JP2007139454A - Capacity evaluation device of pile - Google Patents

Capacity evaluation device of pile Download PDF

Info

Publication number
JP2007139454A
JP2007139454A JP2005330350A JP2005330350A JP2007139454A JP 2007139454 A JP2007139454 A JP 2007139454A JP 2005330350 A JP2005330350 A JP 2005330350A JP 2005330350 A JP2005330350 A JP 2005330350A JP 2007139454 A JP2007139454 A JP 2007139454A
Authority
JP
Japan
Prior art keywords
pile
value
calculated
predicted
support force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005330350A
Other languages
Japanese (ja)
Other versions
JP4675756B2 (en
Inventor
Yutaka Kubo
豊 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
System Measure Co., Ltd.
Original Assignee
System Measure Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by System Measure Co., Ltd. filed Critical System Measure Co., Ltd.
Priority to JP2005330350A priority Critical patent/JP4675756B2/en
Publication of JP2007139454A publication Critical patent/JP2007139454A/en
Application granted granted Critical
Publication of JP4675756B2 publication Critical patent/JP4675756B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacity evaluation device of a pile capable of accurately evaluating the capacity of the pile not subjected to a load test. <P>SOLUTION: The capacity evaluation device of the pile is equipped with an estimate N value calculation means 101 for calculating the estimated N value of a pile driving point from a ground investigation results 107 obtained at a plurality of points, a relational expression forming means 102 for forming the relational expression of the estimated N value with execution data 108 obtained during the execution of the pile 1 corresponding thereto, an evaluated N value calculation means 103 for inputting the execution data of the pile to the relational expression to calculate the evaluated N value of the pile driving point, a support force calculation formula forming means 104 for performing the load test with respect to a plurality of piles of which the evaluated N values are calculated to calculate actually measured support force to form a support force calculation formula from a plurality of the evaluated N values and the actually measured support force, a support force calculation means 105 for inputting the evaluated N value of the pile not subjected to the load test to the support force calculation formula to calculate calculated support force and an output part 106 for displaying the capacity evaluation result of the pile based on the calculated support force. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、打設された杭の沈下剛性や支持力を調査してその結果を表示する杭の性能評価装置に関するものである。   The present invention relates to a performance evaluation apparatus for a pile that investigates the settlement rigidity and supporting force of a pile placed and displays the result.

従来、図17に示すような装置を使用した杭1の急速載荷試験が知られている(特許文献1など参照)。   Conventionally, the rapid loading test of the pile 1 using an apparatus as shown in FIG. 17 is known (refer patent document 1 etc.).

この急速載荷試験は、静的載荷試験と動的載荷試験の欠点を解消するために考案された杭1の試験方法で、この方法によれば載荷時間を動的載荷試験の約10倍に当たる50〜200ms程度にすることで弾性波動の伝播による影響をなくし、静的載荷試験に近い信頼性の高い試験結果を得ることができる。   This rapid loading test is a test method of the pile 1 devised to eliminate the disadvantages of the static loading test and the dynamic loading test. According to this method, the loading time is about 10 times that of the dynamic loading test. By setting the time to about 200 ms, it is possible to eliminate the influence of the propagation of elastic waves and obtain a highly reliable test result close to a static loading test.

急速載荷試験では、杭頭1aに荷重計4を介してゴムなどの緩衝材2を載置し、その上に重錘3を自由落下させて杭1を打撃する。このように緩衝材2を重錘3と杭頭1aの間に介在させることによって、載荷時間を長くすることができる。   In the rapid loading test, the cushioning material 2 such as rubber is placed on the pile head 1a via the load meter 4, and the weight 3 is freely dropped thereon to hit the pile 1. Thus, loading time can be lengthened by interposing the buffer material 2 between the weight 3 and the pile head 1a.

ここで、重錘3を落下させた際に杭頭1aに作用する荷重の大きさは、荷重計4のひずみゲージ(図示せず)から出力された出力値が、ひずみアンプ5を通ってパソコンに送られることによって作用荷重として表示される。   Here, when the weight 3 is dropped, the magnitude of the load acting on the pile head 1a is such that the output value output from the strain gauge (not shown) of the load meter 4 passes through the strain amplifier 5 and the personal computer. Is displayed as a working load.

また、杭頭1aの変位は、光学式変位計7で杭1の外周面に取り付けられた変位計ターゲット7aの変位を計測することによって知ることができる。   Further, the displacement of the pile head 1a can be known by measuring the displacement of the displacement meter target 7a attached to the outer peripheral surface of the pile 1 with the optical displacement meter 7.

このようにして得られた作用荷重と変位のデータを整理して杭の沈下剛性や支持力などが算定される。
特開2002−303570号公報
The action load and displacement data obtained in this way are arranged to calculate the settlement rigidity and bearing capacity of the pile.
JP 2002-303570 A

しかしながら、前記した急速載荷試験などの載荷試験は、一般的に施工した杭のすべてに対して行なわれるものではない。   However, the loading test such as the rapid loading test described above is not generally performed on all the piles constructed.

一方、近年、杭の信頼性を高め、合理的な設計をおこなうために、できるだけ多くの杭1の支持力を確認することが求められるようになってきており、簡単かつ低コストで実施できる杭の支持力などの性能評価確認手段の開発が望まれるようになってきた。   On the other hand, in recent years, in order to increase the reliability of the pile and to make a rational design, it has been required to check the bearing capacity of as many piles as possible, and the pile can be implemented simply and at low cost. Development of performance evaluation and confirmation means such as support capacity has been desired.

さらに、杭1の施工中に各深度における地盤の強度(換言するとその地点の杭の支持力)を測定して信頼性のおける杭1を構築することが望まれている。   Furthermore, it is desired to construct the pile 1 with high reliability by measuring the strength of the ground at each depth during the construction of the pile 1 (in other words, the supporting force of the pile at that point).

そこで、本発明は、載荷試験がおこなわれなかった杭の性能を的確に評価できる杭の性能評価装置を提供することを目的としている。   Therefore, an object of the present invention is to provide a pile performance evaluation apparatus that can accurately evaluate the performance of a pile that has not been subjected to a loading test.

前記目的を達成するために、本発明は、複数の地点においておこなわれた地盤調査結果から杭打設地点の予測N値を算出する予測N値算出手段と、前記予測N値を算出した複数の杭に対して載荷試験をおこなって実測支持力を求め、複数の前記予測N値と前記実測支持力とから支持力算定式を作成する支持力算定式作成手段と、前記支持力算定式に載荷試験をおこなっていない杭の前記予測N値を入力して算定支持力を算出する支持力算定手段と、前記算定支持力に基づく杭の性能評価結果を表示する出力部とを備えている杭の性能評価装置であることを特徴とする。   In order to achieve the object, the present invention provides a predicted N value calculating means for calculating a predicted N value of a pile driving point from a ground survey result performed at a plurality of points, and a plurality of calculated N values. A load test is performed on the pile to obtain the measured support force, and a support force calculation formula creating means for creating a support force calculation formula from a plurality of the predicted N values and the measured support forces, and loading on the support force calculation formula A pile having a bearing capacity calculation means for calculating the calculated bearing capacity by inputting the predicted N value of the pile that has not been tested, and an output section for displaying a performance evaluation result of the pile based on the calculated bearing capacity. It is a performance evaluation device.

