JP2007147751A - Method of manufacturing optical waveguide - Google Patents

Method of manufacturing optical waveguide Download PDF

Info

Publication number
JP2007147751A
JP2007147751A JP2005339052A JP2005339052A JP2007147751A JP 2007147751 A JP2007147751 A JP 2007147751A JP 2005339052 A JP2005339052 A JP 2005339052A JP 2005339052 A JP2005339052 A JP 2005339052A JP 2007147751 A JP2007147751 A JP 2007147751A
Authority
JP
Japan
Prior art keywords
substrate
core
optical waveguide
film
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005339052A
Other languages
Japanese (ja)
Inventor
Chie Fukuda
智恵 福田
Katsuyoshi Akiba
勝義 秋葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005339052A priority Critical patent/JP2007147751A/en
Publication of JP2007147751A publication Critical patent/JP2007147751A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an optical waveguide for improving characteristics of the optical waveguide. <P>SOLUTION: The method of manufacturing the optical waveguide comprises a core film formation process S1 for forming a core film on a first substrate, a core film processing process S2 for forming a core having a rectangular cross sectional shape by processing the core film, a groove formation process S3 for forming a groove corresponding to the core on a second substrate, and a joint process S4 for jointing the first substrate and the second substrate by mutually allowing the core formed on the first substrate to correspond to the groove formed on the second substrate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光導波路の作製方法に関する。   The present invention relates to a method for manufacturing an optical waveguide.

従来から、光導波路の作製方法として、基板上に形成されたコアをリッジ形状に加工し、火炎堆積法(FHD)、プラズマCVD法などを用いて、基板及びコア上にオーバークラッドガラスを堆積してコアの上面と側面を覆うオーバークラッドを形成する方法がある(下記特許文献1参照)。
特開平11−125727号公報
Conventionally, as a method for producing an optical waveguide, a core formed on a substrate is processed into a ridge shape, and overclad glass is deposited on the substrate and the core by using a flame deposition method (FHD), a plasma CVD method, or the like. There is a method of forming an overcladding that covers the top and side surfaces of the core (see Patent Document 1 below).
JP-A-11-125727

しかし、FHD法では高温のため所望の形状が得られにくく、さらにオーバークラッドに添加物を加えるため残留応力による偏波特性の劣化が懸念される。また、PVD法やCVD法ではボイドが残って十分な特性が得られにくい。   However, in the FHD method, it is difficult to obtain a desired shape due to high temperature, and furthermore, since an additive is added to the overcladding, there is a concern about deterioration of polarization characteristics due to residual stress. Also, with the PVD method or the CVD method, voids remain and it is difficult to obtain sufficient characteristics.

本発明は、上記問題点を解消する為になされたものであり、光導波路の特性を向上させることが可能な光導波路の作製方法を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for producing an optical waveguide capable of improving the characteristics of the optical waveguide.

本発明の光導波路の作製方法は、第一の基板上にコア膜を形成するコア膜形成工程と、コア膜を加工して第一の基板上に矩形断面形状を有するコアを形成するコア膜加工工程と、第二の基板にコアに対応する溝を形成する溝形成工程と、第一の基板に形成されたコアと第二の基板に形成された溝とを互いに対応させて第一の基板と第二の基板とを接合する接合工程と、を備える。   An optical waveguide manufacturing method of the present invention includes a core film forming step of forming a core film on a first substrate, and a core film that forms a core having a rectangular cross-sectional shape on the first substrate by processing the core film A first step in which a processing step, a groove forming step of forming a groove corresponding to the core on the second substrate, and a core formed on the first substrate and a groove formed on the second substrate are made to correspond to each other; A bonding step of bonding the substrate and the second substrate.

本発明の光導波路の作製方法によれば、第一の基板に形成された矩形断面形状を有するコアと第二の基板に形成された溝とを対応させて、第一の基板と第二の基板とを接合するので、オーバークラッドを第二の基板で構成することとなる。よって、ガラスを堆積してオーバークラッドを形成する場合に発生するボイドの発生又は変形を防止することができる。よって、損失を低減して、特性の向上した光導波路を作製することができる。   According to the method for manufacturing an optical waveguide of the present invention, the first substrate and the second substrate are formed by associating the core having the rectangular cross-sectional shape formed on the first substrate with the groove formed on the second substrate. Since the substrate is bonded, the over clad is constituted by the second substrate. Therefore, generation | occurrence | production or deformation | transformation of the void which generate | occur | produces when depositing glass and forming an over clad can be prevented. Therefore, an optical waveguide with improved characteristics can be manufactured with reduced loss.

また、本発明の光導波路の作製方法は、接合工程において、第一の基板と第二の基板との接合に接着剤を用いることも好ましい。このようにして、第一の基板と第二の基板とを確実に接合することができる。   In the method for producing an optical waveguide according to the present invention, it is also preferable to use an adhesive for joining the first substrate and the second substrate in the joining step. In this way, the first substrate and the second substrate can be reliably bonded.

