JP2007138887A - Method and device for purification of exhaust gas containing particulate matter - Google Patents

Method and device for purification of exhaust gas containing particulate matter Download PDF

Info

Publication number
JP2007138887A
JP2007138887A JP2005336813A JP2005336813A JP2007138887A JP 2007138887 A JP2007138887 A JP 2007138887A JP 2005336813 A JP2005336813 A JP 2005336813A JP 2005336813 A JP2005336813 A JP 2005336813A JP 2007138887 A JP2007138887 A JP 2007138887A
Authority
JP
Japan
Prior art keywords
exhaust gas
ammonium nitrate
mixed solution
ammonia
urea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005336813A
Other languages
Japanese (ja)
Other versions
JP4664807B2 (en
Inventor
Yasuyoshi Kato
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2005336813A priority Critical patent/JP4664807B2/en
Publication of JP2007138887A publication Critical patent/JP2007138887A/en
Application granted granted Critical
Publication of JP4664807B2 publication Critical patent/JP4664807B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for purifying exhaust gas containing particulate matters wherein in the case of exhaust-gas purification, NO<SB>2</SB>is generated without oxidizing SO<SB>2</SB>into SO<SB>3</SB>, a small space suffices for evaporation and dispersion of a reducing agent to be blown through in the form of an aqueous solution, and constitutional miniaturization can be achieved. <P>SOLUTION: The exhaust gas purification method aims at removal of nitrogen oxides and unburned-carbon-containing particulate matters in the exhaust gas. In the purification, a mixed solution containing ammonium nitrate and either one of ammonia or urea is blown through, or alternatively individual solutions of the above are blown through the exhaust gas in advance, and then the gas is conducted to a dust collector in which a filter device 4 or inertial impaction is employed. Then, the exhaust gas is passed through a catalytic layer 5 having the function of accelerating the denitration reaction, in which ammonia or urea is employed as the reducing agent. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は粒状物質含有排ガスの浄化方法および装置に係り、詳しくは該排ガス中に含まれる未燃炭素を主体とする粒状物質(PM)と窒素酸化物とを除去する方法およびその装置に関する。特にディーゼルエンジン排ガスの浄化において、該排ガス中にSO2が含まれる場合に問題になるSO3の発生を防止すると共に、還元剤の分散度を高めて窒素酸化物を効率良く除去・無害化するに好適な排ガス浄化方法およびその装置に関する。 The present invention relates to a purification method and apparatus for particulate matter-containing exhaust gas, and more particularly to a method and apparatus for removing particulate matter (PM) mainly composed of unburned carbon and nitrogen oxides contained in the exhaust gas. Especially in the purification of diesel engine exhaust gas, it prevents the generation of SO 3 that becomes a problem when SO 2 is contained in the exhaust gas, and efficiently removes and detoxifies nitrogen oxides by increasing the dispersibility of the reducing agent. The present invention relates to an exhaust gas purification method and apparatus suitable for the above.

ディーゼルエンジンは内燃機関の内最も効率の高いものの1つであり、一定出力当りの二酸化(CO2)排出量が低く、その上、重油のような低質の燃料使えるため、経済的にも優れている。このため、近年、地球温暖化防止のためエネルギー利用効率が高く、CO2排出量の低いディーゼルエンジン(DE)を用いた車や定置式の発電設備が見直され、多用される傾向にある。 Diesel engines are one of those most efficient of the internal combustion engine, a constant output per dioxide (CO 2) emissions low, thereon, because the available fuel low quality, such as heavy oil, is excellent in economical Yes. For this reason, in recent years, vehicles and stationary power generation facilities using diesel engines (DE) with high energy utilization efficiency and low CO 2 emissions to prevent global warming have been reviewed and tend to be used frequently.

重質油や軽油を燃料とするディーゼルエンジンは、未燃炭化水素と煤が一体化した粒状物質が多く、公害の元凶になっている。このため、ディーゼルエンジンメーカや自動車メーカなど、各方面で粒状物質(PM)の除去に関する研究、開発が進められ、優れた除去性能を有するフィルタや、前置の酸化触媒やフィルタに酸化触媒を担持して、排ガス中の一酸化窒素(NO)を二酸化窒素(NO2)にして煤を燃焼させ、長期間煤の詰まりを防止できるようにしたPMフィルタ(DPF)に関する研究・発明がなされている(特許文献1)。これらの発明の多くは、排ガスを数μmの多孔質セラミックスの薄壁に通して濾過することを目指したものであり、その形状には、板状あるいは円筒状の、金属もしくはセラミックス焼結フィルタ、ハニカム状のセラミックス多孔成形体の目を交互に埋めてフィルタにしたもの、微細な金属線織布をフィルタにしたものなどが知られている。更に、それらの目詰まりを防止もしくは緩和するため、これらフィルタにNOのNO2への酸化機能を持たせ煤を酸化燃焼させるものが知られている(特許文献2、3)。 Diesel engines that use heavy oil or light oil as fuels have many particulate materials that integrate unburned hydrocarbons and soot, and are the cause of pollution. For this reason, research and development on removal of particulate matter (PM) has been promoted in various directions, such as diesel engine manufacturers and automobile manufacturers, and filters with excellent removal performance, oxidation catalysts on the front and filters are supported by oxidation catalysts In addition, research and inventions have been made on PM filters (DPF) that can prevent soot clogging for a long period of time by burning soot using nitrogen monoxide (NO) in the exhaust gas as nitrogen dioxide (NO 2 ). (Patent Document 1). Many of these inventions aim to filter exhaust gas through a thin wall of porous ceramics of several μm, and the shape thereof is a plate or cylindrical metal or ceramic sintered filter, Known is a filter in which the eyes of a honeycomb-shaped ceramic porous molded body are alternately filled, and a filter made of a fine metal wire woven fabric. Furthermore, in order to prevent or alleviate such clogging, it is known that these filters have a function of oxidizing NO to NO 2 to oxidize and burn soot (Patent Documents 2 and 3).