また、本発明は、複数の地点においておこなわれた地盤調査結果から杭打設地点の予測N値を算出する予測N値算出手段と、前記予測N値とそれに対応する前記杭の施工中に得られた施工データとの関係式を作成する関係式作成手段と、前記関係式に杭の施工データを入力して杭打設地点の評価N値を算出する評価N値算出手段と、前記評価N値を算出した複数の杭に対して載荷試験をおこなって実測支持力を求め、複数の前記評価N値と前記実測支持力とから支持力算定式を作成する支持力算定式作成手段と、前記支持力算定式に載荷試験をおこなっていない杭の前記評価N値を入力して算定支持力を算出する支持力算定手段と、前記算定支持力に基づく杭の性能評価結果を表示する出力部とを備えている杭の性能評価装置であることを特徴とする。   Further, the present invention provides a predicted N value calculating means for calculating a predicted N value of a pile driving point from ground survey results performed at a plurality of points, and obtained during the construction of the predicted N value and the corresponding pile. A relational expression creating means for creating a relational expression with the constructed construction data, an evaluation N value calculating means for inputting the construction data of the pile into the relational expression and calculating an evaluation N value of the pile driving point, and the evaluation N A bearing force calculation formula creating means for performing a load test on a plurality of piles whose values have been calculated to obtain a measured support force, and creating a support force calculation formula from the plurality of evaluation N values and the measured support force, A bearing capacity calculation means for calculating the calculated bearing capacity by inputting the evaluation N value of the pile that has not been subjected to the loading test in the bearing capacity calculation formula, and an output unit for displaying the performance evaluation result of the pile based on the calculated bearing capacity; It is a performance evaluation device for piles equipped with To.

ここで、前記それぞれの杭において、前記予測N値及び前記算定支持力は深度方向に複数の値を有しているのが好ましい。   Here, in each of the piles, it is preferable that the predicted N value and the calculated supporting force have a plurality of values in the depth direction.

また、上記発明において、前記関係式に施工中の杭の施工データを入力し、前記性能評価結果を杭の施工中に表示させることもできる。   Moreover, the said invention WHEREIN: The construction data of the pile under construction can be input into the said relational expression, and the said performance evaluation result can also be displayed during construction of a pile.

このように構成された本発明は、複数の地点の地盤調査結果を利用して杭打設地点の予測N値を算出し、その予測N値と載荷試験の結果を関係付けて支持力算定式を作成し、そこから算出した算定支持力に基づく杭の性能評価結果を出力部に出力する。   The present invention configured as described above calculates the predicted N value of the pile driving point using the ground survey results at a plurality of points, and relates the predicted N value and the result of the loading test to calculate the bearing capacity. And output the performance evaluation result of the pile based on the calculated bearing capacity calculated from it to the output unit.

このため、載荷試験をおこなわなかった杭についても、その性能を的確に評価することができる。   For this reason, the performance can be accurately evaluated also about the pile which did not perform the loading test.

また、前記予測N値と杭の施工中に得られた施工データを関係付けて関係式を作成し、その関係式に杭の施工データを入力することによって評価N値を算出し、その評価N値と載荷試験の結果を関係付けて支持力算定式を作成し、そこから算出した算定支持力に基づく杭の性能評価結果を出力部に出力する。   Further, a relational expression is created by associating the predicted N value with the construction data obtained during the construction of the pile, and an evaluation N value is calculated by inputting the construction data of the pile into the relational expression. The bearing capacity calculation formula is created by associating the value and the result of the loading test, and the performance evaluation result of the pile based on the calculated bearing capacity calculated therefrom is output to the output section.

このため、予測N値を施工データによって補正してより正確に杭の支持力を算定できるので、載荷試験をおこなわなかった杭についてもその性能を的確に評価することができる。   For this reason, since the predicted N value can be corrected by the construction data and the pile bearing capacity can be calculated more accurately, the performance of the pile which has not been subjected to the loading test can be accurately evaluated.

さらに、それぞれの杭において、前記予測N値及び前記算定支持力に深度方向に複数の値を持たせることで、3次元的に杭の性能を評価できる。   Furthermore, in each pile, the performance of a pile can be evaluated three-dimensionally by giving the predicted N value and the calculated supporting force a plurality of values in the depth direction.

また、予め前記関係式を作成しておき、杭の施工中に得られる施工データをリアルタイムで前記性能評価装置に入力することで、瞬時に施工中の杭の打設地点の性能評価結果を表示させることができる。   In addition, by creating the relational expression in advance and inputting construction data obtained during construction of the pile to the performance evaluation device in real time, the performance evaluation result of the construction site of the pile currently under construction is displayed. Can be made.

このため、杭の施工管理が容易になり、設計深度まで杭を構築しても設計時に想定した支持力が得られていないと確認された場合は杭長を延長したり、充分に支持力が得られたことが確認できた場合は杭を短縮したりするなど、合理的に杭の施工をおこなうことができる。   For this reason, construction management of piles becomes easy, and even if the piles are built to the design depth, if it is confirmed that the supporting force assumed at the time of design is not obtained, the pile length can be extended or the supporting force can be sufficiently increased. When it is confirmed that the piles have been obtained, the piles can be reasonably constructed such as by shortening the piles.

以下、本発明の最良の実施の形態について図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本実施の形態による杭1の性能評価装置100の構成を示した図である。   FIG. 1 is a diagram showing a configuration of a performance evaluation apparatus 100 for a pile 1 according to the present embodiment.

まず、構成から説明すると、本実施の形態による杭1の性能評価装置100は、複数の地点においておこなわれた地盤調査結果107から杭打設地点の予測N値を算出する予測N値算出手段101と、その予測N値とそれに対応する杭1の施工中に得られた施工データ108との関係式を作成する関係式作成手段102と、その関係式に杭1の施工データ108を入力して杭打設地点の評価N値を算出する評価N値算出手段103と、その評価N値を算出した複数の杭1に対して載荷試験をおこなって実測支持力(載荷試験結果109)を求め、複数の前記評価N値と前記実測支持力とから支持力算定式を作成する支持力算定式作成手段104と、その支持力算定式に載荷試験をおこなっていない杭1の評価N値を入力して算定支持力を算出する支持力算定手段105と、その算定支持力に基づく杭1の性能評価結果を表示する出力部106とを備えている。   First, when it demonstrates from a structure, the performance evaluation apparatus 100 of the pile 1 by this Embodiment will calculate the predicted N value calculation means 101 which calculates the predicted N value of a pile placement point from the ground investigation result 107 performed in the some point. And a relational expression creating means 102 for creating a relational expression between the predicted N value and the construction data 108 obtained during construction of the corresponding pile 1, and inputting the construction data 108 of the pile 1 into the relational expression The evaluation N value calculation means 103 for calculating the evaluation N value of the pile driving point, and the load test is performed on the plurality of piles 1 for which the evaluation N value is calculated, and the actually measured support force (load test result 109) is obtained. A support force calculation formula creating means 104 for creating a support force calculation formula from a plurality of the evaluation N values and the measured support force, and an evaluation N value of the pile 1 that has not been subjected to a loading test is input to the support force calculation formula. Calculate supportive power That the supporting force calculating means 105, and an output unit 106 for displaying the results of performance evaluation pile 1 based on the calculated support force.

杭1の打設をおこなう施工現場では、その場所の地盤状態を知るために地盤調査がおこなわれる。ここで使用される地盤調査結果107は、標準貫入試験(以下、SPTという。)、スウェーデン式サウンディング試験(以下、SWSという。)などの試験を原位置地盤に対しておこなうことによって得られるN値などである。この地盤調査によって得られるN値は、単位深度毎に複数測定される。   At the construction site where the pile 1 is placed, a ground survey is conducted in order to know the ground condition of the place. The ground survey result 107 used here is an N value obtained by performing tests such as a standard penetration test (hereinafter referred to as SPT) and a Swedish sounding test (hereinafter referred to as SWS) on the in-situ ground. Etc. A plurality of N values obtained by this ground survey are measured for each unit depth.

しかし、これらの地盤調査結果107は、必ずしも杭1を打設する杭打設地点において行われるものではなく、その上、杭1の打設数に比べて一般的に少ない数の調査しかおこなわれない。   However, these ground survey results 107 are not necessarily performed at the pile driving point where the pile 1 is to be driven, and moreover, only a smaller number of surveys are generally performed compared to the number of piles 1 to be driven. Absent.

そこで、杭1の施工前におこなわれる地盤調査結果107を有効に利用して、杭打設地点の地盤状態を予測N値算出手段101によって予測することとする。   Therefore, it is assumed that the ground state at the pile placement point is predicted by the predicted N value calculation means 101 by effectively using the ground survey result 107 performed before the construction of the pile 1.

