JP2007129973A - Method for producing unsaturated fatty acid-containing phospholipid - Google Patents

Method for producing unsaturated fatty acid-containing phospholipid Download PDF

Info

Publication number
JP2007129973A
JP2007129973A JP2005327704A JP2005327704A JP2007129973A JP 2007129973 A JP2007129973 A JP 2007129973A JP 2005327704 A JP2005327704 A JP 2005327704A JP 2005327704 A JP2005327704 A JP 2005327704A JP 2007129973 A JP2007129973 A JP 2007129973A
Authority
JP
Japan
Prior art keywords
acid
fatty acid
unsaturated fatty
phospholipid
conjugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005327704A
Other languages
Japanese (ja)
Inventor
Masahiro Hayashi
雅弘 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Miyazaki NUC
Original Assignee
University of Miyazaki NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Miyazaki NUC filed Critical University of Miyazaki NUC
Priority to JP2005327704A priority Critical patent/JP2007129973A/en
Publication of JP2007129973A publication Critical patent/JP2007129973A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a phospholipid whose fatty acid composition can be controlled. <P>SOLUTION: The method for producing the phospholipid containing a taken unsaturated fatty acid comprises culturing a microorganism in a culture solution containing the unsaturated fatty acid or its compound and then extracting the phospholipid from the cultured microorganism. The phospholipid can be subjected to a base exchange reaction with an alcohol compound and a phospholipase D to produce an unsaturated fatty acid-containing phospholipid of desired molecular species. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

構成脂肪酸として不飽和脂肪酸を含有するリン脂質の製造方法に関する。   The present invention relates to a method for producing a phospholipid containing an unsaturated fatty acid as a constituent fatty acid.

生体膜の主要な成分であるリン脂質は、リン酸化アルコールと脂肪酸とから構成される化合物である。リン脂質はそのリン酸化アルコール成分の違いにより複数の分子種があり、たとえばホスファチジルコリン(PC)やホスファチジルエタノールアミン(PE)は生体膜リン脂質の主要な組成を占めている。また別のリン脂質であるホスファチジルグリセロール(PG)は、その高い乳化性から食品素材などとしても有用性が高い。さらにホスファチジルセリン(PS)は、脳機能に深く関わるリン脂質であり、その摂取により、加齢とともに低下する脳機能の改善効果が知られている。   Phospholipids, which are main components of biological membranes, are compounds composed of phosphorylated alcohols and fatty acids. Phospholipids have multiple molecular species depending on their phosphorylated alcohol components. For example, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) occupy the main composition of biological membrane phospholipids. Another phospholipid, phosphatidylglycerol (PG), is highly useful as a food material because of its high emulsifiability. Furthermore, phosphatidylserine (PS) is a phospholipid that is deeply related to brain function, and its effect of improving brain function that decreases with aging is known.

リン脂質は分子内に2つの脂肪酸を結合しているが、脂肪酸群のうちの一部はヒトを含む動物の体内では合成できないため、食事や他の動植物の補食により摂取する必要がある。しかしながら、PSやPGのようなリン脂質の一般食品中の含有量は微量であるため、十分量を食事から摂取することは困難である。   Phospholipids bind two fatty acids in the molecule, but some of the fatty acid groups cannot be synthesized in the body of animals, including humans, and therefore must be ingested by diet and other animal and plant supplements. However, since the content of phospholipids such as PS and PG in general foods is very small, it is difficult to take a sufficient amount from a meal.

そこで、従来、牛脳から抽出されたリン脂質が市販されていたが、牛海綿状脳症(BSE)問題の発生により安全な供給源が必要とされ、大豆レシチンから抽出されたリン脂質も市販されるようになった。さらに、大豆リン脂質を原料として、ホスホリパーゼDによる塩基交換反応により、純度のより高いPSが製造可能となっている。   Thus, phospholipids extracted from bovine brain have been commercially available, but a safe source is required due to the occurrence of bovine spongiform encephalopathy (BSE), and phospholipids extracted from soybean lecithin are also commercially available. It became so. Furthermore, PS with higher purity can be produced by soybean-phospholipid as a raw material by a base exchange reaction with phospholipase D.

また、従来からの動物や植物由来の原料を用いる代わりに、微生物を培養して、その微生物の細胞膜から脂質を抽出する方法も知られていた。   In addition, instead of using conventional animal or plant-derived materials, a method of culturing a microorganism and extracting lipids from the cell membrane of the microorganism has also been known.

一方、リン脂質の生理活性は、リン脂質を構成する脂肪酸(本願では、構成脂肪酸と称する)の成分にも大きく左右されることが示されている。脂肪酸のうち、例えば分子内に不飽和炭素結合を有する不飽和脂肪酸、中でも不飽和度の高い高度不飽和脂肪酸であるエイコサペンタエン酸(EPA)やドコサヘキサエン酸(DHA)は、循環器系や神経系に対する効果が注目されている。そこで、高度不飽和脂肪酸を豊富に含有する魚卵(例えば特許文献1、2を参照)やイカ皮(例えば特許文献3を参照)をリン脂質の原料として用いることが提案されている。
特開平1−160989号広報 特開平8−59678号広報 特開平9−77782号広報
On the other hand, it has been shown that the physiological activity of phospholipids is greatly influenced by the components of fatty acids constituting the phospholipids (referred to as constituent fatty acids in the present application). Among fatty acids, for example, unsaturated fatty acids having an unsaturated carbon bond in the molecule, among them highly unsaturated fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are circulatory system and nervous system. The effect on is attracting attention. Thus, it has been proposed to use fish eggs (see, for example, Patent Documents 1 and 2) and squid skin (see, for example, Patent Document 3) rich in highly unsaturated fatty acids as phospholipid raw materials.
Japanese Laid-Open Patent Publication No. 1-160989 JP-A-8-59678 Japanese Laid-Open Patent Publication No. 9-77782

このように、動物、植物、及び微生物由来の原料を用いたリン脂質の製造方法が開発されてきたが、これらの従来技術においてはいずれの場合も、リン脂質を構成する脂肪酸の組成には原料リン脂質の脂肪酸組成が反映されるため、脂肪酸組成を任意に幅広くコントロールすることはできなかった。   As described above, methods for producing phospholipids using raw materials derived from animals, plants, and microorganisms have been developed. In any of these conventional techniques, the composition of fatty acids constituting phospholipids is the raw material. Since the fatty acid composition of phospholipids is reflected, the fatty acid composition could not be controlled arbitrarily and widely.