また、本発明の光導波路の作製方法は、第一及び第二の基板が石英ガラス基板であり、コア膜が屈折率上昇用ドーパントが添加された石英ガラスであることも好ましい。このようにして、第一及び第二の基板の屈折率をコアの屈折率よりも低く設定して、コアに対して第一及び第二の基板をクラッドとして適切に機能させることができる。また、コアの周囲を同一材質の第一の基板と第二の基板とで囲むこととなる。よって光導波路の偏波特性が向上し、より特性の向上した光導波路を作製することができる。屈折率上昇用ドーパントとしては、例えばGeが使用できる。   In the method for producing an optical waveguide of the present invention, it is also preferable that the first and second substrates are quartz glass substrates and the core film is quartz glass to which a dopant for increasing the refractive index is added. In this way, the refractive indexes of the first and second substrates can be set lower than the refractive index of the core, and the first and second substrates can function appropriately as clads with respect to the core. Further, the periphery of the core is surrounded by the first substrate and the second substrate made of the same material. Therefore, the polarization characteristics of the optical waveguide are improved, and an optical waveguide with improved characteristics can be manufactured. For example, Ge can be used as the dopant for increasing the refractive index.

また、本発明の光導波路の作製方法は、コア膜加工工程において、コアを形成すると共に、コアの厚さより薄い膜をコアと同一面上に残すように前記コア膜を加工し、接合工程において、1200℃以上に加熱することにより第一の基板と第二の基板とを接合することも好ましい。   Further, the optical waveguide manufacturing method of the present invention forms the core in the core film processing step, and processes the core film so that a film thinner than the thickness of the core remains on the same plane as the core. It is also preferable to join the first substrate and the second substrate by heating to 1200 ° C. or higher.

このように第一及び第二の基板が石英ガラス基板であり、コア膜が屈折率上昇用ドーパントが添加された石英ガラスである場合、一般にコア膜加工工程において形成される膜及びコアは、第一及び第二の基板よりも低い温度で軟化する。そして、接合工程において、1200℃以上に加熱するので、膜及びコアが軟化して、膜及びコアと第一の基板及び第二の基板との密着性が向上する。   Thus, when the first and second substrates are quartz glass substrates and the core film is quartz glass to which a dopant for increasing the refractive index is added, the film and the core generally formed in the core film processing step are Softens at a lower temperature than the first and second substrates. And since it heats to 1200 degreeC or more in a joining process, a film | membrane and a core soften and the adhesiveness of a film | membrane and a core, a 1st board | substrate, and a 2nd board | substrate improves.

本発明の光導波路の作製方法によれば、光導波路の特性を向上させることができる。   According to the method for producing an optical waveguide of the present invention, the characteristics of the optical waveguide can be improved.

以下、添付図面を参照して、本発明を実施するための最良の形態を詳細に説明する。なお、図面の説明において同一の要素に同一の符号を付し、重複する説明を省略する。   The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings. In the description of the drawings, the same reference numerals are assigned to the same elements, and duplicate descriptions are omitted.

(第1実施形態)
図1は、本実施形態に係る光導波路の作製方法の工程を示す図である。本実施形態に係る光導波路の作製方法は、コア膜形成工程S1、コア膜加工工程S2、溝形成工程S3、及び接合工程S4を備える。続いて、図2を参照して、第1実施形態に係る光導波路の作製方法の各工程について説明する。図2は、第1実施形態に係る光導波路の作製方法を示す断面図である。
(First embodiment)
FIG. 1 is a diagram illustrating the steps of a method for manufacturing an optical waveguide according to the present embodiment. The optical waveguide manufacturing method according to the present embodiment includes a core film forming step S1, a core film processing step S2, a groove forming step S3, and a joining step S4. Then, with reference to FIG. 2, each process of the manufacturing method of the optical waveguide which concerns on 1st Embodiment is demonstrated. FIG. 2 is a cross-sectional view showing a method of manufacturing the optical waveguide according to the first embodiment.

コア膜形成工程S1において、図2(a)に示すように、第一の基板11上にコア膜12を形成する。第一の基板11は、直径4インチ程度、厚さ0.5mm程度の石英ガラス基板である。コア膜12は、プラズマCVD法を用いて屈折率上昇用ドーパントとしてGeが添加された石英ガラス膜を厚さ7.5μm程度堆積して形成される。コア膜12を形成する方法としては、FHD法またはスパッタ等を用いてもよい。   In the core film forming step S1, a core film 12 is formed on the first substrate 11 as shown in FIG. The first substrate 11 is a quartz glass substrate having a diameter of about 4 inches and a thickness of about 0.5 mm. The core film 12 is formed by depositing a quartz glass film having a thickness of about 7.5 μm to which Ge is added as a refractive index increasing dopant using a plasma CVD method. As a method of forming the core film 12, an FHD method, sputtering, or the like may be used.