この予測N値算出手段101では、図2に示すように複数のボーリング地点B1〜B4の地盤調査結果107を利用して、精度よく杭打設地点の地盤状態を予測する。   As shown in FIG. 2, the predicted N value calculating means 101 predicts the ground condition at the pile driving point with high accuracy by using the ground investigation results 107 at a plurality of boring points B1 to B4.

この図2に示すように、ボーリング地点B1〜B4と杭1の距離をr1〜r4で表すと、例えば次の重み付け累加平均式で杭1の打設地点の予測N値を推定することができる。   As shown in FIG. 2, when the distance between the boring points B1 to B4 and the pile 1 is represented by r1 to r4, for example, the predicted N value of the placing point of the pile 1 can be estimated by the following weighted cumulative average equation. .

=(ΣNi/ri)/(Σ1/ri)=(N1/r1+N2/r2+N3/r3+N4/r4)/(1/r1+1/r2+1/r3+1/r4)・・・・・(式1)
ここで、N1〜N4は各ボーリング地点B1〜B4で実測されたN値を示し、Nは予測N値を示す。また、各ボーリング地点B1〜B4においてN値は、単位深度毎に測定されるので、N1〜N4の中には複数のN値のデータが含まれており、予測N値Nもその深度に対応した値として算出する。
N Y = (ΣNi / ri) / (Σ1 / ri) = (N1 / r1 + N2 / r2 + N3 / r3 + N4 / r4) / (1 / r1 + 1 / r2 + 1 / r3 + 1 / r4) (Equation 1)
Here, N1-N4 denotes a N values measured by each boring point B1 to B4, N Y denotes the predicted N value. Further, since the N value is measured for each unit depth at each of the boring points B1 to B4, a plurality of N value data is included in N1 to N4, and the predicted N value NY is also included in the depth. Calculate as the corresponding value.

一方、杭1の施工中には、施工データとしてトルク、圧入力、回転数、貫入速度、打撃回数などのデータが得られる。   On the other hand, during construction of the pile 1, data such as torque, pressure input, rotation speed, penetration speed, and number of hits are obtained as construction data.

これらの施工データの中でもトルク、圧入力及び回転数のデータは、地盤の性質に最も依存していると考えられ、特にトルクとN値の関係に相関性があることが確認できた。   Among these construction data, the data on torque, pressure input and rotation speed are considered to be most dependent on the properties of the ground, and it was confirmed that the relationship between torque and N value is particularly correlated.

そこで、関係式作成手段102において、予測N値Nが杭打設地点のN値であると仮定して施工データと回帰分析をおこなって関係式を作成する。 Therefore, in the relational expression creating means 102, assuming that the predicted N value NY is the N value of the pile driving point, construction data and regression analysis are performed to create a relational expression.

例えば、トルクTをパラメータとした次の関係式によって回帰分析をおこなって未知数である定数a,bを求める。   For example, regression analysis is performed by the following relational expression using the torque T as a parameter to obtain constants a and b which are unknowns.

=a・T ・・・・・(式2)
そして、評価N値算出手段103において、施工データであるトルクTを(式2)に入力して算出されるのが評価N値Nとなる。この評価N値Nは、地盤調査結果107に基づいて推定した杭打設地点の予測N値Nの値を、施工データに基づいて補正した値であるといえる。
N Y = a · T b (Formula 2)
The evaluation N value calculation means 103 calculates the evaluation N value NH calculated by inputting the torque T, which is the construction data, into (Equation 2). This evaluation N value NH can be said to be a value obtained by correcting the predicted N value NY of the pile driving point estimated based on the ground survey result 107 based on the construction data.

次に、支持力算定式作成手段104において支持力算定式を作成し、評価N値Nから杭の支持力を算出する構成について説明する。 Next, a description will be given of a configuration in which the bearing capacity calculation formula is created by the bearing capacity calculation formula creation means 104 and the bearing capacity of the pile is calculated from the evaluation N value NH .

杭の支持力Puは、例えば次の支持力算定式によって算出することができる。   The supporting force Pu of the pile can be calculated by, for example, the following supporting force calculation formula.

Pu=(α・Ap)・Np+(β・φ)ΣN・L ・・・・・(式3)
ここで、αは杭先端の支持力係数、βは杭周の周面摩擦力係数、Apは杭先端の有効断面積、φは杭の周長、Lはh区間の杭の長さ、Npは杭先端のN値、Nはh区間の杭周のN値を示す。
Pu = (α · A p ) · N p + (β · φ) ΣN h · L h (Equation 3)
Here, alpha is bearing capacity coefficient of pile tip, beta is skin friction coefficient of the pile circumference, A p is the effective cross-sectional area of the pile tip, phi is the circumference of the pile, L h is the pile of h interval length , N p is N values of pile tip, N h denotes the N values of the pile circumference of h intervals.

ここで、杭の支持力Puと、2つの定数α、βが未知数になるので、後述する急速載荷試験などの載荷試験の結果として求められた杭の実測支持力を(式3)に代入して残りの未知数α、βの値を求める。   Here, since the pile support force Pu and the two constants α and β are unknown, the measured support force of the pile obtained as a result of a load test such as a rapid load test described later is substituted into (Equation 3). The remaining unknowns α and β are obtained.

すなわち、評価N値Nを算出した複数の杭1の中から少なくとも2本の杭1に対して載荷試験をおこない、その載荷試験結果109としての実測支持力をPuとし、杭先端及び杭周のN値(Np、N)に対応する評価N値Nをそれぞれ(式3)に入力して2つの未知数α、βを求める。 That is, a load test is performed on at least two piles 1 among the plurality of piles 1 for which the evaluation N value NH is calculated, and the measured support force as the load test result 109 is Pu, and the pile tip and the pile circumference The evaluation N values N H corresponding to the N values (N p , N i ) are respectively input to (Equation 3) to obtain two unknowns α and β.

支持力算定手段105では、このようにして作成された支持力算定式(式3)を使って評価N値Nから杭1の算定支持力を算出する。 The bearing capacity calculation means 105 calculates the calculated bearing capacity of the pile 1 from the evaluation N value NH using the bearing capacity calculation formula (Formula 3) created in this way.

このようにして算定される杭1の算定支持力は、杭1毎の性能評価として出力することもできるが、図3に示すように、それぞれの杭1を施工する際に、例えば20〜50cm程度、杭1を打ち込む毎にその深度(Z方向)での杭1の支持力Pu(z)を評価N値Nに基づいて算出し、その支持力を判定した結果を0〜10のランクに分類して出力させることができる。 The calculated supporting force of the pile 1 calculated in this way can be output as a performance evaluation for each pile 1, but when constructing each pile 1 as shown in FIG. 3, for example, 20 to 50 cm Each time the pile 1 is driven in, the support force Pu (z) of the pile 1 at that depth (Z direction) is calculated based on the evaluation N value NH , and the result of determining the support force is rank 0-10 Can be classified and output.

さらに、各深度でのランクを数値で表示すると共に、そのランクに合わせた着色をおこなって、支持力が高い深度が一目で判別できるような表示とすることができる。   Furthermore, the rank at each depth is displayed as a numerical value, and coloring according to the rank is performed so that the depth with high supporting power can be determined at a glance.

このような杭の性能評価結果は、載荷試験を行った杭1及びそれ以外の施工データが得られる杭1に対して得ることができ、図3に示すように三次元的に地盤の強度(杭1の支持力)を把握することができるようになる。   Such a performance evaluation result of the pile can be obtained for the pile 1 subjected to the loading test and the pile 1 from which other construction data can be obtained, and as shown in FIG. The support force of the pile 1 can be grasped.

すなわち、従来は載荷試験をおこなった1〜2本の杭1に関する支持力が離散的に得られるだけであったが、本発明のように載荷試験をおこなわなかった杭1についても、施工時に容易に得られる施工データを基にして支持力が算出できれば、可視化された3次元的な地盤及び杭1の支持力による評価が可能になる。   That is, in the past, the supporting force related to the one or two piles 1 subjected to the loading test was only obtained discretely, but the pile 1 that was not subjected to the loading test as in the present invention is also easy during construction. If the supporting force can be calculated based on the construction data obtained in the above, it becomes possible to evaluate the visualized three-dimensional ground and the supporting force of the pile 1.