本発明は、上記の問題点に鑑み、脂肪酸組成をコントロールできるリン脂質の製造方法を提供するものである。   In view of the above problems, the present invention provides a method for producing a phospholipid capable of controlling the fatty acid composition.

本発明者らは、リン脂質を構成する不飽和脂肪酸の組成をコントロールする方法を見いだそうと鋭意努力した結果、微生物を培養する際、培地に不飽和脂肪酸を添加することにより、抽出されるリン脂質の組成をコントロールできることを見いだし、本発明の完成に至った。   As a result of diligent efforts to find a method for controlling the composition of unsaturated fatty acids constituting phospholipids, the present inventors have obtained phospholipids extracted by adding unsaturated fatty acids to the medium when culturing microorganisms. It was found that the composition of the composition can be controlled, and the present invention was completed.

本発明に係るリン脂質の製造方法は、リン脂質を構成する脂肪酸に不飽和脂肪酸を含有するリン脂質の製造方法であって、不飽和脂肪酸またはその化合物を添加した培養液中で微生物を培養する培養工程と、培養した微生物から脂質を抽出する抽出工程とを含むことを特徴とする。   The method for producing a phospholipid according to the present invention is a method for producing a phospholipid containing an unsaturated fatty acid in a fatty acid constituting the phospholipid, and culturing the microorganism in a culture solution to which the unsaturated fatty acid or a compound thereof is added. It includes a culturing step and an extraction step for extracting lipid from the cultured microorganism.

上記の製造方法によって得られたリン脂質に、アルコール化合物とホスホリパーゼDを添加して、塩基置換反応をさらに行わせることよって、不飽和脂肪酸含有リン脂質を製造することもできる。   Unsaturated fatty acid-containing phospholipids can also be produced by adding an alcohol compound and phospholipase D to the phospholipids obtained by the above production method and further performing a base substitution reaction.

本発明に係るアルコール化合物はセリンであってもよい。   The alcohol compound according to the present invention may be serine.

本発明に係る不飽和脂肪酸の化合物は、不飽和脂肪酸のエステル、不飽和脂肪酸の塩、及び不飽和脂肪酸のアミドからなる群から選ばれた少なくとも一つであってもよい。   The unsaturated fatty acid compound according to the present invention may be at least one selected from the group consisting of unsaturated fatty acid esters, unsaturated fatty acid salts, and unsaturated fatty acid amides.

本発明に係る不飽和脂肪酸は、オレイン酸、リノール酸、α−リノレイン酸、γ−リノレイン酸、アラキドン酸、エイコサペンタエン酸、ドコサペンタエン酸、ドコサヘキサエン酸、ジホモ−γ−リノレイン酸、共役リノール酸、共役リノレイン酸、共役アラキドン酸、共役エイコサペンタエン酸、共役ドコサペンタエン酸、及び共役ドコサヘキサエン酸からなる群から選ばれた少なくとも一つであってもよい。   The unsaturated fatty acid according to the present invention includes oleic acid, linoleic acid, α-linolenic acid, γ-linolenic acid, arachidonic acid, eicosapentaenoic acid, docosapentaenoic acid, docosahexaenoic acid, dihomo-γ-linolenic acid, conjugated linoleic acid And at least one selected from the group consisting of conjugated linolenic acid, conjugated arachidonic acid, conjugated eicosapentaenoic acid, conjugated docosapentaenoic acid, and conjugated docosahexaenoic acid.

本発明に係る微生物は、バクテリア、酵母、糸状菌、微細藻類、及びラビリンチュラからなる群から選ばれた少なくとも一つであってもよい。   The microorganism according to the present invention may be at least one selected from the group consisting of bacteria, yeast, filamentous fungi, microalgae, and Labyrinthula.

本発明の方法によって、脂肪酸組成をコントロールできるリン脂質の製造方法を提供することができる。   The method of the present invention can provide a method for producing phospholipids capable of controlling the fatty acid composition.

上述したように、微生物を培養し、その微生物の細胞膜から脂質を抽出することにより、リン脂質を製造することができる。本発明に係るリン脂質の製造方法によると、こうした製造方法において、不飽和脂肪酸またはその化合物を添加した培養液で微生物を培養することによって、微生物の脂質代謝を利用することができ、所望の不飽和脂肪酸を含有したリン脂質を得ることができる。   As described above, a phospholipid can be produced by culturing a microorganism and extracting the lipid from the cell membrane of the microorganism. According to the method for producing phospholipid according to the present invention, in such a production method, by culturing a microorganism in a culture solution to which an unsaturated fatty acid or a compound thereof is added, the lipid metabolism of the microorganism can be utilized, and a desired disorder can be utilized. A phospholipid containing a saturated fatty acid can be obtained.

ここで、この培養に用いる微生物は、その細胞膜から脂質を抽出することのできる微生物であればどんなものであってもよい。そのような微生物の例としては、バクテリア、酵母、糸状菌、微細藻類、及びラビリンチュラ(ラビリンチュラ科、ヤブレツボカビ科のいずれの科をも含む)などが挙げられるが、クロレラやユーグレナなどの微細藻類が好ましい。   Here, the microorganism used for the culture may be any microorganism as long as it can extract lipids from the cell membrane. Examples of such microorganisms include bacteria, yeasts, filamentous fungi, microalgae, and Labyrinthula (including any of Labyrinthaceae and Jaburebicaceae), but fine microbes such as Chlorella and Euglena. Algae are preferred.

また、脂質を抽出するための方法は、細胞膜から脂質を抽出するための一般的な方法であればよく、例えばBligh & Dyer法を用いることができる。   The method for extracting lipids may be any general method for extracting lipids from cell membranes. For example, the Bligh & Dyer method can be used.