コア膜形成工程S1の後、コア膜加工工程S2が行われる。図2(b)に示すように、コア膜加工工程S2において、コア膜12を加工して矩形断面形状を有するコア12aを形成する。コア膜12の上面に、導波路回路パターンに対応するフォトマスクを形成し、フォトリソグラフィー及びリアクティブイオンエッチングを用いて、導波路回路パターンに沿ったコア12aを形成する。   After the core film forming step S1, a core film processing step S2 is performed. As shown in FIG. 2B, in the core film processing step S2, the core film 12 is processed to form a core 12a having a rectangular cross-sectional shape. A photomask corresponding to the waveguide circuit pattern is formed on the upper surface of the core film 12, and the core 12a along the waveguide circuit pattern is formed using photolithography and reactive ion etching.

本実施形態では、コア12aの周囲のコア膜12を除去し、コア12aは、断面が幅7.5μm、高さ7.5μmの正方形となるように形成される。その後、コア12aが形成された第一の基板11Aを酸素雰囲気中、温度1000℃で8時間アニールする。   In the present embodiment, the core film 12 around the core 12a is removed, and the core 12a is formed so that the cross section is a square having a width of 7.5 μm and a height of 7.5 μm. Thereafter, the first substrate 11A on which the core 12a is formed is annealed in an oxygen atmosphere at a temperature of 1000 ° C. for 8 hours.

また、溝形成工程S3において、第二の基板13にコア12aに対応する溝14を形成する。まず、図2(c)に示すように、第一の基板11と同様な材質である石英ガラス製であって、直径4インチ程度、厚さ0.5mm程度の第二の基板13を準備する。続いて、図2(d)に示すように、第二の基板13の主面に、コア12aのパターンに対応するフォトマスクを形成し、フォトリソグラフィー及びリアクティブイオンエッチングを用いて、コア12aのパターンに対応する溝14を形成する。溝14の断面は、幅8.5μm、深さ7.7μmの長方形であり、溝14にコア12aがはまるように形成される。   In the groove forming step S3, the grooves 14 corresponding to the cores 12a are formed in the second substrate 13. First, as shown in FIG. 2C, a second substrate 13 made of quartz glass, which is the same material as the first substrate 11, and having a diameter of about 4 inches and a thickness of about 0.5 mm is prepared. . Subsequently, as shown in FIG. 2D, a photomask corresponding to the pattern of the core 12a is formed on the main surface of the second substrate 13, and the core 12a is formed using photolithography and reactive ion etching. A groove 14 corresponding to the pattern is formed. The cross section of the groove 14 is a rectangle having a width of 8.5 μm and a depth of 7.7 μm, and the core 12 a is formed in the groove 14.

そして、コア12aが形成された第一の基板11Aと溝14が形成された第二の基板13Aとを、バッファードフッ酸を含む洗浄液で洗浄し、乾燥する。その後、洗浄した第一の基板11A及び第二の基板13Aの表面をシランカップリング剤を用いて処理し、溝14が形成された第二の基板13Aの表面に接着剤をスピンコーターで塗布する。接着剤としては、例えば、粘度が100cP以下程度のエポキシ系UV接着剤を用いる。   Then, the first substrate 11A on which the core 12a is formed and the second substrate 13A on which the groove 14 is formed are washed with a cleaning liquid containing buffered hydrofluoric acid and dried. Thereafter, the cleaned surfaces of the first substrate 11A and the second substrate 13A are treated with a silane coupling agent, and an adhesive is applied to the surface of the second substrate 13A in which the grooves 14 are formed by a spin coater. . As the adhesive, for example, an epoxy UV adhesive having a viscosity of about 100 cP or less is used.

次に、接合工程S4において、図2(e),(f)に示すように、コア12aと溝14を対応させて第一の基板11Aと第二の基板13Aとを接合する。まず、第一の基板11Aのコア12aが形成された面と第二の基板13Aの溝14が形成された面とが間隔をあけて対向するように、第一の基板11Aと第二の基板13Aとを露光機にセットする。露光機は、フォトリソグラフィーで用いられる密着型の露光機である。第一の基板11Aを露光機のフォトマスクホルダにセットし、第二の基板13Aを露光機の基板ホルダにセットする。   Next, in the joining step S4, as shown in FIGS. 2E and 2F, the first substrate 11A and the second substrate 13A are joined with the core 12a and the groove 14 corresponding to each other. First, the first substrate 11A and the second substrate are arranged such that the surface of the first substrate 11A on which the core 12a is formed and the surface of the second substrate 13A on which the groove 14 is formed are spaced apart from each other. 13A is set in the exposure machine. The exposure machine is a contact type exposure machine used in photolithography. The first substrate 11A is set on the photomask holder of the exposure machine, and the second substrate 13A is set on the substrate holder of the exposure machine.