次に、杭1の支持力を算定する載荷試験の一つとして急速載荷試験について説明する。   Next, a rapid loading test will be described as one of the loading tests for calculating the bearing capacity of the pile 1.

図4は、急速載荷試験の概略構成を示した図である。   FIG. 4 is a diagram showing a schematic configuration of the rapid loading test.

まず、構成から説明すると、沈下剛性や支持力の調査対象となる杭1の杭頭1aに荷重計としての測定器10が載置され、その上に緩衝材2が載置される。   First, when it demonstrates from a structure, the measuring device 10 as a load meter is mounted in the pile head 1a of the pile 1 used as the investigation object of subsidence rigidity and supporting force, and the shock absorbing material 2 is mounted on it.

この緩衝材2には、ゴム材料、ウレタンエラストマー等の高分子材料、鋼鉄製コイルバネ、皿バネ、ショックアブソーバなどが使用される。   For the buffer material 2, a rubber material, a polymer material such as urethane elastomer, a steel coil spring, a disc spring, a shock absorber, or the like is used.

そして、この緩衝材2の上から重錘3を自由落下させると、緩衝材2が打撃されると共に測定器10を通って杭頭1aに荷重が伝達される。なお、油圧ハンマなどで重錘3を降下させて緩衝材2を打撃してもよい。   When the weight 3 is freely dropped from above the cushioning material 2, the cushioning material 2 is hit and the load is transmitted to the pile head 1 a through the measuring device 10. In addition, the weight 3 may be lowered with a hydraulic hammer or the like to hit the cushioning material 2.

この杭頭1aに伝達される荷重を計測するのが測定器10である。この測定器10は、図5,6に示すように、円筒管としての内筒10bと、その外側に配置される外筒10cとによって主に構成されている。   The measuring instrument 10 measures the load transmitted to the pile head 1a. As shown in FIGS. 5 and 6, the measuring instrument 10 is mainly composed of an inner cylinder 10b as a cylindrical tube and an outer cylinder 10c arranged on the outer side thereof.

この内筒10bは、緩衝材2と杭頭1a間で力を伝達させる部材であって、鋼材などの高強度の材料で形成される。   The inner cylinder 10b is a member that transmits force between the cushioning material 2 and the pile head 1a, and is formed of a high-strength material such as a steel material.

この内筒10bの外周面にはひずみゲージ10aが取り付けられており、内筒10bが作用荷重によって歪むと、このひずみゲージ10aがその歪みを出力値として出力するため作用する荷重を知ることができる。   A strain gauge 10a is attached to the outer peripheral surface of the inner cylinder 10b. When the inner cylinder 10b is distorted by an applied load, the strain gauge 10a outputs the strain as an output value, so that the load acting can be known. .

また、外筒10cは、ひずみゲージ10aを保護するように内筒10bの外側に配置されるもので、この外筒10cには重錘3の打撃力は作用しない。   The outer cylinder 10c is disposed outside the inner cylinder 10b so as to protect the strain gauge 10a, and the impact force of the weight 3 does not act on the outer cylinder 10c.

なお、荷重計として油圧式のロードセルなどを使用することもできる。   A hydraulic load cell or the like can be used as a load meter.

さらに、この内筒10bの外周面には、ひずみゲージ10aと同様に加速度計11が取り付けられる。   Further, the accelerometer 11 is attached to the outer peripheral surface of the inner cylinder 10b in the same manner as the strain gauge 10a.

この加速度計11には、例えば感度が10mV/g、測定範囲が0.003〜500g、周波数範囲が0.7〜11Hzの圧電式加速計が使用できる。   As the accelerometer 11, for example, a piezoelectric accelerometer having a sensitivity of 10 mV / g, a measurement range of 0.003 to 500 g, and a frequency range of 0.7 to 11 Hz can be used.

そして、測定器10には、図5に示すように荷重出力用ケーブル14aと加速度出力用ケーブル14bの2本のケーブル14が接続される。このように作用荷重の検出をおこなうひずみゲージ10aと同じ箇所に加速度計11を取り付けることによって、試験現場に配線が錯綜することを防ぐことができる。   As shown in FIG. 5, two cables 14, a load output cable 14 a and an acceleration output cable 14 b, are connected to the measuring instrument 10. By attaching the accelerometer 11 to the same location as the strain gauge 10a that detects the applied load in this way, it is possible to prevent wiring from being complicated at the test site.

このケーブル14によって伝送される出力値は、動ひずみアンプ12によって増幅されて処理部としてのパソコン13に送られる(図4参照)。   The output value transmitted by the cable 14 is amplified by the dynamic strain amplifier 12 and sent to the personal computer 13 as a processing unit (see FIG. 4).

このパソコン13には、ひずみゲージ10aと加速度計11から出力されて動ひずみアンプ12によって増幅された出力値が、ADコンバータによってデジタル変換されて入力される。   An output value output from the strain gauge 10a and the accelerometer 11 and amplified by the dynamic strain amplifier 12 is digitally converted by the AD converter and input to the personal computer 13.

そして、この入力されたひずみゲージ10aの出力値から作用荷重を算出し、加速度計11の出力値から変位を算出する。   Then, the applied load is calculated from the input output value of the strain gauge 10a, and the displacement is calculated from the output value of the accelerometer 11.

加速度計11の出力値から変位を算出するには、例えば線形加速度法(大崎順吾、”新・地震動のスペクトル解析入門”、鹿島出版会を参照)によって出力値を時系列で2回積分すればよい。   In order to calculate the displacement from the output value of the accelerometer 11, for example, the output value is integrated twice in time series by the linear acceleration method (see Junsuke Osaki, “Introduction to new ground motion spectrum analysis”, Kashima Publishing Association). That's fine.

この線形加速度法によって算出された時間と変位の関係を図7(a)に示す。この「線形加速度法」によって算出された変位と、従来の光学式変位計7によって測定した「実測値」を比較すると、最大変位が発生した後に両者は乖離していくことがわかる。   FIG. 7A shows the relationship between time and displacement calculated by this linear acceleration method. Comparing the displacement calculated by the “linear acceleration method” with the “actual value” measured by the conventional optical displacement meter 7, it can be seen that after the maximum displacement has occurred, the two deviate from each other.

一方、大崎の方法(大崎順吾、”新・地震動のスペクトル解析入門”、鹿島出版会を参照)によって出力値を修正した変位を示すことができるので、図7(a)に「大崎修正法」として示した。   On the other hand, since the displacement of the output value can be shown by the method of Osaki (see Jungo Osaki, “Introduction to new ground motion spectrum analysis”, Kashima Publishing Co., Ltd.), FIG. ".

この「大崎修正法」による変位は、「実測値」の変位の形状に良く似てはいるが、全体的にずれが生じている。   The displacement by the “Osaki correction method” is very similar to the displacement shape of the “actually measured value”, but there is a deviation as a whole.

そこで、光学式変位計7による「実測値」が得られない本実施の形態の杭の測定装置における変位の算出方法を、図7(b)を参照しながら以下に説明する。   Therefore, a displacement calculation method in the pile measuring apparatus according to the present embodiment in which an “actual value” by the optical displacement meter 7 cannot be obtained will be described below with reference to FIG.

まず、加速度計11の出力値から算出された「線形加速度法」の変位が「0」の点を重錘3による載荷がなされる直前の起点(t1)とする。そして、「大崎修正法」の起点(t1)の変位を、図7(b)の「0点補正」に示すように0点に一致させると共に、次に変位が0となる点を終点(t2)とする。 First, a point where the displacement of the “linear acceleration method” calculated from the output value of the accelerometer 11 is “0” is set as a starting point (t 1 ) immediately before loading by the weight 3. Then, the displacement of the starting point (t 1 ) of the “Osaki correction method” is made to coincide with the 0 point as shown in “0 point correction” of FIG. t 2 ).