次に、リン脂質に含有させるための不飽和脂肪酸は、微生物が代謝することができるものであればいずれのものでもよく、その例としてはオレイン酸、リノール酸、α−リノレイン酸、γ−リノレイン酸、アラキドン酸、エイコサペンタエン酸、ドコサペンタエン酸、ドコサヘキサエン酸、ジホモ−γ−リノレイン酸、共役リノール酸、共役リノレイン酸、共役アラキドン酸、共役エイコサペンタエン酸、共役ドコサペンタエン酸、及び共役ドコサヘキサエン酸、またはこれらを組み合わせたものが挙げられる。   Next, the unsaturated fatty acid to be contained in the phospholipid may be any fatty acid that can be metabolized by microorganisms. Examples thereof include oleic acid, linoleic acid, α-linolenic acid, and γ-linolein. Acids, arachidonic acid, eicosapentaenoic acid, docosapentaenoic acid, docosahexaenoic acid, dihomo-γ-linolenic acid, conjugated linoleic acid, conjugated linolenic acid, conjugated arachidonic acid, conjugated eicosapentaenoic acid, conjugated docosapentaenoic acid, and conjugated docosahexaene An acid or a combination of these may be used.

しかしそれらのうちでも、リン脂質に含有させる不飽和脂肪酸としてより好ましいのは、動物に対して生理活性を持つ脂肪酸であり、たとえばエイコサペンタエン酸(EPA)やドコサヘキサエン酸(DHA)、またはそれらの共役酸である。   However, among them, more preferable unsaturated fatty acids to be contained in phospholipids are fatty acids having physiological activity on animals, such as eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or a conjugate thereof. It is an acid.

一方、リン脂質に含有させるために培地に添加する不飽和脂肪酸は、微生物が細胞内に取り込むことができればよく、上述の不飽和脂肪酸の遊離の形のものであってもよいし、あるいは上述の不飽和脂肪酸の化合物、例えばエステル、塩、またはアミド、もしくはそれらの組み合わせであってもよい。   On the other hand, the unsaturated fatty acid added to the medium for inclusion in the phospholipid is not limited as long as the microorganism can be taken into the cells, and may be in the above-mentioned unsaturated fatty acid free form, or may be It may be a compound of an unsaturated fatty acid, such as an ester, salt, or amide, or a combination thereof.

また、上述の不飽和脂肪酸を培地に添加する際には、ビタミンEやビタミンCなどの抗酸化成分を共存させることもできる。さらに不飽和脂肪酸を培地に効率よく分散させるため、天然あるいは合成の乳化剤を用いることは差し支えない。   Moreover, when adding the above-mentioned unsaturated fatty acid to a culture medium, antioxidant components, such as vitamin E and vitamin C, can also coexist. Furthermore, natural or synthetic emulsifiers can be used to efficiently disperse unsaturated fatty acids in the medium.

そして、培地に添加する不飽和脂肪酸またはそれらの化合物の含量は、微生物を培養してそれらを取り込ませることを妨げない範囲であればよく、例えば、培地の重量に対して0.005重量%〜5重量%の範囲内であってよい。   The content of unsaturated fatty acids or their compounds added to the medium may be in a range that does not prevent the microorganisms from being cultivated and taken in, for example, 0.005% by weight to the weight of the medium. It may be in the range of 5% by weight.

また、不飽和脂肪酸を添加する際の培地のpHは、微生物が不飽和脂肪酸を取り込む事を妨げない範囲であればよく、微生物の増殖が可能であるpHに限定されない。例えばpH2.0〜9.0の範囲であってよい。   Further, the pH of the medium when adding the unsaturated fatty acid may be in a range that does not prevent the microorganism from taking in the unsaturated fatty acid, and is not limited to a pH at which the microorganism can grow. For example, it may be in the range of pH 2.0 to 9.0.

さらに、前述の抽出方法によって得られたリン脂質に対し、アルコール化合物を添加して塩基交換反応をさらに行わせることにより、その化合物由来のアルコールを含むような所望の分子種の不飽和脂肪酸含有リン脂質を製造することもできる。この反応を行わせるにはリン脂質の塩基交換反応を促進する触媒の添加が望ましく、そのような触媒の好ましい例としては、取り扱いの容易なホスホリパーゼD(酵素番号 EC 3.1.4.4)があり、例えば放線菌の一種Actinomadura sp.由来のものが市販されている。   Furthermore, by adding an alcohol compound to the phospholipid obtained by the extraction method described above to further perform a base exchange reaction, an unsaturated fatty acid-containing phospholipid having a desired molecular species containing an alcohol derived from the compound is obtained. Lipids can also be produced. In order to carry out this reaction, it is desirable to add a catalyst that promotes the base exchange reaction of phospholipids. A preferable example of such a catalyst is phospholipase D (enzyme number EC 3.1.4.4) which is easy to handle. A product derived from Actinomadura sp., A kind of actinomycetes, is commercially available.

そして、添加するアルコール化合物としては、例えばセリンを用いることができ、この場合、反応の産物としてホスファチジルセリンが得られる。また別の例として、グリセリンやエタノールアミンを用いることができ、この場合はそれぞれ天然型リン脂質であるホスファチジルグリセロールやホスファチジルエタノールアミンを得ることができるし、あるいはその他のアルコール化合物を用いて、有機合成では一般に合成が困難な新規リン脂質分子種を製造することもできる。   And as an alcohol compound to add, serine can be used, for example, In this case, phosphatidylserine is obtained as a product of reaction. As another example, glycerin and ethanolamine can be used. In this case, phosphatidylglycerol and phosphatidylethanolamine, which are natural phospholipids, can be obtained, respectively, or other alcohol compounds can be used for organic synthesis. Thus, it is also possible to produce new phospholipid molecular species that are generally difficult to synthesize.

以下に、本発明の好ましい実施の態様を実施例を用いてより詳細に説明する。なお、本発明の目的、特徴、利点、及びアイデアは、本明細書の記載により当業者には明らかであり、本明細書の記載に基づき、当業者が本発明を再現することは容易である。以下に記載された具体的な実施例などは、本発明の好ましい実施態様を示すための例示又は説明として示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。   Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to examples. The objects, features, advantages, and ideas of the present invention will be apparent to those skilled in the art from the description of the present specification, and it is easy for those skilled in the art to reproduce the present invention based on the description of the present specification. . The specific examples and the like described below are provided as examples or explanations for illustrating preferred embodiments of the present invention, and the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications and variations can be made based on the description of the present specification within the spirit and scope of the present invention disclosed herein.

===DHA含有リン脂質の製造===
[実施例1] 500ml容振とうフラスコで、グルコースを炭素源、尿素を窒素源とする従属栄養培養液(1L中にグルコース20g、リン酸1カリウム1.2g、硫酸マグネシウム7水和物0.6g、尿素1.5g、EDTA-Fe-Na 15mg、A5金属塩溶液2mlを含む)を用いて、クロレラ(Chlorella vulgaris C-30)(国立環境研究所より入手)を28℃、暗所にて振とう培養した。増殖が定常期に達した48時間後に、培養液100mlに対して0.5重量%のドコサヘキサエン酸(DHA)(遊離脂肪酸、備前化成(株)より入手)(純度99.0%)を無菌的に添加し、さらに振とう培養を24時間継続した。次に、遠心分離3000rpm×10min)によりクロレラ細胞を回収し、凍結乾燥後、Bligh & Dyer法に従い、乾燥細胞1500mgから、クロロホルム−メタノール混液(クロロホルム:メタノール:水 (1:2:0.7))30mlで3回繰り返し総脂質を抽出した。
=== Production of DHA-containing phospholipids ===
[Example 1] In a 500 ml shake flask, a heterotrophic culture solution containing glucose as a carbon source and urea as a nitrogen source (20 g glucose, 1.2 g monopotassium phosphate, 0.6 g magnesium sulfate heptahydrate in 1 liter, Chlorella vulgaris C-30 (obtained from National Institute for Environmental Studies) is shaken in the dark at 28 ° C using urea 1.5g, EDTA-Fe-Na 15mg and A5 metal salt solution 2ml) did. 48 hours after the growth reached a stationary phase, 0.5% by weight of docosahexaenoic acid (DHA) (free fatty acid, obtained from Bizen Kasei Co., Ltd.) (purity 99.0%) was aseptically per 100 ml of the culture solution. And further shaking culture was continued for 24 hours. Next, chlorella cells were collected by centrifugation (3000 rpm × 10 min), lyophilized, and then dried according to Bligh & Dyer method, from 1500 mg of dried cells to 30 ml of chloroform-methanol mixture (chloroform: methanol: water (1: 2: 0.7)) The total lipid was extracted three times.

得られた総脂質230mgから、シリカゲルカラムクロマトグラフィーにより、以下のようにリン脂質混合物を分画した。まず、クロロホルムに懸濁したシリカゲル10gを、内径20mmのオープンカラムに充填し、2mlのクロロホルムに溶解した総脂質をシリカゲルに吸着させた。次に、クロロホルム300ml、アセトン200ml、メタノール300mlの順にカラムに流し、メタノール溶出画分をリン脂質混合物とした。これにより、85mgのリン脂質混合物を得た。このリン脂質混合物の脂肪酸組成をガスクロマトグラフィーで測定した。まず、リン脂質混合物20mgをスクリューキャップ付き試験管にとり、10%塩化水素−メタノール溶液を1ml加えて80℃で3時間加熱してメタノリシスを行った。放冷後、蒸留水6mlとヘキサン1mlを添加して激しく振とうしてヘキサン層に脂肪酸メチルエステルを抽出し、ガスクロマトグラフィー用試料とした。ガスクロマトグラフィーは(ガスクロマトグラフ シマヅ GC-2000、カラム HR-Thermon 3000B, 30m X 0,25mm ID、カラム温度 150→220℃ 2℃/min、インジェクション温度 250℃、検出器 FID、検出器温度 250℃、キャリアーガス ヘリウム)の条件で分析した。結果は(C16:0 10.3%、C16:1 1.1%、C16:2 3.1%、C16:3 4.7%、C18:0 1.6%、C18:1 4.1%、C18:2 14.2%、C18:3 1.1%、C20:5 0.9%、C22:6 55.0%、その他 3.9%)となり、総脂肪酸の55%がDHAであった。また、リン脂質組成を高速液体クロマトグラフィー(HPLC)で測定したところ、リン脂質中の57%がホスファチジルコリン(PC)、32%がホスファチジルエタノールアミン(PE)であった。   A phospholipid mixture was fractionated from 230 mg of the total lipid obtained by silica gel column chromatography as follows. First, 10 g of silica gel suspended in chloroform was packed in an open column having an inner diameter of 20 mm, and the total lipid dissolved in 2 ml of chloroform was adsorbed onto the silica gel. Next, 300 ml of chloroform, 200 ml of acetone, and 300 ml of methanol were passed through the column in this order, and the methanol elution fraction was used as a phospholipid mixture. This gave 85 mg of a phospholipid mixture. The fatty acid composition of this phospholipid mixture was measured by gas chromatography. First, 20 mg of a phospholipid mixture was placed in a test tube with a screw cap, 1 ml of a 10% hydrogen chloride-methanol solution was added, and the mixture was heated at 80 ° C. for 3 hours for methanolysis. After allowing to cool, 6 ml of distilled water and 1 ml of hexane were added and shaken vigorously to extract the fatty acid methyl ester in the hexane layer, which was used as a sample for gas chromatography. Gas Chromatography (Gas Chromatograph Shima-GC-2000, Column HR-Thermon 3000B, 30m X 0,25mm ID, Column temperature 150 → 220 ℃ 2 ℃ / min, Injection temperature 250 ℃, Detector FID, Detector temperature 250 ℃ And carrier gas helium). The results are (C16: 0 10.3%, C16: 1 1.1%, C16: 2 3.1%, C16: 3 4.7%, C18: 0 1.6%, C18: 1 4.1%, C18: 2 14.2%, C18: 3 1.1% C20: 5 0.9%, C22: 6 55.0%, others 3.9%), and 55% of the total fatty acids were DHA. Further, when the phospholipid composition was measured by high performance liquid chromatography (HPLC), 57% of the phospholipid was phosphatidylcholine (PC) and 32% was phosphatidylethanolamine (PE).

[比較例1] 実施例1と同様に、500ml容振とうフラスコ内で培養定常期に達したクロレラの培養液100mlを、さらに24時間振とう培養し、遠心分離(3000rpm×10min)によりクロレラ細胞を回収し、凍結乾燥後、実施例1と同様に総脂質を抽出し、得られた総脂質145mgを分画・分析したところ、結果は(C16:0 25.8%、C16:1 3.7%、C16:2 6.8%、C16:3 8.2%、C18:0 4.6%、C18:1 7.6%、C18:2 29.7%、C18:3 6.3%、C22:6 0.0%その他 7.3%)となり、リン脂質混合物の総脂肪酸中にDHAは検出されなかった。しかし、リン脂質組成は、59%がPC、30%がPEであり、実施例1と同様、ホスファチジルコリン、ホスファチジルエタノールアミンが主成分であった。 [Comparative Example 1] As in Example 1, 100 ml of the chlorella culture solution that reached the stationary culture phase in a 500 ml shake flask was further cultured with shaking for 24 hours, and chlorella cells were centrifuged (3000 rpm x 10 min). After lyophilization, total lipids were extracted in the same manner as in Example 1, and 145 mg of the obtained total lipids were fractionated and analyzed. The results were (C16: 0 25.8%, C16: 1 3.7%, C16 : 2 6.8%, C16: 3 8.2%, C18: 0 4.6%, C18: 1 7.6%, C18: 2 29.7%, C18: 3 6.3%, C22: 6 0.0%, etc. DHA was not detected in total fatty acids. However, the phospholipid composition was 59% PC and 30% PE, and phosphatidylcholine and phosphatidylethanolamine were the main components as in Example 1.

===DHA含有PSの製造===
[実施例2] 上記実施例1あるいは比較例1で得られたリン脂質混合物それぞれ100mgを別のスクリューキャップつき試験管に入れ、各試験管に酢酸エチル2ml、L−セリン120mgを含有する水溶液500μl、ホスホリパーゼD(名糖産業製)20unitを含有する水溶液500μlを加えた後、ヘッドスペースを窒素置換して50℃で12時間激しく振とうすることにより塩基交換反応を行った。反応終了後、各試験管を氷冷し、クロロホルムを2ml添加してリン脂質混合物を溶解した。クロロホルム層をHPLCにより分析してリン脂質組成を確認したところ、実施例1で得られたリン脂質は(PS 43%、PC 21%、PE 12%、その他 24%)、比較例1で得られたリン脂質は(PS 45%、PC 19%、PE 13%、その他 22%)を含有していた。それぞれのリン脂質混合物より、以下のように薄層クロマトグラフィーを用いてPS画分を単離し、それぞれのPSの脂肪酸組成を測定した。すなわち、シリカゲルHPTLCプレート(メルク製)にリン脂質混合物をスポットし、クロロホルム/1-プロパノール/酢酸エチル/メタノール/0.25%塩化カリウム水溶液(23:25:25:15:9)を展開溶媒として展開し、PS標品(Dittmer試薬で発色)と同様のRf値のシリカゲル層を書き取った。シリカゲルからクロロホルム:メタノール(2:1)によりPSを抽出した。結果は(C16:0 9.7%、C16:1 2.1%、C16:2 2.7%、C16:3 5.1%、C18:0 1.9%、C18:1 5.1%、C18:2 16.0%、C18:3 1.0%、C20:5 0.3%、C22:6 53.0%、その他 3.1%)となり、実施例1により得られたリン脂質混合物を原料としたPSには、DHAが総脂肪酸の53%含まれていた。一方、比較例1により得られたリン脂質混合物を原料としたPSの脂肪酸組成は(C16:0 23.0%、C16:1 2.9%、C16:2 8.9%、C16:3 9.2%、C18:0 4.9%、C18:1 8.6%、C18:2 29.0%、C18:3 7.0%、C22:6 0.0%その他 6.5%)であり、DHAが全く検出されなかった。
=== Production of DHA-containing PS ===
[Example 2] 100 mg of each phospholipid mixture obtained in Example 1 or Comparative Example 1 was put in a separate test tube with a screw cap, and 500 μl of an aqueous solution containing 2 ml of ethyl acetate and 120 mg of L-serine in each test tube. After adding 500 μl of an aqueous solution containing 20 units of phospholipase D (manufactured by Meito Sangyo), the base space was replaced with nitrogen, and the base exchange reaction was performed by shaking vigorously at 50 ° C. for 12 hours. After completion of the reaction, each test tube was ice-cooled, and 2 ml of chloroform was added to dissolve the phospholipid mixture. When the chloroform layer was analyzed by HPLC to confirm the phospholipid composition, the phospholipid obtained in Example 1 was obtained in Comparative Example 1 (PS 43%, PC 21%, PE 12%, and other 24%). The phospholipids contained (PS 45%, PC 19%, PE 13%, others 22%). From each phospholipid mixture, the PS fraction was isolated using thin layer chromatography as follows, and the fatty acid composition of each PS was measured. That is, phospholipid mixture was spotted on silica gel HPTLC plate (Merck) and developed with chloroform / 1-propanol / ethyl acetate / methanol / 0.25% potassium chloride aqueous solution (23: 25: 25: 15: 9) as developing solvent. A silica gel layer having the same Rf value as that of the PS sample (colored with Dittmer reagent) was written. PS was extracted from silica gel with chloroform: methanol (2: 1). The results are (C16: 0 9.7%, C16: 1 2.1%, C16: 2 2.7%, C16: 3 5.1%, C18: 0 1.9%, C18: 1 5.1%, C18: 2 16.0%, C18: 3 1.0% C20: 5 0.3%, C22: 6 53.0%, and others 3.1%), and PS using the phospholipid mixture obtained in Example 1 contained 53% of DHA in total fatty acids. On the other hand, the fatty acid composition of PS made from the phospholipid mixture obtained in Comparative Example 1 was (C16: 0 23.0%, C16: 1 2.9%, C16: 2 8.9%, C16: 3 9.2%, C18: 0 4.9 %, C18: 1 8.6%, C18: 2 29.0%, C18: 3 7.0%, C22: 6 0.0% and other 6.5%), and no DHA was detected.

===EPA含有リン脂質の製造===
[実施例3] 500ml容振とうフラスコで、グルコース−ペプトン培地(1L中にグルコース20g、ペプトン5g、硫酸アンモニウム0.25g、リン酸1カリウム0.25g、硫酸マグネシウム7水和物0.6g、炭酸カルシウム0.12g、Na2EDTA 50mg、モール塩50mg、硫酸マンガン18mg、硫酸亜鉛25mg、塩酸チアミン2.5mg、シアノコバラミン 0.5mgを含む)を用いて、ユーグレナ(Euglena gracilis Z)(国立環境研究所より入手)を28℃、暗所にて振とう培養し、増殖が定常期に達した48時間後に、培養液100mlに対して0.5重量%のエイコサペンタエン酸(EPA)(遊離脂肪酸、備前化成(株)より入手)(純度99.0%)を無菌的に添加し、さらに振とう培養を24時間継続した。以下、実施例1と同様に、総脂質を抽出し、得られた総脂質240mgから、シリカゲルカラムクロマトグラフィーにより分画したリン脂質混合物95mgを得た。このリン脂質混合物の脂肪酸組成をガスクロマトグラフィーで測定したところ、結果は(C16:0 4.1%、C16:1 0.1%、C18:0 2.2%、C18:1 8.1%、C18:2 5.9%、C18:3 4.0%、C20:4 5.8%、C20:5 59.0%、C22:6 6.3%、その他 4.5%)となり、総脂肪酸の59%がEPAであった。また、リン脂質組成をHPLCで測定したところ、結果は(PC 49%、PE 31%、その他 20%)となり、PC及びPEが主成分であった。
=== Production of EPA-containing phospholipids ===
[Example 3] In a 500 ml shake flask, glucose-peptone medium (20 g glucose, 1 g glucose, 0.25 g ammonium sulfate, 0.25 g ammonium sulfate, 0.25 g potassium phosphate, 0.6 g magnesium sulfate heptahydrate, 0.12 g calcium carbonate) , Euglena gracilis Z (obtained from the National Institute for Environmental Studies) at 28 ° C, dark using 48 hours after growth reached a stationary phase, 0.5% by weight of eicosapentaenoic acid (EPA) (free fatty acid, obtained from Bizen Kasei Co., Ltd.) (Purity 99.0%) was aseptically added, and shaking culture was continued for 24 hours. Thereafter, in the same manner as in Example 1, total lipid was extracted, and 95 mg of a phospholipid mixture fractionated by silica gel column chromatography was obtained from 240 mg of the obtained total lipid. When the fatty acid composition of this phospholipid mixture was measured by gas chromatography, the results were (C16: 0 4.1%, C16: 1 0.1%, C18: 0 2.2%, C18: 1 8.1%, C18: 2 5.9%, C18 : 3 4.0%, C20: 4 5.8%, C20: 5 59.0%, C22: 6 6.3%, others 4.5%), and 59% of the total fatty acids were EPA. When the phospholipid composition was measured by HPLC, the result was (PC 49%, PE 31%, other 20%), and PC and PE were the main components.

[比較例2] 実施例3と同様に、500ml容振とうフラスコ内で培養定常期に達したユーグレナの培養液100mlを、さらに24時間振とう培養し、遠心分離(3000rpm×10min)によりユーグレナ細胞を回収し、実施例1と同様に、凍結乾燥後、総脂質を抽出し、得られた総脂質122mgを分画・分析したところ、結果は(C16:0 16.7%、C16:1 3.6%、C18:0 7.5%、C18:1 14.1%、C18:2 9.9%、C18:3 8.9%、C20:4 22.3%、C20:5 3.2%、C22:6 1.0%、その他 12.8%)となり、リン脂質混合物の総脂肪酸中にEPAは3.2%、DHAは1%のみしか検出されなかった。しかし、リン脂質組成は(PC 47%、PE 36%、その他 17%)であり、実施例1と同様、PC及びPEが主成分であった。 [Comparative Example 2] As in Example 3, 100 ml of Euglena culture solution that reached the stationary culture period in a 500 ml shake flask was further cultured with shaking for 24 hours, and Euglena cells were centrifuged (3000 rpm x 10 min). In the same manner as in Example 1, after lyophilization, the total lipid was extracted, and 122 mg of the obtained total lipid was fractionated and analyzed. The results were (C16: 0 16.7%, C16: 1 3.6%, C18: 0 7.5%, C18: 1 14.1%, C18: 2 9.9%, C18: 3 8.9%, C20: 4 22.3%, C20: 5 3.2%, C22: 6 1.0%, others 12.8%), phospholipids Only 3.2% EPA and 1% DHA were detected in the total fatty acids of the mixture. However, the phospholipid composition was (PC 47%, PE 36%, others 17%), and as in Example 1, PC and PE were the main components.

===EPA含有PSの製造===
[実施例4] 実施例2と同様に、実施例3あるいは比較例2で得られたリン脂質混合物それぞれ100mgを別のスクリューキャップつき試験管に入れ、各試験管に酢酸エチル2ml、L−セリン120mgを含有する水溶液500μl、ホスホリパーゼD20unitを含有する水溶液500μlを加えた後、ヘッドスペースを窒素置換して50℃で12時間激しく振とうすることにより塩基交換反応を行った。反応終了後、各試験管を氷冷し、クロロホルムを2ml添加してリン脂質混合物を溶解した。クロロホルム層をHPLCにより分析してリン脂質組成を確認したところ、実施例3で得られたリン脂質は(PS 42%、PC 22%、PE 16%、その他 20%)、比較例2で得られたリン脂質は(PS 46%、PC 17%、PE 15%、その他 22%)を含有していた。それぞれのリン脂質混合物より、薄層クロマトグラフィーによりPS画分を単離し、それぞれのPSの脂肪酸組成を測定したところ、結果は(C16:0 4.6%、C16:1 0.9%、C18:0 3.1%、C18:1 9.0%、C18:2 5.0%、C18:3 4.7%、C20:4 5.0%、C20:5 56.0%、C22:6 4.1%、その他 7.6%)となり、実施例3により得られたリン脂質混合物を原料としたPSにはEPAが、総脂肪酸の56%含まれていた。一方、比較例2により得られたリン脂質混合物を原料としたPSの脂肪酸組成は(C16:0 17.4%、C16:1 4.1%、C18:0 6.2%、C18:1 14.7%、C18:2 8.8%、C18:3 7.9%、C20:4 24.6%、C20:5 2.0%、C22:6 1.7%、その他 12.6%)であり、EPAが2%しか検出されなかった。
=== Production of EPA-containing PS ===
[Example 4] In the same manner as in Example 2, 100 mg of each phospholipid mixture obtained in Example 3 or Comparative Example 2 was placed in a separate test tube with a screw cap, and 2 ml of ethyl acetate and L-serine were added to each test tube. After adding 500 μl of an aqueous solution containing 120 mg and 500 μl of an aqueous solution containing phospholipase D20unit, the headspace was replaced with nitrogen, and the base exchange reaction was performed by shaking vigorously at 50 ° C. for 12 hours. After completion of the reaction, each test tube was ice-cooled, and 2 ml of chloroform was added to dissolve the phospholipid mixture. When the chloroform layer was analyzed by HPLC to confirm the phospholipid composition, the phospholipid obtained in Example 3 (PS 42%, PC 22%, PE 16%, other 20%) was obtained in Comparative Example 2. Phospholipids contained (PS 46%, PC 17%, PE 15%, others 22%). PS fractions were isolated from each phospholipid mixture by thin layer chromatography, and the fatty acid composition of each PS was measured. The results were (C16: 0 4.6%, C16: 1 0.9%, C18: 0 3.1% C18: 1 9.0%, C18: 2 5.0%, C18: 3 4.7%, C20: 4 5.0%, C20: 5 56.0%, C22: 6 4.1%, others 7.6%), and obtained in Example 3 PS made from a phospholipid mixture contained 56% of EPA in total fatty acids. On the other hand, the fatty acid composition of PS made from the phospholipid mixture obtained in Comparative Example 2 was (C16: 0 17.4%, C16: 1 4.1%, C18: 0 6.2%, C18: 1 14.7%, C18: 2 8.8 %, C18: 3 7.9%, C20: 4 24.6%, C20: 5 2.0%, C22: 6 1.7%, other 12.6%), and only 2% of EPA was detected.

===結論===
上記の実施例および比較例の結果から、微生物培養を用いたリン脂質の製造方法において、培養液に不飽和脂肪酸を添加することにより、未添加の場合はほとんどみられなかった所望の不飽和脂肪酸を含有したリン脂質が合成できることが分かった。従って、本発明のリン脂質の製造方法によって、リン脂質を構成する脂肪酸の組成をコントロールすることができるようになる。さらに、エタノール化合物を添加して塩基交換反応を行わせることにより、所望の分子種のリン脂質に転換することも可能となる。
=== Conclusion ===
From the results of the above Examples and Comparative Examples, in the method for producing phospholipids using microbial culture, by adding unsaturated fatty acids to the culture solution, desired unsaturated fatty acids that were hardly seen when not added It has been found that phospholipids containing can be synthesized. Therefore, the composition of fatty acids constituting the phospholipid can be controlled by the method for producing phospholipids of the present invention. Furthermore, it is also possible to convert to a phospholipid of a desired molecular species by adding an ethanol compound to cause a base exchange reaction.

Claims (6)

構成脂肪酸として不飽和脂肪酸を含有するリン脂質の製造方法であって、
前記不飽和脂肪酸または前記不飽和脂肪酸の化合物を添加した培養液中で微生物を培養する培養工程と、
前記培養した微生物から前記リン脂質を抽出する抽出工程と、
を含むことを特徴とする製造方法。
A method for producing a phospholipid containing an unsaturated fatty acid as a constituent fatty acid,
A culture step of culturing the microorganism in a culture solution to which the unsaturated fatty acid or the compound of the unsaturated fatty acid is added;
An extraction step of extracting the phospholipid from the cultured microorganism;
The manufacturing method characterized by including.
前記抽出工程によって得られたリン脂質に、アルコール化合物とホスホリパーゼDを添加して、塩基交換反応を行わせる反応工程をさらに含むことを特徴とする、請求項1に記載の製造方法。   The production method according to claim 1, further comprising a reaction step in which an alcohol compound and phospholipase D are added to the phospholipid obtained by the extraction step to cause a base exchange reaction. 前記アルコール化合物がセリンであることを特徴とする、請求項2に記載の製造方法。   The method according to claim 2, wherein the alcohol compound is serine. 前記不飽和脂肪酸の化合物が、前記不飽和脂肪酸のエステル、前記不飽和脂肪酸の塩、及び前記不飽和脂肪酸のアミドからなる群から選ばれた少なくとも一つであることを特徴とする、請求項1〜3のいずれかに記載の製造方法。   2. The unsaturated fatty acid compound is at least one selected from the group consisting of an ester of the unsaturated fatty acid, a salt of the unsaturated fatty acid, and an amide of the unsaturated fatty acid. The manufacturing method in any one of -3. 前記不飽和脂肪酸が、オレイン酸、リノール酸、α−リノレイン酸、γ−リノレイン酸、アラキドン酸、エイコサペンタエン酸、ドコサペンタエン酸、ドコサヘキサエン酸、ジホモ−γ−リノレイン酸、共役リノール酸、共役リノレイン酸、共役アラキドン酸、共役エイコサペンタエン酸、共役ドコサペンタエン酸、及び共役ドコサヘキサエン酸からなる群から選ばれた少なくとも一つであることを特徴とする、請求項1〜4のいずれかに記載の製造方法。   The unsaturated fatty acid is oleic acid, linoleic acid, α-linolenic acid, γ-linolenic acid, arachidonic acid, eicosapentaenoic acid, docosapentaenoic acid, docosahexaenoic acid, dihomo-γ-linolenic acid, conjugated linoleic acid, conjugated linolein It is at least one selected from the group consisting of acid, conjugated arachidonic acid, conjugated eicosapentaenoic acid, conjugated docosapentaenoic acid, and conjugated docosahexaenoic acid, according to any one of claims 1 to 4. Production method. 前記微生物が、バクテリア、酵母、糸状菌、微細藻類、及びラビリンチュラからなる群から選ばれた少なくとも一つであることを特徴とする、請求項1〜5のいずれかに記載の製造方法。

The production method according to claim 1, wherein the microorganism is at least one selected from the group consisting of bacteria, yeast, filamentous fungi, microalgae, and Labyrinthula.

JP2005327704A 2005-11-11 2005-11-11 Method for producing unsaturated fatty acid-containing phospholipid Pending JP2007129973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005327704A JP2007129973A (en) 2005-11-11 2005-11-11 Method for producing unsaturated fatty acid-containing phospholipid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005327704A JP2007129973A (en) 2005-11-11 2005-11-11 Method for producing unsaturated fatty acid-containing phospholipid

Publications (1)

Publication Number Publication Date
JP2007129973A true JP2007129973A (en) 2007-05-31

Family

ID=38152156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005327704A Pending JP2007129973A (en) 2005-11-11 2005-11-11 Method for producing unsaturated fatty acid-containing phospholipid

Country Status (1)

Country Link
JP (1) JP2007129973A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004794A1 (en) 2009-07-06 2011-01-13 株式会社カネカ Method for producing phospholipid
JP2011525525A (en) * 2008-06-24 2011-09-22 エンジモテック・リミテッド Glycerophospholipid for improvement of cognitive function
CN105296556A (en) * 2015-12-03 2016-02-03 福建师范大学 Method for preparing omega-3 fatty acid-rich phospholipid by using algae oil
WO2020185858A1 (en) * 2019-03-12 2020-09-17 Locus Ip Company, Llc Materials and methods for producing cardiolipin-like phospholipids
US11759544B2 (en) 2018-05-25 2023-09-19 Locus Solutions Ipco, Llc Therapeutic compositions for enhanced healing of wounds and scars

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09121879A (en) * 1995-11-08 1997-05-13 Yakult Honsha Co Ltd Production of oil and fat composition containing polybasic unsaturated fatty acid-containing phosphatidyl serine
JP2001186898A (en) * 1999-10-19 2001-07-10 Bizen Kasei Kk Method for producing phosphatidyl serine having polyvalent unsaturated fatty acid residue
JP2004215528A (en) * 2003-01-10 2004-08-05 Taiyo Kagaku Co Ltd Method for producing phosphatidylserine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09121879A (en) * 1995-11-08 1997-05-13 Yakult Honsha Co Ltd Production of oil and fat composition containing polybasic unsaturated fatty acid-containing phosphatidyl serine
JP2001186898A (en) * 1999-10-19 2001-07-10 Bizen Kasei Kk Method for producing phosphatidyl serine having polyvalent unsaturated fatty acid residue
JP2004215528A (en) * 2003-01-10 2004-08-05 Taiyo Kagaku Co Ltd Method for producing phosphatidylserine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525525A (en) * 2008-06-24 2011-09-22 エンジモテック・リミテッド Glycerophospholipid for improvement of cognitive function
JP2015212266A (en) * 2008-06-24 2015-11-26 エンジモテック・リミテッドEnzymotec Ltd. Glycerophospholipids for improvement of cognitive functions
WO2011004794A1 (en) 2009-07-06 2011-01-13 株式会社カネカ Method for producing phospholipid
US8530208B2 (en) 2009-07-06 2013-09-10 Kaneka Corporation Method for producing phospholipid
CN105296556A (en) * 2015-12-03 2016-02-03 福建师范大学 Method for preparing omega-3 fatty acid-rich phospholipid by using algae oil
US11759544B2 (en) 2018-05-25 2023-09-19 Locus Solutions Ipco, Llc Therapeutic compositions for enhanced healing of wounds and scars
WO2020185858A1 (en) * 2019-03-12 2020-09-17 Locus Ip Company, Llc Materials and methods for producing cardiolipin-like phospholipids

Similar Documents

Publication Publication Date Title
Wood Fatty acids and saponifiable lipids
Chen The biomass and total lipid content and composition of twelve species of marine diatoms cultured under various environments
Chen et al. Fatty acid and lipid class composition of the eicosapentaenoic acid-producing microalga, Nitzschia laevis
Gong et al. Triacylglycerol accumulation and change in fatty acid content of four marine oleaginous microalgae under nutrient limitation and at different culture ages
Řezanka et al. Effect of nitrogen and phosphorus starvation on the polyunsaturated triacylglycerol composition, including positional isomer distribution, in the alga Trachydiscus minutus
Fang et al. Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp.
Szczęsna-Antczak et al. Relationships between lipases and lipids in mycelia of two Mucor strains
JP2003517043A (en) Conjugated fatty acids and their related compounds, and methods for their production with enzymes
KR102202287B1 (en) Biomass of the microalgae schizochytrium mangrovei and method for preparing same
Řezanka et al. Effect of starvation on the distribution of positional isomers and enantiomers of triacylglycerol in the diatom Phaeodactylum tricornutum
Řezanka et al. Production of structured triacylglycerols from microalgae
Nalder et al. Changes in lipid class content and composition of Isochrysis sp.(T-Iso) grown in batch culture
Kyselová et al. Very long chain fatty acids
Řezanka et al. Temperature dependence of production of structured triacylglycerols in the alga Trachydiscus minutus
JP2007129973A (en) Method for producing unsaturated fatty acid-containing phospholipid
Chojnacka et al. Enzymatic enrichment of egg-yolk phosphatidylcholine with α-linolenic acid
Řezanka et al. Lipidomic profile in three species of dinoflagellates (Amphidinium carterae, Cystodinium sp., and Peridinium aciculiferum) containing very long chain polyunsaturated fatty acids
JP2004519231A (en) Method for producing gamma-linolenic acid from ciliate culture by adding appropriate precursor molecules to the culture medium
Chodok et al. The Plackett–Burman design for evaluating the production of polyunsaturated fatty acids by Physcomitrella patens
Kishino et al. Conjugated α‐linolenic acid production from α‐linolenic acid by Lactobacillus plantarum AKU 1009a
Ugalde et al. Improvement of culture conditions for cell biomass and fatty acid production by marine thraustochytrid F24-2
KR20080091858A (en) Microbial fermentation-based production of phospholipids containing long-chain polyunsaturated fatty acids as their constituents
Řezanka et al. Separation and identification of odd chain triacylglycerols of the protozoan Khawkinea quartana and the mold Mortierella alpina using LC–MS
JP4036596B2 (en) Lipids containing 5,11,14-eicosatrienoic acid and / or 5,11,14,17-eicosatetraenoic acid and method for producing the same
Kamada et al. Production of 8, 11‐cis‐eicosadienoic acid by a Δ5 and Δ12 desaturase‐defective mutant derived from the arachidonic acid‐producing fungus Mortierella alpina 1S‐4

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081110

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20110816

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110