そして、露光機の接眼レンズでコア12aのパターンと溝14のパターンとを見て、双方のパターンが重なるように第一の基板11Aと第二の基板13Aの位置合わせを行う。パターンが重なったら、第一の基板11Aと第二の基板13Aとを密着させ、第一及び第二の基板11A,13Aの全面にUV光を照射して接着剤を硬化させ、第一の基板11Aと第二の基板13Aとを接着する。このようにして光導波路10Aが作製される。   Then, the pattern of the core 12a and the pattern of the groove 14 are viewed with the eyepiece of the exposure machine, and the first substrate 11A and the second substrate 13A are aligned so that both patterns overlap. When the patterns overlap, the first substrate 11A and the second substrate 13A are brought into close contact with each other, the entire surface of the first and second substrates 11A and 13A is irradiated with UV light to cure the adhesive, and the first substrate 11A and the second substrate 13A are bonded. In this way, the optical waveguide 10A is manufactured.

光導波路10Aでは、接着剤によって互いに接着された第一の基板11及び第二の基板13Aが、コア12aに対するクラッドとして機能する。断面四角形状のコア12aの一面が第一の基板11と接し、コア12aの他三面が第二の基板13Aの溝14を構成する3面とそれぞれ接している。すなわち、コア12aの周囲は、互いに材質が同じ第一及び第二の基板11,13Aに接している。   In the optical waveguide 10A, the first substrate 11 and the second substrate 13A bonded to each other with an adhesive function as a clad for the core 12a. One surface of the core 12a having a quadrangular cross section is in contact with the first substrate 11, and the other three surfaces of the core 12a are in contact with the three surfaces constituting the groove 14 of the second substrate 13A. That is, the periphery of the core 12a is in contact with the first and second substrates 11 and 13A made of the same material.

引き続いて、本実施形態に係る光導波路の作製方法による効果について説明する。本実施形態の光導波路の作製方法によれば、第一の基板11Aに形成された矩形断面形状を有するコア12aと第二の基板13Aに形成された溝14とを対応させて、第一の基板11と第二の基板13Aとを接合するので、オーバークラッドを第二の基板13Aで構成することとなる。よって、ガラスを堆積してオーバークラッドを形成する場合に発生するボイドの発生及び変形を防止することができる。従って、より損失が少ない特性の向上した光導波路10Aを作製することができる。   Subsequently, effects of the method for manufacturing an optical waveguide according to the present embodiment will be described. According to the method for manufacturing an optical waveguide of the present embodiment, the first core 11a having a rectangular cross-sectional shape formed on the first substrate 11A and the groove 14 formed on the second substrate 13A are associated with each other. Since the board | substrate 11 and the 2nd board | substrate 13A are joined, an over clad will be comprised with the 2nd board | substrate 13A. Therefore, generation | occurrence | production and deformation | transformation of the void which generate | occur | produce when depositing glass and forming an over clad can be prevented. Therefore, the optical waveguide 10A with improved characteristics with less loss can be manufactured.

また、従来のように、基板上にコアを形成し、基板及びコア上にオーバークラッドガラスを堆積して作製した光導波路は、基板とオーバークラッドの特性が異なる。すなわち、コアの四方を囲むクラッドの特性が異なることにより、偏波特性が劣化する。   In addition, an optical waveguide produced by forming a core on a substrate and depositing an overclad glass on the substrate and the core as in the prior art has different characteristics between the substrate and the overclad. In other words, the polarization characteristics deteriorate due to the different characteristics of the cladding surrounding the four sides of the core.

それに対して、本実施形態に係る光導波路の作製方法によれば、第一の基板11Aに形成された矩形断面形状を有するコア12aと第二の基板13Aに形成された溝14とを対応させて、互いに同じ材質の第一の基板11と第二の基板13Aとを接合するので、コア12bの周囲を同一材質の第一の基板11と第二の基板13Aとで囲むことができる。よって、光導波路10Bの偏波特性が向上する。   On the other hand, according to the manufacturing method of the optical waveguide according to the present embodiment, the core 12a having the rectangular cross-sectional shape formed on the first substrate 11A and the groove 14 formed on the second substrate 13A are made to correspond to each other. Since the first substrate 11 and the second substrate 13A made of the same material are bonded to each other, the core 12b can be surrounded by the first substrate 11 and the second substrate 13A made of the same material. Therefore, the polarization characteristics of the optical waveguide 10B are improved.

また、従来では、オーバークラッドガラスを堆積するための装置が必要であった。特に、ボイド等を低減するためにより高温、且つより高圧雰囲気で堆積を行うHIP法を用いる場合には、より大掛かりな装置が必要であった。   Conventionally, an apparatus for depositing overclad glass has been required. In particular, when using the HIP method in which deposition is performed in a higher temperature and higher pressure atmosphere in order to reduce voids, a larger apparatus is required.

それに対して本実施形態では、第一及び第二の基板11、13Aによってコア12aの周囲を覆いクラッドを構成するので、ガラスを堆積する工程及び装置は不要である。なお、本実施形態において、第一の基板11Aと第二の基板13Aとを接合する際に用いる装置は、フォトリソグラフィーで用いる露光機であるので、接合工程S4において新たな装置は不要である。   On the other hand, in the present embodiment, the first and second substrates 11 and 13A cover the periphery of the core 12a to form a clad, so that a process and an apparatus for depositing glass are unnecessary. In the present embodiment, since the apparatus used for bonding the first substrate 11A and the second substrate 13A is an exposure machine used in photolithography, no new apparatus is required in the bonding step S4.

また、上記従来の方法で作製した光導波路を実装するには、光導波路に補強版を貼り付ける必要がある。それに対して、本実施形態の光導波路の作製方法では、オーバークラッドを構成する第二の基板13Aを、従来のオーバークラッドの厚さと補強版に相当する厚さとを合わせた厚さとすることができる。よって、光導波路を実装する場合に、補強板を貼り付ける必要がなくなる。すなわち、本実施形態の光導波路の作成方法により光導波路を作製することにより、デバイス実装工程での補強板貼り付けまで考えたときの総工程数を減らすことができる。   Moreover, in order to mount the optical waveguide produced by the conventional method, it is necessary to attach a reinforcing plate to the optical waveguide. On the other hand, in the method for manufacturing an optical waveguide according to the present embodiment, the second substrate 13A constituting the overclad can have a thickness that is a combination of the thickness of the conventional overclad and the thickness corresponding to the reinforcing plate. . Therefore, it is not necessary to attach a reinforcing plate when mounting the optical waveguide. That is, by producing an optical waveguide by the method for producing an optical waveguide according to the present embodiment, the total number of steps when considering the sticking of a reinforcing plate in a device mounting process can be reduced.

なお、第1実施形態に係る光導波路の作製方法により作製した光導波路10Aをダイシングして各チップに分割し、端面を研磨し、端面に光ファイバアレイを接続して、光導波路デバイスを作製した。このようにして作製した長さ3.5cmの直線導波路の挿入損失(両端の光ファイバの接続部の損失と導波路の損失を合わせた損失)は、1dBであった。   The optical waveguide 10A manufactured by the optical waveguide manufacturing method according to the first embodiment was diced and divided into chips, the end face was polished, an optical fiber array was connected to the end face, and an optical waveguide device was manufactured. . The insertion loss of the straight waveguide having a length of 3.5 cm produced in this manner (the loss combining the loss of the optical fiber connecting portion and the waveguide loss at both ends) was 1 dB.

(第2実施形態)
第2実施形態に係る光導波路の作製方法は、第1実施形態と同様に、コア膜形成工程S1、コア膜加工工程S2、溝形成工程S3、及び接合工程S4を備える。図3を参照して、第2実施形態に係る光導波路の作製方法の各工程について説明する。図3は、第2実施形態に係る光導波路の作製方法を示す断面図である。
(Second Embodiment)
The optical waveguide manufacturing method according to the second embodiment includes a core film forming step S1, a core film processing step S2, a groove forming step S3, and a joining step S4, as in the first embodiment. With reference to FIG. 3, each process of the manufacturing method of the optical waveguide which concerns on 2nd Embodiment is demonstrated. FIG. 3 is a cross-sectional view showing a method for manufacturing an optical waveguide according to the second embodiment.

コア膜形成工程S1において、第1実施形態と同様に、直径4インチ程度、厚さ0.5mm程度の石英ガラス基板である第一の基板11上にコア膜12を形成する。コア膜12は、屈折率上昇用ドーパントとしてGeが添加された石英ガラス膜であり、プラズマCVD法を用いて8.0μm程度の厚さに堆積して形成される(図3(a))。   In the core film forming step S1, the core film 12 is formed on the first substrate 11 which is a quartz glass substrate having a diameter of about 4 inches and a thickness of about 0.5 mm, as in the first embodiment. The core film 12 is a quartz glass film to which Ge is added as a refractive index increasing dopant, and is formed by being deposited to a thickness of about 8.0 μm by using a plasma CVD method (FIG. 3A).

コア膜形成工程S1の後、コア膜加工工程S2が行われる。図3(b)に示すように、コア膜加工工程S2において、コア膜12を加工して矩形断面形状を有するコア12b及び膜12cを形成する。コア膜12の上面に、導波路回路パターンに対応するフォトマスクを形成し、フォトリソグラフィー及びリアクティブイオンエッチングを用いて、導波路回路パターンに沿ったコア12bを形成する。   After the core film forming step S1, a core film processing step S2 is performed. As shown in FIG. 3B, in the core film processing step S2, the core film 12 is processed to form a core 12b and a film 12c having a rectangular cross-sectional shape. A photomask corresponding to the waveguide circuit pattern is formed on the upper surface of the core film 12, and the core 12b along the waveguide circuit pattern is formed using photolithography and reactive ion etching.

コア12bを形成すると共に、コア12bの周囲は、コア12bの厚さよりも薄い膜12cを残して加工する。コア12bは断面が幅7.5μm、高さ7.5μm、膜12cは厚さ0.5μmとなるように加工する。   The core 12b is formed, and the periphery of the core 12b is processed while leaving a film 12c thinner than the thickness of the core 12b. The core 12b is processed so that the cross section has a width of 7.5 μm, a height of 7.5 μm, and the film 12c has a thickness of 0.5 μm.

また、溝形成工程S3において、第一実施形態と同様に、直径4インチ程度、厚さ0.5mm程度の石英ガラス基板である第二の基板13にコア12bに対応する溝14を形成する(図3(c),(d))。そして、コア12b及び膜12cが形成された第一の基板11Bと溝14が形成された第二の基板13Aとを、共にバッファードフッ酸を含む洗浄液で洗浄し、乾燥する。   In the groove forming step S3, as in the first embodiment, the groove 14 corresponding to the core 12b is formed on the second substrate 13 which is a quartz glass substrate having a diameter of about 4 inches and a thickness of about 0.5 mm (see FIG. FIG. 3 (c), (d)). Then, the first substrate 11B on which the core 12b and the film 12c are formed and the second substrate 13A on which the grooves 14 are formed are both washed with a cleaning liquid containing buffered hydrofluoric acid and dried.

次に、接合工程S4において、図3(e)に示すように、コア12bと溝14とを対応させて第一の基板11Bと第二の基板13Aとを接合する。まず、第一の基板11Bのコア12bが形成された面と第二の基板13Aの溝14が形成された面とが間隔をあけて対向するように、第一の基板11Bと第二の基板13Aとを露光機にセットする。露光機は、フォトリソグラフィーで用いられる密着型の露光機である。第一の基板11Bを露光機のフォトマスクホルダにセットし、第二の基板13Aを露光機の基板ホルダにセットする。   Next, in the bonding step S4, as shown in FIG. 3E, the first substrate 11B and the second substrate 13A are bonded so that the core 12b and the groove 14 correspond to each other. First, the first substrate 11B and the second substrate are arranged such that the surface of the first substrate 11B on which the core 12b is formed and the surface of the second substrate 13A on which the groove 14 is formed are opposed to each other with a gap therebetween. 13A is set in the exposure machine. The exposure machine is a contact type exposure machine used in photolithography. The first substrate 11B is set on the photomask holder of the exposure machine, and the second substrate 13A is set on the substrate holder of the exposure machine.

そして、露光機の接眼レンズでコア12bのパターンと溝14のパターンとを見て、双方のパターンが重なるように第一の基板11Bと第二の基板13Aの位置合わせを行う。パターンが重なったら、第一の基板11Bと第二の基板13Aを密着させる。密着させた第一及び第二の基板11B,13Aの上下を耐熱性の板(例えばSiC板)で挟み込んで、酸素雰囲気中、1300℃で20時間、熱処理を行う。   Then, the pattern of the core 12b and the pattern of the groove 14 are viewed with the eyepiece of the exposure machine, and the first substrate 11B and the second substrate 13A are aligned so that both patterns overlap. When the patterns overlap, the first substrate 11B and the second substrate 13A are brought into close contact with each other. The upper and lower surfaces of the first and second substrates 11B and 13A that are in close contact with each other are sandwiched between heat resistant plates (for example, SiC plates), and heat treatment is performed in an oxygen atmosphere at 1300 ° C. for 20 hours.

Geが添加された石英ガラスの膜12c及びコア12bは、石英ガラス基板である第一及び第二の基板11B,13Aよりも低い温度で軟化する。すなわち、1300℃で20時間加熱することにより、膜12c及びコア12bが軟化して、膜12c及びコア12bと第一の基板及び第二の基板との密着性を良くすることができる。なお、Ge添加石英ガラスの膜12cを厚くすると、そこにコア12bから光が漏れて損失の原因となるが、1μm以下程度の厚さの層であれば光学特性への影響は小さい。   The quartz glass film 12c and the core 12b to which Ge is added soften at a lower temperature than the first and second substrates 11B and 13A, which are quartz glass substrates. That is, by heating at 1300 ° C. for 20 hours, the film 12c and the core 12b are softened, and the adhesion between the film 12c and the core 12b and the first substrate and the second substrate can be improved. If the Ge-added quartz glass film 12c is made thick, light leaks from the core 12b and causes loss. However, if the layer has a thickness of about 1 μm or less, the effect on the optical characteristics is small.

このようにして光導波路10Bが作製される。光導波路10Bでは、互いに接着された第一の基板11及び第二の基板13Aが、コア12aに対するクラッドとして機能する。そして、第一の基板11と第二の基板13Aとは、コア12bと同じ材質の膜12cを介して接着されている。また、断面四角形状のコア12bの一面が第一の基板11と接し、コア12bの他三面が第二の基板13Aと接している。すなわち、コア12bの周囲は、互いに材質が同じ第一及び第二の基板11,13Aに接している。   In this way, the optical waveguide 10B is manufactured. In the optical waveguide 10B, the first substrate 11 and the second substrate 13A bonded to each other function as a clad for the core 12a. The first substrate 11 and the second substrate 13A are bonded via a film 12c made of the same material as the core 12b. One surface of the core 12b having a quadrangular cross section is in contact with the first substrate 11, and the other three surfaces of the core 12b are in contact with the second substrate 13A. That is, the periphery of the core 12b is in contact with the first and second substrates 11 and 13A made of the same material.

第2実施形態の光導波路の作製方法によれば、第一の基板11Bに形成された矩形断面形状を有するコア12bと第二の基板13Aに形成された溝14とを対応させて、第一の基板11と第二の基板13Aとを接合するので、オーバークラッドを第二の基板13Aで構成することとなる。よって、ガラスを堆積してオーバークラッドを形成する場合に発生するボイド又は変形の発生を防止することができる。従って、損失の少なくより特性の向上した光導波路10Bを作製することができる。   According to the method for manufacturing an optical waveguide of the second embodiment, the core 12b having a rectangular cross-sectional shape formed on the first substrate 11B and the groove 14 formed on the second substrate 13A are associated with each other. Since the substrate 11 and the second substrate 13A are joined, the overcladding is constituted by the second substrate 13A. Therefore, it is possible to prevent the occurrence of voids or deformation that occurs when glass is deposited to form an overcladding. Therefore, the optical waveguide 10B having improved characteristics with less loss can be manufactured.

また、第一の基板11Bに形成された矩形断面形状を有するコア12bと第二の基板13Aに形成された溝14とを対応させて、互いに同じ材質の第一の基板11と第二の基板13Aとを接合するので、コア12bの周囲を同一材質の第一の基板11と第二の基板13Aとで囲むことができる。よって、光導波路10Bの偏波特性が向上する。   Further, the first substrate 11 and the second substrate made of the same material are made to correspond to the core 12b having a rectangular cross-sectional shape formed on the first substrate 11B and the groove 14 formed on the second substrate 13A. Since 13A is joined, the periphery of the core 12b can be surrounded by the first substrate 11 and the second substrate 13A made of the same material. Therefore, the polarization characteristics of the optical waveguide 10B are improved.

なお、第2実施形態に係る光導波路の作製方法により作製した光導波路10Bをダイシングして各チップに分割し、端面を研磨し、端面に光ファイバアレイを接続して、光導波路デバイスを作製した。このようにして作製した長さ3.5cmの直線導波路の挿入損失(両端の光ファイバの接続部の損失と導波路の損失を合わせた損失)は、1dBであった。   In addition, the optical waveguide 10B produced by the optical waveguide production method according to the second embodiment was diced and divided into chips, the end face was polished, and an optical fiber array was connected to the end face to produce an optical waveguide device. . The insertion loss of the straight waveguide having a length of 3.5 cm produced in this manner (the loss combining the loss of the optical fiber connecting portion and the waveguide loss at both ends) was 1 dB.

本実施形態に係る光導波路の作製方法の工程を示す図である。It is a figure which shows the process of the manufacturing method of the optical waveguide which concerns on this embodiment. 第1実施形態に係る光導波路の作製方法を示す断面図である。It is sectional drawing which shows the preparation methods of the optical waveguide which concerns on 1st Embodiment. 第2実施形態に係る光導波路の作製方法を示す断面図である。It is sectional drawing which shows the preparation methods of the optical waveguide which concerns on 2nd Embodiment.

符号の説明Explanation of symbols

10A,10B…光導波路、11…第一の基板、11A…第一の基板、12a,12b…コア、12…コア膜、13…第二の基板、13A…第二の基板、14…溝。   10A, 10B ... optical waveguide, 11 ... first substrate, 11A ... first substrate, 12a, 12b ... core, 12 ... core film, 13 ... second substrate, 13A ... second substrate, 14 ... groove.