一方、載荷後の杭頭1aの残留変位を水準測量などによって測定しておく。そして、「0点補正」の最終計測点(t3)をこの残留変位に一致させると、図7(b)の「0+残留補正値」に示すような補正された変位が求められる。 On the other hand, the residual displacement of the pile head 1a after loading is measured by leveling or the like. When the final measurement point (t 3 ) of “0 point correction” is made to coincide with this residual displacement, a corrected displacement as shown in “0 + residual correction value” in FIG. 7B is obtained.

このように加速度計11から出力された出力値から算出される変位を補正することによって、加速度計11から得られた出力値を実際の杭頭1aの変位に近づけることができる。   In this way, by correcting the displacement calculated from the output value output from the accelerometer 11, the output value obtained from the accelerometer 11 can be brought close to the actual displacement of the pile head 1a.

すなわち、「実測値」と「0+残留補正値」を比較すると、杭頭1aの変位が反転する除荷点近傍のデータに良い一致がみられるため、このようにして補正した「0+残留補正値」を杭1の変位として使用する。   That is, when comparing the “actual value” and “0 + residual correction value”, there is a good agreement in the data near the unloading point where the displacement of the pile head 1a is reversed. The “correction value” is used as the displacement of the pile 1.

次に、このようにして算出した杭1の変位(沈下量)と杭頭1aに作用する荷重の関係から支持力を算定するマッチング方法の一例について説明する。   Next, an example of a matching method for calculating the supporting force from the relationship between the displacement (settlement amount) of the pile 1 thus calculated and the load acting on the pile head 1a will be described.

ここでは、バネ(k値)とダッシュポット(減衰定数C)を並列に並べたマッチングモデルと、図8(a)に示したような減衰モデルを用いたマッチング方法について説明する。   Here, a matching model using a spring (k value) and a dashpot (damping constant C) arranged in parallel and a damping model as shown in FIG. 8A will be described.

この方法では、まず、バネのk値を少しずつ変化させて得られた計算変位と、上記で算定した「0+残留補正値」(杭1の変位)とを比較し、最小の誤差になる最適k値を算定する。   In this method, first, the calculated displacement obtained by gradually changing the k value of the spring is compared with the “0 + residual correction value” (displacement of the pile 1) calculated above, resulting in the smallest error. Calculate the optimal k value.

また、静的抵抗成分P(t)の算出は、図8(a)に示す履歴曲線と最適k値との交点における変位δ(t)と最適k値とから、δ(t)に対応するP(t)を(式4)により算出する。   The calculation of the static resistance component P (t) corresponds to δ (t) from the displacement δ (t) and the optimum k value at the intersection of the hysteresis curve and the optimum k value shown in FIG. P (t) is calculated by (Equation 4).

P(t)=k・δ(t) ・・・・・(式4)
そして、(式5)によりマッチングポイントと最大速度Vmaxから得られる減衰定数Cを求め、このCと速度V(t)から、(式6)により速度補正したP’(t)を算出する。
P (t) = k · δ (t) (Equation 4)
Then, an attenuation constant C obtained from the matching point and the maximum velocity Vmax is obtained from (Equation 5), and P ′ (t) corrected for velocity by (Equation 6) is calculated from this C and velocity V (t).

C=ΔP/Vmax ・・・・・(式5)
ここで、ΔP=Pmax−P(t)
P’(t)=P(t)−C×V(t) ・・・・・(式6)
このような荷重〜変位関係の推定は、図8(b)に示すように、始発点Aと最大速度Vmaxの位置B間は、(式5)、(式6)により荷重補正をおこない、最大速度Vmaxの位置BとマッチングポイントC間は直線補完する。
C = ΔP / Vmax (Formula 5)
Here, ΔP = Pmax−P (t)
P ′ (t) = P (t) −C × V (t) (Formula 6)
As shown in FIG. 8B, the load-displacement relationship is estimated by performing load correction between (Equation 5) and (Equation 6) between the starting point A and the position B of the maximum speed Vmax. Linear interpolation is performed between the position B of the velocity Vmax and the matching point C.

以上で説明したマッチング方法を適用して、ある杭1に対して急速載荷試験をおこなった際に得られた測定器10と加速度計11の出力値を整理した結果を図9に示した。   FIG. 9 shows a result of arranging the output values of the measuring instrument 10 and the accelerometer 11 obtained when the rapid loading test is performed on a certain pile 1 by applying the matching method described above.

この図9の結果は、重錘3による杭頭1aの打撃を、落下高さを4回変えておこなった結果を整理したもので、各落下高さで算定されたマッチングポイントから杭頭荷重と杭頭変位の推定曲線(図9の実線)を算定した。   The result of FIG. 9 is a summary of the results of hitting the pile head 1a by the weight 3 while changing the drop height four times. From the matching points calculated at each drop height, the pile head load and The estimated curve of the pile head displacement (solid line in FIG. 9) was calculated.

杭1の支持力を算定する方法は、色々な方法が提案されているが、例えば図9の推定曲線(実線)から得られる極限荷重(約115kN)を杭1の支持力とすることができる。   Various methods for calculating the bearing capacity of the pile 1 have been proposed. For example, the ultimate load (about 115 kN) obtained from the estimated curve (solid line) in FIG. 9 can be used as the bearing capacity of the pile 1. .

次に、本実施の形態の杭1の性能評価装置100の処理の流れを図10のフローチャートを参照しながら説明するとともに、その作用について説明する。   Next, the processing flow of the performance evaluation device 100 for the pile 1 according to the present embodiment will be described with reference to the flowchart of FIG.

まず、杭1を打設する予定の施工現場敷地の地盤に対し、複数(好ましくは4箇所以上)の地点においてSWS(スウェーデン式サウンディング試験)をおこなう(ステップS1)。   First, SWS (Swedish sounding test) is performed at a plurality of (preferably four or more) points on the ground of the construction site site where the pile 1 is to be placed (step S1).

そして、このSWSによって測定されたN値Niとボーリング地点Biと杭1の距離riを(式1)に入力して予測N値Nを算出する(ステップS2)。 Then, the N value Ni measured by the SWS and the distance ri between the boring point Bi and the pile 1 are input to (Equation 1) to calculate the predicted N value NY (step S2).

続いて、この予測N値Nを算出した杭打設地点において杭1の施工をおこなってトルクTなどの施工データを収集し、予測N値Nと施工データとの関係式(式2)を作成する(ステップS3)。 Subsequently, the pile 1 is constructed at the pile driving point where the predicted N value NY is calculated, construction data such as torque T is collected, and a relational expression between the predicted N value NY and the construction data (Formula 2) Is created (step S3).

そして、この関係式(式2)に施工データ(トルクT)を入力して評価N値Nを算出する(ステップS4)。 And construction data (torque T) is input into this relational expression (Formula 2), and evaluation N value NH is calculated (step S4).

また、この施工された杭1の2本以上に対して急速載荷試験をおこない(ステップS5)、その試験結果から実測支持力を算出する(ステップS6)。   Moreover, a rapid loading test is performed with respect to two or more of the constructed piles 1 (step S5), and the actual supporting force is calculated from the test result (step S6).

このようにして求められた実測支持力と評価N値Nとから支持力算定式(式3)を作成し(ステップS7)、この支持力算定式(式3)に評価N値Nを入力して算定支持力を算出する(ステップS8)。 Supporting force calculation formula from this way the actual support force which is determined by the evaluation N value N H create a (Formula 3) (step S7), and the evaluation value N N H on the supporting force calculation formula (Equation 3) The calculated support force is calculated by inputting (step S8).

この算定支持力は、杭1の性能評価結果としてそのままの数値又はその算定支持力に基づいて判定された判定ランクなどとして出力させる(ステップS9)。   This calculated support force is output as a numerical value as it is as a performance evaluation result of the pile 1 or a determination rank determined based on the calculated support force (step S9).

このように構成された本実施の形態の杭1の性能評価装置100は、複数の地点の地盤調査結果107を利用して杭打設地点の予測N値Nを算出し、その予測N値Nと杭1の施工中に得られた施工データとを関係付けて関係式を作成する。 The performance evaluation device 100 for the pile 1 according to the present embodiment configured as described above calculates the predicted N value NY of the pile placing point using the ground survey results 107 at a plurality of points, and the predicted N value. A relational expression is created by associating NY with construction data obtained during construction of the pile 1.

