-03-05 2011-07-14 東レ株式会社 Method for producing polysaccharide-based biomass-derived compound
JP2010136702A (en) * 2008-12-15 2010-06-24 Forestry & Forest Products Research Institute Method for producing ethanol
JP2010207102A (en) * 2009-03-06 2010-09-24 Toyota Motor Corp Method for saccharification of plant fiber material
US8968478B2 (en) 2009-03-06 2015-03-03 Toyota Jidosha Kabushiki Kaisha Pretreatment method for saccharification of plant fiber material and saccharification method
WO2010134455A1 (en) * 2009-05-22 2010-11-25 独立行政法人農業・食品産業技術総合研究機構 Method for converting lignocellulose-based biomass
JP2013500727A (en) * 2009-08-06 2013-01-10 アニッキ ゲーエムベーハー Process for producing carbohydrate degradation products from lignocellulose raw materials
JP2016104020A (en) * 2009-08-06 2016-06-09 アニッキ ゲーエムベーハーAnnikki Gmbh Processes for producing carbohydrate degradation products from lignocellulosic materials
US9970038B2 (en) 2009-08-06 2018-05-15 Annikki Gmbh Process for the production of carbohydrate cleavage products from a lingnocellulosic material
CN102605020A (en) * 2012-03-29 2012-07-25 天津大学 Method for improving lignocellulose enzymolysis and saccharification efficiency
WO2013190876A1 (en) * 2012-06-21 2013-12-27 月島機械株式会社 Biomass processing system and processing method
JP2014003914A (en) * 2012-06-21 2014-01-16 Tsukishima Kikai Co Ltd Treatment system and treatment method for biomass

Similar Documents

Publication Publication Date Title
JP4522797B2 (en) Lignocellulose pretreatment method and ethanol production method
US10072380B2 (en) Detoxifying and recycling of washing solution used in pretreatment of lignocellulose-containing materials
US7666637B2 (en) Integrated process for separation of lignocellulosic components to fermentable sugars for production of ethanol and chemicals
JP4619917B2 (en) Pretreatment method of lignocellulose
CA2731350C (en) A process for production of ethanol from lignocellulosic material
US20080026431A1 (en) Method for saccharification of woody biomass
JP5325793B2 (en) Process for fermentative production of ethanol from solid lignocellulosic material comprising the step of treating the solid lignocellulosic material with an alkaline solution to remove lignin
JP2007151433A (en) Method for pretreatment of lignocellulose and method for producing ethanol
JP4958166B2 (en) Treatment of plant biomass with alcohol in the presence of oxygen
JP2008092910A (en) Method for producing ethanol
JP2007124933A (en) Pretreatment method of lignocellulose
WO2012088108A1 (en) Process for the production of alcohols from biomass
JP2008043328A (en) Method for saccharifying wood-based biomass
US10240171B2 (en) Preparation of lactic acid and/or a lactate salt from lignocellulosic material by separate saccharification and fermentation steps
CA2848338A1 (en) Process for processing a lignocellulosic material
CA3108308A1 (en) Acid bisulfite pretreatment
JP4619831B2 (en) Pretreatment method of lignocellulose
JP5700619B2 (en) Method for producing alcohol
JP2014158437A (en) Saccharified solution of lignocellulosic biomass, and manufacturing and application method thereof
JP2009022165A (en) Method for producing ethanol
WO2011125992A1 (en) Method for treating plant biomass, method for producing saccharide from plant biomass, and method for producing alcohol and/or organic acid from plant biomass
JP6177563B2 (en) Prehydrolyzate treatment system
JP2012085544A (en) Method for saccharifying herb-based biomass
WO2015155788A2 (en) Method for efficient enzymatic hydrolysis of lignocellulosic materials
KR20150076346A (en) The method for enhancing fermentation efficiency of lignocellulosic biomass

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090203