Claims (4)

第一の基板上にコア膜を形成するコア膜形成工程と、
前記コア膜を加工して前記第一の基板上に矩形断面形状を有するコアを形成するコア膜加工工程と、
第二の基板に前記コアに対応する溝を形成する溝形成工程と、
前記第一の基板に形成された前記コアと前記第二の基板に形成された前記溝とを互いに対応させて前記第一の基板と前記第二の基板とを接合する接合工程と、
を備えることを特徴とする光導波路の作製方法。
A core film forming step of forming a core film on the first substrate;
A core film processing step of processing the core film to form a core having a rectangular cross-sectional shape on the first substrate;
A groove forming step of forming a groove corresponding to the core on the second substrate;
A bonding step of bonding the first substrate and the second substrate by causing the core formed on the first substrate and the groove formed on the second substrate to correspond to each other;
A method for producing an optical waveguide, comprising:
前記接合工程において、前記第一の基板と前記第二の基板との接合に接着剤を用いることを特徴とする請求項1に記載の光導波路の作製方法。   The method for manufacturing an optical waveguide according to claim 1, wherein an adhesive is used for joining the first substrate and the second substrate in the joining step. 前記第一及び前記第二の基板が石英ガラス基板であり、前記コア膜が屈折率上昇用ドーパントが添加された石英ガラスであることを特徴とする請求項1に記載の光導波路の作製方法。   2. The method of manufacturing an optical waveguide according to claim 1, wherein the first and second substrates are quartz glass substrates, and the core film is quartz glass to which a dopant for increasing a refractive index is added. 前記コア膜加工工程において、前記コアを形成すると共に前記コアの厚さより薄い膜を前記コアと同一面上に残すように前記コア膜を加工し、
前記接合工程において、1200℃以上に加熱することにより第一の基板と第二の基板とを接合することを特徴とする請求項3に記載の光導波路の作製方法。
In the core film processing step, the core film is processed and the core film is processed so as to leave a film thinner than the core thickness on the same plane as the core,
The method for manufacturing an optical waveguide according to claim 3, wherein in the joining step, the first substrate and the second substrate are joined by heating to 1200 ° C. or higher.
JP2005339052A 2005-11-24 2005-11-24 Method of manufacturing optical waveguide Pending JP2007147751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005339052A JP2007147751A (en) 2005-11-24 2005-11-24 Method of manufacturing optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005339052A JP2007147751A (en) 2005-11-24 2005-11-24 Method of manufacturing optical waveguide

Publications (1)

Publication Number Publication Date
JP2007147751A true JP2007147751A (en) 2007-06-14

Family

ID=38209263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005339052A Pending JP2007147751A (en) 2005-11-24 2005-11-24 Method of manufacturing optical waveguide

Country Status (1)

Country Link
JP (1) JP2007147751A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005010355A (en) * 2003-06-18 2005-01-13 Fuji Xerox Co Ltd Manufacturing method of waveguide type optical device, and waveguide type optical device
JP2005055576A (en) * 2003-08-01 2005-03-03 Matsushita Electric Ind Co Ltd °coptical waveguide and manufacturing method therefor
JP2005115346A (en) * 2003-09-17 2005-04-28 Fujitsu Ltd Optical waveguide structure and optical module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005010355A (en) * 2003-06-18 2005-01-13 Fuji Xerox Co Ltd Manufacturing method of waveguide type optical device, and waveguide type optical device
JP2005055576A (en) * 2003-08-01 2005-03-03 Matsushita Electric Ind Co Ltd °coptical waveguide and manufacturing method therefor
JP2005115346A (en) * 2003-09-17 2005-04-28 Fujitsu Ltd Optical waveguide structure and optical module

Similar Documents

Publication Publication Date Title
JP3664174B2 (en) Optical waveguide and method for manufacturing the same
US6605228B1 (en) Method for fabricating planar optical waveguide devices
KR970006200B1 (en) Method of making integrated optical component
US6847773B2 (en) Optical waveguide and method for manufacturing the same
JPH03265802A (en) Embedded type quartz optical waveguide and production thereof
CN100514100C (en) Optical transmission module and manufacturing method thereof
JP2007147751A (en) Method of manufacturing optical waveguide
JPH11352350A (en) Production of optical waveguide element
KR100536141B1 (en) Passive optical-coupled structure and method for fabricating the same
JPH0688914A (en) Optical waveguide and its production
JP2001337239A (en) Optical waveguide and its manufacturing method
JP2001091775A (en) Manufacturing of laminated type quartz system waveguide
WO2003091776A1 (en) Resin optical waveguide and method for fabricating the same
JP2005330113A (en) Method for bonding quartz glass
JP2004295019A (en) Optical waveguide component and manufacturing method therefor
JP2005292716A (en) Method for forming optical waveguide element, and optical waveguide element obtained thereby
JPH0727090B2 (en) Method of manufacturing optical waveguide
JP2005208187A (en) Optical device having waveguide structure and its manufacturing method
JP2006064988A (en) Optical waveguide plate
JP4150653B2 (en) Ion exchange type optical waveguide device and manufacturing method thereof
JP2002228864A (en) Optical waveguide and method for manufacturing the same
JP2009015015A (en) Polymer optical waveguide and method for manufacturing the same
JP2000056148A (en) Polymer optical waveguide and its manufacture
JP2001235646A (en) Fine pattern forming method, method for manufacturing optical element, optical element and optical transmission device
TW202129325A (en) Optical waveguides and methods for producing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803