JP2007133829A - Fluid control apparatus, pressure regulating valve and control method - Google Patents

Fluid control apparatus, pressure regulating valve and control method Download PDF

Info

Publication number
JP2007133829A
JP2007133829A JP2005328878A JP2005328878A JP2007133829A JP 2007133829 A JP2007133829 A JP 2007133829A JP 2005328878 A JP2005328878 A JP 2005328878A JP 2005328878 A JP2005328878 A JP 2005328878A JP 2007133829 A JP2007133829 A JP 2007133829A
Authority
JP
Japan
Prior art keywords
valve
fluid
control
pressure
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005328878A
Other languages
Japanese (ja)
Inventor
Toshikatsu Meguro
俊勝 目黒
Yasuhiro Chiba
康広 千葉
Yoichi Sugano
洋一 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ham Let Motoyama Japan Ltd
Original Assignee
Ham Let Motoyama Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ham Let Motoyama Japan Ltd filed Critical Ham Let Motoyama Japan Ltd
Priority to JP2005328878A priority Critical patent/JP2007133829A/en
Priority to PCT/JP2006/322612 priority patent/WO2007055370A1/en
Priority to TW095142035A priority patent/TW200722946A/en
Publication of JP2007133829A publication Critical patent/JP2007133829A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2013Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means
    • G05D16/2026Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means with a plurality of throttling means
    • G05D16/2033Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using throttling means as controlling means with a plurality of throttling means the plurality of throttling means being arranged in series

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Fluid Pressure (AREA)
  • Lift Valve (AREA)
  • Fluid-Driven Valves (AREA)
  • Details Of Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control fluid even when a contraction part near a valve seat is frozen in a fluid pressure control apparatus because the temperature of fluid itself rapidly drops by expansion of gas to cause the temperature of a downstream part of a regulating valve drops to be below zero when high pressure fluid is rapidly decompressed by using the regulating valve under a condition of high flow, moisture freezes on the surface of a flow passage of valve seat-valve element-valve seat gap of a valve hole being the contraction part to disturb the movement of the valve element, when moisture is contained in the gas, which causes gas pulsation, abnormal vibrations of the regulating valve, erosion of the valve seat and noises, so that it is difficult to maintain sound operation of a gas supply system. <P>SOLUTION: In this fluid control apparatus, a cutoff valve (2), the regulating valve (3) and a pressure sensor (4) are integrated to be provided along a fluid passage of a control target, and the cutoff valve (2) and the regulating valve (3) are automatically controlled on the basis of a detection pressure signal of the pressure sensor (4). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体製造プラントや液晶製造プラントなどを代表とする高圧ガス利用施設で用いられる。流体を利用する燃料電池の燃料供給装置や、分析装置や、医療機器にも使用される。特に、流体の圧力と流量の制御装置に関する。   The present invention is used in a high-pressure gas utilization facility represented by a semiconductor manufacturing plant, a liquid crystal manufacturing plant, or the like. It is also used in fuel supply devices for fuel cells that use fluids, analyzers, and medical equipment. In particular, the present invention relates to a fluid pressure and flow rate control device.

現在、半導体製造装置や液晶製造装置などに用いられる様々な流体、特に高圧流体は、まず減圧弁によって圧力が制御され、その後、流量計によって製造装置への流量が制御される。また、流量計は通常1MPa(パスカル)以下の低圧条件下で使用されるので、高圧ボンベを直接つないで流量計を高圧条件下で使用することはできない。   Currently, various fluids used in semiconductor manufacturing apparatuses, liquid crystal manufacturing apparatuses, etc., particularly high-pressure fluids, are first controlled in pressure by a pressure reducing valve, and then flow rate to the manufacturing apparatus is controlled by a flow meter. Further, since the flow meter is usually used under a low pressure condition of 1 MPa (Pascal) or less, the flow meter cannot be used under a high pressure condition by directly connecting a high pressure cylinder.

通常、ガスボンベに収容されているガスの圧力は、そのまま利用するには圧力が高すぎる。また、ガス圧力は周囲温度、ガス残量等の要因により大きく変動する。そのため、ガスを利用するガス供給設備では、供給ガス圧力制御機器が利用されている。一般的に、この制御機器は圧力変化をダイヤフラムで検知し、ダイヤフラムの偏位に連動して動く調節弁を持ち、供給ガスの入口圧力が変動しても出口圧力が一定となるよう調節弁を作動させて、所定の出口ガス圧力を得るようにしている(例えば、特許文献1参照)。
特開2004−318683号公報
Usually, the pressure of the gas accommodated in the gas cylinder is too high to be used as it is. The gas pressure varies greatly depending on factors such as the ambient temperature and the remaining amount of gas. Therefore, a supply gas pressure control device is used in a gas supply facility that uses gas. Generally, this control device detects a change in pressure with a diaphragm, and has a control valve that moves in conjunction with the displacement of the diaphragm. The control valve is controlled so that the outlet pressure remains constant even when the supply gas inlet pressure fluctuates. It operates to obtain a predetermined outlet gas pressure (see, for example, Patent Document 1).
JP 2004-318683 A

通常、ボンベ等に封入されている高圧流体は流体圧力制御機器内の自力式減圧弁によって減圧され、流体利用設備に供給される。しかし、従来使用されている自力式減圧弁では、上流側圧力の変化や流量変化によって調圧精度が低下する。特に流量変化が大きく大流量になると共にその傾向が著しく、調圧されるべき下流側圧力は数十パーセント変化してしまう。また、流体が気体の場合、大流量の条件下で急激に減圧すると、気体の膨張により流体自身の温度が急激に低下し、減圧弁の下流部の温度が氷点下になる可能性がある。特に、流路の最小断面積部となる弁座付近の縮流部で、流体温度が最低となる場合が多い。気体中に水分が含まれている場合、縮流部である弁孔の弁座−弁体−弁座間隙の流路表面で水分が凍りつき、弁体の動きを妨げる。自力式減圧弁の駆動力では弁体を動かすことができなくなり、流体制御に支障をきたすことがある。特に、樹脂製の弁座を用いている場合、弁座が凍りつくと、弁座に損傷を及ぼす可能性がある。弁座が損傷を受けると、弁座でのガス漏洩量が多くなり、その結果、下流側配管の圧力が上昇するので、下流の機器を危険に晒すことになる。自力式減圧弁に遮断機能が備わっていないことも一つの問題である。また、制御しようとする気体が液化しやすい条件の場合、減圧弁縮流部の低温領域で気体が液化する場合が多い。これにより、気体の脈動、減圧弁の異常振動、弁座のエロージョン、騒音等を引き起こし、気体供給システムの健全な運転の維持は困難となる。従来、このような低温により引き起こされる問題に対して、弁の外表面にヒーターを設置し、温度制御装置を介して加熱する等の処置が取られてきた。大流量用の場合、弁が非常に大型になり高価になると共に、低温対策のためにヒーターや温度制御装置を用意しなければならないという経済的な問題もある。さらに、従来半導体製造装置用に使用される自力式減圧弁の構造においては、同目的の遮断弁の構造に比して、流路とならないむだな空間が多く、ガス置換特性が悪く残留成分が残り易い、反応生成物やパーティクル等を捕獲し易い等の問題がある。   Usually, the high-pressure fluid sealed in a cylinder or the like is depressurized by a self-reducing pressure reducing valve in the fluid pressure control device and supplied to the fluid utilization facility. However, in a conventional self-reducing pressure reducing valve, the pressure adjustment accuracy decreases due to a change in upstream pressure or a change in flow rate. In particular, the flow rate change is large and the flow rate becomes large and the tendency is remarkable, and the downstream pressure to be regulated changes by several tens of percent. In addition, when the fluid is a gas, if the pressure is suddenly reduced under a large flow rate condition, the temperature of the fluid itself may rapidly decrease due to the expansion of the gas, and the temperature of the downstream portion of the pressure reducing valve may be below freezing point. In particular, the fluid temperature is often the lowest at the contracted portion near the valve seat, which is the minimum cross-sectional area of the flow path. When moisture is contained in the gas, moisture freezes on the flow path surface of the valve hole-valve-valve-valve seat gap, which is a contraction portion, and hinders the movement of the valve. The driving force of the self-reducing pressure reducing valve makes it impossible to move the valve body, which may hinder fluid control. In particular, when a resin valve seat is used, if the valve seat freezes, the valve seat may be damaged. When the valve seat is damaged, the amount of gas leakage at the valve seat increases, and as a result, the pressure in the downstream side pipe increases, which puts downstream equipment in danger. One problem is that the self-reducing pressure reducing valve does not have a shut-off function. In addition, in the case where the gas to be controlled is easily liquefied, the gas often liquefies in the low temperature region of the pressure reducing valve contraction portion. This causes gas pulsation, abnormal vibration of the pressure reducing valve, valve seat erosion, noise, and the like, making it difficult to maintain a sound operation of the gas supply system. Conventionally, measures such as installing a heater on the outer surface of the valve and heating via a temperature control device have been taken against the problems caused by such low temperatures. In the case of a large flow rate, the valve becomes very large and expensive, and there is an economical problem that a heater and a temperature control device must be prepared for measures against low temperatures. Furthermore, in the structure of a self-powered pressure reducing valve used for a conventional semiconductor manufacturing apparatus, there are many wasted spaces that do not serve as flow paths compared to the structure of a shut-off valve for the same purpose, and the gas replacement characteristics are poor and residual components are not. There are problems such as being easy to remain and easily capturing reaction products and particles.

流体圧力制御機器では、上流側圧力の変化や流量変化に対して下流圧力を設定圧力の通りに一定に維持する、制御対象の流体流路の最小断面積部となる弁座付近の縮流部を氷結させない、例え弁座付近の縮流部で氷結が起きても制御不能に陥らない、半導体製造装置用の用途にも十分に対応できる等の工夫が極めて重要である。それらを満足する流体圧力制御装置を安価で提供することも重要な課題である。   In a fluid pressure control device, a contracted part near the valve seat that is the minimum cross-sectional area of the fluid flow path to be controlled, which maintains the downstream pressure constant according to the set pressure against changes in upstream pressure and flow It is extremely important to devise measures such as preventing freezing, preventing a loss of control even if freezing occurs in a constricted portion near the valve seat, and being sufficiently adaptable for use in semiconductor manufacturing equipment. It is also an important issue to provide a fluid pressure control device that satisfies these requirements at a low cost.

上記目的を達成するために、請求項1に記載した、制御対象の流体流路に沿って、遮断弁と、調節弁と、圧力センサーとを設け、該圧力センサーの検出圧力信号をもとに、遮断弁と、調節弁とを自動制御することを特徴とする流体制御装置。
請求項2に記載した、請求項1で、遮断弁と、調節弁と、圧力センサーとを一体化した構造を特徴とする流体制御装置。
請求項3に記載した、制御対象の流体流路に沿って、遮断弁と、調節弁と、調節弁の下流に配置された温度センサーと、加熱ヒーターと、圧力センサーとを設け、該圧力センサーの検出圧力信号をもとに、遮断弁と、調節弁とを自動制御すると同時に、該温度センサーの信号をもとに加熱ヒーターの発熱量を自動制御して下流に配置された機器が結露温度以下の低温に晒されるのを防止することを特徴とする流体制御装置。
請求項4に記載した、請求項3で、遮断弁と、調節弁と、調節弁の下流に配置された温度センサーと、加熱ヒーターと、圧力センサーとを一体化した構造の流体制御装置。
請求項5に記載した、調節弁の上流あるいは下流、あるいは上流と下流にオリフィス機構を配したことを特徴とする流体制御装置。
In order to achieve the above object, a shut-off valve, a regulating valve, and a pressure sensor are provided along a fluid flow path to be controlled according to claim 1, and based on a detected pressure signal of the pressure sensor. A fluid control device that automatically controls a shutoff valve and a regulating valve.
The fluid control device according to claim 1, wherein the shutoff valve, the regulating valve, and the pressure sensor are integrated.
A shutoff valve, a control valve, a temperature sensor disposed downstream of the control valve, a heater, and a pressure sensor are provided along the fluid flow path to be controlled according to claim 3, and the pressure sensor Based on the detected pressure signal, the shut-off valve and the control valve are automatically controlled, and at the same time, the amount of heat generated by the heater is automatically controlled based on the signal from the temperature sensor. A fluid control apparatus characterized by preventing exposure to the following low temperature.
5. The fluid control device according to claim 3, wherein the shutoff valve, the regulating valve, a temperature sensor disposed downstream of the regulating valve, a heater, and a pressure sensor are integrated.
6. A fluid control apparatus according to claim 5, wherein an orifice mechanism is arranged upstream or downstream of the control valve, or upstream and downstream.

請求項6に記載した、請求項1、請求項2、請求項3、請求項4、請求項5いずれかの調節弁のベローズ部にパージおよびベント流路を設けることを特徴とする流体制御装置。
請求項7に記載した、請求項1、請求項2、請求項3、請求項4、請求項5、請求項6のいずれかで、調節弁の下流側にフィルターを配置することを特徴とする流体制御装置。
請求項8に記載した、請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7のいずれかで、圧力センサーが遮断弁と調節弁の間に追加配置されることを特徴とする流体制御装置。
請求項9に記載した、請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8のいずれかで、調節弁駆動部に均等配置された複数の駆動軸付勢手段、ゴム製ダイヤフラムを備え、正作動多段式としたことを特徴とする流体制御装置。
請求項10に記載した、請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8のいずれかで、調節弁駆動部に均等配置された複数の駆動軸付勢手段、ゴム製ダイヤフラムを備え、逆作動多段式としたことを特徴とする流体制御装置。
A fluid control device according to claim 6, wherein a purge and vent flow path is provided in the bellows portion of the regulating valve according to any one of claims 1, 2, 3, 4, and 5. .
The filter according to any one of claims 1, 2, 3, 4, 5, and 6, wherein the filter is disposed on the downstream side of the control valve. Fluid control device.
The pressure sensor according to any one of claims 1, 2, 3, 4, 5, 6, and 7 according to claim 8 is provided between the shutoff valve and the regulating valve. A fluid control device additionally provided.
Claim 9, Claim 2, Claim 3, Claim 3, Claim 4, Claim 5, Claim 7, Claim 8, Equally arranged in the control valve drive section A fluid control device comprising a plurality of drive shaft urging means and a rubber diaphragm, wherein the fluid control device is of a multistage type.
Claim 10, Claim 2, Claim 3, Claim 3, Claim 4, Claim 5, Claim 7, Claim 8, Equally arranged in the control valve drive section A fluid control device comprising a plurality of drive shaft urging means and a rubber diaphragm, wherein the fluid control device is a reverse-acting multistage type.

請求項11に記載した、弁座と弁体との間隙流路を調整して流体を制御する調節弁において、弁座と弁体の間隙流路で形成される流路制御部を多段式とし、下流側の流路制御部の流路断面積が上流側の流路制御部の流路断面積よりも大きいことを特徴とする調節弁。
請求項12に記載した、弁座と弁体との間隙流路を調整して流体を制御する調節弁において、弁座とガスケットとを一体化した構造を特徴とする調節弁。
The control valve for controlling a fluid by adjusting the gap flow path between the valve seat and the valve body according to claim 11, wherein the flow path control unit formed by the gap flow path between the valve seat and the valve body is a multistage type. A control valve characterized in that the flow path cross-sectional area of the downstream flow path control section is larger than the flow path cross-sectional area of the upstream flow path control section.
13. The control valve according to claim 12, wherein the control valve controls the fluid by adjusting the gap flow path between the valve seat and the valve body, and has a structure in which the valve seat and the gasket are integrated.

請求項13に記載した、流体制御装置の流体流路に沿って設けた流量計の流量測定結果と、同様に流体制御装置の流体流路に沿って配置した圧力計の圧力測定結果とを、電気信号として前記流体制御装置のコントローラーにフィードバックすることを特徴とする流体の制御方法。   The flow rate measurement result of the flow meter provided along the fluid flow path of the fluid control device according to claim 13, and the pressure measurement result of the pressure gauge similarly disposed along the fluid flow path of the fluid control device, A fluid control method comprising feeding back an electrical signal to a controller of the fluid control device.

請求項14に記載した、請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8、請求項9、請求項10のいずれかで、メタルダイヤフラムを用いた遮断弁と、ベローズシールを用いた調節弁とで構成したことにより、流体の滞留を最小にする構造を有し、なおかつ、流体が接触する流路全面が鏡面研磨されていることを特徴とする流体制御装置。   Claim 14, Claim 1, Claim 2, Claim 3, Claim 4, Claim 5, Claim 6, Claim 7, Claim 8, Claim 9, or Claim 10 In addition, because it is composed of a shut-off valve using a metal diaphragm and a control valve using a bellows seal, it has a structure that minimizes the retention of fluid, and the entire surface of the flow path in contact with the fluid is mirror-polished. A fluid control apparatus comprising:

請求項1、2、3、4の発明によれば、流体圧力制御装置が電気機械式自動制御機構を備えることにより、一次側(流体供給側)の流体圧力や供給流体の流量の増減に依存しないで、二次側(流体需要側)の圧力を常に一定に保つことができる。また、制御装置において、圧力センサーを最上流側に配置すれば、流体需要側の圧力制御だけでなく、流体供給側の圧力制御も可能となる。さらに、制御装置の弁箱は一体型でもよいが、遮断弁と調節弁を備える弁箱と圧力センサーを備える流路に分割し、ガスケットを介して連結して使用してもよい。通常、圧力センサーの感圧部は圧力センサーの継手接続部よりも遠ざけて設計されているため、その内部流路は袋小路となっていることが多い。継手接続時に、ガスケット近傍の部材が歪んでその影響を受け易いからである。弁箱と圧力センサー流路を分離型とすれば、圧力センサーを圧力センサー流路に設置した後でも圧力センサーの校正は容易であり、また、圧力センサーを圧力センサー流路に設置したまま交換することが可能となる。これにより、圧力センサーの感圧部を圧力センサーの継手接続部に近づけて設計することができるため、内部流路の袋小路となる部分は最小となりガス置換特性が改善する。   According to the first, second, third, and fourth aspects of the invention, the fluid pressure control device includes the electromechanical automatic control mechanism, so that it depends on the increase or decrease in the fluid pressure on the primary side (fluid supply side) or the flow rate of the supply fluid. The pressure on the secondary side (fluid demand side) can always be kept constant. Further, if the pressure sensor is arranged on the most upstream side in the control device, not only the pressure control on the fluid demand side but also the pressure control on the fluid supply side becomes possible. Further, the valve box of the control device may be an integrated type, but may be divided into a valve box having a shut-off valve and a control valve and a flow path having a pressure sensor, and may be used by being connected via a gasket. Usually, since the pressure sensitive part of the pressure sensor is designed to be further away from the joint connecting part of the pressure sensor, the internal flow path is often a dead end. This is because when the joint is connected, the member near the gasket is distorted and easily affected. If the valve box and pressure sensor flow path are separated, it is easy to calibrate the pressure sensor even after the pressure sensor is installed in the pressure sensor flow path. Also, replace the pressure sensor while it is installed in the pressure sensor flow path. It becomes possible. As a result, the pressure sensing part of the pressure sensor can be designed close to the joint connection part of the pressure sensor, so that the portion of the internal flow path that becomes a bag path is minimized and the gas replacement characteristics are improved.

また、請求項1、2の発明によれば、遮断弁を調節弁の上流側に配置する場合、調節弁の上下流の差圧が遮断弁のものに比して高差圧となるため、調節弁が低温に晒されても、遮断弁は低温に晒されることがなく、流体供給システムにおいて流体遮断機能を健全に維持することができる。しかも、調節弁が低温に晒さらされても、自力式減圧弁と比較して強力な電気機械駆動力を持たせることにより、例え弁体が凍りついても容易に弁体を動かして流体を制御することが可能である。そのうえ、調節弁の弁座に金属製の弁座のみを用いれば、流量特性劣化と弁座部遮断時の流体漏れ量を最小限に保つことが可能である。   According to the inventions of claims 1 and 2, when the shutoff valve is arranged upstream of the control valve, the differential pressure upstream and downstream of the control valve is higher than that of the shutoff valve. Even if the control valve is exposed to a low temperature, the shutoff valve is not exposed to a low temperature, and the fluid shutoff function can be maintained healthy in the fluid supply system. Moreover, even if the control valve is exposed to low temperatures, it has a stronger electromechanical driving force than a self-reducing pressure reducing valve, so even if the valve body freezes, the valve body can be moved easily to control the fluid. Is possible. In addition, if only a metal valve seat is used as the valve seat of the control valve, it is possible to keep the flow rate deterioration and the amount of fluid leakage when the valve seat portion is shut off to a minimum.

請求項2、3の発明によれば、本発明の流体圧力の制御装置の下流部分がいったん低温状態に晒されても、熱電対等の温度センサーと電熱線等のヒーターによる温度調節機能を備えることにより、流体縮流部等の温度低下部を加熱して、低温状態での不具合を回避することができる。特に、下流に配置された機器を低温から守ることが可能になる。また、新たに温度制御装置を用意する必要がなく、経済的である。   According to the second and third aspects of the present invention, even if the downstream portion of the fluid pressure control device of the present invention is once exposed to a low temperature state, it is provided with a temperature adjustment function using a temperature sensor such as a thermocouple and a heater such as a heating wire. Accordingly, it is possible to avoid a problem in a low temperature state by heating a temperature lowering part such as a fluid contraction part. In particular, it becomes possible to protect the devices arranged downstream from low temperatures. Further, there is no need to prepare a new temperature control device, which is economical.

また、請求項2、4の発明によれば、流体制御装置が小型化でき、流体制御装置の設置場所の自由度が高まる。   Further, according to the inventions of claims 2 and 4, the fluid control device can be reduced in size, and the degree of freedom of the installation location of the fluid control device is increased.

請求項5の発明によれば、調節弁の上下流にオリフィスを配置し、調節弁にかかる流体差圧を軽減してオリフィス部にも差圧を分配させる多段減圧機構を備えることにより、調節弁の流体縮流部における急激な圧力降下・温度降下を抑制し、流体縮流部での流体中の水分の凍結、流体の液化によるトラブルを回避することができる。   According to the fifth aspect of the present invention, the control valve is provided with the multistage pressure reducing mechanism that arranges the orifices upstream and downstream of the control valve, reduces the fluid differential pressure applied to the control valve, and distributes the differential pressure to the orifice part. The rapid pressure drop and temperature drop in the fluid contraction part can be suppressed, and troubles due to freezing of water in the fluid and liquefaction of the fluid in the fluid contraction part can be avoided.

請求項6の発明によれば、調節弁にベローズシールを用いる場合、その部分は流体の袋小路となるため、ガス置換特性が悪化する。ベローズシール部に、パージ(purge)およびベント(vent)流路を設けることにより、ガス置換特性(高速化、高純度化)を改善することができる。   According to the sixth aspect of the present invention, when a bellows seal is used for the control valve, the portion becomes a fluid passageway, so that the gas replacement characteristic is deteriorated. By providing purge and vent flow paths in the bellows seal portion, gas replacement characteristics (high speed and high purity) can be improved.

調節弁は弁体と弁孔の間隙面積を調節することによって流量を調節する。その構造上、どうしても微少な磨耗異物が発生する。請求項7の発明によれば、調節弁の下流にフィルターを配置することにより、調節弁等で発生する異物の流体需要側への流入を防止できる。   The regulating valve regulates the flow rate by regulating the gap area between the valve body and the valve hole. Due to the structure, minute wear foreign matter is inevitably generated. According to the seventh aspect of the present invention, by arranging the filter downstream of the regulating valve, it is possible to prevent foreign matters generated by the regulating valve or the like from flowing into the fluid demand side.

請求項8の発明によれば、遮断弁と調節弁の間にも圧力センサー備えることにより、調節弁での正確な流量特性の測定が可能となり、また、本発明の流体圧力の制御機器の遮断弁と調節弁のいずれかの弁座部にリークが発生した場合、どちらの弁座部でリークが発生しているか同定可能になり、装置異常の自己診断手段として利用できる。また、高圧流体等はボンベによって供給されることが多く、ボンベに詰められた高圧流体の残圧監視手段としても使用可能である。   According to the eighth aspect of the present invention, by providing a pressure sensor between the shutoff valve and the control valve, it is possible to accurately measure the flow rate characteristic of the control valve, and the shutoff of the fluid pressure control device of the present invention. When a leak occurs in one of the valve seat and the control valve, it is possible to identify which valve seat is causing the leak, and this can be used as a self-diagnosis means for device abnormality. Further, the high-pressure fluid or the like is often supplied by a cylinder and can be used as a residual pressure monitoring means for the high-pressure fluid packed in the cylinder.

請求項9の発明によれば、調節弁に正作動多段式の駆動部を備えることにより、駆動部形状がコンパクトになり、かつ、高出力で駆動部操作用の流体室の圧力変化を小さなヒステリシス差で調節弁の弁開度に変換でき、高圧流体の高精度な制御ができる。また、電源遮断あるいは駆動部操作流体圧力が消失した場合、弁体が全開となり、上流圧力を開放する場合に有効である。   According to the ninth aspect of the present invention, the control valve is provided with the positively actuated multi-stage type drive unit, so that the shape of the drive unit becomes compact, and the pressure change in the fluid chamber for operating the drive unit is small with high output and small hysteresis. The difference can be converted into the valve opening of the control valve, enabling high-precision control of high-pressure fluid. In addition, when the power is shut off or the operating fluid pressure of the drive unit disappears, it is effective when the valve body is fully opened and the upstream pressure is released.

請求項10の発明によれば、調節弁に逆作動多段式の駆動部を備えることにより、駆動部形状がコンパクトになり、かつ、高出力で駆動部操作用の流体室の圧力変化を小さなヒステリシス差で調節弁の弁開度に変換でき、高圧流体の高精度な制御ができる。また、電源遮断あるいは駆動部操作流体圧力が消失した場合、弁体が全閉となり、上流圧力を遮断する場合に有効である。   According to the invention of claim 10, by providing the control valve with a reverse-acting multi-stage drive unit, the shape of the drive unit becomes compact, and the pressure change in the fluid chamber for operating the drive unit is small with high output and small hysteresis. The difference can be converted into the valve opening of the control valve, enabling high-precision control of high-pressure fluid. In addition, when the power is shut off or the operating fluid pressure of the drive unit disappears, the valve body is fully closed, which is effective when the upstream pressure is shut off.

請求項11の発明によれば、調節弁の流路制御部が多段式となっているので、請求項3の発明と同様に、調節弁にかかる流体差圧を複数に分割し、一つ当たりの差圧を軽減させる多段減圧機構を備えているので、調節弁の流体縮流部における急激な圧力降下・温度降下を抑制し、流体縮流部での流体中の水分の凍結、流体の液化によるトラブルを回避することができる。   According to the eleventh aspect of the present invention, since the flow path control unit of the control valve is a multistage type, the fluid pressure difference applied to the control valve is divided into a plurality of parts as in the third aspect of the invention. Is equipped with a multistage pressure reduction mechanism that reduces the differential pressure of the control valve, so that rapid pressure drop and temperature drop in the fluid constriction part of the control valve are suppressed, and freezing of water in the fluid and fluid liquefaction in the fluid constriction part Trouble caused by can be avoided.

請求項12の発明によれば、弁座とガスケットとを一体化しているので、小型で、気密性に優れた調節弁が実現できる。また、少なくとも弁体に接触する弁座の表面に高価で耐摩耗性の有るコバルト基合金(Co−Cr−W合金:例えばステライト(登録商標))を少量だけ溶接して用いることができ、ステンレス等の一般金属材料製、合成樹脂製の弁座を使用する場合に比して、弁座の劣化が少なく、調節弁の流量制御特性の劣化を少なくできる。   According to the invention of claim 12, since the valve seat and the gasket are integrated, it is possible to realize a control valve that is small in size and excellent in airtightness. Further, it is possible to use a cobalt base alloy (Co—Cr—W alloy: for example, Stellite (registered trademark)), which is expensive and wear resistant, at least on the surface of the valve seat that comes into contact with the valve body. Compared to the case of using a valve seat made of a general metal material such as synthetic resin, etc., the valve seat is less deteriorated, and the deterioration of the flow control characteristic of the control valve can be reduced.

請求項13の発明によれば、主に圧力制御を行い、流量計が予めコントローラーにて設定された値を超えた場合、流量を制限する、あるいは逆に、設定された値を下回った場合、流量を増やすというように、圧力制御と共に流量の制御がある程度可能となる。また、主に流量制御を行い、流体圧力が予めコントローラーにて設定された値を超えた場合、圧力が低下するように流量を制限する、あるいは逆に、設定された値を下回った場合、圧力が増加するように流量を増やすというように、流量制御と共に圧力に関してもある程度の制御が可能となる。   According to the invention of claim 13, when pressure control is mainly performed and the flow meter exceeds a value set in advance by the controller, the flow rate is limited, or conversely, when the flow rate is lower than the set value, The flow rate can be controlled to some extent together with the pressure control, such as increasing the flow rate. In addition, when the flow control is mainly performed and the fluid pressure exceeds the value preset by the controller, the flow rate is limited so that the pressure decreases, or conversely, if the fluid pressure falls below the set value, the pressure As the flow rate is increased so as to increase, the pressure can be controlled to some extent along with the flow rate control.

請求項14の発明によれば、メタルダイヤフラムを用いた遮断弁と、ベローズシールを用いた調節弁とで構成したことにより、流体の滞留を最小にする構造を有し、なおかつ、流体が接触する流路全面が鏡面研磨されているので、ガス残留成分、反応生成物、パーティクル等が流路内に残らず、半導体製造装置用として最適な流体制御装置を提供できる。   According to the fourteenth aspect of the present invention, since the shut-off valve using the metal diaphragm and the adjusting valve using the bellows seal are configured, the structure has a structure that minimizes the retention of the fluid, and the fluid contacts. Since the entire surface of the flow path is mirror-polished, gas residual components, reaction products, particles, and the like do not remain in the flow path, and an optimal fluid control apparatus for a semiconductor manufacturing apparatus can be provided.

本発明の実施の形態を図面に基づいて説明する。本発明はその趣旨をはずれない限り、以下の実施例によって限定されるものではない。   Embodiments of the present invention will be described with reference to the drawings. The present invention is not limited by the following examples as long as it does not depart from the spirit of the present invention.

図1は第1の実施例である請求項2の流体制御装置の構成概念図である。制御対象の流体流路に沿って、遮断弁(2)と、調節弁(3)と、圧力センサー(4)とを一体化して設け、該圧力センサー(4)の圧力検出信号をもとに、遮断弁(2)と、調節弁(3)とをコントローラ(9)の指示により自動制御することを特徴とする。   FIG. 1 is a conceptual diagram of the configuration of a fluid control apparatus according to claim 2 which is a first embodiment. A shut-off valve (2), a regulating valve (3), and a pressure sensor (4) are integrally provided along the fluid flow path to be controlled, based on the pressure detection signal of the pressure sensor (4). The shut-off valve (2) and the control valve (3) are automatically controlled according to instructions from the controller (9).

図1において、高圧ガスボンベ等に収容された高圧流体は流体流入口(1)から流体制御装置に流入して、遮断弁(2)、調節弁(3)、圧力センサー(4)各部の流路を経由して、所定の圧力に減圧されて、流体流出口(5)から流出する。流体の流路を理解しやすいように、流体流入口(1)、遮断弁(2)、調節弁(3)、圧力センサー(4)、流体流出口(5)の主要部は断面図で示している。   In FIG. 1, the high-pressure fluid stored in a high-pressure gas cylinder or the like flows into the fluid control device from the fluid inlet (1), and the flow path of each part of the shutoff valve (2), the regulating valve (3), and the pressure sensor (4). , The pressure is reduced to a predetermined pressure and flows out from the fluid outlet (5). The main parts of the fluid inlet (1), the shutoff valve (2), the control valve (3), the pressure sensor (4), and the fluid outlet (5) are shown in cross-sectional views so that the fluid flow path can be easily understood. ing.

所望の流体流出口(5)圧力はコントローラー(9)で初期設定する。まず、圧力センサー(4)が流体流出口(5)の圧力を測定してコントローラー(9)に測定値を伝達する。圧力センサー(4)の測定値と流体流出口(5)の圧力設定値との偏差に応じて、コントローラー(9)は電磁弁(7)と電気空気圧(以下電空と略記する)変換機(8)に、制御プログラムにより演算された電気制御信号を送出する。制御信号を受け取った電磁弁(7)により機械的に遮断弁(2)が開口され、次に電空変換機(8)で電気制御信号が空気圧変化に変換されて圧力調節弁駆動部(6)に入力され、調節弁(3)の弁体(3A)を機械的に上下に移動させ、流体流出口(5)で所望の圧力が得られるように、弁体(3A)と弁座(3B)との間隙がフィードバック制御により自動調節される。   The desired fluid outlet (5) pressure is initially set by the controller (9). First, the pressure sensor (4) measures the pressure at the fluid outlet (5) and transmits the measured value to the controller (9). Depending on the deviation between the measured value of the pressure sensor (4) and the pressure set value of the fluid outlet (5), the controller (9) is connected to an electromagnetic valve (7) and an electropneumatic (hereinafter abbreviated as electropneumatic) converter ( In step 8), the electric control signal calculated by the control program is transmitted. The shut-off valve (2) is mechanically opened by the electromagnetic valve (7) that has received the control signal, and then the electric control signal is converted into a change in air pressure by the electropneumatic converter (8), so that the pressure control valve drive unit (6 ), The valve body (3A) of the control valve (3) is mechanically moved up and down, and the valve body (3A) and the valve seat ( 3B) is automatically adjusted by feedback control.

図2は第2の実施例である請求項4の流体制御装置の構成概念図である。制御対象の流体流路に沿って、遮断弁(22)と、調節弁(23)と、調節弁の下流に配置された温度センサー(29)と、加熱ヒーター(28)と、圧力センサー(24)とを一体化して設け、該圧力センサー(24)の圧力検出信号をもとに、遮断弁(22)と、調節弁(23)とを自動制御すると同時に、該温度センサー(29)の信号をもとに加熱ヒーター(28)の発熱量を自動制御することを特徴とする。温度センサー(29)の温度検出点を流体の流路中に置いても良い。
図2は、図1に示す制御装置に温度センサー(29)と、加熱ヒーター(28)とを追加配置した構造を有す。調節弁近傍の温度を温度センサー(29)で計測して、調節弁の下流が結露温度以下の低温に晒されるのを防止するように、加熱ヒーター(28)の発熱量を自動制御する構造を有している。
FIG. 2 is a conceptual diagram of the configuration of the fluid control apparatus according to claim 4 as the second embodiment. A cutoff valve (22), a regulating valve (23), a temperature sensor (29) disposed downstream of the regulating valve, a heater (28), and a pressure sensor (24) along the fluid flow path to be controlled. ) And the shutoff valve (22) and the control valve (23) are automatically controlled based on the pressure detection signal of the pressure sensor (24), and at the same time, the signal of the temperature sensor (29) Based on the above, the heating value of the heater (28) is automatically controlled. The temperature detection point of the temperature sensor (29) may be placed in the fluid flow path.
2 has a structure in which a temperature sensor (29) and a heater (28) are additionally arranged in the control device shown in FIG. A temperature sensor (29) measures the temperature in the vicinity of the control valve and automatically controls the amount of heat generated by the heater (28) to prevent the downstream of the control valve from being exposed to a low temperature below the condensation temperature. Have.

図3は第3の実施例である請求項5の流体制御装置の動作を説明するための構成概念図である。調節弁の上流あるいは下流、あるいは上流下流にオリフィス機構を配したことを特徴とする。
図3に示すように、調節弁(33)の上下流にオリフィス(38、39)を配置し、調節弁(33)にかかる流体差圧を軽減してオリフィス部にも差圧を分配させる多段減圧機構を備えることにより、調節弁の流体縮流部における急激な圧力降下・温度降下を抑制している。
FIG. 3 is a conceptual diagram for explaining the operation of the fluid control apparatus according to claim 5 which is the third embodiment. An orifice mechanism is arranged upstream or downstream of the control valve, or upstream and downstream.
As shown in FIG. 3, orifices (38, 39) are arranged upstream and downstream of the control valve (33) to reduce the fluid differential pressure applied to the control valve (33) and distribute the differential pressure to the orifice section. By providing the pressure reducing mechanism, a rapid pressure drop and temperature drop in the fluid contraction portion of the control valve are suppressed.

図4に、第4の実施例である請求項6の調節弁(43)のベローズ部(41)とベントおよびパージ流路(42)の断面を図示している。置換流体のベントおよびパージ口(44、45)を利用してベローズ部で停滞している流体を排気する。
調節弁にベローズシールを用いる場合、調節弁の弁体と弁座が形成する間隙を通り抜けて流入した流体の一部は袋小路になっているベローズ部で停滞するため、ガス置換特性が悪化する。この部分に、パージおよびベント流路を設けることにより、ガス置換特性を改善することができる。
FIG. 4 shows a cross section of the bellows part (41) and the vent and purge flow path (42) of the control valve (43) according to the sixth embodiment of the present invention. By using the replacement fluid vent and purge ports (44, 45), the fluid stagnating in the bellows portion is exhausted.
When a bellows seal is used for the control valve, a part of the fluid that has flowed in through the gap formed by the valve body and the valve seat of the control valve is stagnated in the bellows portion that is a bag path, so that the gas replacement characteristic is deteriorated. By providing purge and vent flow paths in this portion, the gas replacement characteristics can be improved.

図5に、第5の実施例である調節弁(53)の下流側にフィルター(58)を配置することを特徴とする請求項7の流体制御装置の概念図を示す。流体の流路を見易くする目的で主要部は断面図で示している。調節弁(53)で圧力が調節された流体はフィルター(58)で異物が除去されて流体流出口(55)から流体需要側に送り出される。   FIG. 5 shows a conceptual diagram of a fluid control apparatus according to claim 7, wherein a filter (58) is arranged on the downstream side of the regulating valve (53) of the fifth embodiment. For the purpose of making the fluid flow path easier to see, the main part is shown in a sectional view. Foreign matter is removed from the fluid whose pressure is adjusted by the control valve (53) by the filter (58), and the fluid is sent from the fluid outlet (55) to the fluid demand side.

図6に、第6の実施例である圧力センサー(64B)が遮断弁(62)と調節弁(63)の間に追加配置されることを特徴とする請求項8の流体制御装置の概念図を示す。流体の流路を見易くする目的で主要部は断面図で示している。
遮断弁(62)と調節弁(63)との間にも圧力センサー(64B)を備え、調節弁(63)の上流の圧力を測定して、正確な流量特性の測定を可能とした。また、本発明の流体圧力の制御機器の遮断弁と調節弁のいずれかの弁座部にリークが発生した場合、どちらの弁座部でリークが発生しているか同定可能になり、装置異常の自己診断手段として利用できる。そのほか、高圧流体等はボンベによって供給されることが多く、ボンベに詰められた高圧流体の残圧監視手段としても圧力センサー(64B)は使用可能である。
FIG. 6 is a conceptual diagram of a fluid control apparatus according to claim 8, wherein a pressure sensor (64B) according to a sixth embodiment is additionally arranged between the shutoff valve (62) and the regulating valve (63). Indicates. For the purpose of making the fluid flow path easier to see, the main part is shown in a sectional view.
A pressure sensor (64B) was also provided between the shutoff valve (62) and the control valve (63), and the pressure upstream of the control valve (63) was measured to enable accurate measurement of the flow characteristics. In addition, when a leak occurs in either the shut-off valve or the control valve of the fluid pressure control device of the present invention, it is possible to identify which valve seat is causing the leak, and the device malfunction It can be used as a self-diagnosis means. In addition, the high pressure fluid or the like is often supplied by a cylinder, and the pressure sensor (64B) can be used as a means for monitoring the residual pressure of the high pressure fluid packed in the cylinder.

図7に、第7の実施例である調節弁駆動部を正作動2段式としたことを特徴とする請求項9の流体制御装置の調節弁駆動部の断面図を示す。均等配置された複数の駆動軸付勢手段、ゴム製ダイヤフラム(72A、72B)、複数の制御空気室(73A、73B)で構成されている。本図では、空気圧を機械力に変換するダイヤフラムが2枚ある2段式調節弁駆動部を示すが、ダイヤフラムを3枚以上にしても良い。調節弁駆動部を多段式として、駆動部形状がコンパクトになり、かつ、高出力を実現できる。また、均等配置された複数の駆動軸付勢手段、ゴム製ダイヤフラムを備えることにより、流体室の圧力変化を小さなヒステリシス差で調節弁の弁開度に変換でき、高圧流体の高精度な制御ができる。   FIG. 7 is a cross-sectional view of the control valve drive unit of the fluid control apparatus according to claim 9, wherein the control valve drive unit according to the seventh embodiment is a two-stage forward operation type. It comprises a plurality of drive shaft biasing means, rubber diaphragms (72A, 72B), and a plurality of control air chambers (73A, 73B) that are evenly arranged. In this figure, a two-stage control valve drive unit having two diaphragms for converting air pressure into mechanical force is shown, but three or more diaphragms may be used. The control valve drive unit is a multistage type, the drive unit shape is compact, and high output can be realized. Also, by providing a plurality of drive shaft biasing means and rubber diaphragms that are evenly arranged, the pressure change in the fluid chamber can be converted into the valve opening of the control valve with a small hysteresis difference, and high-precision fluid control is possible. it can.

電空変換器(図示せず)で生成された自動制御信号である空気が制御空気取り入れ口(71)を経由して制御空気室(73A、73B)を行き来して、ダイヤフラム(72A、72B)を空気圧により上下させる。それに伴い、ダイヤフラム(72A、72B)に固定されている調節弁駆動軸(75)が上下する。調節弁駆動軸は弁体(図示せず)と連結しているので、弁体と弁座(図示せず)との間隙が自動調節される。本実施例ではダイヤフラム(72A、72B)を空気圧により上下させているが、空気の代わりに、炭酸ガスや窒素ガス等の不活性ガスを使用してもよい。   Air, which is an automatic control signal generated by an electropneumatic converter (not shown), moves back and forth through the control air intake port (71) to the control air chamber (73A, 73B), and the diaphragm (72A, 72B). Is moved up and down by air pressure. Accordingly, the control valve drive shaft (75) fixed to the diaphragm (72A, 72B) moves up and down. Since the control valve drive shaft is connected to a valve body (not shown), the gap between the valve body and the valve seat (not shown) is automatically adjusted. In this embodiment, the diaphragms (72A, 72B) are moved up and down by air pressure, but an inert gas such as carbon dioxide or nitrogen gas may be used instead of air.

図8に、第8の実施例である調節弁駆動部を逆作動2段式としたことを特徴とする請求項10の流体制御装置の調節弁駆動部の断面図を示す。均等配置された複数の駆動軸付勢手段、ゴム製ダイヤフラム(82A、82B)、複数の制御空気室(83A、83B)で構成されている。本図では説明を簡単にするために、空気圧を機械力に変換するダイヤフラムを2枚有す2段式調節弁駆動部を示すが、ダイヤフラムを3枚以上にしても良い。調節弁駆動部を多段式として、駆動部形状がコンパクトになり、かつ、高出力を実現できる。また、均等配置された複数の駆動軸付勢手段、ゴム製ダイヤフラムを備えることにより、流体室の圧力変化を小さなヒステリシス差で調節弁の弁開度に変換でき、高圧流体の高精度な制御ができる。   FIG. 8 is a cross-sectional view of the regulating valve driving unit of the fluid control apparatus according to claim 10, wherein the regulating valve driving unit according to the eighth embodiment is a two-stage reverse operation type. It comprises a plurality of drive shaft biasing means, rubber diaphragms (82A, 82B), and a plurality of control air chambers (83A, 83B) that are evenly arranged. In this figure, for the sake of simplicity, a two-stage control valve drive unit having two diaphragms for converting air pressure into mechanical force is shown, but three or more diaphragms may be used. The control valve drive unit is a multistage type, the drive unit shape is compact, and high output can be realized. Also, by providing a plurality of drive shaft biasing means and rubber diaphragms that are evenly arranged, the pressure change in the fluid chamber can be converted into the valve opening of the control valve with a small hysteresis difference, and high-precision fluid control is possible. it can.

電空変換器(図示せず)で生成された制御信号である空気が制御空気取り入れ口(81)を経由して制御空気室(83A、83B)を行き来して、ダイヤフラム(82A、82B)を空気圧により上下させる。それに伴い、ダイヤフラム(82A、82B)に固定されている調節弁駆動軸(85)が上下する。調節弁駆動軸(85)は弁体(図示せず)と連結しているので、弁体と弁座(図示せず)との間隙が自動調節される。空気の代わりに、炭酸ガスや窒素ガス等の不活性ガスを使用してもよい。   Air, which is a control signal generated by an electropneumatic converter (not shown), travels through the control air chamber (83A, 83B) via the control air intake port (81), and passes through the diaphragm (82A, 82B). Move up and down by air pressure. Accordingly, the control valve drive shaft (85) fixed to the diaphragm (82A, 82B) moves up and down. Since the regulating valve drive shaft (85) is connected to the valve body (not shown), the gap between the valve body and the valve seat (not shown) is automatically adjusted. Instead of air, an inert gas such as carbon dioxide gas or nitrogen gas may be used.

請求項11の流路制御部を2段式とした調節弁の実施例を以下に説明する。説明を簡単にするために調節弁の流路制御部を2段式とした調節弁の流路制御部の主要断面図を図9Aと図9Bに示すが、段数は3段以上でもよい。   An embodiment of a control valve having a two-stage flow path control unit according to claim 11 will be described below. 9A and 9B are main cross-sectional views of the flow control unit of the control valve in which the flow control unit of the control valve has a two-stage type for the sake of simplicity, but the number of stages may be three or more.

図9Aでは弁座保持具に弁座とガスケットが一体化(96)しているのに対して、図9Bではガスケットを一体化した構造の弁座保持具(96B)に合成樹脂あるいは金属性の弁座(97)が取り付けられている。その他の構造は図9Aと図9Bは同一である。   In FIG. 9A, the valve seat and the gasket are integrated (96) with the valve seat holder, whereas in FIG. 9B, the valve seat holder (96B) having a structure in which the gasket is integrated is made of synthetic resin or metal. A valve seat (97) is attached. 9A and 9B are the same in other structures.

流体流入口(91)から流入した流体は流体縮流部である第一段目流路制御部(G1)と第二段目流路制御部(G2)で減圧されて流体流出口(92)に流出する。第二段目流路制御部(G2)の流路断面積を第一段目流路制御部(G1)の流路断面積より大きくして、第一段目流路制御部(G1)でより大きく減圧して、第二段目流路制御部(G2)で急激に減圧しない工夫を施している。流体が気体の場合、減圧と共に気体の体積は膨張するので、特に、この構造は気体に対して有効である。   The fluid flowing in from the fluid inflow port (91) is depressurized by the first stage flow path control unit (G1) and the second stage flow path control unit (G2), which are fluid contraction parts, and the fluid outflow port (92). To leak. The flow passage cross-sectional area of the second-stage flow path control unit (G2) is made larger than the flow-path cross-sectional area of the first-stage flow path control unit (G1), and the first-stage flow path control unit (G1) The second stage flow path control unit (G2) is devised so that the pressure is further reduced and not suddenly reduced. This structure is particularly effective for gases, since the volume of the gas expands with reduced pressure when the fluid is a gas.

流路制御部を一段式としたとき、流体縮流部とその前後で流体の流速と圧力と温度がどのように変化するかを図10Aで模式的に示す。流路制御部を三段式としたときは、流体縮流部とその前後で流体の流速と圧力と温度とは図10Bのように変化する。この図から、流路制御部の段数を多くすると、流体の流速と圧力と温度の急激な変化を防止できることが理解できる。   FIG. 10A schematically shows how the flow velocity, pressure, and temperature of the fluid constriction portion and the fluid flow change before and after the fluid flow control portion when the flow path control portion is a single stage. When the flow path control unit is of a three-stage type, the fluid flow rate, pressure, and temperature change as shown in FIG. From this figure, it can be understood that if the number of stages of the flow path control unit is increased, rapid changes in the flow rate, pressure, and temperature of the fluid can be prevented.

本実施例で、請求項12の弁座とガスケットとを一体化(96)した調節弁を用いると、弁座に高価で耐摩耗性の有るステライト(登録商標)等のコバルト、クロム、タングステンなどからなる合金を少量だけ溶着して用いることができ、ステンレス等の一般金属材料製、合成樹脂製の弁座を使用する場合に比して、弁座の劣化が少なく、調節弁の流量制御特性の劣化を少なくできる。   In this embodiment, when the control valve in which the valve seat and the gasket of claim 12 are integrated (96) is used, cobalt, chromium, tungsten, etc., such as expensive and wear-resistant Stellite (registered trademark) is used for the valve seat. It can be used by welding only a small amount of alloy made of, and there is less deterioration of the valve seat compared to the case of using a valve seat made of a general metal material such as stainless steel or synthetic resin, and the flow control characteristics of the control valve Degradation can be reduced.

流体制御装置の下流に設けた流量計(15)の流量測定結果と、前記流体制御装置の調節弁(13)の下流に配置した圧力計(14)の圧力測定結果とを、電気信号として前記流体制御装置のコントローラー(19)にフィードバックすることを特徴とする請求項13に記載した流体流量の制御方法を示す概念図を図11に示す。   The flow measurement result of the flow meter (15) provided downstream of the fluid control device and the pressure measurement result of the pressure gauge (14) disposed downstream of the control valve (13) of the fluid control device are used as the electrical signal. FIG. 11 is a conceptual diagram showing a fluid flow rate control method according to claim 13, which is fed back to the controller (19) of the fluid control device.

圧力計(14)の圧力測定結果をコントローラー(19)にフィードバックして圧力制御を行い、流体需要側に設置した流量計(15)で測定された流量が、予めコントローラー(19)にて設定された範囲から外れた場合、流量を監視しているコントローラー(19)が調節弁(13)の開度を調節して流量を制限、増加することが可能である。   The pressure measurement result of the pressure gauge (14) is fed back to the controller (19) to control the pressure, and the flow rate measured by the flow meter (15) installed on the fluid demand side is preset by the controller (19). If it is out of the range, the controller (19) monitoring the flow rate can adjust the opening of the control valve (13) to limit or increase the flow rate.

また、流量計(15)の流量測定結果をコントローラー(19)にフィードバックして流量制御を行い、流体圧力が予めコントローラー(19)にて設定された範囲から外れた場合、コントローラー(19)が調節弁(13)の開度を調節して、圧力に関してもある程度の制御が可能である。   The flow rate measurement result of the flow meter (15) is fed back to the controller (19) to control the flow rate, and the controller (19) adjusts when the fluid pressure is out of the range previously set by the controller (19). It is possible to control the pressure to some extent by adjusting the opening of the valve (13).

請求項14に記載した、メタルダイヤフラムを用いた遮断弁と、ベローズシールを用いた調節弁とで構成したことにより、流体の滞留を最小にする構造を有し、なおかつ、流体が接触する流路全面が鏡面研磨されていることを特徴とする流体制御装置について、図6を用いて説明する。   A flow path that has a structure that minimizes the retention of fluid by being constituted by the shut-off valve using a metal diaphragm and the control valve using a bellows seal according to claim 14, and that is in contact with the fluid A fluid control apparatus characterized in that the entire surface is mirror-polished will be described with reference to FIG.

図6にベローズ上端部のガスケットシール部の断面図を示すように、流体の滞留を最小にする構造を有すベローズシールを用い、かつ流路全壁面を鏡面研磨仕上げしている。鏡面研磨後の面粗度は中心線平均粗さが0.1μm以下であることが望ましい。   As shown in the sectional view of the gasket seal portion at the upper end of the bellows in FIG. 6, a bellows seal having a structure that minimizes the retention of fluid is used and the entire wall surface of the flow path is mirror-polished. The surface roughness after mirror polishing is preferably such that the center line average roughness is 0.1 μm or less.

流体が接触する流路全面が流体の滞留を最小にする構造を有し、かつ流路全壁面を鏡面研磨仕上げしているので、ガス残留成分、反応生成物、パーティクル等が流路内に残らず、半導体製造装置用として最適な流体制御装置を提供できる。
[窒素ガス供給システムの運転特性]
請求項1の制御装置を用いた窒素ガス供給システムの概念図を図12に示す。高圧窒素ガスボンベに収容された液体窒素が本発明の流体制御装置により減圧されて窒素ガスの需要側(本図では流量計側)に供給される。圧力調節弁の下流で、流量調節弁の上流にあたる流路には窒素ガスを一時的に蓄えるためのガスタンク(容量6.7リッター)が配置されている。
Since the entire surface of the flow path in contact with the fluid has a structure that minimizes fluid retention and the entire wall surface of the flow path is mirror-polished, residual gas components, reaction products, particles, etc. remain in the flow path. In addition, an optimum fluid control apparatus for a semiconductor manufacturing apparatus can be provided.
[Operating characteristics of nitrogen gas supply system]
The conceptual diagram of the nitrogen gas supply system using the control apparatus of Claim 1 is shown in FIG. The liquid nitrogen accommodated in the high-pressure nitrogen gas cylinder is depressurized by the fluid control device of the present invention and supplied to the nitrogen gas demand side (the flow meter side in this figure). A gas tank (capacity: 6.7 liters) for temporarily storing nitrogen gas is disposed in a flow path downstream of the pressure control valve and upstream of the flow control valve.

図13に図12の窒素ガス供給システムの運転特性の実測値を示す。ガスタンクの下流に配置された流量調節弁の弁開度を急激に変化させると、ガスタンク圧力は急激に低下あるいは増加しようとする。それに対抗して、ガスタンク圧力の変化を抑制して一定に保つように本発明の流体制御装置が作動する。また、どの流量レンジでもガスタンク圧力がほぼ一定に保たれているのが分かる。   FIG. 13 shows measured values of operating characteristics of the nitrogen gas supply system of FIG. When the valve opening degree of the flow control valve arranged downstream of the gas tank is changed rapidly, the gas tank pressure tends to decrease or increase rapidly. On the other hand, the fluid control apparatus of the present invention operates so as to suppress and keep the gas tank pressure constant. It can also be seen that the gas tank pressure is kept almost constant in any flow range.

第1の実施例である流体制御装置の構成概念図1 is a conceptual diagram of a configuration of a fluid control apparatus according to a first embodiment. 第2の実施例である流体制御装置の構成概念図Configuration conceptual diagram of fluid control apparatus according to second embodiment 第3の実施例である流体制御装置の構成概念図Configuration conceptual diagram of fluid control apparatus according to third embodiment 調節弁のベローズ部に設けたパージおよびベント部近傍の断面図Sectional view of the vicinity of the purge and vent parts provided in the bellows part of the control valve 調節弁下流側にフィルターを配置することを特徴とする流体制御装置の構成概念図Conceptual diagram of the configuration of a fluid control device characterized by arranging a filter downstream of the control valve 圧力センサーが遮断弁と調節弁の間に追加配置されたことを特徴とする流体制御装置の構成概念図Conceptual diagram of the configuration of a fluid control device, wherein a pressure sensor is additionally arranged between the shutoff valve and the control valve 調節弁駆動部を正作動多段式としたことを特徴とする流体制御装置の構成概念図Conceptual diagram of the configuration of a fluid control device characterized in that the control valve drive section is a multi-stage forward operation type 調節弁駆動部を逆作動多段式としたことを特徴とする流体制御装置の構成概念図Configuration conceptual diagram of fluid control device characterized in that control valve drive unit is reverse-acting multi-stage type 2段式流路制御部を有する、弁座と弁座保持具とガスケットとを一体化した構造の調節弁A control valve having a structure in which a valve seat, a valve seat holder and a gasket are integrated, having a two-stage flow path control unit 2段式流路制御部を有する、弁座がガスケットを一体化した弁座保持具と独立した構造の調節弁A control valve having a two-stage flow path control unit and a structure in which the valve seat is independent from the valve seat holder in which the gasket is integrated. 流路制御部が1段構造の調節弁の圧力、温度、流量変化を示す模式図Schematic diagram showing changes in pressure, temperature, and flow rate of a control valve with a single-stage flow control unit 流路制御部が3段構造の調節弁の圧力、温度、流量変化を示す模式図Schematic diagram showing changes in pressure, temperature, and flow rate of control valve with three-stage control valve 請求項11に記載した流体流量の制御方法を示す概念図The conceptual diagram which shows the control method of the fluid flow rate described in Claim 11 本発明の流体制御装置を用いた窒素ガス供給システムの概念図Conceptual diagram of a nitrogen gas supply system using the fluid control device of the present invention 本発明の流体制御装置を用いた窒素ガス供給システムの運転特性(実測値)Operating characteristics of nitrogen gas supply system using fluid control device of the present invention (actually measured values)

符号の説明Explanation of symbols

1、21、31、51、61、91……………………流体流入口
2、12、22、32、52、62 …………………遮断弁
3、13、23、33、43、53、63 …………調節弁
3A、23A、33A …………………………………弁体
3B、23B、33B …………………………………弁座
4、14、24、34、54、64A、64B………圧力センサー
5、25、35、55、65、92……………………流体流出口
6、26、36、46、56、66、70、80 …調節弁駆動部
7、17 …………………………………………………電磁弁
8、18 …………………………………………………電空変換器
9、19 …………………………………………………コントローラー
15 ………………………………………………………流量計
28 ………………………………………………………加熱ヒーター
29 ………………………………………………………温度センサー
38、39 ………………………………………………オリフィス
41 ………………………………………………………ベローズ
42 ………………………………………………………ベントおよびパージ流路
44、45 ………………………………………………ベントおよびパージ口
47 ………………………………………………………ボンネット
58 ………………………………………………………フィルター
71、81 ………………………………………………制御空気取り入れ口
72A、72B、82A、82B ……………………ダイヤフラム
73A、73B、83A、83B ……………………制御空気室
74A、74B、84A、84B ……………………通気孔
75、85 ………………………………………………調節弁駆動軸
96 …………………………弁座とガスケットが一体化した構造の弁座保持具
96B ………………………弁座が弁座保持具から独立した構造のガスケット一体形弁座保持具
97 ………………………………………………………弁座
98 ………………………………………………………弁体
G1 ………………………………………………………第一段目流路制御部
G2 ………………………………………………………第二段目流路制御部
S ………………………………………………………ボンネットとベローズの間の間隙
1, 21, 31, 51, 61, 91 ............... Fluid inlet 2, 12, 22, 32, 52, 62 ............... Shutoff valves 3, 13, 23, 33, 43, 53, 63 ............ Control valves 3A, 23A, 33A ........................... Valve body 3B, 23B, 33B ……………………………… Seats 4, 14, 24, 34, 54, 64A, 64B ..... Pressure sensors 5, 25, 35, 55, 65, 92 ........... Fluid outlets 6, 26, 36, 46, 56 , 66, 70, 80 ... Control valve drive unit 7, 17 ... ………………………………………… Solenoid valve 8, 18 ……………………………… ………………… Electropneumatic converters 9, 19 ………………………………………………… Controller 15 ……………………………………… ……………… Flow meter 2 ……………………………………………………… Heater 29 ……………………………………………………… Temperature Sensors 38, 39 ……………………………………………… Orifice 41 ……………………………………………………… Bellows 42 ………………… …………………………………… Vent and purge channels 44, 45 ……………………………………………… Vent and purge ports 47 …………… ………………………………………… Bonnet 58 ……………………………………………………… Filter 71, 81 ………………… …………………………………………………………………………………………………………………………………………… Control Air Intake 72A, 72B, 82A, 82B ………………… Diaphragms 73A, 73B, 83A, 83B …………………… Control Air Chamber 74A 74 B, 84A, 84B ........................... Vent holes 75, 85 ……………………………………………… Control valve drive shaft 96 ……………………… … Valve seat holder 96B with a structure that integrates the valve seat and gasket …………………………… The gasket integrated valve seat holder 97 with a structure that the valve seat is independent from the valve seat holder …………… ………………………………………… Valve seat 98 ……………………………………………………… Valve G1 ………………… …………………………………… First stage flow path control unit G2 ……………………………………………………… Second stage flow path Control part S ……………………………………………………… Gap between bonnet and bellows

Claims (14)

制御対象の流体流路に沿って、遮断弁と、調節弁と、圧力センサーとを設け、該圧力センサーの検出圧力信号をもとに、遮断弁と、調節弁とを自動制御することを特徴とする流体制御装置。 A shut-off valve, a control valve, and a pressure sensor are provided along the fluid flow path to be controlled, and the shut-off valve and the control valve are automatically controlled based on the detected pressure signal of the pressure sensor. A fluid control device. 請求項1で、遮断弁と、調節弁と、圧力センサーとを一体化した構造を特徴とする流体制御装置。 2. The fluid control device according to claim 1, wherein the shutoff valve, the control valve, and the pressure sensor are integrated. 制御対象の流体流路に沿って、遮断弁と、調節弁と、調節弁の下流に配置された温度センサーと、加熱ヒーターと、圧力センサーとを設け、該圧力センサーの検出圧力信号をもとに、遮断弁と、調節弁とを自動制御すると同時に、該温度センサーの信号をもとに加熱ヒーターの発熱量を自動制御して下流に配置された機器が結露温度以下の低温に晒されるのを防止することを特徴とする流体制御装置。 A shut-off valve, a control valve, a temperature sensor, a heater, and a pressure sensor are provided along the fluid flow path to be controlled, based on the detected pressure signal of the pressure sensor. In addition, it automatically controls the shutoff valve and the control valve, and at the same time, automatically controls the amount of heat generated by the heater based on the signal from the temperature sensor so that the equipment placed downstream is exposed to a low temperature below the condensation temperature. The fluid control apparatus characterized by preventing. 請求項3で、遮断弁と、調節弁と、調節弁の下流に配置された温度センサーと、加熱ヒーターと、圧力センサーとを一体化した構造の流体制御装置。 4. The fluid control device according to claim 3, wherein the shutoff valve, the control valve, a temperature sensor disposed downstream of the control valve, a heater, and a pressure sensor are integrated. 調節弁の上流あるいは下流、あるいは上流と下流にオリフィス機構を配したことを特徴とする流体制御装置。 A fluid control device characterized in that an orifice mechanism is arranged upstream or downstream of the control valve, or upstream and downstream. 請求項1、請求項2、請求項3、請求項4、請求項5いずれかの調節弁のベローズ部にパージおよびベント流路を設けることを特徴とする流体制御装置。 6. A fluid control apparatus comprising a purge and a vent channel in a bellows portion of the regulating valve according to claim 1, 2, 3, 4, and 5. 請求項1、請求項2、請求項3、請求項4、請求項5、請求項6のいずれかで、調節弁の下流側にフィルターを配置することを特徴とする流体制御装置。 The fluid control device according to any one of claims 1, 2, 3, 4, 5, and 6, wherein a filter is disposed downstream of the regulating valve. 請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7のいずれかで、圧力センサーが遮断弁と調節弁の間に追加配置されることを特徴とする流体制御装置。 The pressure sensor according to any one of claims 1, 2, 3, 4, 5, 6, and 7 is additionally provided between the shutoff valve and the regulating valve. A fluid control device. 請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8のいずれかで、調節弁駆動部に均等配置された複数の駆動軸付勢手段、ゴム製ダイヤフラムを備え、正作動多段式としたことを特徴とする流体制御装置。 Claim 1, Claim 2, Claim 3, Claim 4, Claim 5, Claim 6, Claim 7, Claim 8 A fluid control device comprising a biasing means and a rubber diaphragm, and is a multi-stage forward operation type. 請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8のいずれかで、調節弁駆動部に均等配置された複数の駆動軸付勢手段、ゴム製ダイヤフラムを備え、逆作動多段式としたことを特徴とする流体制御装置。 Claim 1, Claim 2, Claim 3, Claim 4, Claim 5, Claim 6, Claim 7, Claim 8 A fluid control device comprising a biasing means, a rubber diaphragm, and a reverse-acting multistage type. 弁座と弁体との間隙流路を調整して流体を制御する調節弁において、弁座と弁体の間隙流路で形成される流路制御部を多段式とし、下流側の流路制御部の流路断面積が上流側の流路制御部の流路断面積よりも大きいことを特徴とする調節弁。 In the control valve that controls the fluid by adjusting the gap flow path between the valve seat and the valve body, the flow path control unit formed by the gap flow path between the valve seat and the valve body is a multi-stage type, and the downstream flow path control The control valve is characterized in that the flow passage cross-sectional area of the portion is larger than the flow passage cross-sectional area of the upstream flow passage control section. 弁座と弁体との間隙流路を調整して流体を制御する調節弁において、弁座とガスケットとを一体化した構造を特徴とする調節弁。 A control valve for controlling a fluid by adjusting a gap flow path between a valve seat and a valve body, characterized by a structure in which the valve seat and a gasket are integrated. 流体制御装置の流体流路に沿って設けた流量計の流量測定結果と、同様に流体制御装置の流体流路に沿って配置した圧力計の圧力測定結果とを、電気信号として前記流体制御装置のコントローラーにフィードバックすることを特徴とする流体の制御方法。 The flow control result of the flow meter provided along the fluid flow path of the fluid control apparatus and the pressure measurement result of the pressure gauge similarly arranged along the fluid flow path of the fluid control apparatus are used as the electrical signal to the fluid control apparatus. A method for controlling a fluid, which is fed back to a controller. 請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7、請求項8、請求項9、請求項10のいずれかで、メタルダイヤフラムを用いた遮断弁と、ベローズシールを用いた調節弁とで構成したことにより、流体の滞留を最小にする構造を有し、なおかつ、流体が接触する流路全面が鏡面研磨されていることを特徴とする流体制御装置。
Claim 1, Claim 2, Claim 3, Claim 4, Claim 5, Claim 6, Claim 7, Claim 8, Claim 9 or Claim 10 using a metal diaphragm A fluid characterized by comprising a valve and a control valve using a bellows seal, thereby having a structure that minimizes the retention of fluid, and the entire surface of the flow path in contact with the fluid is mirror-polished Control device.
JP2005328878A 2005-11-14 2005-11-14 Fluid control apparatus, pressure regulating valve and control method Pending JP2007133829A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005328878A JP2007133829A (en) 2005-11-14 2005-11-14 Fluid control apparatus, pressure regulating valve and control method
PCT/JP2006/322612 WO2007055370A1 (en) 2005-11-14 2006-11-14 Fluid control unit, pressure control valve, and pressure control method
TW095142035A TW200722946A (en) 2005-11-14 2006-11-14 Fluid control unit, pressure control valve, and pressure control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005328878A JP2007133829A (en) 2005-11-14 2005-11-14 Fluid control apparatus, pressure regulating valve and control method

Publications (1)

Publication Number Publication Date
JP2007133829A true JP2007133829A (en) 2007-05-31

Family

ID=38023361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005328878A Pending JP2007133829A (en) 2005-11-14 2005-11-14 Fluid control apparatus, pressure regulating valve and control method

Country Status (3)

Country Link
JP (1) JP2007133829A (en)
TW (1) TW200722946A (en)
WO (1) WO2007055370A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515974A (en) * 2009-01-21 2012-07-12 テスコム・コーポレーション Temperature control pressure regulator
JP2013019616A (en) * 2011-07-12 2013-01-31 Fujitsu Ltd Adsorption type heat pump and information processing system
WO2014083639A1 (en) * 2012-11-28 2014-06-05 株式会社島津製作所 Supercritical fluid processing device
CN106763811A (en) * 2016-12-29 2017-05-31 珠海市奥吉赛科技有限公司 A kind of gas valve device with flow monitoring
CN111255933A (en) * 2017-05-09 2020-06-09 浙江三花汽车零部件有限公司 Electronic expansion valve, thermal management assembly, cooling system and electronic expansion valve manufacturing method
KR102412626B1 (en) * 2021-12-29 2022-06-23 에스케이에코플랜트(주) Balance of plant module for solid oxide electrolysis cell system and solid oxide electrolysis cell system
US11698146B2 (en) 2017-05-09 2023-07-11 Zhejiang Sanhua Automotive Components Co., Ltd. Electronic expansion valve, thermal management assembly, cooling system, and method for manufacturing electronic expansion valve

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5340760B2 (en) * 2009-02-12 2013-11-13 倉敷紡績株式会社 Fluid control method and fluid control apparatus
TWI552833B (en) * 2015-11-12 2016-10-11 Wen-Feng Wang Automatic Control System of Pressure Vise
RU2620733C1 (en) * 2016-08-04 2017-05-29 Закрытое акционерное общество "ЮГГАЗСЕРВИС" Automatic emergency closing of the crane of the gate of the gas pipe
GB201704761D0 (en) * 2017-01-05 2017-05-10 Illumina Inc Common line selector valve for a system
KR102392599B1 (en) * 2018-07-09 2022-04-29 가부시키가이샤 후지킨 fluid control device
CN109513531B (en) * 2018-12-29 2023-09-12 重庆博奥镁铝金属制造有限公司 Paint nozzle
CN110578806B (en) * 2019-09-30 2024-04-05 上海龙猛机械有限公司 Damping back pressure valve
CN114441162A (en) * 2020-11-04 2022-05-06 上海汽车集团股份有限公司 Performance calibration equipment of pressure relief valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172265A (en) * 1991-05-31 1993-07-09 Motoyama Seisakusho:Kk Gas control device
JPH11101352A (en) * 1997-07-31 1999-04-13 Motoyama Seisakusho:Kk Flow control valve
JPH11202945A (en) * 1998-01-19 1999-07-30 Smc Corp Self-diagnosing method for mass flow controller
JP2005141560A (en) * 2003-11-07 2005-06-02 Osaka Gas Co Ltd Operation test method and apparatus and standby pressure setting method for governor
JP2005196585A (en) * 2004-01-08 2005-07-21 Smc Corp Regulator with built-in filter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288905A (en) * 1989-02-16 1990-11-28 Fuji Electric Co Ltd Tester for feedback controller
JPH0370612U (en) * 1989-11-14 1991-07-16
JPH0514741U (en) * 1990-12-27 1993-02-26 三菱重工業株式会社 Multi-stage pressure reducing flow control valve
JPH06180612A (en) * 1992-12-11 1994-06-28 Tokico Ltd Interrupting device
JP3182717B2 (en) * 1996-06-06 2001-07-03 株式会社山武 Control valve abnormality detection method and detection device
JP3580645B2 (en) * 1996-08-12 2004-10-27 忠弘 大見 Pressure type flow controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172265A (en) * 1991-05-31 1993-07-09 Motoyama Seisakusho:Kk Gas control device
JPH11101352A (en) * 1997-07-31 1999-04-13 Motoyama Seisakusho:Kk Flow control valve
JPH11202945A (en) * 1998-01-19 1999-07-30 Smc Corp Self-diagnosing method for mass flow controller
JP2005141560A (en) * 2003-11-07 2005-06-02 Osaka Gas Co Ltd Operation test method and apparatus and standby pressure setting method for governor
JP2005196585A (en) * 2004-01-08 2005-07-21 Smc Corp Regulator with built-in filter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012515974A (en) * 2009-01-21 2012-07-12 テスコム・コーポレーション Temperature control pressure regulator
JP2013019616A (en) * 2011-07-12 2013-01-31 Fujitsu Ltd Adsorption type heat pump and information processing system
WO2014083639A1 (en) * 2012-11-28 2014-06-05 株式会社島津製作所 Supercritical fluid processing device
CN104813163A (en) * 2012-11-28 2015-07-29 株式会社岛津制作所 Supercritical fluid processing device
US9766214B2 (en) 2012-11-28 2017-09-19 Shimadzu Corporation Supercritical fluid processing device
CN106763811A (en) * 2016-12-29 2017-05-31 珠海市奥吉赛科技有限公司 A kind of gas valve device with flow monitoring
CN111255933A (en) * 2017-05-09 2020-06-09 浙江三花汽车零部件有限公司 Electronic expansion valve, thermal management assembly, cooling system and electronic expansion valve manufacturing method
US11698146B2 (en) 2017-05-09 2023-07-11 Zhejiang Sanhua Automotive Components Co., Ltd. Electronic expansion valve, thermal management assembly, cooling system, and method for manufacturing electronic expansion valve
KR102412626B1 (en) * 2021-12-29 2022-06-23 에스케이에코플랜트(주) Balance of plant module for solid oxide electrolysis cell system and solid oxide electrolysis cell system

Also Published As

Publication number Publication date
WO2007055370A1 (en) 2007-05-18
TW200722946A (en) 2007-06-16

Similar Documents

Publication Publication Date Title
JP2007133829A (en) Fluid control apparatus, pressure regulating valve and control method
US8210196B2 (en) Vacuum control system and vacuum control method
JP5727596B2 (en) Memory method of initial value of actual gas monitor flow rate of pressure type flow control device with flow rate monitor and method of confirming output of actual gas monitor flow rate
JP4298476B2 (en) Fluid control device
JP6216389B2 (en) Pressure flow control device
US8910529B2 (en) Gas flow-rate verification system and gas flow-rate verification unit
JP4765746B2 (en) Shut-off valve device and mass flow control device incorporating the same
JP4137666B2 (en) Mass flow controller
US6467505B1 (en) Variable pressure regulated flow controllers
TWI381258B (en) Gas supply unit
JP5665794B2 (en) Gas shunt supply device for semiconductor manufacturing equipment
WO2006022096A1 (en) Liquid regulator
JP2004280688A (en) Massflow controller
JP6693418B2 (en) Mass flow controller
US8528598B2 (en) Flow splitter
CN108572023B (en) Diagnostic system, diagnostic method, and storage medium
JP4986125B2 (en) Mass flow control device and gas supply unit
JP4753251B2 (en) Gas flow meter and gas flow control device
JP5261545B2 (en) Vacuum control system and vacuum control method
US11550341B2 (en) Mass flow control system, and semiconductor manufacturing equipment and vaporizer including the system
JP5442413B2 (en) Semiconductor manufacturing apparatus and flow rate control apparatus
JP3577236B2 (en) Gas supply control device
TWI766961B (en) Diagnostic system, diagnostic method, storage medium, and flow rate controller
JP2001147722A (en) Gas flow rate controller
JPH0683456A (en) Mass flow controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081107

A131 Notification of reasons for refusal

Effective date: 20110105

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110427