他方、DEはNOxを発生しやすく、その濃度は数100〜数1000ppmと高い。このため、前記DPFの後段にボイラの排ガス脱硝などに用いられる脱硝触媒を設置し、NH3や尿素を還元剤に用いて除去する方法が広がり始めている(自動車技術、Vol57(9)、2003、P17〜99など)。
産業環境管理協会、環境管理 Vol.37、p441-449 特開平1-318715号公報 特開昭60-235620号公報
On the other hand, DE tends to generate NOx, and its concentration is as high as several hundred to several thousand ppm. For this reason, a denitration catalyst used for boiler exhaust gas denitration and the like is installed after the DPF, and a method of removing NH 3 and urea using a reducing agent is beginning to spread (automotive technology, Vol57 (9), 2003, P17 ~ 99 etc.).
Industrial Environmental Management Association, Environmental Management Vol.37, p441-449 JP-A-1-318715 JP-A-60-235620

上記した従来技術を用いてPMの除去と脱硝とを行なう場合、図4および図5に示すように、ディーゼルエンジン(DE)の排気管に順次、NO酸化触媒およびフィルタまたはNO触媒付きフィルタ並びに脱硝触媒を設置して排ガスを処理していた。両方式とも、PM捕集効率が高く、脱硝率も高いという優れた特性を有するが、軽油や重油を燃料とするDE排ガスの浄化や自動車や小型定置式発電設備などコンパクト性が要求される用途に使用する場合には、次の様な改善すべき点を残している。   When PM removal and denitration are performed using the above-described conventional technology, as shown in FIGS. 4 and 5, a NO oxidation catalyst and a filter or a filter with a NO catalyst and denitration are sequentially provided in the exhaust pipe of a diesel engine (DE). A catalyst was installed to treat the exhaust gas. Both types have excellent characteristics such as high PM collection efficiency and high NOx removal efficiency, but applications that require compactness such as purification of DE exhaust gas using light oil or heavy oil, automobiles, and small stationary power generation facilities The following points to be improved are left for use in

(1)PMの酸化促進のため設置する貴金属担持NO酸化触媒或いは貴金属担持DPFが、NOの酸化だけでなく排ガス中に含まれるSO2を酸化してSO3を生成し、喘息などの公害や、設備周辺の建造物を錆びさせる原因となっている。 (1) noble metal-supported NO oxidation catalyst or noble metal-supported DPF installing to promote oxidation of PM generates a SO 3 by oxidizing the SO 2 contained in the exhaust gas as well as the oxidation of NO, Ya pollution such as asthma This is the cause of rusting around buildings.

(2)貴金属をNOの酸化活性成分とした場合、SO2が酸化されて生成するSO3が貴金属表面に吸着して活性を低下させる。特に低温度で劣化が著しく、300℃以下ではPMを酸化するに必要なNO2を発生することが困難である。このため、DEが温度の低い低負荷で長時間運転されると、PMが堆積してDPFを閉塞する問題を起こす。 (2) When a noble metal is used as an oxidation active component of NO, SO 3 produced by oxidation of SO 2 is adsorbed on the surface of the noble metal to reduce its activity. In particular, the deterioration is remarkable at a low temperature, and it is difficult to generate NO 2 necessary for oxidizing PM at 300 ° C. or lower. For this reason, when DE is operated for a long time with a low temperature and low load, PM accumulates and causes a problem of blocking the DPF.

(3)DPFの後流部で還元剤であるアンモニアまたは尿素水を排ガス中に噴霧して脱硝触媒に導くため、アンモニア(水)や尿素水の気化・混合のためにDPF-脱硝触媒間の距離を大きく取らなければならない。その結果、装置が大型し、自動車のみならず小型定置DEでは設置場所が限られコンパクト性に欠ける。   (3) Ammonia or urea water, which is a reducing agent, is sprayed into the exhaust gas at the downstream of the DPF and led to the denitration catalyst. Therefore, between the DPF and the denitration catalyst for vaporization and mixing of ammonia (water) and urea water You must take a large distance. As a result, the apparatus is large-sized, and not only automobiles but also small stationary DEs are limited in installation locations and lack compactness.

本発明の課題は、従来技術の有する上記欠点を無くし、SO2をSO3に酸化することなくNO2を発生させ、かつ水溶液で吹き込む還元剤の気化・分散に必要なスペースが小さく、コンパクト化が可能な粒状物質含有排ガス浄化方法とその装置を提供することにある。 The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, generate NO 2 without oxidizing SO 2 to SO 3 , and reduce the space required for vaporizing and dispersing the reducing agent blown with an aqueous solution, making it compact It is an object of the present invention to provide a method and apparatus for purifying exhaust gas containing particulate matter.

上記課題を達成するため、本願で特許請求される発明は、以下のとおりである。
(1)排ガス中に含まれる窒素酸化物と未燃炭素を含む粒子状物質とを除去する方法において、予め排ガス中に硝酸アンモニウムと、アンモニアまたは尿素とを含む混合溶液を吹き込むか、または前記両者の個別溶液を吹き込んだ後、フィルタ装置または慣性衝突を利用した集塵装置に導き、しかる後アンモニアまたは尿素を還元剤とする脱硝反応の促進機能を有する触媒層を通過させることを特徴とする排ガスの浄化方法。
(2)前記硝酸アンモニウムとアンモニアまたは尿素とを含む混合溶液または前記両者の個別溶液が、硝酸アンモニウム水溶液、硝酸アンモニウムとアンモニアの混合溶液、硝酸アンモニウムと尿素の混合溶液、硝酸とアンモニアの混合溶液、および硝酸と尿素の混合溶液、またはこれらの組み合わせであることを特徴とする(1)記載の排ガスの浄化方法。
(3)燃焼装置の排気管内に硝酸アンモニウムとアンモニアまたは尿素とを含む混合溶液、または前記両者の個別溶液の吹き込む手段と、該吹き込み手段の下流側に設けられた、排ガスに含まれる未燃炭素を捕集できるフィルタ装置または慣性衝突を利用した集塵装置と、該集塵装置の下流側に設けられた、アンモニアまたは尿素を還元剤とする脱硝反応を促進する触媒層とを有することを特徴とする排ガス浄化装置。
(4)前記硝酸アンモニウムとアンモニアまたは尿素とを含む混合溶液または前記両者の個別溶液が、硝酸アンモニウム水溶液、硝酸アンモニウムとアンモニアの混合溶液、硝酸アンモニウムと尿素の混合溶液、硝酸とアンモニアの混合溶液、および硝酸と尿素の混合溶液、またはこれらの組み合わせであることを特徴とする(3)記載の排ガスの浄化装置。
To achieve the above object, the invention claimed in the present application is as follows.
(1) In a method for removing nitrogen oxides and particulate matter containing unburned carbon contained in exhaust gas, a mixed solution containing ammonium nitrate and ammonia or urea is blown into the exhaust gas in advance, or both After the individual solution is blown, it is guided to a filter device or a dust collector using inertial collision, and then passed through a catalyst layer having a function of promoting denitration reaction using ammonia or urea as a reducing agent. Purification method.
(2) A mixed solution containing ammonium nitrate and ammonia or urea, or an individual solution of the two is an ammonium nitrate aqueous solution, a mixed solution of ammonium nitrate and ammonia, a mixed solution of ammonium nitrate and urea, a mixed solution of nitric acid and ammonia, and nitric acid and urea. (1) The exhaust gas purification method according to (1), which is a mixed solution of the above or a combination thereof.
(3) A means for injecting a mixed solution containing ammonium nitrate and ammonia or urea into the exhaust pipe of the combustion apparatus, or an individual solution of the both, and unburned carbon contained in the exhaust gas provided downstream of the injecting means. A filter device that can collect or a dust collector that uses inertial collision, and a catalyst layer that is provided downstream of the dust collector and promotes a denitration reaction using ammonia or urea as a reducing agent. Exhaust gas purification device.
(4) A mixed solution containing the ammonium nitrate and ammonia or urea or a separate solution of the two is an ammonium nitrate aqueous solution, a mixed solution of ammonium nitrate and ammonia, a mixed solution of ammonium nitrate and urea, a mixed solution of nitric acid and ammonia, and nitric acid and urea. The exhaust gas purifying apparatus according to (3), which is a mixed solution of the above or a combination thereof.

本発明の原理および作用効果を、本発明に必要な機器を配した図1のブロック図を用いて説明する。図1の装置は、ディーゼルエンジン(DE)1の排気管2に順次設けられた硝酸アンモニウム(硝安)等の吹込み手段(注入ノズル)3と、フィルタ装置4と、脱硝触媒装置5とからなる。
(1)A重油など硫黄含有量の高い燃料を使用するディーゼルエンジン1からの排ガスには、先ず吹込みノズル3から硝酸アンモニウム(硝安)とアンモニアなどの還元剤を含む混合水溶液が吹き込まれる。吹き込まれた該溶液は排ガスの熱で直ちに蒸発し、硝酸アンモニウム(硝安)及び還元剤はガス化した状態になる。
(2)ガス化した硝安は、燃焼排ガス中に含まれるNOと1式のように気相及びフィルタ上で反応しNO2を生成する。
NH4NO3+NO → NO2+N2+2H2O (1式)
(3)フィルタ4では排ガスに含まれるPMが捕集され、(2)で生成したNO2により2式のように酸化・除去される。
炭素(PM)+ 2NO2 → CO2+2NO (2式)
(4)排ガス中のNOx、未反応のNO2、及び吹き込まれた還元剤はフィルタ4を通過し、後流部の脱硝触媒5の作用によりNOxと還元剤とが反応し、無害な窒素に還元・除去される。
The principle and operational effects of the present invention will be described with reference to the block diagram of FIG. 1 in which devices necessary for the present invention are arranged. The apparatus of FIG. 1 includes a blowing means (injection nozzle) 3 such as ammonium nitrate (ammonium nitrate), which is sequentially provided in an exhaust pipe 2 of a diesel engine (DE) 1, a filter device 4, and a denitration catalyst device 5.
(1) First, a mixed aqueous solution containing ammonium nitrate (ammonium nitrate) and a reducing agent such as ammonia is blown into the exhaust gas from the diesel engine 1 using a fuel having a high sulfur content such as A heavy oil. The solution thus blown is immediately evaporated by the heat of the exhaust gas, and ammonium nitrate (ammonium nitrate) and the reducing agent are gasified.
(2) Gasified ammonium nitrate reacts with NO contained in the combustion exhaust gas in the gas phase and on the filter as shown in Formula 1 to generate NO 2 .
NH 4 NO 3 + NO → NO 2 + N 2 + 2H 2 O (1 formula)
(3) The filter 4 collects PM contained in the exhaust gas, and is oxidized and removed by the NO 2 generated in (2) as shown in equation (2).
Carbon (PM) + 2NO 2 → CO 2 + 2NO (2 sets)
(4) NOx in the exhaust gas, unreacted NO 2 , and the injected reducing agent pass through the filter 4, and NOx reacts with the reducing agent by the action of the denitration catalyst 5 in the rear stream part to produce harmless nitrogen. Reduced / removed.

本発明では、PMの酸化除去に必要なNO2を1式で発生させている。1式の反応はNOとのみ進み、SO2をSO3に酸化しない。その結果、SO3ミストによる白煙や公害の発生を生じることがない。また、SO3による触媒劣化の懸念がなく、低温でのPM除去および脱硝に効果を発揮する。 In the present invention, NO 2 required for oxidation removal of PM is generated by one set. The reaction in Formula 1 proceeds only with NO and does not oxidize SO 2 to SO 3 . As a result, white smoke and pollution are not generated by SO 3 mist. In addition, there is no concern about catalyst degradation due to SO 3 , and it is effective for PM removal and denitration at low temperatures.

また、本発明では硝安と還元剤の混合溶液はフィルタの前で噴霧される。このため、気化が十分行なわれなかった場合でも、熱容量の大きいフィルタに捕集され、その潜熱で蒸発が加速されるため、気化のための時間を短くすることが可能になる。また、フィルタ内の複雑な流路を通過する過程で排ガスと還元剤とか混合されるため、混合器が不要になる。これらの効果により、還元剤注入、DPF、脱硝触媒間の距離を短く出来、極めてコンパクトな装置を構成できる。   In the present invention, the mixed solution of ammonium nitrate and the reducing agent is sprayed before the filter. For this reason, even when the vaporization is not sufficiently performed, the vapor is collected by a filter having a large heat capacity, and the evaporation is accelerated by the latent heat. Therefore, the time for vaporization can be shortened. Moreover, since the exhaust gas and the reducing agent are mixed in the process of passing through the complicated flow path in the filter, a mixer is not necessary. By these effects, the distance between reducing agent injection, DPF, and denitration catalyst can be shortened, and an extremely compact device can be configured.

本発明において、硝安と還元剤の吹き込み方法は、両者の混合状態で吹き込んでも、各々別のラインで吹き込んでもよい。しかし予め混合溶液を調製し、これを2流体ノズルや1流体ノズルで吹き込む方が、必要となる機器が少なくて済むが、PM除去率またはNOx除去率を個別にしたい場合など、個別のラインで吹き込むこともあるので、これらは適宜選定して用いることができる。濃度は特に制限は無いが、輸送、冬季凍結などを考慮すると、何れも30〜40%程度が好結果を与えやすい。   In the present invention, the ammonium nitrate and reducing agent may be blown in a mixed state or in separate lines. However, preparing a mixed solution in advance and blowing it with a two-fluid nozzle or one-fluid nozzle requires less equipment. However, if you want to have a separate PM removal rate or NOx removal rate, use a separate line. Since they may be blown in, they can be appropriately selected and used. The concentration is not particularly limited, but considering transportation, freezing in winter, etc., about 30 to 40% are likely to give good results.

また、本発明のフィルタはDEのPM捕集に用いられる公知のものが用いられる。例えば、多孔質コージェライト製ハニカムの流路を栓により交互に埋めてフィルタ構造を形成したもの、セラミックフォーム、金属製織布や金網状物の積層体、或いは特開2005-177733号公報などに開示された、セラミック不織布を流路が交差するようにコルゲート加工したものを用いるフィルタ構造体など、PM(煤)を溜める機能があれば、どのようなものであってもよい。さらにA〜C重油など灰分の多い場合には、NO2により煤を除去できても徐々に灰分の蓄積が起こるため、灰分の抜出機能、水洗などによる灰分除去機能を持たせることができる。さらにまた、1式の反応促進に有効な酸化チタンや酸化アルミニウムなどを担持して用いることもできる。 Moreover, the filter of this invention uses the well-known thing used for PM collection of DE. For example, a porous cordierite honeycomb flow path is alternately filled with plugs to form a filter structure, a ceramic foam, a metal woven fabric or a metal mesh laminate, or Japanese Patent Application Laid-Open No. 2005-177733. Any filter structure that uses a corrugated ceramic non-woven fabric disclosed so far and has a function of accumulating PM (soot) may be used. Further, when there is a large amount of ash such as A to C heavy oil, accumulation of ash gradually occurs even if the soot can be removed by NO 2 , so that it is possible to provide an ash removal function by ash extraction or water washing. Furthermore, titanium oxide, aluminum oxide and the like effective for promoting the reaction of one set can be supported and used.

脱硝触媒には、特開昭50-128681号公報などに開示された、公知の酸化チタンを用いた触媒や、Cu-ゼオライト、Fe-ゼオライトなどが使用可能であるが、排ガス中のSO2濃度の高い場合には、Ti-W-V系やTi-Mo-V系が耐久性が高く望ましい。触媒の形状もDPFで除塵されているため粒状、板状、ハニカム状など、どのような形状のものでも用いることができるが、ピッチの小さい板状やハニカム状のものが圧損が小さく好適である。 As the denitration catalyst, a catalyst using known titanium oxide, Cu-zeolite, Fe-zeolite or the like disclosed in JP-A-50-128681 can be used, but the concentration of SO 2 in the exhaust gas can be used. When the thickness is high, the Ti—W—V system or the Ti—Mo—V system is desirable because of its high durability. Since the shape of the catalyst is also removed by DPF, any shape such as granular, plate or honeycomb can be used, but a plate or honeycomb having a small pitch is preferable because of its low pressure loss. .

図2は、硝安とNH3の混合溶液を用いた本発明の実施例を示すフロー図である。図2において、ディーゼルエンジン1からの排ガスは、排気管2に導かれ、貯蔵タンク6からポンプ8をへて2流体ノズル3から硝安とNH3水の混合溶液がスプレーされる。その後流部に配置されたコーディライト製多孔質ハニカムの流路を交互に栓をしてフィルタとして機能するようにしたDPF4、およびハニカム状の脱硝触媒5を、順次通って排ガスが浄化処理される。硝安とNH3の混合水溶液は、10〜28重量%のNH3水に硝安を溶解して調製され、NH3/硝安のモル比は、2式のPM酸化に必要な硝安モル数/脱硝に必要なNH3モル数比より大きく選定され、通常は約0.2モル/モル近辺で運転される。フィルタ4には、300セル/平方インチのコーディエライト製DPFがSV=10,000〜40,000h-1で充填され、脱硝触媒5にはTi/W/V系触媒成分を280セル/平方インチのシリカアルミナ系無機繊維不織布コルゲート担体に200g/リットルで担持した触媒が充填される。なお、図中、7は空気注入ラインである。 FIG. 2 is a flowchart showing an embodiment of the present invention using a mixed solution of ammonium nitrate and NH 3 . In FIG. 2, exhaust gas from the diesel engine 1 is guided to the exhaust pipe 2, and a mixed solution of ammonium nitrate and NH 3 water is sprayed from the two-fluid nozzle 3 through the storage tank 6 through the pump 8. Thereafter, the exhaust gas is purified by sequentially passing through the DPF 4 and the honeycomb-shaped denitration catalyst 5 which function as a filter by alternately plugging the channels of the cordierite porous honeycomb disposed in the flow section. . An aqueous solution of ammonium nitrate and NH 3 is prepared by dissolving ammonium nitrate in 10-28 wt% NH 3 water, and the molar ratio of NH 3 / ammonium nitrate is the number of ammonium moles required for PM oxidation of formula 2 / denitration. It is selected to be greater than the required NH 3 mole ratio and is usually operated around 0.2 mole / mole. Filter 4 is filled with 300 cells / in 2 of cordierite DPF with SV = 10,000 to 40,000 h-1, and denitration catalyst 5 contains Ti / W / V catalyst components at 280 cells / in 2 of silica. A catalyst supported at 200 g / liter on an alumina-based inorganic fiber nonwoven fabric corrugated carrier is filled. In the figure, 7 is an air injection line.

図3は、図2の実施例と異なる点は、硝安水貯蔵タンク10と、還元剤貯蔵タンク11を設け、それぞれ配管10、ポンプ8、配管9を経て硝安水溶液と、還元剤として用いるNH3水溶液を別ラインで注入し、またフィルタにSUS製メタルラスを積層してフィルタとして用いた場合の実施例を示すフロー図である。 FIG. 3 is different from the embodiment of FIG. 2 in that an ammonium nitrate storage tank 10 and a reducing agent storage tank 11 are provided, and an aqueous ammonium nitrate solution and NH 3 used as a reducing agent via a pipe 10, a pump 8, and a pipe 9, respectively. It is a flowchart which shows the Example at the time of inject | pouring aqueous solution with another line, and laminating | stacking the metal lath made from SUS on a filter, and using it as a filter.

以下、具体例を用いて本発明を詳細に説明する。
[実施例1]
多孔質コージエライトセラミック製市販DPF(日立金属社製、セル数300cps、各セル5.66インチφ×6インチ長)から、断面30mm×30mm−長さ50mmに切り出し、流路をセラミック接着材で交互に埋めて小型DPFを作成した。
Hereinafter, the present invention will be described in detail using specific examples.
[Example 1]
Cut from a commercial DPF made of porous cordierite ceramic (manufactured by Hitachi Metals, 300 cps cells, each cell 5.66 inches φ × 6 inches long) to a cross section of 30 mm × 30 mm-length 50 mm, and the flow paths alternate with ceramic adhesive A small DPF was created.

これとは別にシリカアルミナ系無機繊維コルゲートハニカム担体(ニチアス社製、型番3722)にTi-W-V触媒(TI/W/V原子比=88/10/3)の粉末を水に懸濁させたスラリを含浸・コーティングして触媒成分を200g/リットル担持後、500℃-2時間焼成した。得られた触媒体を断面30mm×30mm−長さ50mmの大きさに切り出し小型脱硝触媒を得た。
上記小型DPFと小型脱硝触媒とを反応管中に直列に設置し、DPF上流部に20重量%硝安水を超音波霧化器で霧化したものを少量の空気で反応管に注入するためのノズルを設け、図1と同様の構成の試験装置を作成した。
Separately, a slurry in which a powder of Ti-WV catalyst (TI / W / V atomic ratio = 88/10/3) is suspended in water on a silica-alumina based inorganic fiber corrugated honeycomb carrier (manufactured by NICHIAS, model number 3722). After impregnating and coating with 200 g / liter of the catalyst component, it was calcined at 500 ° C. for 2 hours. The obtained catalyst body was cut into a size of a cross section of 30 mm × 30 mm and a length of 50 mm to obtain a small denitration catalyst.
The above small DPF and small denitration catalyst are installed in series in the reaction tube, and 20% by weight of ammonium nitrate water is atomized with an ultrasonic atomizer upstream of the DPF to inject into the reaction tube with a small amount of air. A nozzle was provided, and a test apparatus having the same configuration as in FIG. 1 was produced.

本装置を用い、硝安を用いた場合の特色であるSO2酸化することなくNO2を発生することを確認するため、表1に示す模擬ガスおよび処理条件で処理し、NOの発生濃度とSO2酸化率を調べた。得られた結果を表2に示す。なおPMが存在するとNO2消費が起こり、一方、還元剤を添加すると脱硝反応によりNO及びNO2が消費されるため、模擬ガスではPMと還元剤とを含まない条件で実施した。 Using this equipment, in order to confirm that NO 2 is generated without oxidizing SO 2, which is a feature when using ammonium nitrate, it is processed with the simulated gas and processing conditions shown in Table 1, and the NO generation concentration and SO 2 The oxidation rate was examined. The obtained results are shown in Table 2. When PM is present, NO 2 consumption occurs. On the other hand, when a reducing agent is added, NO and NO 2 are consumed by the denitration reaction. Therefore, the simulation gas was used under conditions that do not contain PM and a reducing agent.

[比較例]
実施例1で作成した小型DPFにチタニアゾル(石原産業社製、TIO2含有量30重量%)を含浸後、遠心分離機で液切りしてTiO2を 60g/L担持、150℃で乾燥後ジニトロジアンミン白金酸溶液をDPFに対するPt担持量として0.3g/Lになる様に含浸、乾燥を経て600℃で2時間焼成して触媒付小型DPFを作成した。
[Comparative example]
The small DPF prepared in Example 1 was impregnated with titania sol (manufactured by Ishihara Sangyo Co., Ltd., TIO 2 content 30% by weight), drained with a centrifuge, supported with 60 g / L of TiO 2 , dried at 150 ° C. and dinitro A diammine platinum acid solution was impregnated so that the amount of Pt supported on DPF was 0.3 g / L, dried, and calcined at 600 ° C. for 2 hours to prepare a small DPF with catalyst.

実施例1の装置のDPFを上記DPFに交換し、硝安の注入は行わないでNO2発生濃度とSO2酸化率とを測定した。得られた結果を表2に示した。
実施例1と比較例と結果を比較した表2から明らかなように、本発明によれば、SO2をSO3に酸化することなくNO2を発生することが可能になり、その結果、SO3ミストによる公害や白煙の発生を防止できる。また本発明は貴金属触媒を用いないため、低温でSO3が貴金属に吸着して活性を低下させ、十分なNO2を発できなくなるという問題を生じない。その結果、広い温度範囲でNO2を効率良く発生させることができ、エンジン負荷の低い低温域でも効率良くPMを除去できる。
The DPF of the apparatus of Example 1 was replaced with the above DPF, and the NO 2 generation concentration and the SO 2 oxidation rate were measured without injection of ammonium nitrate. The obtained results are shown in Table 2.
As is apparent from Table 2 comparing the results with Example 1 and the comparative example, according to the present invention, it becomes possible to generate NO 2 without oxidizing SO 2 to SO 3. 3 Pollution caused by mist and generation of white smoke can be prevented. In addition, since the present invention does not use a noble metal catalyst, SO 3 is adsorbed on the noble metal at a low temperature to reduce the activity, and there is no problem that sufficient NO 2 cannot be generated. As a result, NO 2 can be efficiently generated in a wide temperature range, and PM can be efficiently removed even in a low temperature range where the engine load is low.

本発明の硝安はアンモニアや尿素と任意に混合することができるので、従来の脱硝用還元剤の注入ラインがそのまま流用できる。更に、DPFの前流で還元剤を吹き込みDPFを蒸発促進と混合促進に利用することが可能であり、混合のための機器やデッドスペースを必要としないので極めてコンパクトな排ガス浄化装置を実現できる。   Since the ammonium nitrate of the present invention can be arbitrarily mixed with ammonia or urea, a conventional denitration reducing agent injection line can be used as it is. Furthermore, it is possible to blow the reducing agent in the upstream of the DPF and use the DPF for promoting evaporation and mixing, and it is possible to realize an extremely compact exhaust gas purification apparatus because no mixing equipment or dead space is required.

Figure 2007138887
Figure 2007138887

Figure 2007138887
Figure 2007138887

本発明に必要な機器を配したブロック図。The block diagram which arranged the apparatus required for this invention. 硝安とNH3の混合溶液を用いた本発明の実施例を示すフロー図。Flow diagram illustrating an embodiment of the present invention using a mixed solution of ammonium nitrate and NH 3. 本発明の実施例を示すフロー図。The flowchart which shows the Example of this invention. 従来技術を示すフロー図。The flowchart which shows a prior art. 従来技術を示すフロー図。The flowchart which shows a prior art.

符号の説明Explanation of symbols

1…ディーゼルエンジン、2…排気管、3…注入ノズル、4…フィルタ、5… 脱硝触媒、6…硝安-還元剤混合溶液貯蔵タンク、7…空気注入ライン、8…ポンプ、9、10…配管、11…硝安水貯蔵タンク、12…還元剤貯蔵タンク。

DESCRIPTION OF SYMBOLS 1 ... Diesel engine, 2 ... Exhaust pipe, 3 ... Injection nozzle, 4 ... Filter, 5 ... Denitration catalyst, 6 ... Ammonium nitrate-reducing agent mixed solution storage tank, 7 ... Air injection line, 8 ... Pump, 9, 10 ... Piping 11 ... Ammonium nitrate storage tank, 12 ... Reducing agent storage tank.

Claims (4)

排ガス中に含まれる窒素酸化物と未燃炭素を含む粒子状物質とを除去する方法において、予め排ガス中に硝酸アンモニウムと、アンモニアまたは尿素とを含む混合溶液を吹き込むか、または前記両者の個別溶液を吹き込んだ後、フィルタ装置または慣性衝突を利用した集塵装置に導き、しかる後アンモニアまたは尿素を還元剤とする脱硝反応の促進機能を有する触媒層を通過させることを特徴とする排ガスの浄化方法。 In a method for removing nitrogen oxides and particulate matter containing unburned carbon contained in exhaust gas, a mixed solution containing ammonium nitrate and ammonia or urea is previously blown into the exhaust gas, or separate solutions of the two are used. A method for purifying exhaust gas, characterized in that after blowing, the exhaust gas is guided to a filter device or a dust collector using inertial collision, and then passed through a catalyst layer having a function of promoting denitration using ammonia or urea as a reducing agent. 前記硝酸アンモニウムとアンモニアまたは尿素とを含む混合溶液または前記両者の個別溶液が、硝酸アンモニウム水溶液、硝酸アンモニウムとアンモニアの混合溶液、硝酸アンモニウムと尿素の混合溶液、硝酸とアンモニアの混合溶液、および硝酸と尿素の混合溶液、またはこれらの組み合わせであることを特徴とする請求項1記載の排ガスの浄化方法。 The mixed solution containing ammonium nitrate and ammonia or urea, or the individual solutions of the two are ammonium nitrate aqueous solution, ammonium nitrate and ammonia mixed solution, ammonium nitrate and urea mixed solution, nitric acid and ammonia mixed solution, and nitric acid and urea mixed solution. The exhaust gas purifying method according to claim 1, wherein the exhaust gas purifying method is a combination thereof. 燃焼装置の排気管内に硝酸アンモニウムとアンモニアまたは尿素とを含む混合溶液、または前記両者の個別溶液の吹き込む手段と、該吹き込み手段の下流側に設けられた、排ガスに含まれる未燃炭素を捕集できるフィルタ装置または慣性衝突を利用した集塵装置と、該集塵装置の下流側に設けられた、アンモニアまたは尿素を還元剤とする脱硝反応を促進する触媒層とを有することを特徴とする排ガス浄化装置。 A means for injecting a mixed solution containing ammonium nitrate and ammonia or urea into the exhaust pipe of the combustion apparatus, or a separate solution of the both, and unburned carbon contained in the exhaust gas provided downstream of the injecting means can be collected. An exhaust gas purification system comprising: a filter device or a dust collector using inertial collision; and a catalyst layer that is provided downstream of the dust collector and promotes a denitration reaction using ammonia or urea as a reducing agent. apparatus. 前記硝酸アンモニウムとアンモニアまたは尿素とを含む混合溶液または前記両者の個別溶液が、硝酸アンモニウム水溶液、硝酸アンモニウムとアンモニアの混合溶液、硝酸アンモニウムと尿素の混合溶液、硝酸とアンモニアの混合溶液、および硝酸と尿素の混合溶液、またはこれらの組み合わせであることを特徴とする請求項3記載の排ガスの浄化装置。




The mixed solution containing the ammonium nitrate and ammonia or urea, or the individual solutions of the both are an ammonium nitrate aqueous solution, a mixed solution of ammonium nitrate and ammonia, a mixed solution of ammonium nitrate and urea, a mixed solution of nitric acid and ammonia, and a mixed solution of nitric acid and urea. The exhaust gas purifying device according to claim 3, wherein the exhaust gas purifying device is a combination thereof.




JP2005336813A 2005-11-22 2005-11-22 Purification method and apparatus for exhaust gas containing particulate matter Expired - Fee Related JP4664807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005336813A JP4664807B2 (en) 2005-11-22 2005-11-22 Purification method and apparatus for exhaust gas containing particulate matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005336813A JP4664807B2 (en) 2005-11-22 2005-11-22 Purification method and apparatus for exhaust gas containing particulate matter

Publications (2)

Publication Number Publication Date
JP2007138887A true JP2007138887A (en) 2007-06-07
JP4664807B2 JP4664807B2 (en) 2011-04-06

Family

ID=38202065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005336813A Expired - Fee Related JP4664807B2 (en) 2005-11-22 2005-11-22 Purification method and apparatus for exhaust gas containing particulate matter

Country Status (1)

Country Link
JP (1) JP4664807B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222819A (en) * 2006-02-24 2007-09-06 Komatsu Ltd Exhaust gas cleaning apparatus of internal combustion engine
JP2011190720A (en) * 2010-03-12 2011-09-29 Isuzu Motors Ltd Method of improving combustibility of pm and device for the same
WO2014044318A1 (en) * 2012-09-21 2014-03-27 Haldor Topsøe A/S Method and system for the removal of noxious compounds from engine exhaust gas
WO2016120841A1 (en) * 2015-01-30 2016-08-04 Johnson Matthey Public Limited Company Low temperature urea-scr operation in the presence of high sulphur flue gas
KR20200054400A (en) * 2018-11-09 2020-05-20 한국화학연구원 Method for improving durability of selective reduction catalyst, selective reduction catalyst system including the method, and internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09290136A (en) * 1996-04-30 1997-11-11 Babcock Hitachi Kk Method for cleaning of exhaust gas and apparatus therefor
JPH09313888A (en) * 1996-05-31 1997-12-09 Babcock Hitachi Kk Waste gas denitrifying method
JPH1133359A (en) * 1997-07-25 1999-02-09 Babcock Hitachi Kk Flue gas denitrification process and equipment thereof
JP2004270520A (en) * 2003-03-07 2004-09-30 Babcock Hitachi Kk Method and device for treating diesel exhaust gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09290136A (en) * 1996-04-30 1997-11-11 Babcock Hitachi Kk Method for cleaning of exhaust gas and apparatus therefor
JPH09313888A (en) * 1996-05-31 1997-12-09 Babcock Hitachi Kk Waste gas denitrifying method
JPH1133359A (en) * 1997-07-25 1999-02-09 Babcock Hitachi Kk Flue gas denitrification process and equipment thereof
JP2004270520A (en) * 2003-03-07 2004-09-30 Babcock Hitachi Kk Method and device for treating diesel exhaust gas

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222819A (en) * 2006-02-24 2007-09-06 Komatsu Ltd Exhaust gas cleaning apparatus of internal combustion engine
JP2011190720A (en) * 2010-03-12 2011-09-29 Isuzu Motors Ltd Method of improving combustibility of pm and device for the same
WO2014044318A1 (en) * 2012-09-21 2014-03-27 Haldor Topsøe A/S Method and system for the removal of noxious compounds from engine exhaust gas
WO2016120841A1 (en) * 2015-01-30 2016-08-04 Johnson Matthey Public Limited Company Low temperature urea-scr operation in the presence of high sulphur flue gas
GB2538128A (en) * 2015-01-30 2016-11-09 Johnson Matthey Plc Low temperature urea-SCR operation in the presence of high sulphur flue gas
CN107206315A (en) * 2015-01-30 2017-09-26 庄信万丰股份有限公司 Low temperature urea SCR operation in the presence of high-sulfur flue gas
US9782721B2 (en) 2015-01-30 2017-10-10 Johnson Matthey Public Limited Company Low temperature urea-Scr operation in the presence of high sulphur flue gas
GB2538128B (en) * 2015-01-30 2018-02-07 Johnson Matthey Plc Urea-metal nitrate SCR system
RU2724607C2 (en) * 2015-01-30 2020-06-25 Джонсон Мэтти Паблик Лимитед Компани Low-temperature scr method based on urea in the presence of exhaust gases with high sulfur content
KR20200054400A (en) * 2018-11-09 2020-05-20 한국화학연구원 Method for improving durability of selective reduction catalyst, selective reduction catalyst system including the method, and internal combustion engine
KR102146286B1 (en) * 2018-11-09 2020-08-21 한국화학연구원 Method for improving durability of selective reduction catalyst, selective reduction catalyst system including the method, and internal combustion engine

Also Published As

Publication number Publication date
JP4664807B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
Reşitoğlu et al. The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems
US20190232263A1 (en) Catalyzed scr filter and emission treatment system
CN102441328B (en) Comprise diesel engine exhaust treatment system and the method for platinum group metal capturing device
JP5769732B2 (en) Selective reduction catalyst, exhaust gas purification apparatus and exhaust gas purification method using the same
US20090173063A1 (en) Mitigation of Particulates and NOx in Engine Exhaust
US9657625B2 (en) Wall flow filter loaded with SCR catalyst, systems and methods of exhaust gas treatment
US9441517B2 (en) Diesel engine exhaust treatment system
US20080241032A1 (en) Catalyzing Lean NOx Filter and Method of Using Same
JP2009262098A (en) Exhaust gas clarifying method using selective reduction catalyst
US20100115930A1 (en) Exhaust after treatment system
JP4664807B2 (en) Purification method and apparatus for exhaust gas containing particulate matter
US7655064B2 (en) Particulate matter-containing exhaust emission controlling filter, exhaust emission controlling method and device
JP2013139035A (en) Exhaust gas purifying method using selective reduction catalyst
JP2002361047A (en) Method for cleaning exhaust and apparatus therefor
JP4762560B2 (en) Filter for removing particulate matter in exhaust gas and exhaust gas purification method
JP2005125275A (en) Device for treating diesel exhaust gas and method therefor
JP2012152744A (en) Selective reduction catalyst for cleaning exhaust gas and exhaust gas cleaning device using the catalyst
US10138779B2 (en) Selective catalytic reduction filter devices having NOx storage capabilities
Makwana et al. Automotive Exhaust Technology after Treatment for the Reduction of Emission-A Review Study
JP5875562B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP4499581B2 (en) Exhaust gas purification apparatus and method
JP2014144424A (en) Catalyst for decomposing ammonia
Maroa et al. Post-combustion NO X Reduction Techniques in Biodiesels
JP2011058468A (en) Exhaust emission control device, exhaust emission control method used for the exhaust emission control device, and nitrogen oxide filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees