JP2007131868A - Heat-shrinking film - Google Patents

Heat-shrinking film Download PDF

Info

Publication number
JP2007131868A
JP2007131868A JP2007031708A JP2007031708A JP2007131868A JP 2007131868 A JP2007131868 A JP 2007131868A JP 2007031708 A JP2007031708 A JP 2007031708A JP 2007031708 A JP2007031708 A JP 2007031708A JP 2007131868 A JP2007131868 A JP 2007131868A
Authority
JP
Japan
Prior art keywords
heat
film
shrinkable film
particles
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007031708A
Other languages
Japanese (ja)
Other versions
JP2007131868A5 (en
Inventor
Kokichi Hashimoto
幸吉 橋本
Hiroko Matsushima
博子 松島
Masahiro Kimura
将弘 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007031708A priority Critical patent/JP2007131868A/en
Publication of JP2007131868A publication Critical patent/JP2007131868A/en
Publication of JP2007131868A5 publication Critical patent/JP2007131868A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Wrappers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-shrinking film having excellent heat shrinkage, heat-shrinking stress and adhesion to a container, and also having alkali-solubility. <P>SOLUTION: The heat-shrinking film is an oriented film comprising a polymer consisting essentially of a polylactic acid containing 0.01-1 wt.% particles, and has ≥20% heat shrinkage at least in one direction of the film in hot air at 120°C, and ≤5.0 MPa maximum heat shrinkage stress of the film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アルカリ水溶液に対する溶解性を有し、熱収縮特性に優れるだけでなく、機械的特性や耐熱性等に優れ、シュリンクラベルや食品包装等に用いられる熱収縮フィルムに関するものである。   The present invention relates to a heat-shrinkable film that is soluble in an alkaline aqueous solution and not only excellent in heat shrinkage properties but also excellent in mechanical properties and heat resistance, and used for shrink labels, food packaging, and the like.

従来より、熱収縮フィルムはビン、ポリエチレンテレフタレート(以下PETと略称する)ボトル等に用いられるシュリンクラベルとして使用されている。   Conventionally, heat shrink films have been used as shrink labels used in bottles, polyethylene terephthalate (hereinafter abbreviated as PET) bottles, and the like.

特に、食品包装用のシュリンクラベルとしては、熱により収縮率の大きい、例えば、エチレン−酢酸ビニル共重合体、エチレン−エチルアクリレート共重合体、ポリ塩化ビニリル、ポリスチレンからなる延伸フィルムが主として用いられてきた。   In particular, as a shrink label for food packaging, a stretched film having a large shrinkage rate due to heat, for example, an ethylene-vinyl acetate copolymer, an ethylene-ethyl acrylate copolymer, polyvinylyl chloride, or polystyrene has been mainly used. It was.

しかし、近年、安全衛生性や耐薬品性、透明性に優れたポリエステル系の熱収縮フィルムが要望されるようになり、PETにネオペンチルグリコールあるいはイソフタル酸等を共重合したポリエステルからなる延伸フィルムが提案されている(特許文献1、特許文献2、特許文献3)。   However, in recent years, polyester-based heat-shrinkable films having excellent safety and hygiene, chemical resistance, and transparency have been demanded, and stretched films made of polyester obtained by copolymerizing neopentyl glycol or isophthalic acid with PET have been developed. It has been proposed (Patent Document 1, Patent Document 2, Patent Document 3).

しかしながら、これらのフィルムは熱収縮応力を十分に低下させたととはいえず、容器によっては変形を生じたり、容器の変形なく収縮させると熱収縮率が不足するという問題があった。   However, it cannot be said that these films have sufficiently reduced the heat shrinkage stress, and there is a problem that the heat shrinkage rate is insufficient when the film is deformed or contracted without deformation of the container.

また、近年、ビン、PETボトルを回収することが要望されるようになってきた。それらの容器を回収するためには、それらの容器に貼り付けられた熱収縮フィルムを取り除く必要がある。水溶性糊剤使用のラベル場合は、水系溶液中に浸漬させて容器からラベルを除去することができるが、熱収縮フィルムの場合は加熱収縮により容器に密着させているため、水系溶液中への浸漬では容器から取り除くことができない。容器回収のためには容器一本一本から熱収縮フィルムを除去しなければならないという問題があった。
特開昭63−156833号公報 特開昭63−202429号公報 特公昭63−7573号公報
In recent years, it has been requested to collect bottles and PET bottles. In order to collect these containers, it is necessary to remove the heat-shrinkable film attached to these containers. In the case of a label using a water-soluble paste, the label can be removed from the container by immersing it in an aqueous solution. However, in the case of a heat shrinkable film, it is brought into close contact with the container by heat shrinkage. It cannot be removed from the container by immersion. In order to recover the container, there was a problem that the heat shrink film had to be removed from each container.
JP-A 63-156833 JP-A-63-202429 Japanese Examined Patent Publication No. 63-7573

従って本発明の目的とするところは、熱収縮特性、容器密着性に優れ、しかもアルカリ水溶液で溶解させ容器から剥離可能な熱収縮フィルムを提供することにある。   Accordingly, an object of the present invention is to provide a heat-shrinkable film that is excellent in heat-shrinkage characteristics and container adhesion, and can be dissolved in an alkaline aqueous solution and peeled from the container.

上記の本発明の目的は、粒子0.01〜1重量%含有するポリ乳酸を主体とするポリマーからなる延伸フィルムであって、フィルムの120℃の熱風中での少なくとも一方向の熱収縮率が20%以上であり、フィルムの最大熱収縮応力が5.0MPa以下であることを特徴とする熱収縮フィルムによって達成される。   The object of the present invention is a stretched film composed of a polymer mainly composed of polylactic acid containing 0.01 to 1% by weight of particles, wherein the film has a heat shrinkage rate in at least one direction in 120 ° C. hot air. It is 20% or more, and is achieved by a heat shrinkable film characterized in that the maximum heat shrinkage stress of the film is 5.0 MPa or less.

本発明で得られた熱収縮フィルムは、粒子を0.01〜1重量%含有するポリ乳酸を主体とするポリマーからなる延伸フィルムであって、該フィルムの120℃の熱風中での少なくとも一方向の熱収縮率が20%以上、フィルムの最大熱収縮応力が5.0MPa以下にすることにより、熱収縮性、熱収縮応力性、容器密着性が優れ、アルカリ溶解性を有する熱収縮フィルムを提供することができる。   The heat-shrinkable film obtained in the present invention is a stretched film composed of a polymer mainly composed of polylactic acid containing 0.01 to 1% by weight of particles, and the film is at least one direction in hot air at 120 ° C. By providing a heat shrinkage rate of 20% or more and a maximum heat shrinkage stress of the film of 5.0 MPa or less, a heat shrinkable film having excellent heat shrinkability, heat shrinkage stress properties, container adhesion, and alkali solubility is provided. can do.

以下、本発明の好ましい実施の形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described.

本発明の熱収縮フィルムに用いる粒子は、ポリ乳酸を主体とするポリマーに0.01〜1重量%含有することが必要である。より好ましくは0.01〜0.5重量%である。含有する粒子としては、ポリ乳酸ポリマーに不活性なものであれば特に限定されないが、粒子としては、無機粒子、有機粒子、架橋高分子粒子、重合系内で生成させる内部粒子などが挙げることができる。これらの粒子を2種以上を含有しても構わない。   The particles used in the heat-shrinkable film of the present invention must be contained in an amount of 0.01 to 1% by weight in a polymer mainly composed of polylactic acid. More preferably, it is 0.01 to 0.5% by weight. The particles to be contained are not particularly limited as long as they are inactive to the polylactic acid polymer, but examples of the particles include inorganic particles, organic particles, crosslinked polymer particles, and internal particles generated in the polymerization system. it can. Two or more kinds of these particles may be contained.

無機粒子としては、特に限定されないが、炭酸カルシウム、カオリン、タルク、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、硫酸バリウム、リン酸リチウム、リン酸カルシウム、リン酸マグネシウム、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、フッ化リチウムなどが挙げられる。有機粒子としては、シュウ酸カルシウムやカルシウム、バリウム、亜鉛、マンガン、マグネシウム等のテレフタル酸塩などが挙げられる。   The inorganic particles are not particularly limited, but calcium carbonate, kaolin, talc, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, lithium phosphate, calcium phosphate, magnesium phosphate, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide. And lithium fluoride. Examples of the organic particles include calcium oxalate, terephthalate such as calcium, barium, zinc, manganese, and magnesium.

架橋高分子粒子としては、ジビニルベンゼン、スチレン、アクリル酸、メタクリル酸等のビニル系モノマーの単独または共重合体が挙げられる。その他ポリテトラフルオロエチレン、ベンゾグアナミン樹脂、熱硬化エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性尿素樹脂、熱硬化性フェノール樹脂などの有機微粒子も好ましく使用される。重合系内で生成させる内部粒子としては、アルカリ金属化合物、アルカリ土類金属化合物などを反応系内に添加し、さらにリン化合物を添加する公知の方法で生成されるものも使用される。粒子含有量が0.01重量%未満であるとフィルムの易滑性が付与し難いので好ましくない。逆に1重量%を超えるとPETボトル回収時に熱収縮フィルムをアルカリ水溶液で溶解させた場合、粒子がPETボトルに溶解残査として付着しやすく、該粒子が回収PETに含有すると粒子に付着した水分および乳酸が悪影響を及ぼしやすいので好ましくない。含有する平均粒子径は好ましくは0.001〜10μmであり、さらに好ましくは0.01〜2μmである。平均粒子径が0.01μm未満であると易滑性が付与し難く、逆に10μmを超えるとフィルムの欠陥が生じやすくなるので好ましくない。   Examples of the crosslinked polymer particles include homopolymers or copolymers of vinyl monomers such as divinylbenzene, styrene, acrylic acid, and methacrylic acid. In addition, organic fine particles such as polytetrafluoroethylene, benzoguanamine resin, thermosetting epoxy resin, unsaturated polyester resin, thermosetting urea resin, and thermosetting phenol resin are also preferably used. As the internal particles generated in the polymerization system, those generated by a known method in which an alkali metal compound, an alkaline earth metal compound or the like is added to the reaction system, and a phosphorus compound is further added can be used. If the particle content is less than 0.01% by weight, it is difficult to impart the slipperiness of the film. On the other hand, when the amount exceeds 1% by weight, when the heat-shrinkable film is dissolved with an alkaline aqueous solution when the PET bottle is collected, the particles are likely to adhere to the PET bottle as a dissolution residue, and when the particles are contained in the collected PET, the moisture attached to the particles. And lactic acid is not preferable because it tends to have an adverse effect. The average particle diameter to be contained is preferably 0.001 to 10 μm, and more preferably 0.01 to 2 μm. If the average particle size is less than 0.01 μm, it is difficult to impart easy lubricity, and conversely if it exceeds 10 μm, defects in the film tend to occur, which is not preferable.

また、本発明の熱収縮フィルムに用いるポリマーは、ポリ乳酸を主体とすることが必要がある。ポリ乳酸を主体とするポリマーとしては、D−乳酸ホモポリマー、L−乳酸ホモポリマー、D−乳酸/L−乳酸コポリマー、D−乳酸/ヒドロキシカルボン酸コポリマーおよびそれらの混合物を挙げることができる。またポリ乳酸を主体とするポリマーは、L−乳酸成分を主体とし、D−乳酸成分の含有量が0〜30重量%であることが、耐熱性、熱収縮特性の点で好ましい。好ましくはD−乳酸成分の含有量が0〜20重量%である。   Moreover, the polymer used for the heat shrinkable film of the present invention needs to be mainly composed of polylactic acid. Examples of the polymer mainly composed of polylactic acid include D-lactic acid homopolymer, L-lactic acid homopolymer, D-lactic acid / L-lactic acid copolymer, D-lactic acid / hydroxycarboxylic acid copolymer, and mixtures thereof. The polymer mainly composed of polylactic acid is mainly composed of an L-lactic acid component and preferably has a D-lactic acid component content of 0 to 30% by weight from the viewpoint of heat resistance and heat shrinkage characteristics. The content of the D-lactic acid component is preferably 0 to 20% by weight.

本発明におけるフィルムのポリ乳酸を主体とするポリマーは、次のような方法で得ることができる。原料として、D−乳酸および/またはL−乳酸を主体として、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸等のヒドロキシカルボン酸類を併用することもできる。さらにジカルボン酸類やグリコール類も用いることができる。ポリ乳酸を主体とするポリマーは上記原料を直接脱水重縮合する方法、または上記環状エステル中間体を開環重合する方法によって得ることができる。例えば、直接脱水重縮合して製造する場合、乳酸類または乳酸類とヒドロキシカルボン酸類を好ましくは有機溶媒、特にフェニルエーテル系溶媒の存在下で共沸脱水縮合し、特に好ましくは共沸により重合することにより本発明に適した高分子量のポリマーが得られる。ポリマーの分子量は、フィルムとしての成形性等の点から重量平均分子量1万〜100万の範囲であることが好ましい。   The polymer mainly composed of polylactic acid in the present invention can be obtained by the following method. As raw materials, hydroxycarboxylic acids such as glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, and hydroxycaproic acid can be used in combination, mainly D-lactic acid and / or L-lactic acid. Furthermore, dicarboxylic acids and glycols can also be used. A polymer mainly composed of polylactic acid can be obtained by a method of directly dehydrating polycondensation of the raw materials or a method of ring-opening polymerization of the cyclic ester intermediate. For example, when producing by direct dehydration polycondensation, lactic acid or lactic acid and hydroxycarboxylic acid are preferably subjected to azeotropic dehydration condensation in the presence of an organic solvent, particularly phenyl ether solvent, and particularly preferably polymerized by azeotropy. As a result, a high molecular weight polymer suitable for the present invention can be obtained. The molecular weight of the polymer is preferably in the range of a weight average molecular weight of 10,000 to 1,000,000 from the viewpoint of moldability as a film.

また、本発明におけるフィルムのポリ乳酸を主体とするポリマーには、ヒドロキシカルボン酸成分を構成成分とするポリグリコール酸、ポリ酪酸ポリヒドロキシブチレート等や、ジカルボン酸成分とグリコール成分を構成成分とするポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート(PPT)、ポリエチレン−2,6−ナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリヘキサメチレンテレフタレート(PHT)、ポリエチレンイソフタレート(PEI)、ポリシクロヘキサンジメチレンテレフタレート(PCT)、ポリブチレンサクシネート等のポリエステル、または、これらのポリエステルを主体とする共重合体等とのブレンド体であってもよい。また共重合体の場合は、ランダム共重合体でもブロック共重合体であってもよい。また、本発明の効果が損なわれない範囲で他のアルカリ水溶性ポリマーを添加しても構わない。   In addition, the polymer mainly composed of polylactic acid of the film of the present invention includes polyglycolic acid, polybutyric acid polyhydroxybutyrate, etc. having a hydroxycarboxylic acid component as constituents, and dicarboxylic acid components and glycol components as constituent components. Polyethylene terephthalate (PET), Polypropylene terephthalate (PPT), Polyethylene-2,6-naphthalate (PEN), Polybutylene terephthalate (PBT), Polyhexamethylene terephthalate (PHT), Polyethylene isophthalate (PEI), Polycyclohexanedimethylene terephthalate (PCT), polyesters such as polybutylene succinate, or a blend with a copolymer mainly composed of these polyesters may be used. In the case of a copolymer, it may be a random copolymer or a block copolymer. Moreover, you may add another alkaline water-soluble polymer in the range which does not impair the effect of this invention.

他のアルカリ生分解性ポリマーとしては、例えば、酢酸セルロース、セルロース、でんぷん、ポリビニルアルコール等が挙げられる。熱収縮フィルムに用いるポリマーをポリ乳酸を主体とするポリマーにすることで、アルカリ溶解性を有することができる。前述のポリ乳酸を主体とするポリマーには、必要に応じて、熱収縮性、熱収縮応力性、アルカリ溶解性が損なわれない範囲内であれば粒子以外の各種の添加剤が含まれていてもよい。例えば、難燃剤、酸化防止剤、耐侯剤、熱安定剤、滑剤、結晶核剤、紫外線吸収剤、着色剤、末端封鎖剤、脂肪酸エステル、ワックス等の有機滑剤あるいはポリシロキサン等を配合することができる。   Examples of other alkali biodegradable polymers include cellulose acetate, cellulose, starch, and polyvinyl alcohol. By making the polymer used for the heat-shrinkable film a polymer mainly composed of polylactic acid, it can have alkali solubility. If necessary, the polymer mainly composed of polylactic acid may contain various additives other than particles as long as heat shrinkage, heat shrinkage stress, and alkali solubility are not impaired. Also good. For example, an organic lubricant such as a flame retardant, an antioxidant, an antifungal agent, a heat stabilizer, a lubricant, a crystal nucleating agent, an ultraviolet absorber, a colorant, a terminal blocking agent, a fatty acid ester, a wax, or a polysiloxane may be blended. it can.

また、本発明における熱収縮フィルムは、延伸フィルムであることが必要である。延伸方法としては、インフレーション同時二軸延伸法、ステンター同時二軸延伸法、ステンター逐次二軸延伸法のいずれかの方法により二軸延伸されたものであるが、製膜安定性、厚み均一性の点でステンター逐次二軸延伸法により製膜されたものが好ましい。   In addition, the heat shrink film in the present invention needs to be a stretched film. The stretching method is biaxially stretched by any of the inflation simultaneous biaxial stretching method, the stenter simultaneous biaxial stretching method, and the stenter sequential biaxial stretching method. In that respect, a film formed by a stenter sequential biaxial stretching method is preferred.

また、本発明における熱収縮フィルムは、120℃における少なくとも一方向の熱収縮率が20%以上であることが必要である。好ましくは40%以上である。熱収縮率が20%未満の場合、熱収縮性が不十分となり、フィルムが容器に十分密着しない点で好ましくない。   Further, the heat shrinkable film in the present invention is required to have a heat shrinkage rate of at least 20% in at least one direction at 120 ° C. Preferably it is 40% or more. When the heat shrinkage rate is less than 20%, the heat shrinkability becomes insufficient, and this is not preferable in that the film does not sufficiently adhere to the container.

本発明におけるフィルムは、最大熱収縮応力が5.0MPa以下であることが必要である。好ましくは、長手方向の最大熱収縮応力が5.0MPa以下であることが好ましい。5.0MPaを超えると容器を変形させやすいので好ましくない。   The film in the present invention is required to have a maximum heat shrinkage stress of 5.0 MPa or less. Preferably, the maximum heat shrinkage stress in the longitudinal direction is preferably 5.0 MPa or less. If it exceeds 5.0 MPa, the container is easily deformed, which is not preferable.

本発明における熱収縮フィルムは、pH7を越える水溶液で50%以上溶解することが好ましい。好ましくは80%以上、さらに好ましくは95%以上溶解することが好ましい。50%未満であると容器回収時に密着したフィルムを除去し難いので好ましくない。pH7を越える水溶液とはアルカリ性の水溶液であり、例えば、水酸化ナトリウム、水酸化カルシウム、水酸化アンモニウム等のアルカリ性の水溶液が挙げられる。アルカリ性の強い水溶液はフィルムを溶解させやすいが、強すぎると作業環境が悪化するので好ましくない。好ましくはpH7.1〜9である。pH7の中性溶液およびpH7未満の酸性水溶液ではフィルムが溶解し難いので好ましくない。さらに好ましくは、pH7を越える水溶液を50℃以上に加熱するとフィルムの溶解性が進行しやすいので好ましい。   The heat-shrinkable film in the present invention is preferably dissolved by 50% or more in an aqueous solution exceeding pH 7. Preferably, it is 80% or more, more preferably 95% or more. If it is less than 50%, it is difficult to remove the film adhered during container recovery, which is not preferable. The aqueous solution exceeding pH 7 is an alkaline aqueous solution, and examples thereof include alkaline aqueous solutions such as sodium hydroxide, calcium hydroxide, and ammonium hydroxide. A strong alkaline aqueous solution is easy to dissolve the film, but too strong is not preferable because the working environment is deteriorated. Preferably it is pH 7.1-9. A neutral solution of pH 7 and an acidic aqueous solution of less than pH 7 are not preferable because the film is difficult to dissolve. More preferably, heating an aqueous solution exceeding pH 7 to 50 ° C. or more is preferable because the solubility of the film easily proceeds.

本発明における熱収縮フィルムは、ポリエステルまたはポリオレフィン系樹脂を主体とする基材にポリ乳酸を主体とするポリマーを積層することができる。   In the heat shrinkable film of the present invention, a polymer mainly composed of polylactic acid can be laminated on a base material mainly composed of polyester or polyolefin resin.

ここでポリエステルとは、ジカルボン酸成分とグリコール成分を構成成分とするポリマーであり、例えば、ポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート(PPT)、ポリエチレン−2,6−ナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリヘキサメチレンテレフタレート(PHT)、ポリエチレンイソフタレート(PEI)、ポリシクロヘキサンジメチレンテレフタレート(PCT)、ポリブチレンサクシネート等のポリエステル、またはこれらのポリエステルを主体とする共重合体等とのブレンド体であってもよい。また共重合体の場合は、ランダム共重合体でもブロック共重合体であってもよい。また、ポリオレフィン系樹脂とは、ポリエチレン、ポリプロピレン系樹脂であり、エチレン含有量が0〜6重量%とプロピレン、ブテン−1、ヘキセン−1、4−メチルペンテン−1、オクテン−1の共重合体である。プロピレン、ブテン−1、オクテン−1との共重合体の単体でも混合物でも三元共重合体例えばプロピレンとブテン−1であってもよい。基材は特にコスト、耐熱性の点でポリエチレンテレフタレートなどのポリエステル、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂が好ましい。基材は、無延伸、一軸延伸、二軸延伸のフィルムのいずれでもよいが、均一な熱収縮性、熱収縮応力性を得るには二軸延伸フィルムが好ましい。   Here, the polyester is a polymer having a dicarboxylic acid component and a glycol component as constituent components. For example, polyethylene terephthalate (PET), polypropylene terephthalate (PPT), polyethylene-2,6-naphthalate (PEN), polybutylene terephthalate ( Polyesters such as PBT), polyhexamethylene terephthalate (PHT), polyethylene isophthalate (PEI), polycyclohexanedimethylene terephthalate (PCT), polybutylene succinate, or blends of these polyesters as a main component It may be a body. In the case of a copolymer, it may be a random copolymer or a block copolymer. Polyolefin resins are polyethylene and polypropylene resins, and copolymers of propylene, butene-1, hexene-1, 4-methylpentene-1, and octene-1 with an ethylene content of 0 to 6% by weight. It is. The copolymer of propylene, butene-1, and octene-1 may be a simple substance, a mixture, or a terpolymer such as propylene and butene-1. In particular, the base material is preferably a polyester resin such as polyethylene terephthalate, or a polyolefin resin such as polyethylene or polypropylene, from the viewpoint of cost and heat resistance. The substrate may be any of a non-stretched film, a uniaxially stretched film, and a biaxially stretched film, but a biaxially stretched film is preferable for obtaining uniform heat shrinkability and heat shrinkage stress properties.

本発明における熱収縮フィルムは、基材フィルム(A)とポリ乳酸を主体とするポリマー(B)がB/A/Bの順に積層することもできる。   In the heat shrinkable film of the present invention, the base film (A) and the polymer (B) mainly composed of polylactic acid can be laminated in the order of B / A / B.

本発明のフィルムの厚みは特に限定されないが、1〜300μm、好ましくは5〜100μmで有効に使用される。   Although the thickness of the film of the present invention is not particularly limited, it is effectively used at 1 to 300 μm, preferably 5 to 100 μm.

本発明の熱収縮フィルムは、特に限定されないが、例えば、下記の方法を用いて製造することができる。例えば、二軸延伸フイルムの場合、前述の本発明の組成のポリ乳酸ポリマーまたはポリ乳酸共重合ポリマーを通常のホッパドライヤー、パドリドライヤー、真空乾燥機等を用いて十分乾燥させた後、押出機に供給して150〜230℃で溶融しTダイ押出法によってキャスティングドラム上に押し出し、急冷して未延伸フィルムを得る。キャスティングドラムへの密着方法としては、静電印加法、水等の表面張力を利用した密着法、エアーナイフ法、プレスロール法等のうちいずれの方法を用いてもよいが、平面性が良好で滑表面欠点の少ないフィルムを得る手法として、水等の表面張力を利用した密着キャスト法または静電印加法とするのが厚みの均一なフィルムを得ることができ特に好ましい。このとき、口金のスリット幅、フィルムに用いられるポリマーの吐出量、キャスティングドラムの回転数を調整することによって、所望の厚みの未延伸フィルムを得ることができる。   Although the heat shrink film of this invention is not specifically limited, For example, it can manufacture using the following method. For example, in the case of a biaxially stretched film, the polylactic acid polymer or polylactic acid copolymer having the composition of the present invention described above is sufficiently dried using a normal hopper dryer, paddle dryer, vacuum dryer, etc., and then an extruder. And melted at 150 to 230 ° C., extruded onto a casting drum by a T-die extrusion method, and rapidly cooled to obtain an unstretched film. As an adhesion method to the casting drum, any of an electrostatic application method, an adhesion method using surface tension such as water, an air knife method, a press roll method, etc. may be used, but the flatness is good. As a method for obtaining a film having a small smooth surface defect, it is particularly preferable to use a contact casting method or an electrostatic application method utilizing surface tension of water or the like because a film having a uniform thickness can be obtained. At this time, an unstretched film having a desired thickness can be obtained by adjusting the slit width of the die, the discharge amount of the polymer used for the film, and the number of rotations of the casting drum.

次いで、この未延伸フィルムを同時あるいは逐次に二軸延伸することによって、二軸延伸フィルムを得ることができる。また、逐次二軸延伸の場合、その延伸順序はフィルムを長手方向、幅方向の順、あるいはこの逆としてもよい。さらに逐次二軸延伸においては、長手方向あるいは幅方向の延伸を2回以上行うことも可能である。フィルムの長手方向および幅方向の延伸倍率は目的とするフィルムの熱収縮性、熱収縮応力性、容器への密着性は配向度、強度、弾性率等に応じて任意に設定することができる。好ましくは2.0〜7.0倍である。長手方向、幅方向の延伸倍率はどちらを大きくしてもよく、同一としてもよい。延伸方法については特に制限はなく、ロール延伸、テンター延伸等の方法が適用され、形状面においてはフラット状、チューブ状等どのようなものであってもよい。また、延伸温度はポリ乳酸を主体とするポリマーのガラス転移温度以上、結晶化温度以下の範囲の温度とすることができる。通常は30〜120℃が好ましい。さらに、フィルムを二軸延伸した後に、強度、経時安定性、収縮特性の向上を目的に熱処理を行ってもよい。この熱処理は、オーブン中、加熱処理されたロール上等、任意の方法で行うことができる。熱処理温度は延伸温度以上、ポリ乳酸を主体とするポリマーの融点以下の任意の温度とすることができるが、好ましくは50〜150℃以下である。また熱処理時間は任意とすることができるが、通常1〜60秒間行うのが好ましい。熱処理はフィルムをその長手方向および/または幅方向に弛緩させつつ行ってもよい。熱処理を行ったフィルムは熱処理後ガラス転移温度以下まで急冷してもよく、段階的に冷却を行ってもよい。   Subsequently, a biaxially stretched film can be obtained by biaxially stretching the unstretched film simultaneously or sequentially. In the case of sequential biaxial stretching, the stretching order of the film may be the longitudinal direction and the width direction, or vice versa. Furthermore, in the sequential biaxial stretching, the stretching in the longitudinal direction or the width direction can be performed twice or more. The draw ratio in the longitudinal direction and width direction of the film can be arbitrarily set according to the degree of orientation, strength, elastic modulus and the like of the target film heat shrinkability, heat shrink stress property, and adhesion to the container. Preferably it is 2.0 to 7.0 times. Either the stretching ratio in the longitudinal direction or the width direction may be increased or the stretching ratio may be the same. There is no restriction | limiting in particular about the extending | stretching method, Methods, such as roll extending | stretching and a tenter extending | stretching, are applied, and what kind of things, such as a flat form and a tube form, may be sufficient in a shape surface. Further, the stretching temperature can be set to a temperature in the range of not less than the glass transition temperature of the polymer mainly composed of polylactic acid and not more than the crystallization temperature. Usually, 30-120 degreeC is preferable. Furthermore, after the film is biaxially stretched, heat treatment may be performed for the purpose of improving strength, stability over time, and shrinkage characteristics. This heat treatment can be performed by any method such as in an oven or on a heat-treated roll. The heat treatment temperature can be any temperature not lower than the stretching temperature and not higher than the melting point of the polymer mainly composed of polylactic acid, but is preferably 50 to 150 ° C. or lower. Moreover, although the heat processing time can be made arbitrary, it is preferable to carry out normally for 1 to 60 seconds. The heat treatment may be performed while relaxing the film in the longitudinal direction and / or the width direction. The heat-treated film may be rapidly cooled to the glass transition temperature or lower after the heat treatment, or may be cooled stepwise.

次に、本発明の効果を実施例により説明するが、本発明がこれらの実施例に限定されるものではない。まず、特性値の測定方法および評価方法を以下に示す。
[特性値の測定方法・評価方法]本発明の特性値は次の測定法による。
(1)易滑性フィルム同士の易滑性をASTM-D-1894に準じ、静摩擦係数(μs)を測定した。判定基準は、μsが2.0以上のものを×、1.6〜2.0の範囲のものを△、1.2未満のものを×として評価した。
(2)熱収縮率および外観フィルムの長手方向に250mm、幅方向に10mmの短冊状にサンプルを切り出し、23℃、湿度60%の雰囲気中に30分間放置し、その雰囲気中で長手方向に200mmの間隔で2つの印をつけ、リニアスケール測長機を用いて、その印の間隔を測定し、その値をLAとする。次に120℃の熱風を用い5分間加熱後、23℃、湿度60%の雰囲気に1時間冷却、調湿後、先につけた印の間隔をリニアスケール測長機で測定し、その値をLBとする。次式により熱収縮率を求める。
Next, the effects of the present invention will be described with reference to examples, but the present invention is not limited to these examples. First, the characteristic value measurement method and evaluation method will be described below.
[Method for Measuring / Evaluating Characteristic Value] The characteristic value of the present invention is determined by the following measuring method.
(1) The coefficient of static friction (μs) was measured in accordance with ASTM-D-1894 for the slipperiness between slippery films. The judgment criteria were evaluated as x for μs of 2.0 or more, Δ for a range of 1.6 to 2.0, and x for less than 1.2.
(2) Heat shrinkage ratio and appearance Samples were cut into strips of 250 mm in the longitudinal direction and 10 mm in the width direction, left in an atmosphere of 23 ° C. and 60% humidity for 30 minutes, and 200 mm in the longitudinal direction in that atmosphere. Two marks are made at intervals of, and the distance between the marks is measured using a linear scale length measuring device, and the value is set to LA. Next, after heating for 5 minutes using hot air at 120 ° C, cooling to a 23 ° C, 60% humidity atmosphere for 1 hour, adjusting the humidity, the distance between the first marks is measured with a linear scale measuring machine, and the value is LB And The heat shrinkage rate is obtained by the following formula.

熱収縮率=(LA−LB)/LA×100次いで、MDとTD方向の熱収縮率の平均が20%以上のものを○、10〜20%の範囲のものを△、10%未満のものを×として評価した。さらに熱収縮後に、白化等の外観不良を生じたものを××、良好なものを○として評価した。
(3)最大熱収縮応力フィルムを幅5mmの短冊状にサンプリングし、真空理工(株)製熱分析システムMTS9000型、熱収応力測定機TM9400型により、室温からフィルムの融点まで昇温速度10℃/分で加熱したときに発生する収縮力を測定し、温度に対する熱収縮応力を求めた。最大熱収縮応力が、5.0MPa未満のものを○、5.0〜6.0MPaの範囲のものを△、6.0MPa以上を×として評価した。
(4)容器への密着性PETボトル(1000ml用)にフィルムをドライヤーで収縮させ包装した後、外観の状態を次のように分類することにより評価した。フィルムが十分に収縮し容器を包み、容器の形状が元の形状を保持しているものを○、フィルムが十分に収縮し容器を包むが、容器がやや変形している箇所のあるものを△、フィルムの収縮が不足し、良好に容器を包装できないものおよびフィルムが十分に収縮し容器を包むがはっきりと変形している箇所のあるものを×として評価した。
(5)アルカリ溶解性約5gのフィルム重量を正確に測定し、その値をG1 とする。水酸化ナトリウム2重量%水溶液200ml中に温度60℃で8時間浸漬後、濾紙で水溶液を濾過し、純水で十分洗浄して、濾紙上の残査を110℃×1時間乾燥後、23℃、湿度60%の雰囲気に1時間冷却、調湿後、残査の重量を測定しその値をG2 とする。次式によりアルカリ溶解度を求める。
アルカリ溶解度=(G1−G2)/G1×100次いで、アルカリ溶解度が95%以上のものを◎、80%以上95%未満のものを○、50%以上〜80%未満のものを△、50%未満のものを×としてアルカリに対する溶解性を評価した。
(6)容器回収性PETボトル(1000ml用)にフィルムをドライヤーで収縮させ包装した後、水酸化ナトリウム2重量%水溶液5000ml中に温度60℃で8時間浸漬し、フィルムを溶解した後、PETボトルを取り出し、水で洗浄した。PETボトルへの粒子の付着状態を目視で次のように分類することにより回収性を評価した。容器に粒子が付着しているものを×、付着していないものを○、その中間のものを△とした。
(7)総合評価熱収縮応力性、熱収縮性、容器への密着性、アルカリ溶解性を熱収縮フィルムとしての実用性について、優れるものを○、やや劣るものを△、劣るものを×として評価した。
Heat shrinkage rate = (LA−LB) / LA × 100 Then, the average heat shrinkage rate in the MD and TD directions is 20% or more, ○ is 10-20%, Δ is less than 10% Was evaluated as x. Further, after heat shrinkage, those having appearance defects such as whitening were evaluated as xx, and those having good appearance were evaluated as ◯.
(3) The maximum heat shrinkage stress film was sampled into a strip shape having a width of 5 mm, and the temperature rising rate from room temperature to the melting point of the film was 10 ° C. by using a thermal analysis system MTS9000 type and heat absorption stress measuring machine TM9400 type manufactured by Vacuum Riko Co., Ltd. The shrinkage force generated when heated at 1 min was measured, and the heat shrinkage stress with respect to temperature was determined. The maximum heat shrinkage stress was evaluated as ○ when the stress was less than 5.0 MPa, Δ when the stress was in the range of 5.0 to 6.0 MPa, and x when 6.0 MPa or more.
(4) Adhesion to container After the film was shrunk and packaged in a PET bottle (for 1000 ml) with a dryer, the appearance was evaluated by classification as follows. The film is sufficiently shrunk to wrap the container, and the container has the original shape ○, the film is sufficiently shrunk to wrap the container, but the container has a part that is slightly deformed △ The case where the film was insufficiently shrunk and the container could not be packaged well and the film was sufficiently shrunk to wrap the container but had a part that was clearly deformed were evaluated as x.
(5) The film weight of about 5 g of alkali solubility is accurately measured, and the value is defined as G1. After immersing in 200 ml of 2 wt% aqueous sodium hydroxide solution at a temperature of 60 ° C. for 8 hours, the aqueous solution is filtered with a filter paper, thoroughly washed with pure water, and the residue on the filter paper is dried at 110 ° C. for 1 hour, then 23 ° C. Then, after cooling in a 60% humidity atmosphere for 1 hour and adjusting the humidity, the weight of the residue is measured and the value is defined as G2. The alkali solubility is obtained by the following formula.
Alkali solubility = (G1-G2) / G1 × 100 Then, ◎ if the alkali solubility is 95% or more, ○ if 80% or more but less than 95%, △ if 50% or more but less than 80%, 50% The solubility in alkali was evaluated with x below.
(6) The container is collected in a PET bottle (for 1000 ml), wrapped with a dryer and packaged, and then immersed in 5000 ml of a 2% by weight aqueous sodium hydroxide solution at a temperature of 60 ° C. for 8 hours to dissolve the film. Was removed and washed with water. Collectability was evaluated by visually classifying the adhesion state of particles to the PET bottle as follows. The case where the particles are attached to the container is indicated as x, the case where the particles are not attached is indicated as ○, and the intermediate portion is indicated as Δ.
(7) Comprehensive evaluation Regarding heat shrinkage stress properties, heat shrinkability, adhesion to containers, and alkali solubility as a heat shrinkable film, it is evaluated as ○ for superior, △ for slightly inferior, and × for inferior. did.

次に本発明の効果を実施例により説明する。   Next, the effects of the present invention will be described with reference to examples.

実施例1平均粒子径1.1μmの湿式法シリカ粒子0.15重量%含有するL−乳酸/D−乳酸との組成比が95/5である重量平均分子量170,000のポリ乳酸Aを混合後二軸押出機に供給し200℃で押し出しペレットとした。ペレットは120℃で減圧下3時間乾燥後、別々の押出機を用いて、Tダイ口金に導き、温度250℃で押し出し、冷却ドラム上にキャストしてシート状未延伸フィルムを作製した。次いでこのシートを65℃の加熱ロール間で長手方向に2.0倍延伸し冷却した後、引き続きテンター式延伸機に導き、60℃の温度に加熱し、幅方向に70℃で3.0倍延伸後、85℃の温度に熱処理を施し、常温空気をフィルムに吹き付け、40℃の温度に冷却した。ついで縦方向に75℃で1.5倍再延伸し、85℃の熱処理を施し、冷却して、引き続き常温空気をフィルムに吹き付け、40℃の温度に冷却し、ロール状に巻き取り、熱収縮フィルムとした。フィルムの平均厚みは25μmであった。   Example 1 Mixing polylactic acid A having a weight average molecular weight of 170,000 having a composition ratio of 95/5 with L-lactic acid / D-lactic acid containing 0.15% by weight of wet-process silica particles having an average particle diameter of 1.1 μm It supplied to the back twin-screw extruder and was made into the extrusion pellet at 200 degreeC. The pellets were dried at 120 ° C. under reduced pressure for 3 hours, then led to a T-die die using a separate extruder, extruded at a temperature of 250 ° C., and cast on a cooling drum to prepare a sheet-like unstretched film. Next, the sheet was stretched 2.0 times in the longitudinal direction between 65 ° C. heating rolls and cooled, and then led to a tenter type stretching machine, heated to a temperature of 60 ° C., and 3.0 times at 70 ° C. in the width direction. After stretching, heat treatment was performed at a temperature of 85 ° C., normal temperature air was blown onto the film, and the film was cooled to a temperature of 40 ° C. Next, the film was stretched 1.5 times at 75 ° C. in the machine direction, heat treated at 85 ° C., cooled, then air at room temperature was blown onto the film, cooled to a temperature of 40 ° C., wound into a roll, and heat-shrinked. A film was obtained. The average thickness of the film was 25 μm.

実施例2平均粒子径1.1μmのコロイダルシリカ粒子0.15重量%含有するL−乳酸/D−乳酸とヒドロキシカプロン酸の組成比が80/5/15である重量平均分子量150,000のポリ乳酸Bを用いた以外は実施例1と同様にして熱収縮フィルムを得た。フィルムの平均厚みは25μmであった。   Example 2 A poly (polysiloxane) having a weight average molecular weight of 150,000 having a composition ratio of L-lactic acid / D-lactic acid and hydroxycaproic acid of 0.15% by weight of colloidal silica particles having an average particle diameter of 1.1 μm is 80/5/15. A heat shrink film was obtained in the same manner as in Example 1 except that lactic acid B was used. The average thickness of the film was 25 μm.

実施例3平均粒子径1.1μmの炭酸カルシウム粒子0.15重量%含有するポリ乳酸A/3−ヒドロキシ酪酸(92モル%)−3−ヒドロキシ吉草酸(8モル%)共重合体をブレンド比70/30である重量平均分子量170,000のポリ乳酸Cを用いた以外は実施例1と同様にして熱収縮フィルムを得た。フィルムの平均厚みは25μmであった。   Example 3 Blend ratio of polylactic acid A / 3-hydroxybutyric acid (92 mol%)-3-hydroxyvaleric acid (8 mol%) copolymer containing 0.15% by weight of calcium carbonate particles having an average particle diameter of 1.1 μm A heat-shrinkable film was obtained in the same manner as in Example 1 except that polylactic acid C having a weight average molecular weight of 170,000 which was 70/30 was used. The average thickness of the film was 25 μm.

実施例4〜5、比較例1〜2平均粒子径1.1μmの湿式法シリカ粒子を無添加(比較例1)、0.02重量%(実施例4)、0.8重量%(実施例5)、2重量%(比較例2)になるように含有させたポリ乳酸Aを用いた実施例1と同様にして熱収縮フィルムを得た。フィルムの平均厚みはいずれも25μmであった。   Examples 4-5, Comparative Examples 1-2 No wet method silica particles having an average particle diameter of 1.1 μm were added (Comparative Example 1), 0.02% by weight (Example 4), 0.8% by weight (Examples) 5) A heat-shrinkable film was obtained in the same manner as in Example 1 using polylactic acid A contained so as to be 2% by weight (Comparative Example 2). The average thickness of each film was 25 μm.

実施例6平均粒子径1.1μmの湿式法シリカ粒子0.15重量%含有するL−乳酸/D−乳酸との組成比が95/5である重量平均分子量180,000のポリ乳酸Aを用い、延伸条件を65℃、2.0倍の縦延伸、70℃、3.0倍の横延伸とした以外は実施例1と同様にして平均厚み25μmのフィルムを得た。   Example 6 Polylactic acid A having a weight average molecular weight of 180,000 having a composition ratio of 95/5 with L-lactic acid / D-lactic acid containing 0.15% by weight of wet-process silica particles having an average particle diameter of 1.1 μm was used. A film having an average thickness of 25 μm was obtained in the same manner as in Example 1 except that the stretching conditions were 65 ° C., 2.0-fold longitudinal stretching, 70 ° C., 3.0-fold transverse stretching.

比較例3平均粒子径1.1μmの湿式法シリカ粒子を0.15重量%含有する重量平均分子量32,000のイソフタル酸17.5モル%共重合ポリエチレンテレフタレートを用いた以外は実施例1と同様にして平均厚み25μmのフィルムを得た。   Comparative Example 3 Similar to Example 1 except that 17.5 mol% of isophthalic acid copolymerized polyethylene terephthalate having a weight average molecular weight of 32,000 and containing 0.15 wt% of wet process silica particles having an average particle diameter of 1.1 μm was used. Thus, a film having an average thickness of 25 μm was obtained.

比較例4実施例1において、延伸条件を65℃、1.4倍の縦延伸、85℃の熱処理のみとした以外は実施例1と同様にして平均厚み25μmのフィルムを得た。   Comparative Example 4 A film having an average thickness of 25 μm was obtained in the same manner as in Example 1 except that the stretching conditions were only 65 ° C., 1.4-fold longitudinal stretching, and 85 ° C. heat treatment.

比較例5実施例1において、延伸条件を65℃、1.2倍の縦延伸、70℃、1.5倍の横延伸、85℃の熱処理のみとした以外は実施例1と同様にして平均厚み25μmのフィルムを得た。 以上の熱収縮フィルムの品質評価結果をまとめたのが表1である。   Comparative Example 5 In Example 1, the same stretching conditions as in Example 1 except that the stretching conditions were 65 ° C, 1.2-fold longitudinal stretching, 70 ° C, 1.5-fold transverse stretching, and 85 ° C heat treatment only. A film with a thickness of 25 μm was obtained. Table 1 summarizes the quality evaluation results of the above heat shrinkable films.

Figure 2007131868
Figure 2007131868

かかる表1の結果からわかるように、実施例1〜6で得られた熱収縮フィルムは、熱収縮性、熱収縮応力性、容器密着性に優れ、アルカリ溶解性を有するフィルムであった。   As can be seen from the results in Table 1, the heat-shrinkable films obtained in Examples 1 to 6 were excellent in heat-shrinkability, heat-shrinkage stress and container adhesion, and had alkali solubility.

すなわち、表1から上記フィルム特性を得るには粒子0.01〜1重量%含有するポリ乳酸を主体とするポリマーからなる延伸フィルムであって、120℃の熱風中での少なくとも一方向の熱収縮率が20%以上であり、フィルムの最大熱収縮応力が5.0MPa以下であることがわかった。   That is, in order to obtain the above film properties from Table 1, it is a stretched film composed of a polymer mainly composed of polylactic acid containing 0.01 to 1% by weight of particles, and is at least one-way heat shrinkage in hot air at 120 ° C. It was found that the rate was 20% or more and the maximum heat shrinkage stress of the film was 5.0 MPa or less.

一方、比較例1で得られたフィルムは熱収縮性、熱収縮応力性が良好であるものの、易滑性が劣った。比較例2で得られたフィルムは熱収縮性、熱収縮応力性、易滑性が良好であるものの、容器回収時にアルカリ水溶液で溶解させた場合、粒子が容器に溶解残として付着して、該粒子が回収PETに混入し、容器の回収性に劣った。比較例3で得られたフィルムは、熱収縮応力が大きく、容器の変形する箇所が認められた。比較例4〜比較例5で得られたフィルムは、容器への密着性が十分でなかった。いずれのフィルムも熱収縮フィルムとしては好ましくなかった。   On the other hand, although the film obtained in Comparative Example 1 had good heat shrinkability and heat shrinkage stress properties, the slipperiness was poor. Although the film obtained in Comparative Example 2 has good heat shrinkability, heat shrinkage stress properties, and easy slipperiness, when dissolved in an alkaline aqueous solution during container recovery, particles adhere to the container as a dissolution residue, The particles were mixed in the recovered PET, and the recoverability of the container was poor. The film obtained in Comparative Example 3 had a large heat shrinkage stress, and a portion where the container deformed was observed. The films obtained in Comparative Examples 4 to 5 did not have sufficient adhesion to the container. Any film was not preferable as a heat shrink film.

Claims (8)

粒子0.01〜1重量%を含有するポリ乳酸を主体とするポリマーからなる延伸フィルムであって、該フィルムの120℃の熱風中での少なくとも一方向の熱収縮率が20%以上であり、フィルムの最大熱収縮応力が5.0MPa以下であることを特徴とする熱収縮フィルム。 A stretched film composed of a polymer mainly composed of polylactic acid containing 0.01 to 1% by weight of particles, wherein the film has a thermal shrinkage rate of 20% or more in at least one direction in 120 ° C. hot air, A heat shrink film having a maximum heat shrink stress of 5.0 MPa or less. フィルムの120℃の熱風中での少なくとも一方向の熱収縮率が40%以上であることを特徴とする請求項1に記載の熱収縮フィルム。 2. The heat shrinkable film according to claim 1, wherein the film has a heat shrinkage rate of 40% or more in at least one direction in hot air at 120 ° C. 3. 粒子0.01〜0.5重量%を含有するポリ乳酸を主体とするポリマーからなる延伸フィルムであることを特徴とする請求項1に記載の熱収縮フィルム。 The heat-shrinkable film according to claim 1, wherein the heat-shrinkable film is a stretched film made of a polymer mainly composed of polylactic acid containing 0.01 to 0.5% by weight of particles. pH7を越える水溶液で50%以上溶解することを特徴とする請求項1〜3のいずれかに記載の熱収縮フィルム。 The heat-shrinkable film according to any one of claims 1 to 3, wherein the heat-shrinkable film is dissolved in an aqueous solution exceeding pH 7 by 50% or more. pH7を越える水溶液で80%以上溶解することを特徴とする請求項1〜4のいずれかに記載の熱収縮フィルム。 The heat-shrinkable film according to claim 1, wherein the heat-shrinkable film is dissolved in an aqueous solution exceeding pH 7 by 80% or more. pH7を越える水溶液で95%以上溶解することを特徴とする請求項1〜5のいずれかに記載の熱収縮フィルム。 The heat-shrinkable film according to any one of claims 1 to 5, which dissolves 95% or more in an aqueous solution exceeding pH 7. 2%水酸化ナトリウム水溶液で80%以上溶解することを特徴とする請求項1〜6のいずれかに記載の熱収縮フィルム。 The heat-shrinkable film according to any one of claims 1 to 6, which is dissolved by 80% or more in a 2% aqueous sodium hydroxide solution. 2%水酸化ナトリウム水溶液で95%以上溶解することを特徴とする請求項1〜7のいずれかに記載の熱収縮フィルム。 The heat-shrinkable film according to any one of claims 1 to 7, wherein the heat-shrinkable film is dissolved by 95% or more in a 2% aqueous sodium hydroxide solution.
JP2007031708A 2007-02-13 2007-02-13 Heat-shrinking film Pending JP2007131868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007031708A JP2007131868A (en) 2007-02-13 2007-02-13 Heat-shrinking film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007031708A JP2007131868A (en) 2007-02-13 2007-02-13 Heat-shrinking film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11059199A Division JP2000302889A (en) 1999-04-19 1999-04-19 Heat-shrinkable film

Publications (2)

Publication Number Publication Date
JP2007131868A true JP2007131868A (en) 2007-05-31
JP2007131868A5 JP2007131868A5 (en) 2007-09-20

Family

ID=38153766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007031708A Pending JP2007131868A (en) 2007-02-13 2007-02-13 Heat-shrinking film

Country Status (1)

Country Link
JP (1) JP2007131868A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195872A (en) * 2009-02-23 2010-09-09 Mitsubishi Plastics Inc Film, stretched film, heat shrinkable film, molded article using the film, stretched film or heat shrinkable film, heat shrinkable label, and container using the molded article or having the label attached thereto
JP2014172335A (en) * 2013-03-12 2014-09-22 Mitsubishi Plastics Inc Heat-shrinkable laminate film, molding and heat-shrinkable label using the film and container using the molding or provided with the label

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05212790A (en) * 1992-02-06 1993-08-24 Mitsui Toatsu Chem Inc Shrink film for label
JPH05339557A (en) * 1992-06-11 1993-12-21 Mitsui Toatsu Chem Inc Hot-melt adhesive composition
JPH0649266A (en) * 1992-06-04 1994-02-22 Mitsui Toatsu Chem Inc Treatment of plastic article
JPH0834913A (en) * 1994-05-19 1996-02-06 Mitsui Toatsu Chem Inc L-lactic acid polymer composition, molded product and film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05212790A (en) * 1992-02-06 1993-08-24 Mitsui Toatsu Chem Inc Shrink film for label
JPH0649266A (en) * 1992-06-04 1994-02-22 Mitsui Toatsu Chem Inc Treatment of plastic article
JPH05339557A (en) * 1992-06-11 1993-12-21 Mitsui Toatsu Chem Inc Hot-melt adhesive composition
JPH0834913A (en) * 1994-05-19 1996-02-06 Mitsui Toatsu Chem Inc L-lactic acid polymer composition, molded product and film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195872A (en) * 2009-02-23 2010-09-09 Mitsubishi Plastics Inc Film, stretched film, heat shrinkable film, molded article using the film, stretched film or heat shrinkable film, heat shrinkable label, and container using the molded article or having the label attached thereto
JP2014172335A (en) * 2013-03-12 2014-09-22 Mitsubishi Plastics Inc Heat-shrinkable laminate film, molding and heat-shrinkable label using the film and container using the molding or provided with the label

Similar Documents

Publication Publication Date Title
JP3258302B2 (en) Biodegradable biaxially stretched film
US20030180561A1 (en) Multi-layered polyester film
JP3861488B2 (en) Wrap film
KR100443194B1 (en) Heat shrinkable polyester film
JP2007131868A (en) Heat-shrinking film
JP3718636B2 (en) Heat-shrinkable film
WO2002034818A1 (en) Biaxially oriented aliphatic polyester film and process for producing the same
JP4583537B2 (en) Polylactic acid resin material and heat shrinkable film
JP3664969B2 (en) Heat-shrinkable polylactic acid polymer film
JP3662141B2 (en) Polylactic acid-based shrinkable sheet material, and packaging material or shrinkable label material using the same
JP2000302889A (en) Heat-shrinkable film
JP2005169825A (en) Polyester laminate and its manufacturing method
JP3206747B2 (en) Aliphatic polyester film
JP2007331154A (en) Polylactic acid-based biaxially stretched film and its manufacturing method
JP2001205768A (en) Aromatic polyester resin laminated film
JP2004051888A (en) Heat shrinkable polyester film
JP2001293833A (en) Gas barrier polyester film
US20070160818A1 (en) Biaxially stretched polyester film
JP2004359948A (en) Biaxially oriented polylactic acid film for forming and container
JP2006124662A (en) Biaxially oriented polylactic acid film, molding composed of the same and substrate
JP2004331729A (en) Biaxially oriented laminated polyester film
JP2004352334A (en) Stretched polylactic acid packaging film and bag
JP2006193178A (en) Packaging bag easy to tear with hand
JP2007106996A (en) Wrap film and its manufacturing method
KR20090032289A (en) Heat shrinkable and biodegradable film and preparation thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207