そして、その関係式に杭1の施工データを入力することによって評価N値Nを算出し、その評価N値Nと載荷試験の結果を関係付けて支持力算定式を作成し、そこから算出した算定支持力に基づく杭の性能評価結果を出力部106に出力する。 And the evaluation N value NH is calculated by inputting the construction data of the pile 1 into the relational expression, the evaluation N value NH is related to the result of the loading test, and the bearing capacity calculation formula is created. The pile performance evaluation result based on the calculated calculated support force is output to the output unit 106.

このため、載荷試験をおこなわなかった杭1についても、その性能を的確に評価することができる。   For this reason, also about the pile 1 which did not perform the loading test, the performance can be evaluated accurately.

また、それぞれの杭1,・・・において、前記予測N値、前記評価N値及び前記算定支持力に深度方向に複数の値を持たせることで、3次元的に杭の性能を評価できる。   Moreover, in each pile 1, ..., the performance of a pile can be evaluated three-dimensionally by giving a plurality of values to the said prediction N value, the said evaluation N value, and the said calculation support force in the depth direction.

また、予め前記関係式を作成しておき、杭1の施工中に得られる施工データをリアルタイムで性能評価装置100に入力することで、瞬時に施工中の杭1の打設地点の性能評価結果を表示させることができる。   In addition, by creating the relational expression in advance and inputting construction data obtained during the construction of the pile 1 to the performance evaluation device 100 in real time, the performance evaluation result of the placing point of the pile 1 being constructed instantaneously Can be displayed.

すなわち、施工データから導かれる測定結果をリアルタイムで三次元的に可視化できるので、周辺に打設した他の杭との関係やばらつきの変化を容易に把握することができる。   That is, since the measurement result derived from the construction data can be visualized in three dimensions in real time, it is possible to easily grasp the relationship with other piles placed in the vicinity and changes in variations.

また、同じ現場で多くの杭1,・・・に対して載荷試験を行う場合は、厳密に変位と作用荷重の関係が測定されなくとも、施工データによって相対的に杭1の支持力特性を確認することができるので、施工管理としての性能評価に使用する場合に有用である。   In addition, when a load test is performed on many piles 1,... At the same site, the bearing capacity characteristics of the pile 1 are relatively determined by the construction data even if the relationship between the displacement and the applied load is not strictly measured. Since it can be confirmed, it is useful when used for performance evaluation as construction management.

このため、杭1の施工管理が容易になり、設計深度まで杭を構築しても設計時に想定した支持力が得られていないと確認された場合は杭長を延長したり、充分に支持力が得られたことが確認できた場合は杭を短縮したりするなど、合理的に杭の施工をおこなうことができる。   For this reason, the construction management of the pile 1 becomes easy, and even if the pile is built to the design depth, if it is confirmed that the supporting force assumed at the time of design is not obtained, the pile length can be extended or the supporting force can be sufficiently increased. If it can be confirmed that the pile has been obtained, the pile can be reasonably constructed, such as by shortening the pile.

以下、実施例では、前記実施の形態の杭1の性能評価装置100の構成によって杭1の性能を的確に評価できることを確認した検討結果について説明する。   Hereinafter, an Example demonstrates the examination result which confirmed that the performance of the pile 1 can be evaluated accurately according to the structure of the performance evaluation apparatus 100 of the pile 1 of the said embodiment.

この検討をおこなうにあたって、図11に示すように格子状に3m間隔で30本の杭を打設した。また、この敷地内の5箇所においてSPTとSWSの地盤調査をそれぞれおこなった。   In carrying out this examination, as shown in FIG. 11, 30 piles were placed in a lattice shape at intervals of 3 m. In addition, SPT and SWS ground surveys were conducted at five locations on the site.

図12は、これらの地盤調査結果107の一つを他の地盤調査結果107から予測した場合に、予測に使用したボーリング地点の点数と標準偏差との関係を示した図である。   FIG. 12 is a diagram showing the relationship between the number of drilling points used for prediction and the standard deviation when one of these ground survey results 107 is predicted from the other ground survey results 107.

この図12によれば、SPTとSWSの両方において予測に使用する地盤調査結果107が多くなるほど標準偏差が小さくなり、予測のばらつきが減少することがわかる。   As can be seen from FIG. 12, the standard deviation decreases as the ground survey results 107 used for prediction in both SPT and SWS increase, and the variation in prediction decreases.

なお、以下の説明はSWSによる地盤調査結果107に基づいておこなうが、SPTによる地盤調査結果107を使用した場合も同様な結果が確認できている。   In addition, although the following description is performed based on the ground investigation result 107 by SWS, the same result can be confirmed also when the ground investigation result 107 by SPT is used.

図13は、4点のボーリング地点の地盤調査結果107を(式1)に代入して残りの1点のボーリング地点のN値を予測した予測N値と、実際にSWSによって測定されたN値との関係を示した図である。   FIG. 13 shows a predicted N value obtained by substituting the ground survey result 107 at four boring points into (Equation 1) and predicting an N value at the remaining one boring point, and an N value actually measured by SWS. It is the figure which showed the relationship.

このように4箇所以上の地盤調査結果107を使用して杭打設地点の予測N値を求めるようにすれば、良好に杭打設地点のN値を算出することができる。   Thus, if the predicted N value of a pile driving point is calculated | required using the ground investigation result 107 of four or more places, the N value of a pile driving point can be calculated favorably.

そして、このようにして算定された杭打設地点の予測N値と杭1の施工中に得られた施工データのうちのトルクとの関係を示した図を図14に示す。   And the figure which showed the relationship between the predicted N value of the pile placing point calculated in this way and the torque in the construction data obtained during the construction of the pile 1 is shown in FIG.

この図14に示すように、SWSの結果から算出した予測N値とトルクとの間には相関関係があるものといえる。   As shown in FIG. 14, it can be said that there is a correlation between the predicted N value calculated from the SWS result and the torque.

また、図15には、急速載荷試験をおこなった杭1に対して、その試験結果として求められた実測支持力Puと予測N値を支持力算定式(式3)に入れて求めた支持力Puとの関係を示した。   Further, FIG. 15 shows the bearing force obtained by putting the actually measured bearing force Pu and the predicted N value obtained as a result of the test on the pile 1 subjected to the rapid loading test into the bearing force calculation formula (Equation 3). The relationship with Pu was shown.

ここで、この実施例で打設された杭には、杭の先端が閉塞された先端閉塞杭(タイプ1)と、先端が開放された先端開放杭(タイプ2)の二種類があり、図15及び次に示す図16はタイプ1の結果を示したものである。   Here, there are two types of piles placed in this embodiment: a tip closed pile (type 1) in which the tip of the pile is closed, and a tip open pile (type 2) in which the tip is opened. 15 and the following FIG. 16 show the results of Type 1.

この図16には、急速載荷試験結果として求められた実測支持力Puと、トルクを関係式(式2)に代入して算出した評価N値を支持力算定式(式3)に入れて求めた支持力Puとの関係を示した。   In FIG. 16, the measured support force Pu obtained as a result of the rapid loading test and the evaluation N value calculated by substituting the torque into the relational expression (formula 2) are obtained by entering the support force calculation formula (formula 3). The relationship with the supporting force Pu was shown.

この図15と図16とを比較すると、実測値と予測値にいずれも良好な相関関係が認められるが、評価N値に基づいて算定された支持力(図16)の方が予測N値に基づいて算定された支持力(図15)よりも標準偏差σ及び変動係数cvが小さく、ばらつきが少ないといえる。なお、μは平均値を示す。   When FIG. 15 and FIG. 16 are compared with each other, there is a good correlation between the actual measurement value and the predicted value, but the supporting force calculated based on the evaluation N value (FIG. 16) is the predicted N value. It can be said that the standard deviation σ and the coefficient of variation cv are smaller than the supporting force calculated based on FIG. Μ represents an average value.

また、タイプ2についても同様の結果が確認できた。   The same result was confirmed for Type 2.

以上、図面を参照して、本発明の最良の実施の形態を詳述してきたが、具体的な構成は、この実施の形態に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。   Although the best embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes that do not depart from the gist of the present invention are possible. Are included in the present invention.

例えば、本実施の形態では、予測N値と施工データとから評価N値を算出して算定支持力を算出したが、これに限定されるものではなく、評価N値を求めることなく予測N値から直接、算定支持力を求めて杭の性能評価をおこなってもよい。その場合は、予測N値を支持力算定式(式3)に代入して定数α、βを求める。   For example, in the present embodiment, the calculation support force is calculated by calculating the evaluation N value from the prediction N value and the construction data. However, the present invention is not limited to this, and the prediction N value is obtained without obtaining the evaluation N value. You may evaluate the performance of the pile directly by calculating the supporting capacity. In that case, the constants α and β are obtained by substituting the predicted N value into the bearing capacity calculation formula (Formula 3).

また、前記実施の形態では、載荷試験として重錘を落下させる急速載荷試験をおこなったが、これに限定されるものではなく、静的載荷試験、動的載荷試験、スタナミック試験と呼ばれるジェット燃料を燃焼させて打ち上げられた反力マスによって杭頭1aに外力を作用させる載荷試験などいずれの載荷試験結果を利用してもよい。   In the above embodiment, a rapid loading test in which a weight is dropped as a loading test was performed. Any loading test result such as a loading test in which an external force is applied to the pile head 1a by the reaction mass launched by burning may be used.

また、前記実施の形態で示した予測N値を推定する重み付け累加平均式(式1)、関係式(式2)、支持力算定式(式3)などはこれらに限定されるものではなく、例えば重み付け累加平均式は距離riを2乗する式を適用することもできる。   Further, the weighted cumulative average equation (Equation 1), the relational equation (Equation 2), the bearing capacity calculation equation (Equation 3), etc., for estimating the predicted N value shown in the above embodiment are not limited to these. For example, an equation for squaring the distance ri can be applied to the weighted cumulative average equation.

さらに、前記実施の形態では、図3に示すように杭の性能評価結果を3次元位置で表示させたが、これに限定されるものではなく、例えば深度(Z方向)の位置は座標データ通りに表示し、X,Y方向の位置は座標データに従わずに横に並べて表示させるようにして全体として2次元的な表示となってもよい。   Furthermore, in the said embodiment, as shown in FIG. 3, the performance evaluation result of the pile was displayed in the three-dimensional position, but it is not limited to this, for example, the position of the depth (Z direction) is as coordinate data. The positions in the X and Y directions may be displayed in a two-dimensional manner as a whole so as to be displayed side by side without following the coordinate data.

本発明の最良の実施の形態の杭の性能評価装置の概略構成を説明する説明図である。It is explanatory drawing explaining the schematic structure of the performance evaluation apparatus of the pile of the best embodiment of this invention. 複数のボーリング調査結果から杭の打設地点の地盤状態を予測する方法を説明するための説明図である。It is explanatory drawing for demonstrating the method of estimating the ground condition of the placement point of a pile from a some boring investigation result. 杭の性能評価結果を3次元位置で表示させた表示部の表示例を示した図である。It is the figure which showed the example of a display of the display part which displayed the performance evaluation result of the pile in the three-dimensional position. 杭の急速載荷試験の概略構成を説明する説明図である。It is explanatory drawing explaining schematic structure of the rapid loading test of a pile. 測定器と動ひずみアンプの接続状態を説明する説明図である。It is explanatory drawing explaining the connection state of a measuring device and dynamic strain amplifier. 図5のA−A線方向の矢視図である。It is an arrow view of the AA line direction of FIG. (a)は加速度計の出力値と実測値とを比較した変位と経過時間の関係図、(b)は加速度計の出力値の補正方法を説明する説明図である。(A) is the relationship figure of the displacement and elapsed time which compared the output value and measured value of the accelerometer, (b) is explanatory drawing explaining the correction method of the output value of an accelerometer. (a)は杭の支持力算定に際して静的成分を算出する方法を説明する説明図、(b)はマッチング方法による荷重〜変位関係の推定を説明する説明図である。(A) is explanatory drawing explaining the method of calculating a static component in the bearing capacity calculation of a pile, (b) is explanatory drawing explaining the estimation of the load-displacement relationship by a matching method. 支持力を算定するための杭頭荷重〜杭頭変位の関係図である。It is a related figure of pile head load-pile head displacement for calculating bearing capacity. 杭の性能評価装置の処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of a process of the performance evaluation apparatus of a pile. 杭の性能評価装置の効果を確認するために打設した杭の打設位置及び地盤調査位置を示した平面図である。It is the top view which showed the placement position and ground investigation position of the pile which were placed in order to confirm the effect of the performance evaluation apparatus of a pile. 予測N値を算出するのに使用するボーリング地点の点数と標準偏差との関係を示した図である。It is the figure which showed the relationship between the number of the boring points used for calculating the predicted N value, and the standard deviation. 地盤調査によって測定されたN値とその地点の予測N値との関係を示した図である。It is the figure which showed the relationship between N value measured by the ground investigation, and the predicted N value of the point. 施工データとしてのトルクと予測N値との関係を示した図である。It is the figure which showed the relationship between the torque as construction data, and predicted N value. 急速載荷試験から求められた杭の支持力と予測N値から算出した杭の支持力との関係を示した図である。It is the figure which showed the relationship between the bearing capacity of the pile calculated | required from the rapid loading test, and the bearing capacity of the pile calculated from the predicted N value. 急速載荷試験から求められた杭の支持力と評価N値から算出した杭の支持力との関係を示した図である。It is the figure which showed the relationship between the bearing capacity of the pile calculated | required from the rapid loading test, and the bearing capacity of the pile calculated from evaluation N value. 従来例の杭の測定装置の概略構成を説明する説明図である。It is explanatory drawing explaining schematic structure of the measuring apparatus of the pile of a prior art example.

符号の説明Explanation of symbols

100 性能評価装置
101 予測N値算出手段
102 関係式作成手段
103 評価N値算出手段
104 支持力算定式作成手段
105 支持力算定手段
106 出力部
107 地盤調査結果
108 施工データ
109 載荷試験結果(実測支持力)
DESCRIPTION OF SYMBOLS 100 Performance evaluation apparatus 101 Predicted N value calculation means 102 Relational expression preparation means 103 Evaluation N value calculation means 104 Support force calculation formula preparation means 105 Support force calculation means 106 Output part 107 Ground investigation result 108 Construction data 109 Loading test result (measurement support) Power)

Claims (4)

複数の地点においておこなわれた地盤調査結果から杭打設地点の予測N値を算出する予測N値算出手段と、
前記予測N値を算出した複数の杭に対して載荷試験をおこなって実測支持力を求め、複数の前記予測N値と前記実測支持力とから支持力算定式を作成する支持力算定式作成手段と、
前記支持力算定式に載荷試験をおこなっていない杭の前記予測N値を入力して算定支持力を算出する支持力算定手段と、
前記算定支持力に基づく杭の性能評価結果を表示する出力部とを備えていることを特徴とする杭の性能評価装置。
A predicted N value calculating means for calculating a predicted N value of a pile driving point from ground survey results conducted at a plurality of points;
A bearing force calculation formula creating means for performing a load test on a plurality of piles for which the predicted N value has been calculated to obtain an actually measured support force and creating a support force calculating formula from the plurality of the predicted N values and the actually measured support force When,
A bearing capacity calculation means for calculating the calculated bearing capacity by inputting the predicted N value of the pile that has not been subjected to a loading test in the bearing capacity calculation formula;
A pile performance evaluation apparatus comprising: an output unit that displays a performance evaluation result of the pile based on the calculated support force.
複数の地点においておこなわれた地盤調査結果から杭打設地点の予測N値を算出する予測N値算出手段と、
前記予測N値とそれに対応する前記杭の施工中に得られた施工データとの関係式を作成する関係式作成手段と、
前記関係式に杭の施工データを入力して杭打設地点の評価N値を算出する評価N値算出手段と、
前記評価N値を算出した複数の杭に対して載荷試験をおこなって実測支持力を求め、複数の前記評価N値と前記実測支持力とから支持力算定式を作成する支持力算定式作成手段と、
前記支持力算定式に載荷試験をおこなっていない杭の前記評価N値を入力して算定支持力を算出する支持力算定手段と、
前記算定支持力に基づく杭の性能評価結果を表示する出力部とを備えていることを特徴とする杭の性能評価装置。
A predicted N value calculating means for calculating a predicted N value of a pile driving point from ground survey results conducted at a plurality of points;
A relational expression creating means for creating a relational expression between the predicted N value and the construction data obtained during construction of the pile corresponding thereto;
An evaluation N value calculating means for inputting the construction data of the pile to the relational expression and calculating an evaluation N value of the pile driving point;
A bearing force calculation formula creating means for performing a load test on a plurality of piles for which the evaluation N value has been calculated to obtain an actually measured support force and creating a support force calculation formula from the plurality of the evaluation N values and the actually measured support force When,
A bearing capacity calculation means for calculating the calculated bearing capacity by inputting the evaluation N value of a pile that has not been subjected to a loading test in the bearing capacity calculation formula;
A pile performance evaluation apparatus comprising: an output unit that displays a performance evaluation result of the pile based on the calculated support force.
前記それぞれの杭において、前記予測N値及び前記算定支持力は深度方向に複数の値を有していることを特徴とする請求項1又は2に記載の杭の性能評価装置。   3. The pile performance evaluation apparatus according to claim 1, wherein in each of the piles, the predicted N value and the calculated supporting force have a plurality of values in a depth direction. 前記それぞれの杭において、前記予測N値及び前記算定支持力は深度方向に複数の値を有するとともに、前記関係式に施工中の杭の施工データを入力し、前記性能評価結果を杭の施工中に表示させることを特徴とする請求項2に記載の杭の性能評価装置。
In each of the piles, the predicted N value and the calculated supporting force have a plurality of values in the depth direction, and the construction data of the pile under construction is input to the relational expression, and the performance evaluation result is being applied to the pile. The pile performance evaluation apparatus according to claim 2, wherein the pile performance evaluation apparatus is displayed.
JP2005330350A 2005-11-15 2005-11-15 Pile performance evaluation device Expired - Fee Related JP4675756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005330350A JP4675756B2 (en) 2005-11-15 2005-11-15 Pile performance evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005330350A JP4675756B2 (en) 2005-11-15 2005-11-15 Pile performance evaluation device

Publications (2)

Publication Number Publication Date
JP2007139454A true JP2007139454A (en) 2007-06-07
JP4675756B2 JP4675756B2 (en) 2011-04-27

Family

ID=38202525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005330350A Expired - Fee Related JP4675756B2 (en) 2005-11-15 2005-11-15 Pile performance evaluation device

Country Status (1)

Country Link
JP (1) JP4675756B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111625886A (en) * 2020-05-14 2020-09-04 浙江省建筑设计研究院 Estimation method for pile cutting quantity and forced landing quantity in inclination correcting process of high-rise building
JP2020159033A (en) * 2019-03-26 2020-10-01 株式会社オムテック Calculation device of load bearing capacity of foundation pile and method thereof
JP7333932B2 (en) 2019-03-26 2023-08-28 株式会社オムテック Foundation pile bearing layer depth estimation device and method
JP7357989B1 (en) 2022-12-06 2023-10-10 株式会社地盤試験所 Rapid loading test method for piles using interval type unloading point connection method
JP7397481B2 (en) 2020-04-10 2023-12-13 株式会社オムテック Ground liquefaction depth estimation device and method
JP7436321B2 (en) 2020-08-03 2024-02-21 東亜建設工業株式会社 Pile driving construction management method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7389161B2 (en) 2022-03-29 2023-11-29 旭化成建材株式会社 Pile workability evaluation system, program and pile workability evaluation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328410A (en) * 1989-06-24 1991-02-06 Nippon Concrete Ind Co Ltd Estimation of support layer for pile in pile embedding
JPH0674637U (en) * 1993-03-26 1994-10-21 三和機材株式会社 Pile support layer detector
JPH1113047A (en) * 1997-06-23 1999-01-19 Geotop Corp Settlement estimation method for buried pile
JP2002364024A (en) * 2001-06-07 2002-12-18 Ohbayashi Corp Execution control supporting system in earth works

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328410A (en) * 1989-06-24 1991-02-06 Nippon Concrete Ind Co Ltd Estimation of support layer for pile in pile embedding
JPH0674637U (en) * 1993-03-26 1994-10-21 三和機材株式会社 Pile support layer detector
JPH1113047A (en) * 1997-06-23 1999-01-19 Geotop Corp Settlement estimation method for buried pile
JP2002364024A (en) * 2001-06-07 2002-12-18 Ohbayashi Corp Execution control supporting system in earth works

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020159033A (en) * 2019-03-26 2020-10-01 株式会社オムテック Calculation device of load bearing capacity of foundation pile and method thereof
JP7329166B2 (en) 2019-03-26 2023-08-18 株式会社オムテック FOUNDATION PILE BEARING CAPACITY CALCULATION DEVICE AND METHOD
JP7333932B2 (en) 2019-03-26 2023-08-28 株式会社オムテック Foundation pile bearing layer depth estimation device and method
JP7397481B2 (en) 2020-04-10 2023-12-13 株式会社オムテック Ground liquefaction depth estimation device and method
CN111625886A (en) * 2020-05-14 2020-09-04 浙江省建筑设计研究院 Estimation method for pile cutting quantity and forced landing quantity in inclination correcting process of high-rise building
CN111625886B (en) * 2020-05-14 2023-02-14 浙江省建筑设计研究院 Estimation method for pile cutting quantity and forced landing quantity in inclination correcting process of high-rise building
JP7436321B2 (en) 2020-08-03 2024-02-21 東亜建設工業株式会社 Pile driving construction management method
JP7357989B1 (en) 2022-12-06 2023-10-10 株式会社地盤試験所 Rapid loading test method for piles using interval type unloading point connection method

Also Published As

Publication number Publication date
JP4675756B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP4675756B2 (en) Pile performance evaluation device
Lin et al. Interaction between laterally loaded pile and surrounding soil
CN104457681B (en) Girder structure dynamic deflection monitoring method based on strain mode
CN106223305B (en) A kind of automatic dynamic driving instrument for considering energy correction and dynamic response
KR101487773B1 (en) Dynamic cone penetrometer with uniform section
JP2004150946A (en) Nondestructive measuring instrument and method for concrete rigidity by ball hammering
US6349590B1 (en) Method and apparatus for estimating load bearing capacity of piles
JP6688619B2 (en) Impact device used for impact elastic wave method
Garala et al. Role of pile spacing on dynamic behavior of pile groups in layered soils
JP2009008562A (en) Method and system for detecting oscillation characteristic of structure
Lee et al. Shear wave velocity measurements and soil–pile system identifications in dynamic centrifuge tests
Amoroso G-γ decay curves by seismic dilatometer (SDMT)
JP4173089B2 (en) Dynamic loading test method
Rausche et al. Comparison of pulse echo and transient response pile integrity test methods
Meijers et al. A non-collocated method to quantify plastic deformation caused by impact pile driving
RU2398936C1 (en) Method for assessment of drilled pipe bearing capacity
JP2015232221A (en) Ground survey method and ground survey device
JP4863813B2 (en) Method for evaluating the soundness of foundation structures
Hajialilue-Bonab et al. Experimental study on the dynamic behavior of laterally loaded single pile
JP4863796B2 (en) Pile bearing capacity measurement method
JP4093580B2 (en) Measuring method for bearing capacity of foundation pile
JP2011220003A (en) Quality control method for pile
Jorna Pile tip deformation caused by obstacles
Rausche et al. Advances in the evaluation of pile and shaft quality
Perikleous et al. Energy losses during driving due to tapered section of monopile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4675756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees