JP2007127606A - Device and method for measuring complex permittivity - Google Patents

Device and method for measuring complex permittivity Download PDF

Info

Publication number
JP2007127606A
JP2007127606A JP2005322547A JP2005322547A JP2007127606A JP 2007127606 A JP2007127606 A JP 2007127606A JP 2005322547 A JP2005322547 A JP 2005322547A JP 2005322547 A JP2005322547 A JP 2005322547A JP 2007127606 A JP2007127606 A JP 2007127606A
Authority
JP
Japan
Prior art keywords
layer
dielectric constant
complex dielectric
sample
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005322547A
Other languages
Japanese (ja)
Inventor
Ko Fukunaga
香 福永
Atsuhiro Nishikata
敦博 西方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2005322547A priority Critical patent/JP2007127606A/en
Publication of JP2007127606A publication Critical patent/JP2007127606A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure the complex permittivity of such a dielectric substance as to be used in a thin-film state, in a film state, or in a small-diameter wire state, which has been hard to use as a measurement specimen up to now. <P>SOLUTION: An (N+1)layer round rod body is made of a substance of an axisymmetric structure comprising a specimen layer of unknown complex permittivity and N layers (air gaps can be included therein) of known complex permittivity. The rod body is put through and fixed in a wave guide tube with through holes provided in its confronting side walls. A propagation characteristic parameter is measured on the guide tube with the rod body put therethrough and fixed therein. The unknown complex permittivity of the specimen layer is derived by applying measurement results on the characteristic parameter to a theoretical expression of the characteristic parameter which is a function of the unknown complex permittivity and theoretically determined by the shapes of the guide tube and of the rod body and by the known complex permittivity of the N layers. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は誘電体の複素誘電率を測定する複素誘電率測定装置及び方法に関し、例えば、プリント配線基板等に用いる汎用絶縁材料や、エレクトロニクス部品用微小電波吸収体などの機能性誘電材料の複素誘電率の測定に適用し得るものである。   The present invention relates to a complex dielectric constant measuring apparatus and method for measuring a complex dielectric constant of a dielectric, for example, a general dielectric material used for a printed wiring board or the like, or a complex dielectric of a functional dielectric material such as a micro wave absorber for an electronic component. It can be applied to rate measurement.

従来、誘電体の誘電率(複素誘電率)を測定する方法として、以下のような方法が存在する。   Conventionally, there are the following methods for measuring the dielectric constant (complex dielectric constant) of a dielectric.

第1に、共振器内に試料を挿入したときの共振周波数やQ値の変化から算出する共振器法がある(例えば、特許文献1参照)。   First, there is a resonator method that calculates from a change in resonance frequency and Q value when a sample is inserted into the resonator (see, for example, Patent Document 1).

第2に、同軸導波管、方形導波管内部に試料を充填し、反射波のみの振幅と位相変化から複素誘電率を算出する方法がある(例えば、特許文献2及び特許文献3参照)。   Second, there is a method of filling a sample in a coaxial waveguide or a rectangular waveguide and calculating a complex dielectric constant from the amplitude and phase change of only the reflected wave (see, for example, Patent Document 2 and Patent Document 3). .

第3に、液体材料などを簡易に測定する方法として広く用いられている同軸プローブ法がある。同軸プローブ法は、同軸管を切り離した表面を試料に密着させて測定する方法でする。   Third, there is a coaxial probe method that is widely used as a method for easily measuring liquid materials and the like. The coaxial probe method is a method in which the surface from which the coaxial tube is cut is closely attached to a sample for measurement.

第4に、大きな(200mm×200mm程度)面を有する試料を用いて、その面に平面波を照射して反射、透過係数を測定し、複素誘電率を算出する自由空間法がある。
特開平08−122375号公報 特開平11−118732号公報 特開平11−166951号公報
Fourth, there is a free space method in which a sample having a large (about 200 mm × 200 mm) surface is irradiated with a plane wave on the surface to measure reflection and transmission coefficients and calculate a complex dielectric constant.
Japanese Patent Laid-Open No. 08-122375 Japanese Patent Laid-Open No. 11-118732 Japanese Patent Laid-Open No. 11-166951

上述した4種類の測定方法は、プリント配線基板等に用いる汎用絶縁材料や、エレクトロニクス部品用微小電波吸収体などの、薄膜状態やフィルム状態や小径の線状態などで使用されるような固体の機能性誘電材料の複素誘電率の測定に対しては、課題を有するものであった。   The four types of measurement methods described above are solid functions such as those used in thin film states, film states, and small-diameter wire states, such as general-purpose insulating materials used for printed wiring boards and the like, and micro wave absorbers for electronic components. The measurement of the complex dielectric constant of the conductive dielectric material has a problem.

第1の共振器法の場合には、共振周波数一点での特性からしか複素誘電率を求められず、測定精度が低い恐れがある。また、共振を妨害しないように、損失の大きい試料ほど小さい試料を製作する必要があり、試料作成が難しいという課題がある。   In the case of the first resonator method, the complex permittivity can be obtained only from the characteristic at one resonance frequency, and there is a fear that the measurement accuracy is low. Moreover, in order not to disturb resonance, it is necessary to manufacture a smaller sample for a sample with a larger loss, and there is a problem that sample preparation is difficult.

第2の導波管を用いる方法は、導波管の空洞形状に合わせるように試料形状を加工する必要がある。また、薄膜状態やフィルム状態などで使用される材料を、測定では、かなりの体積を有する試料で測定することになり、使用状態と測定状態での形状の相違が大きい。   In the method using the second waveguide, it is necessary to process the sample shape so as to match the cavity shape of the waveguide. In addition, a material used in a thin film state or a film state is measured by a sample having a considerable volume, and the difference in shape between the use state and the measurement state is large.

第3の同軸プローブ法による誘電率の測定範囲は、実用的には20MHz程度までの電波を用いて測定できる範囲であり、かなり限定されている。また、薄い試料(10mm以下)の場合には、測定面の裏側の影響が大きくなるため、フィルム状試料には適さない。また、イオン交換水の測定データを既知として校正するため、そこに誤差要因を含む相対測定である。   The measurement range of the dielectric constant by the third coaxial probe method is practically a range that can be measured using radio waves up to about 20 MHz, and is considerably limited. In addition, in the case of a thin sample (10 mm or less), the influence on the back side of the measurement surface becomes large, so that it is not suitable for a film sample. In addition, since the measurement data of ion-exchanged water is calibrated as known, it is a relative measurement including an error factor.

第4の自由空間法は、大きな面積でゆがみのない試料を製作する必要があり、道路や暗室用の電波吸収体等の測定以外には使い難い。   The fourth free space method needs to produce a sample with a large area and no distortion, and is difficult to use except for measurement of a radio wave absorber for a road or a dark room.

そのため、薄膜状態やフィルム状態や小径の線状態などで使用されるような従来では測定試料になり難い誘電体の複素誘電率の測定に好適な複素誘電率測定装置及び方法が求められている。   Therefore, there is a need for a complex permittivity measuring apparatus and method suitable for measuring the complex permittivity of a dielectric that is difficult to be a measurement sample in the past, such as used in a thin film state, a film state, or a small diameter line state.

かかる課題を解決するために、第1の本発明の複素誘電率測定装置は、複素誘電率が未知の試料層と複素誘電率が既知のN層(空気ギャップ層を含んでいても良い)との軸対称の構造の物質よりなる円状棒体と、前記(N+1)層の円状棒体を貫通させるための、対向する側壁に設けられた透孔を有する導波管と、前記透孔を介して前記円状棒体が貫通固定された前記導波管の伝播特性パラメータを測定する測定手段と、前記導波管と前記円状棒体との形状及びN層の既知の複素誘電率から理論的に定まる、未知の複素誘電率の関数となっている伝搬特性パラメータの理論式に対し、前記測定手段の測定結果を適用して未知の試料層の複素誘電率を導出する解析手段とを含むことを特徴とする。   In order to solve such a problem, a complex dielectric constant measuring apparatus according to the first aspect of the present invention includes a sample layer having an unknown complex dielectric constant and an N layer having an unknown complex dielectric constant (which may include an air gap layer). A circular rod made of a material having an axially symmetric structure, a waveguide having through holes provided in opposing side walls for passing through the circular rod of the (N + 1) layer, and the through holes Measuring means for measuring a propagation characteristic parameter of the waveguide through which the circular rod is fixed through, a shape of the waveguide and the circular rod, and a known complex dielectric constant of the N layer Analyzing means for deriving the complex dielectric constant of the unknown sample layer by applying the measurement result of the measuring means to the theoretical expression of the propagation characteristic parameter that is theoretically determined from It is characterized by including.

また、第2の本発明の複素誘電率測定方法は、複素誘電率が未知の試料層と複素誘電率が既知のN層(空気ギャップ層を含んでいても良い)との軸対称の構造の物質よりなる(N+1)層の円状棒体を、対向する側壁に透孔が設けられている導波管に貫通固定し、前記円状棒体が貫通固定された前記導波管についての伝播特性パラメータを測定し、前記導波管と前記円状棒体との形状及びN層の既知の複素誘電率から理論的に定まる、未知の複素誘電率の関数となっている伝搬特性パラメータの理論式に対し、伝播特性パラメータの測定結果を適用して未知の試料層の複素誘電率を導出することを特徴とする。   Further, the complex dielectric constant measuring method of the second aspect of the present invention has an axially symmetric structure of a sample layer whose complex dielectric constant is unknown and an N layer whose complex dielectric constant is known (which may include an air gap layer). A (N + 1) layer circular rod made of a material is fixedly penetrated into a waveguide having through holes in opposing side walls, and the circular rod is propagated through the waveguide. A theory of propagation characteristic parameters as a function of an unknown complex dielectric constant, which is determined theoretically from the shape of the waveguide and the circular rod and the known complex dielectric constant of the N layer. The characteristic is that the complex dielectric constant of an unknown sample layer is derived by applying the measurement result of the propagation characteristic parameter to the equation.

本発明によれば、導波管に貫通される(N+1)層の円状棒体の1層を試料層とできるので、薄膜状態やフィルム状態や小径の線状態などで使用されるような従来では測定試料になり難い誘電体の複素誘電率の測定することができる。   According to the present invention, one layer of (N + 1) layers of circular rods penetrating the waveguide can be used as a sample layer, so that it is conventionally used in a thin film state, a film state, a small diameter line state, or the like. Then, it is possible to measure the complex dielectric constant of a dielectric that is difficult to be a measurement sample.

(A)第1の実施形態
以下、本発明による複素誘電率測定装置及び方法の第1の実施形態を、図面を参照しながら詳述する。
(A) First Embodiment Hereinafter, a first embodiment of a complex permittivity measuring apparatus and method according to the present invention will be described in detail with reference to the drawings.

(A−1)第1の実施形態の構成
図1は、第1の実施形態の複素誘電率測定装置10の概略全体構成を示すブロック図である。
(A-1) Configuration of First Embodiment FIG. 1 is a block diagram showing a schematic overall configuration of a complex dielectric constant measuring apparatus 10 of the first embodiment.

図1において、第1の実施形態の複素誘電率測定装置10は、穴あき矩形導波管11、試料12、試料支持円状棒体13、ネットワークアナライザ14、コンピュータ15及び恒温恒湿槽16などを有している。   In FIG. 1, the complex permittivity measuring apparatus 10 of the first embodiment includes a perforated rectangular waveguide 11, a sample 12, a sample supporting circular rod 13, a network analyzer 14, a computer 15, a constant temperature and humidity chamber 16, and the like. have.

穴あき矩形導波管11は、図2に示すように、4つの側壁のうち広い方の2つの側壁(広壁)の中心に、試料支持円状棒体13が貫通される円状の透孔11aを有するものである。後述するように、穴あき矩形導波管11の内部の進行波を掃引してSパラメータを測定するが、周波数の掃引範囲によっては、異なる周波数帯に対応し得る複数の穴あき矩形導波管11を用意しておき、交換して用いる。穴あき矩形導波管11としては、例えば、透孔11aがないと仮定したときに、規格化されている形状(例えばIEC規格)のものを適用し得る。ここで、透孔11aの径は、異なる種類の導波管で異なっていても良く、同じであっても良い。   As shown in FIG. 2, the perforated rectangular waveguide 11 has a circular transparent shape through which the sample-supporting circular rod body 13 penetrates at the center of two wider side walls (wide walls) of the four side walls. It has a hole 11a. As will be described later, the S-parameter is measured by sweeping the traveling wave inside the perforated rectangular waveguide 11, but depending on the frequency sweep range, a plurality of perforated rectangular waveguides that can correspond to different frequency bands. 11 is prepared and used by exchanging. As the perforated rectangular waveguide 11, for example, a standardized shape (for example, IEC standard) can be applied when it is assumed that there is no through hole 11a. Here, the diameter of the through hole 11a may be different for different types of waveguides, or may be the same.

試料12は、複素誘電率の測定対象の固形又は非流動体(測定時に固形又は非流動であれば良い)のものであり、試料支持円状棒体13によって後述するように支持されるものである。試料支持円状棒体13は、穴あき矩形導波管11を貫通できる十分な長さを有するものであり、円筒又は円柱のいずれの形状であっても良い。なお、試料12としては、固形物と同様に取り扱う状態になっていれば流動体であっても良い。例えば、上下が閉塞している円筒状の密閉型容器又は円筒状の上端だけが開口されている開放型容器(試料支持円状棒体13)に充填されている、非流動状態の流動体は、試料12となり得る。   The sample 12 is a solid or non-fluid body to be measured for the complex dielectric constant (which may be solid or non-fluid at the time of measurement), and is supported by the sample support circular rod 13 as described later. is there. The sample-supporting circular rod 13 has a sufficient length that can penetrate the perforated rectangular waveguide 11, and may be either cylindrical or cylindrical. Note that the sample 12 may be a fluid as long as it is in a state of being handled in the same manner as a solid material. For example, a non-flowing fluid filled in a cylindrical sealed container whose upper and lower portions are closed or an open container (sample support circular rod 13) in which only the cylindrical upper end is opened is Sample 12 can be obtained.

試料12は、試料支持円状棒体13の外周面又は内周面に薄膜として設けられるものであっても良い。ここで、試料12の薄膜の形成方法として、薄膜の既存の形成方法のいかなる方法を適用しても良い。例えば、蒸着や塗布や印刷などの方法であっても良い。また、試料12が、フィルム状又は布状のものである場合には、試料支持円状棒体13の外周面に巻き付けて設ける。この際の巻数は問われないものである。また、試料12が、フィルム状又は布状のものである場合において、円筒状の試料支持円状棒体13の内部に、巻物状にした試料12を挿通するようにしても良い。さらに、試料12を小径の円柱棒として形成し、円筒状の試料支持円状棒体13の内部に挿通するようにしても良く、この際、試料12は、試料支持円状棒体13に嵌合している必要はなく、例えば、図3(A)の断面図に示すように、試料12と試料支持円状棒体13との間に空気層17があっても良い(この場合、例えば、試料支持円状棒体13の上下端で試料12が連結される)。また、試料支持円状棒体13は、1個に限定されず、2個以上の部材でなっていても良い。例えば、図3(B)の断面図に示すように、円柱状の第1の試料支持円状棒体13aの外周面に試料12の薄膜を形成し、試料12を有する第1の試料支持円状棒体13aを、接触して又は空気層17を介して、同心円状に覆うように、円筒状の第2の試料支持円状棒体13bを有するものであっても良い。   The sample 12 may be provided as a thin film on the outer peripheral surface or the inner peripheral surface of the sample support circular bar 13. Here, as a method for forming the thin film of the sample 12, any of the existing methods for forming a thin film may be applied. For example, a method such as vapor deposition, coating, or printing may be used. Further, when the sample 12 is in the form of a film or cloth, the sample 12 is provided by being wound around the outer peripheral surface of the sample support circular bar 13. The number of turns at this time is not questioned. In addition, when the sample 12 is in the form of a film or cloth, the sample 12 in the form of a scroll may be inserted into the cylindrical sample support circular bar 13. Further, the sample 12 may be formed as a small-diameter columnar rod and inserted into the cylindrical sample support circular rod 13. At this time, the sample 12 is fitted to the sample support circular rod 13. For example, as shown in the cross-sectional view of FIG. 3A, there may be an air layer 17 between the sample 12 and the sample support circular rod 13 (in this case, for example, The sample 12 is connected at the upper and lower ends of the sample support circular bar 13). Moreover, the sample support circular rod 13 is not limited to one, and may be composed of two or more members. For example, as shown in the cross-sectional view of FIG. 3B, a thin film of the sample 12 is formed on the outer peripheral surface of the cylindrical first sample support circular bar 13a, and the first sample support circle having the sample 12 is formed. The cylindrical sample body 13a may have a cylindrical second sample support circular bar body 13b so as to concentrically cover the bar body 13a in contact or via the air layer 17.

なお、試料12や試料支持円状棒体13(複数の場合を含む)や空気層17は、穴あき矩形導波管11の上下の透孔11aの中心同士を結ぶ中心軸に対して同心円状に、言い換えると、軸対称に配置されている。   The sample 12, the sample support circular rod 13 (including a plurality of cases), and the air layer 17 are concentric with respect to the central axis that connects the centers of the upper and lower through holes 11 a of the perforated rectangular waveguide 11. In other words, they are arranged axisymmetrically.

試料12が、フィルム状又は布状のものである場合には、試料12を巻回によって円筒状又は円柱状とし、フィルム状や布状以外のものである場合には、成形や削り出しなどによって試料12を円筒状又は円柱状とし、試料支持円状棒体13を用いることなく、穴あき矩形導波管11の透孔11aを貫通するようにしても良い。但し、複素誘電率が未知の層(試料12)と複素誘電率が既知の層(空気ギャップ層を含む)を軸対称で有することを要する。複素誘電率が既知の層とは、試料12の複素誘電率を求める際に既知になっていれば良く、一連の測定手順によって、試料12の複素誘電率より先に複素誘電率を求めるものがあっても良い。   When the sample 12 is in the form of a film or cloth, the sample 12 is made into a cylindrical or columnar shape by winding, and when it is other than a film or cloth, it can be formed or cut out. The sample 12 may be cylindrical or columnar, and may pass through the through hole 11a of the perforated rectangular waveguide 11 without using the sample support circular rod 13. However, it is necessary to have an axisymmetrical layer having a complex dielectric constant (sample 12) and a layer having a known complex dielectric constant (including an air gap layer). The layer having a known complex permittivity may be a layer that is known when the complex permittivity of the sample 12 is obtained, and a layer that obtains the complex permittivity before the complex permittivity of the sample 12 by a series of measurement procedures. There may be.

ここで、試料12の外側周囲に、試料支持円状棒体13の全体又は一部が配置される配置態様の場合には、試料12の外側の層として、導波管11の電磁界エネルギーが、軸対象となる軸あるいはその近傍に集中するような複素誘電率を有する層を設けてレンズ的な機能を発揮させることが好ましい。この場合において、軸対称の層のうち最も内側の層を、固形物質で円柱形状に形成した層にすることが、レンズ的な機能の発揮度合が大きくて好ましい。   Here, in the case of an arrangement mode in which the whole or a part of the sample-supporting circular rod 13 is arranged around the outside of the sample 12, the electromagnetic field energy of the waveguide 11 is used as an outer layer of the sample 12. It is preferable to provide a lens-like function by providing a layer having a complex dielectric constant that concentrates at or near the axis that is the target of the axis. In this case, it is preferable that the innermost layer of the axially symmetric layers is a layer formed of a solid substance in a cylindrical shape because the degree of lens function is high.

ネットワークアナライザ14は、一般的な2ポートのベクトルネットワークアナライザであり、この第1の実施形態の場合には、伝播特性パラメータとしてSパラメータを複素数として測定するものである。ネットワークアナライザ14は、同軸導波管変換器を通じて穴あき矩形導波管11に接続されている。ネットワークアナライザ14は、周波数を掃引しながら、各周波数でのSパラメータを測定するものである。   The network analyzer 14 is a general two-port vector network analyzer. In the case of the first embodiment, the network analyzer 14 measures an S parameter as a complex number as a propagation characteristic parameter. The network analyzer 14 is connected to the perforated rectangular waveguide 11 through a coaxial waveguide converter. The network analyzer 14 measures the S parameter at each frequency while sweeping the frequency.

コンピュータ15は、ディスプレイやキーボードなどの入出力装置や、各種の記憶装置を備えた、例えば、パソコン程度のコンピュータであり、ネットワークアナライザ14が得たSパラメータから、試料12の複素誘電率を算出するものである。コンピュータ15による処理方法は、後述する測定手順の説明で詳述する。   The computer 15 is a computer such as a personal computer provided with input / output devices such as a display and a keyboard, and various storage devices, and calculates the complex dielectric constant of the sample 12 from the S parameter obtained by the network analyzer 14. Is. The processing method by the computer 15 will be described in detail in the description of the measurement procedure described later.

恒温恒湿槽16は、試料12や試料支持円状棒体13の装着有無に関係なく、穴あき矩形導波管11を内部に収容し、穴あき矩形導波管11の周囲の温度及び湿度を設定された値にするものである。一般に、複素誘電率は温度による依存性が高い。また、材料(試料12や試料支持円状棒体13)によっては水を吸いやすいものもあり、これが複素誘電率に大きな影響を与える場合がある。そのため、恒温恒湿槽16内に穴あき矩形導波管11を設置して測定することにより、実験の再現性を向上させ、複素誘電率の温度特性等の測定も可能とした。   The constant temperature and humidity chamber 16 accommodates the perforated rectangular waveguide 11 inside regardless of whether the sample 12 or the sample support circular rod 13 is attached, and the temperature and humidity around the perforated rectangular waveguide 11. Is set to the set value. In general, the complex dielectric constant is highly dependent on temperature. Some materials (the sample 12 and the sample-supporting circular rod 13) easily absorb water, which may have a large influence on the complex dielectric constant. Therefore, by installing a rectangular waveguide 11 with a hole in the constant temperature and humidity chamber 16 for measurement, the reproducibility of the experiment is improved, and the temperature characteristics of the complex dielectric constant can be measured.

(A−2)第1の実施形態の動作
次に、第1の実施形態の複素誘電率測定装置10の測定動作(第1の実施形態の複素誘電率測定方法)を、図面を参照しながら説明する。
(A-2) Operation of the First Embodiment Next, the measurement operation of the complex permittivity measuring apparatus 10 of the first embodiment (the complex permittivity measuring method of the first embodiment) will be described with reference to the drawings. explain.

図4は、試料12の複素誘電率の測定手順の流れを示すフローチャートである。   FIG. 4 is a flowchart showing the flow of the procedure for measuring the complex dielectric constant of the sample 12.

測定では、予め、コンピュータ15に対して、使用する導波管11の形状情報(例えば、空洞の長辺、短辺、空洞の長さ、透孔11aの径など)、試料12及び試料支持円状棒体13などでなるN+1層の各層の情報を入力しておく(S1)。軸対象の中心層では半径、その他の層では層の厚さを入力する。また、試料12の1層を除き、他のN層のそれぞれについては、複素誘電率を入力する。   In the measurement, the shape information of the waveguide 11 to be used (for example, the long side, the short side, the length of the cavity, the diameter of the through hole 11a, etc.), the sample 12 and the sample support circle are used. Information on each layer of the (N + 1) layer composed of the rod-like rod 13 or the like is input (S1). Enter the radius for the center layer of the axis target, and the layer thickness for the other layers. Further, a complex dielectric constant is input for each of the other N layers except for one layer of the sample 12.

なお、導波管11の種類とその種類の導波管の形状情報とを予め対応付けた格納テーブルを用意しておき、導波管11の種類情報を入力して、その種類の導波管の形状情報を格納テーブルから読み出すようにしても良い。また、用いる試料支持円状棒体13の種類が限定されているような場合であれば、同様に、情報格納テーブルを用意しておき、試料支持円状棒体13の種類情報を入力して、試料支持円状棒体13に係るN層の情報を読み出し、試料12に係る1層の情報だけを入力するようにしても良い。後述する理論関数は、各層の複素誘電率だけでなく各層の複素透磁率も影響するが、誤差は許容できる程度であるので全ての層の複素透磁率を「1」とみなしても良く、複素誘電率が未知な層(試料12の層)についての複素透磁率は「1」とみなし、複素誘電率が既知の層については、複素透磁率を入力させるようにしても良い。   In addition, a storage table in which the type of the waveguide 11 and the shape information of the type of the waveguide are associated in advance is prepared, the type information of the waveguide 11 is input, and the type of the waveguide The shape information may be read from the storage table. If the type of the sample support circular rod 13 to be used is limited, similarly, an information storage table is prepared and the type information of the sample support circular rod 13 is input. Alternatively, the information on the N layer related to the sample support circular rod 13 may be read, and only the information on one layer related to the sample 12 may be input. The theoretical function described later affects not only the complex permittivity of each layer but also the complex permeability of each layer, but since the error is acceptable, the complex permeability of all layers may be regarded as “1”. The complex magnetic permeability for the layer with the unknown dielectric constant (the layer of the sample 12) is regarded as “1”, and the complex magnetic permeability may be input for the layer with the known complex dielectric constant.

次に、ネットワークアナライザ14のTRL(Through−Reflection−Line)校正機能により校正を行う(S2)。測定系の2ポートSパラメータの基準面を定めるために、例えば、導波管11の両面を基準面としてTRL(Through−Reflection−Line)校正を行い、その後、位相補正により、導波管11の上下の透孔11aの中心同士を結ぶ中心軸を含む横断面に基準面を移す。   Next, calibration is performed by a TRL (Through-Reflection-Line) calibration function of the network analyzer 14 (S2). In order to determine the reference plane of the 2-port S parameter of the measurement system, for example, TRL (Through-Reflection-Line) calibration is performed using both sides of the waveguide 11 as reference planes, and then the phase of the waveguide 11 is corrected by phase correction. The reference plane is moved to a cross section including a central axis connecting the centers of the upper and lower through holes 11a.

その後、試料支持円状棒体13を装着していない穴あき矩形導波管11についてのSパラメータの測定、試料12の層が設けられていない(又は試料12の層が空気層に置き換えられた)試料支持円状棒体13を装着した穴あき矩形導波管11についてのSパラメータの測定、及び、試料12の層が設けられた試料支持円状棒体13を装着した穴あき矩形導波管11についてのSパラメータの測定を、ネットワークアナライザ14を用いて順次行い、測定されたSパラメータをコンピュータ15に入力する(S3〜S5)。Sパラメータの測定では、周波数を掃引して行うが、周波数の掃引範囲によっては、異なる周波数帯に対応し得る複数の穴あき矩形導波管11を交換して用いる。   After that, measurement of S-parameters for the perforated rectangular waveguide 11 in which the sample support circular rod 13 is not mounted, the layer of the sample 12 is not provided (or the layer of the sample 12 is replaced with an air layer) ) Measurement of S-parameters for the perforated rectangular waveguide 11 equipped with the sample supporting circular rod 13 and the perforated rectangular waveguide equipped with the sample supporting circular rod 13 provided with the layer of the sample 12 The measurement of the S parameter for the tube 11 is sequentially performed using the network analyzer 14, and the measured S parameter is input to the computer 15 (S3 to S5). The S parameter is measured by sweeping the frequency. Depending on the frequency sweep range, a plurality of perforated rectangular waveguides 11 that can correspond to different frequency bands are used interchangeably.

試料支持円状棒体13を装着していない穴あき矩形導波管11についてのSパラメータの測定と、試料12の層が設けられていない(又は試料12の層が空気層に置き換えられた)試料支持円状棒体13を装着した穴あき矩形導波管11についてのSパラメータの測定とは、いずれか一方だけを行うようにしても良い。   Measurement of S-parameters for the perforated rectangular waveguide 11 without the sample-supporting circular rod 13 and the layer of the sample 12 is not provided (or the layer of the sample 12 is replaced with an air layer) Only one of the measurement of the S parameter for the perforated rectangular waveguide 11 to which the sample support circular rod 13 is attached may be performed.

ここで、穴あき矩形導波管11に、試料12の層が設けられた試料支持円状棒体13が貫通した状態を考える。試料12と試料支持円状棒体13とでN+1層でなっているとし(空気ギャップ層が含まれていても良い)、各層の複素誘電率をそれぞれε〜εN+1とする。 Here, let us consider a state in which a sample-supporting circular rod 13 provided with a layer of the sample 12 passes through the rectangular waveguide 11 with holes. It is assumed that the sample 12 and the sample-supporting circular rod body 13 are composed of N + 1 layers (an air gap layer may be included), and the complex dielectric constant of each layer is denoted by ε 1 to ε N + 1 , respectively.

試料12の層が設けられた試料支持円状棒体13が貫通した穴あき矩形導波管11についての4つのSパラメータs11、s12、s13、s14は、穴あき矩形導波管11の進行波に対する対称的な形状のため、穴あき矩形導波管11の形状を規定するパラメータと、試料12の層が設けられた試料支持円状棒体13での平面波散乱係数とによって理論的に表すことができ、また、試料12の層が設けられた試料支持円状棒体13での平面波散乱係数は、その軸対称性により、各層の複素誘電率をε〜εN+1の関数として、理論的に表すことができる。 The four S parameters s11, s12, s13, and s14 for the perforated rectangular waveguide 11 through which the sample support circular rod 13 provided with the layer of the sample 12 passes are the traveling waves of the perforated rectangular waveguide 11. Is theoretically expressed by a parameter that defines the shape of the perforated rectangular waveguide 11 and a plane wave scattering coefficient on the sample-supporting circular rod 13 provided with the layer of the sample 12. In addition, the plane wave scattering coefficient of the sample-supporting circular rod 13 provided with the layer of the sample 12 is theoretically determined by the complex symmetry of each layer as a function of ε 1 to ε N + 1 due to its axial symmetry. Can be expressed as

これにより、4つのSパラメータs11、s12、s13、s14だけを含む関数G(s11,s12,s13,s14)は(例えば4つのパラメータの単純平均)、下記(1)式に示すように、各層の複素誘電率ε〜εN+1の関数F(ε,…,ε,…,εN+1)として表される。複素誘電率εは、試料12の複素誘電率であり、Xは1〜N+1のいずれかである。 As a result, the function G (s11, s12, s13, s14) including only the four S parameters s11, s12, s13, s14 (for example, a simple average of four parameters) complex dielectric constant ε 1 N + 1 of the function F (ε 1, ..., ε X , ..., ε N + 1) is expressed as. The complex dielectric constant ε X is a complex dielectric constant of the sample 12, and X is any one of 1 to N + 1.

F(ε,…,ε,…,εN+1)=G(s11,s12,s13,s14) …(1)
ここで、(1)式における右辺のG(s11,s12,s13,s14)は、4つのSパラメータs11、s12、s13、s14の測定値を適用して、具体的な値にすることができる。なお、同一対象の測定を複数回実行し、それぞれが平均処理された4つのSパラメータs11、s12、s13、s14を適用するようにしても良い。一方、(1)式における左辺の関数F(ε,…,ε,…,εN+1)に係るN+1個の複素誘電率のうち、未知の複素誘電率εは、試料12の複素誘電率だけであるので、関数F(ε,…,ε,…,εN+1)は未知の複素誘電率εについての関数になっている。
F (ε 1 ,..., Ε X ,..., Ε N + 1 ) = G (s11, s12, s13, s14) (1)
Here, G (s11, s12, s13, s14) on the right side in equation (1) can be set to a specific value by applying the measured values of the four S parameters s11, s12, s13, s14. . Note that measurement of the same target may be performed a plurality of times, and four S parameters s11, s12, s13, and s14 each averaged may be applied. On the other hand, among the N + 1 complex dielectric constants related to the function F (ε 1 ,..., Ε X ,..., Ε N + 1 ) on the left side in the equation (1), the unknown complex dielectric constant ε X is the complex dielectric constant of the sample 12. Since only the rate, the function F (ε 1 ,..., Ε X ,..., Ε N + 1 ) is a function for the unknown complex dielectric constant ε X.

従って、測定されたSパラメータs11、s12、s13、s14や、既知情報として入力された他の複素誘電率ε〜εN+1(但しεを除く)や、穴あき矩形導波管11などの形状情報に従って、(1)式を解くことによって、試料12の複素誘電率εを求めることができる。(1)式の解法には、例えば、ニュートン法などの近似値の探索アルゴリズムを利用できる。(1)式の右辺は測定値を利用した演算処理によりある値になる。未知の複素誘電率εとしてある値を設定して(1)式の左辺を計算し、右辺との差分を算出し、その差分に応じて、未知の複素誘電率εの設定値を変更して(1)式の左辺を計算し直し、右辺との差分を算出して評価し、以下同様にして、右辺との差分が許容できる誤差範囲になるように未知の複素誘電率εを探索する。 Therefore, the measured S parameters s11, s12, s13, s14, other complex dielectric constants ε 1 to ε N + 1 (excluding ε X ) input as known information, the perforated rectangular waveguide 11, etc. The complex permittivity ε X of the sample 12 can be obtained by solving the equation (1) according to the shape information. For solving the equation (1), for example, an approximate value search algorithm such as Newton's method can be used. The right side of the equation (1) becomes a certain value by a calculation process using the measured value. Set a certain value as the unknown complex dielectric constant ε X , calculate the left side of equation (1), calculate the difference from the right side, and change the set value of the unknown complex dielectric constant ε X according to the difference Then, the left side of the equation (1) is recalculated, the difference from the right side is calculated and evaluated, and in the same manner, the unknown complex permittivity ε X is set so that the difference from the right side falls within an allowable error range. Explore.

上述した(1)式は、試料12の層が設けられた試料支持円状棒体13を装着した穴あき矩形導波管11についてのSパラメータの測定結果だけを用いて、試料12の複素誘電率εを求める場合に適用する式である。 Equation (1) described above uses only the S-parameter measurement results for the perforated rectangular waveguide 11 on which the sample-supporting circular rod 13 provided with the layer of the sample 12 is mounted, and the complex dielectric of the sample 12 is used. This is an expression applied when the rate ε X is obtained.

また、(2)式に示すような差分関数E(ε)を適用して試料12の複素誘電率εを求めることができる。 Further, the complex dielectric constant ε X of the sample 12 can be obtained by applying a differential function E (ε X ) as shown in the equation (2).

E(ε)=F(ε)−F^(ε
=G(s11A,s12A,s13A,s14A)
−G(s11B,s12B,s13B,s14B) …(2)
(2)式において、関数F(ε)は、(1)式における左辺と同一なものであり、関数F^(ε)は、未知の複素誘電率εを含まない状態での測定環境での、(1)式の左辺と同様な理論関数である。言い換えると、前者F(ε)は、試料12の層が設けられた試料支持円状棒体13を装着した穴あき矩形導波管11についての理論関数である。従って、理論的な差分関数E(ε)も、未知のパラメータは、試料12の複素誘電率εだけである。
E (ε X ) = F (ε X ) −F ^ (ε X )
= G (s11A, s12A, s13A, s14A)
-G (s11B, s12B, s13B, s14B) (2)
In the equation (2), the function F (ε X ) is the same as the left side in the equation (1), and the function F ^ (ε X ) is measured without including the unknown complex dielectric constant ε X. This is a theoretical function similar to the left side of the equation (1) in the environment. In other words, the former F (ε X ) is a theoretical function for the perforated rectangular waveguide 11 on which the sample-supporting circular rod 13 provided with the sample 12 layer is mounted. Accordingly, the theoretical difference function E (ε X ) is also the only unknown parameter of the complex permittivity ε X of the sample 12.

未知の複素誘電率εを含まない理論関数F^(ε)を適用し得る場合としては、試料12が設けられていない試料支持円状棒体13を装着した穴あき矩形導波管11についての測定環境や、試料12の部分を複素誘電率が既知の層(例えば空気ギャップ層)に置き換えた試料支持円状棒体13を装着した穴あき矩形導波管11についての測定環境や、試料支持円状棒体13を装着していない穴あき矩形導波管11(1層の空気ギャップ層だけでなる存在しない試料支持円状棒体13が装着されているとみなす)についての測定環境を挙げることができる。 As a case where a theoretical function F ^ (ε X ) that does not include an unknown complex dielectric constant ε X can be applied, a perforated rectangular waveguide 11 equipped with a sample-supporting circular rod 13 on which a sample 12 is not provided. A measurement environment for a perforated rectangular waveguide 11 equipped with a sample support circular rod 13 in which a portion of the sample 12 is replaced with a layer having a known complex dielectric constant (for example, an air gap layer), Measurement environment for a perforated rectangular waveguide 11 not mounted with a sample support circular rod 13 (assuming that a non-existing sample support circular rod 13 consisting of only one air gap layer is mounted) Can be mentioned.

関数値G(s11A,s12A,s13A,s14A)は、試料12の層が設けられた試料支持円状棒体13を装着した穴あき矩形導波管11についての測定結果から得られた値であり、関数値G(s11B,s12B,s13B,s14B)は、複素誘電率εを含まない理論関数F^(ε)が適用されるような測定環境での測定結果から得られた値である。 The function value G (s11A, s12A, s13A, s14A) is a value obtained from the measurement result of the perforated rectangular waveguide 11 on which the sample support circular rod 13 provided with the layer of the sample 12 is mounted. The function value G (s11B, s12B, s13B, s14B) is a value obtained from the measurement result in the measurement environment in which the theoretical function F ^ (ε X ) not including the complex dielectric constant ε X is applied. .

従って、(2)式を解くことによっても、試料12の複素誘電率εを求めることができる。(2)式の解法にも、例えば、ニュートン法などの近似値の探索アルゴリズムを利用できる。(2)式を適用する場合は、測定時に、仮にオフセットなどが入り込むとしても(例えば、TRL校正で取り除ききれない誤差があっても)、差分処理により相殺され、(1)式より、算出精度が向上することが期待できる。 Therefore, the complex dielectric constant ε X of the sample 12 can also be obtained by solving the equation (2). For solving the equation (2), for example, an approximate value search algorithm such as Newton's method can be used. When applying equation (2), even if an offset or the like enters during measurement (for example, even if there is an error that cannot be removed by TRL calibration), it is canceled by the difference processing, and the calculation accuracy is calculated from equation (1). Can be expected to improve.

以上のように、ステップS3〜S5で測定された、異なる測定環境についてのSパラメータの測定結果を利用して、試料12の複素誘電率εを求める(S6)。 As described above, the complex dielectric constant ε X of the sample 12 is obtained using the measurement results of the S parameters for the different measurement environments measured in steps S3 to S5 (S6).

図5(A1)及び(A2)は、穴あき矩形導波管11のみのSパラメータの測定値sij(ijは、11、12、21、22のいずれか)の一例を示すグラフであり、図5(B1)及び(B2)は、ある試料支持円状棒体13を装着した穴あき矩形導波管11についてのSパラメータ測定値sijの一例を示すグラフであり、試料支持円状棒体13の装着により、Sパラメータは変化することが分かる。 FIGS. 5A1 and 5A2 are graphs showing examples of measured values s ij (ij is any one of 11, 12, 21, and 22) of the S parameter of the perforated rectangular waveguide 11 only. FIGS. 5B1 and 5B2 are graphs showing an example of S parameter measurement values s ij for the perforated rectangular waveguide 11 to which a certain sample support circular rod body 13 is attached. It can be seen that the S-parameters change as the body 13 is attached.

コンピュータ15には、関数F(ε,…,ε,…,εN+1)、関数G(s11,s12,s13,s14)、関数E(ε)などを記述したり、算出したりするルーチンを設けておく。そして、入力された使用する導波管11の形状情報、試料支持円状棒体13の層情報に応じて、そのルーチンに対するパラメータの設定処理により、未知数を試料12の複素誘電率εだけとし、ネットワークアナライザ14から与えられたSパラメータの値を適用し、上述した(1)式又は(2)式を解法することにより(解法ルーチンもコンピュータ15に搭載されている)、試料12の複素誘電率εを求める。 The computer 15 describes or calculates a function F (ε 1 ,..., Ε X ,..., Ε N + 1 ), a function G (s 11, s 12, s 13 , s 14 ), a function E (ε X ), and the like. A routine is provided. Then, according to the input shape information of the waveguide 11 to be used and the layer information of the sample support circular rod 13, the unknown is set to only the complex dielectric constant ε X of the sample 12 by parameter setting processing for the routine. By applying the value of the S parameter given from the network analyzer 14 and solving the above equation (1) or (2) (the solution routine is also mounted in the computer 15), the complex dielectric of the sample 12 is obtained. The rate ε X is obtained.

ネットワークアナライザ14の周波数の掃引機能を利用して各周波数でのSパラメータを得ているので、各周波数でのSパラメータに基づいて、各周波数について、試料12の複素誘電率εを求める。試料12の複素誘電率εとしては、各周波数についての測定値の平均値を適用し得る。 Since the S parameter at each frequency is obtained using the frequency sweep function of the network analyzer 14, the complex permittivity ε X of the sample 12 is obtained for each frequency based on the S parameter at each frequency. As the complex dielectric constant ε X of the sample 12, an average value of measured values for each frequency can be applied.

なお、試料12の複素誘電率εを求める前に、公知の層の複素誘電率を求め、公知の層について測定により得られた複素誘電率と公知の値との差分情報などを得てネットワークアナライザ14の校正に用いるようにしても良い。 Before obtaining the complex dielectric constant ε X of the sample 12, the complex dielectric constant of a known layer is obtained, and information on the difference between the complex dielectric constant obtained by measurement of the known layer and the known value is obtained to obtain a network. It may be used for calibration of the analyzer 14.

図6(A)は、試料12がアセタールホモポリマの棒体の場合(POMで表記;試料支持円状棒体13は存在しない)の複素比誘電率の測定結果と、試料12も試料支持円状棒体13も取り付けられていない空気の場合(Airで表記)の複素比誘電率の測定結果とを示している。なお、図6(B)には、参考までに誘電正接の測定結果も示している。測定対象が空気の場合、比誘電率が1、損失は限りなく0に近く、測定誤差レベルになっていることが分かる。   FIG. 6A shows the measurement result of the complex relative permittivity when the sample 12 is an acetal homopolymer rod (indicated by POM; there is no sample support circular rod 13), and the sample 12 also has a sample support circle. The measurement result of the complex dielectric constant in the case of air (noted with Air) to which the rod 13 is not attached is also shown. Note that in FIG. 6B, the measurement result of the dielectric loss tangent is also shown for reference. When the measurement object is air, it can be seen that the relative permittivity is 1, the loss is as close to 0 as possible, and the measurement error level is reached.

上述した(1)式又は(2)式を用いた説明からも明白なように、試料12が、その支持体などと共に(支持体がない場合を含む)、上下の透孔11aの中心同士を結ぶ中心軸に対して同心円状に配置されている場合であれば、未知な試料12の複素比誘電率を求めることができる。   As is clear from the explanation using the above-described formula (1) or (2), the sample 12 is placed between the centers of the upper and lower through holes 11a together with the support and the like (including the case where there is no support). If they are arranged concentrically with respect to the connecting central axis, the complex relative dielectric constant of the unknown sample 12 can be obtained.

例えば、同心円の層数がN+1までに対応し、そのうちの1層(中心層でも良い)だけが未知の複素誘電率の場合に、(1)式又は(2)式を表現する処理ルーチンをコンピュータ15に搭載しておき、未知の1層を含むN+1層(空気ギャップ層を含んでいても良い)までの同心円層に対応するようにすれば良い。そして、ネットワークアナライザ14を用いて測定されたSパラメータで表現された関数Gと、幾何学的軸対称性から解析的に未知の複素誘電率を含むように得た関数F又はEとから、上述した(1)式や(2)式を例に説明したような方程式を形成し、ニュートン法などによって解いて、未知の層の複素誘電率を求めるようにすれば良い。   For example, when the number of concentric layers corresponds to N + 1 and only one of the layers (or the center layer) has an unknown complex dielectric constant, a processing routine for expressing equation (1) or (2) 15 and correspond to concentric layers up to N + 1 layers (which may include an air gap layer) including one unknown layer. Then, from the function G expressed by the S parameter measured using the network analyzer 14 and the function F or E obtained so as to include the complex dielectric constant that is analytically unknown from the geometrical axis symmetry, It is only necessary to form an equation as described by using the equations (1) and (2) as an example and solve it by the Newton method or the like to obtain the complex dielectric constant of the unknown layer.

なお、試料12の複素誘電率の温度特性や湿度特性等を求める場合であれば、恒温恒湿槽16における設定温度や設定湿度を切り替えて、上述した測定を繰り返すようにすれば良い。   In addition, when calculating | requiring the temperature characteristic, humidity characteristic, etc. of the complex dielectric constant of the sample 12, what is necessary is just to switch the setting temperature and setting humidity in the constant temperature and humidity chamber 16, and to repeat the above-mentioned measurement.

(A−3)第1の実施形態の効果
以上のように、第1の実施形態によれば、穴あき矩形導波管11の上下の透孔11aの中心同士を結ぶ中心軸に対して同心円状に配置され、かつ、穴あき矩形導波管11を貫通したN+1層の同心円層のうち、1層(試料)だけの複素誘電率が未知の場合に、その複素誘電率を得ることができる。
(A-3) Effect of First Embodiment As described above, according to the first embodiment, concentric circles are formed with respect to the central axis that connects the centers of the upper and lower through holes 11a of the perforated rectangular waveguide 11. The complex dielectric constant can be obtained when the complex dielectric constant of only one layer (sample) is unknown among the N + 1 concentric layers arranged in a shape and penetrating the perforated rectangular waveguide 11. .

そのため、薄膜状態やフィルム状態や小径の線状態などで使用されるような誘電体の複素誘電率を測定することができる。   Therefore, it is possible to measure a complex dielectric constant of a dielectric used in a thin film state, a film state, a small diameter line state, or the like.

試料が円柱あるいは円筒と単純な構造であることから、加工性は良く、固体試料のほとんどの材料に対応することができる。さらに、フィルム状(例えば、フレキシブルプリント基板材料)や布状や不織布状の試料などについても、円柱状の複素誘電率が既知のベースに巻き付けるか、導波管の穴部分に円筒状になるよう配置することにより、測定することができる。さらにまた、塗料や薄膜材料や表面処理層なども、円柱状の複素誘電率が既知のベースの外周面に一様に塗布したり薄膜形成したり表面処理したりすることにより、その複素誘電率を測定することができる。また、線状材料も、同心円の中心軸に位置させる方法による他、試料支持円状棒体13の外周全面に巻回させることによっても(例えばコイルバネのような巻回)その複素誘電率を測定することができる。   Since the sample has a simple structure such as a cylinder or a cylinder, the workability is good and it can be applied to almost all materials of a solid sample. In addition, film-like (for example, flexible printed circuit board materials), cloth-like or non-woven-like specimens, etc., are wound around a known base with a cylindrical complex dielectric constant or become cylindrical around the hole of the waveguide. It can measure by arranging. Furthermore, paints, thin film materials, surface treatment layers, etc. can also be applied to the outer peripheral surface of a base having a known cylindrical complex dielectric constant by applying a uniform dielectric constant, forming a thin film, or surface treating the complex dielectric constant. Can be measured. In addition to the method of positioning the linear material on the central axis of the concentric circle, the complex dielectric constant is also measured by winding it around the entire outer periphery of the sample-supporting circular rod 13 (for example, winding like a coil spring). can do.

第1の実施形態では、測定に用いる周波数が共振周波数だけに限定されず、掃引範囲内の各周波数で測定できるので、複素誘電率の周波数特性を得ることができる。また、周波数依存性がない試料であれば、各周波数での測定結果から代表値(例えば平均値)を算出することにより、高精度の測定値を得ることが期待できる。   In the first embodiment, the frequency used for the measurement is not limited to the resonance frequency, and can be measured at each frequency within the sweep range. Therefore, the frequency characteristic of the complex dielectric constant can be obtained. In addition, in the case of a sample having no frequency dependence, it is expected that a highly accurate measurement value can be obtained by calculating a representative value (for example, an average value) from the measurement result at each frequency.

ここで、導波管11の種類を多様化しておくことで、数百MHzから70GHz程度までの範囲内で複素誘電率の測定が可能である。   Here, by diversifying the types of the waveguide 11, it is possible to measure the complex dielectric constant within a range from several hundred MHz to about 70 GHz.

さらに、第1の実施形態によれば、恒温恒湿槽16内に測定のための導波管を配置して測定するので、複素誘電率の温度特性や湿度特性を求めることができる。   Furthermore, according to the first embodiment, since the waveguide for measurement is arranged in the constant temperature and humidity chamber 16, the temperature and humidity characteristics of the complex dielectric constant can be obtained.

(B)第2の実施形態
次に、本発明による複素誘電率測定装置及び方法を、試料12が液晶である場合に適用した第2の実施形態を、簡単に説明する。
(B) Second Embodiment Next, a second embodiment in which the complex dielectric constant measuring apparatus and method according to the present invention is applied when the sample 12 is a liquid crystal will be briefly described.

図7は、第2の実施形態における試料12及び試料支持円状棒体13などの構成部分を取り出して示す斜視図である。   FIG. 7 is a perspective view showing components such as the sample 12 and the sample support circular bar 13 in the second embodiment.

第2の実施形態の場合、試料12は液晶であって、円筒状の試料支持円状棒体13に充填密封されている。円筒状の試料支持円状棒体13の上下の蓋体130及び230には、その蓋体を貫通して先端部分が液晶12に接触するように電極棒131及び231が設けられている。電極棒131及び231の外部露出部分は、電圧可変印加装置18に接続されている。なお、2つの電極を、径を変えて同心円状に形成し、その間に液晶を充填させるようにしても良い。   In the case of the second embodiment, the sample 12 is a liquid crystal, and is filled and sealed in a cylindrical sample support circular bar 13. The upper and lower lids 130 and 230 of the cylindrical sample-supporting circular bar 13 are provided with electrode bars 131 and 231 so as to penetrate the lid and have their tip portions in contact with the liquid crystal 12. Externally exposed portions of the electrode bars 131 and 231 are connected to the voltage variable application device 18. Note that the two electrodes may be formed concentrically with different diameters, and liquid crystal filled between them.

測定時には、電圧可変印加装置18によって、設定された電圧を電極棒131及び231間に印加し、その印加電圧での複素誘電率を測定する。複素誘電率の測定方法自体は、第1の実施形態と同様である。電圧可変印加装置18による印加電圧を変化させることにより、液晶12の複素誘電率の電圧特性を得ることができる。   At the time of measurement, the set voltage is applied between the electrode rods 131 and 231 by the variable voltage application device 18 and the complex dielectric constant at the applied voltage is measured. The measurement method itself of the complex dielectric constant is the same as that of the first embodiment. The voltage characteristic of the complex dielectric constant of the liquid crystal 12 can be obtained by changing the voltage applied by the voltage variable application device 18.

第2の実施形態によれば、第1の実施形態と同様な効果に加え、試料の複素誘電率の電圧特性を得ることができるという効果をも奏する。   According to the second embodiment, in addition to the same effect as that of the first embodiment, there is also an effect that the voltage characteristic of the complex dielectric constant of the sample can be obtained.

第2の実施形態の測定方法は、液晶と同様な電圧依存性を有する液状又は固形材質に対する測定に適用することができる。   The measurement method of the second embodiment can be applied to measurement of a liquid or solid material having voltage dependency similar to that of liquid crystal.

(C)他の実施形態
上記各実施形態の説明でも、変形実施形態について言及したが、さらに、以下に例示するような変形実施形態を挙げることができる。
(C) Other Embodiments In the description of each of the above embodiments, the modified embodiment has been referred to. However, modified embodiments as exemplified below can be cited.

上記各実施形態では、導波管11の広壁に対してその中心を試料支持円状棒体13(この段落では、試料12の有無を問わない)が直交するように貫通するものを示したが、Sパラメータの理論値が算出可能であれば、貫通位置は、広壁中心に限定されず、また、角度も直角に限定されない。また、貫通させる試料支持円状棒体13の本数も1本に限定されるものではない。また、導波管11の狭い方の2つの側壁を試料支持円状棒体13が貫通するようにしても良い。   In each of the embodiments described above, the sample support circular rod 13 (in this paragraph, whether or not the sample 12 is present) penetrates through the center of the wide wall of the waveguide 11 so as to be orthogonal. However, if the theoretical value of the S parameter can be calculated, the penetration position is not limited to the center of the wide wall, and the angle is not limited to a right angle. Further, the number of the sample support circular rods 13 to be penetrated is not limited to one. Further, the sample support circular rod 13 may penetrate the two narrower side walls of the waveguide 11.

上記各実施形態の説明では、測定結果の出力方法に言及しなかったが、表示出力でも印刷出力でも良く、さらに、記録媒体などへの記録出力や他装置への転送出力などであっても良い。   In the description of each of the above embodiments, the measurement result output method was not mentioned, but it may be a display output or a print output, and may be a record output to a recording medium or a transfer output to another device. .

上記各実施形態では、試料支持円状棒体13が装着されていない状態での導波管11のSパラメータの測定も、その都度行うものを示したが、同一種類の導波管の設定温度及び設定湿度が過去の測定と同じものである場合には、コンピュータ15に記憶させておいた過去に測定したSパラメータを流用するようにしても良い。上述した未知の複素誘電率の層を含まない測定であれば、同様に、過去の測定値を流用するようにしても良い。例えば、試料12が設けられていない、標準化されている試料支持円状棒体13のSパラメータには、過去のSパラメータの測定値を流用するようにしても良い。   In each of the above embodiments, the measurement of the S parameter of the waveguide 11 in the state where the sample support circular rod 13 is not mounted is also performed each time. However, the set temperature of the same type of waveguide is shown. In the case where the set humidity is the same as the past measurement, the S parameter measured in the past stored in the computer 15 may be used. If the measurement does not include the above-described unknown complex dielectric constant layer, past measurement values may be used in the same manner. For example, the measured value of the past S parameter may be used as the S parameter of the standardized sample support circular rod 13 in which the sample 12 is not provided.

上記各実施形態の説明では、導波管の種類の変更などを人手作業で行うイメージで説明したが、ロボットなどを利用して自動的に交換するようにしても良い。試料支持円状棒体13の導波管11への貫通装着や交換も、ロボットなどを利用して自動的に行うようにしても良い。   In the description of each of the embodiments described above, the change of the type of the waveguide and the like has been described by manual operation. However, it may be automatically replaced using a robot or the like. The sample-supporting circular rod 13 may be automatically inserted into or replaced with the waveguide 11 by using a robot or the like.

上記各実施形態の説明では、試料支持円状棒体13が装着されていない導波管11のSパラメータの測定を先に行い、その後に、試料支持円状棒体13が装着された導波管11のSパラメータの測定を行うものを示したが、測定順序はこれに限定されず、任意であって良い。   In the description of each of the above embodiments, the S parameter of the waveguide 11 to which the sample support circular rod 13 is not mounted is measured first, and then the waveguide to which the sample support circular rod 13 is mounted. Although the measurement of the S parameter of the tube 11 is shown, the measurement order is not limited to this and may be arbitrary.

上記各実施形態の説明では、(1)式又は(2)式の処理ルーチンが、N+1層の具体的な層数の違いに関係なく共通のものを示したが、層数(又は層数の範囲)毎に、別の処理ルーチンを、別個に用意しているものであっても良い。また、フィルムや布状の試料用や、塗布して薄膜を形成する試料用など、試料の種類によって、別個の(1)式又は(2)式の処理ルーチンを用意しておくようにしても良い。   In the description of each of the above embodiments, the processing routine of the formula (1) or the formula (2) is common regardless of the specific number of layers of the N + 1 layer. Another processing routine may be prepared separately for each (range). Also, a separate processing routine of formula (1) or formula (2) may be prepared depending on the type of sample, such as for a film or cloth-like sample or a sample to be coated to form a thin film. good.

上記各実施形態の説明では、周波数を掃引して測定を行うものを示したが、いずれかの周波数だけで測定を行うようにしても良い。この場合のいずれかの周波数は、導波管の共振周波数などの特有な周波数に限定されず、例えば、試料12の使用環境で試料12に最も多く放射される電波の周波数を適用するようにしても良い。   In the description of each of the above embodiments, the measurement is performed by sweeping the frequency. However, the measurement may be performed using only one of the frequencies. Any frequency in this case is not limited to a specific frequency such as a resonance frequency of the waveguide. For example, the frequency of the radio wave most radiated to the sample 12 in the usage environment of the sample 12 is applied. Also good.

上記各実施形態では、同心円状の各層が一部品でなるように説明したが、半割などの部品を組み合わせて同心円状を達成するものであっても良い。   In each of the embodiments described above, each concentric layer is described as one component. However, a concentric shape may be achieved by combining components such as halves.

第1の実施形態の複素誘電率測定装置10の概略全体構成を示すブロック図である。1 is a block diagram showing a schematic overall configuration of a complex dielectric constant measuring apparatus 10 of a first embodiment. 第1の実施形態の穴あき矩形導波管に対する試料支持円状棒体の装着状態を示す斜視図である。It is a perspective view which shows the mounting state of the sample support circular rod with respect to the perforated rectangular waveguide of 1st Embodiment. 第1の実施形態の試料支持円状棒体による試料の支持方法の説明用断面図である。It is sectional drawing for description of the sample supporting method by the sample support circular rod body of 1st Embodiment. 第1の実施形態の測定手順を示すフローチャートである。It is a flowchart which shows the measurement procedure of 1st Embodiment. 第1の実施形態のSパラメータの測定値の一例を示すグラフである。It is a graph which shows an example of the measured value of S parameter of a 1st embodiment. 第1の実施形態による複素比誘電率及び誘電正接の測定結果例を示すグラフである。It is a graph which shows the example of a measurement result of the complex dielectric constant and dielectric loss tangent by 1st Embodiment. 第2の実施形態における試料及び試料支持円状棒体などの構成部分を取り出して示す斜視図である。It is a perspective view which takes out and shows constituent parts, such as a sample in a 2nd embodiment, and a sample support circle stick.

符号の説明Explanation of symbols

10…複素誘電率測定装置、11…穴あき矩形導波管、12…試料、13…試料支持円状棒体、14…ネットワークアナライザ、15…コンピュータ、16…恒温恒湿槽、18…電圧可変印加装置。
DESCRIPTION OF SYMBOLS 10 ... Complex dielectric constant measuring apparatus, 11 ... Perforated rectangular waveguide, 12 ... Sample, 13 ... Sample support circular rod, 14 ... Network analyzer, 15 ... Computer, 16 ... Constant temperature and humidity chamber, 18 ... Variable voltage Application device.

Claims (12)

複素誘電率が未知の試料層と複素誘電率が既知のN層(空気ギャップ層を含んでいても良い)との軸対称の構造の物質よりなる円状棒体と、
前記(N+1)層の円状棒体を貫通させるための、対向する側壁に設けられた透孔を有する導波管と、
前記透孔を介して前記円状棒体が貫通固定された前記導波管の伝播特性パラメータを測定する測定手段と、
前記導波管と前記円状棒体との形状及びN層の既知の複素誘電率から理論的に定まる、未知の複素誘電率の関数となっている伝搬特性パラメータの理論式に対し、前記測定手段の測定結果を適用して未知の試料層の複素誘電率を導出する解析手段と
を含むことを特徴とする複素誘電率測定装置。
A circular rod made of a material having an axially symmetric structure of a sample layer having an unknown complex dielectric constant and an N layer having a known complex dielectric constant (which may include an air gap layer);
A waveguide having through holes provided in opposing side walls for penetrating the circular rod of the (N + 1) layer;
Measuring means for measuring a propagation characteristic parameter of the waveguide through which the circular rod is fixed through the through hole;
For the theoretical expression of the propagation characteristic parameter as a function of the unknown complex dielectric constant, which is theoretically determined from the shape of the waveguide and the circular rod and the known complex dielectric constant of the N layer, the measurement And an analyzing means for deriving a complex dielectric constant of an unknown sample layer by applying a measurement result of the means.
前記導波管の電磁界エネルギーが、前記軸対象となる軸あるいはその近傍に集中するような既知の複素誘電率を有する層を、複素誘電率の未知の試料層の外側に配置していることを特徴とする請求項1に記載の複素誘電率測定装置。   A layer having a known complex dielectric constant such that the electromagnetic field energy of the waveguide is concentrated at or near the axis targeted by the axis is disposed outside the sample layer with an unknown complex dielectric constant. The complex dielectric constant measuring apparatus according to claim 1. 前記軸対称の層のうち、最も内側の層を円柱形状の物質で形成した層にしたことを特徴とする請求項2に記載の複素誘電率測定装置。   The complex dielectric constant measuring apparatus according to claim 2, wherein an innermost layer of the axisymmetric layers is a layer formed of a cylindrical material. 前記軸対象の一部の層が、その層の構成物質を内側の層に巻き付けて形成したものであることを特徴とする請求項1〜3のいずれかに記載の複素誘電率測定装置。   The complex dielectric constant measuring apparatus according to any one of claims 1 to 3, wherein the partial layer of the axial object is formed by winding a constituent material of the layer around an inner layer. 前記伝播特性パラメータとしてSパラメータを用いることを特徴とする請求項1〜4のいずれかに記載の複素誘電率測定装置。   The complex dielectric constant measuring apparatus according to claim 1, wherein an S parameter is used as the propagation characteristic parameter. 複素誘電率が未知の試料層と複素誘電率が既知のN層(空気ギャップ層を含んでいても良い)との軸対称の構造の物質よりなる(N+1)層の円状棒体を、対向する側壁に透孔が設けられている導波管に貫通固定し、
前記円状棒体が貫通固定された前記導波管についての第1の伝播特性パラメータを測定し、
前記導波管と前記円状棒体との形状及びN層の既知の複素誘電率から理論的に定まる、未知の複素誘電率の関数となっている伝搬特性パラメータの理論式に対し、第1の伝播特性パラメータの測定結果を適用して未知の試料層の複素誘電率を導出する
ことを特徴とする複素誘電率測定方法。
Opposite circular rods of (N + 1) layers made of a material having an axially symmetric structure between a sample layer of unknown complex permittivity and an N layer of known complex permittivity (which may include an air gap layer) Through and fixed to a waveguide provided with a through hole in the side wall,
Measuring a first propagation characteristic parameter for the waveguide through which the circular rod is fixed,
For the theoretical expression of the propagation characteristic parameter as a function of the unknown complex dielectric constant, which is theoretically determined from the shape of the waveguide and the circular rod and the known complex dielectric constant of the N layer, A method for measuring a complex dielectric constant, comprising: deriving a complex dielectric constant of an unknown sample layer by applying a measurement result of a propagation characteristic parameter.
前記円状棒体の複素誘電率が既知の1層が、開放型容器あるいは密閉型容器の側壁であり、複素誘電率が未知の流動体が前記開放型容器あるいは密閉型容器に非流動状態で充填されて試料層となっていることを特徴とする請求項6に記載の複素誘電率測定方法。   One layer with a known complex dielectric constant of the circular rod is a side wall of an open container or a sealed container, and a fluid with an unknown complex dielectric constant is not flowed in the open container or the sealed container. The complex dielectric constant measuring method according to claim 6, wherein the sample layer is filled to form a sample layer. 前記円状棒体が固定されていない前記導波管についての第2の伝播特性パラメータ、又は、前記(N+1)層の円状棒体から、未知の試料層を除いたと同じ状態のN層の円状棒体が貫通固定された前記導波管についての第3の伝播特性パラメータを測定し、
上記未知の試料層の複素誘電率を導出する処理では、前記第2又は第3の伝播特性パラメータの測定結果も利用して、上記未知の試料層の複素誘電率を導出する
ことを特徴とする請求項6又は7に記載の複素誘電率測定方法。
The second propagation characteristic parameter for the waveguide to which the circular rod is not fixed, or the N layer in the same state as the (N + 1) layer circular rod except the unknown sample layer Measuring a third propagation characteristic parameter for the waveguide through which the circular rod is fixed,
In the process of deriving the complex dielectric constant of the unknown sample layer, the complex dielectric constant of the unknown sample layer is derived also using the measurement result of the second or third propagation characteristic parameter. The method of measuring a complex dielectric constant according to claim 6 or 7.
前記導波管の電磁界エネルギーが、前記軸対象となる軸あるいはその近傍に集中するような既知の複素誘電率を有する層を、複素誘電率の未知の試料層の外側に配置していることを特徴とする請求項6〜8のいずれかに記載の複素誘電率測定方法。   A layer having a known complex dielectric constant such that the electromagnetic field energy of the waveguide is concentrated at or near the axis targeted by the axis is disposed outside the sample layer with an unknown complex dielectric constant. The method of measuring a complex dielectric constant according to any one of claims 6 to 8. 前記軸対称の層のうち、最も内側の層を円柱形状の物質で形成した層にしたことを特徴とする請求項9に記載の複素誘電率測定方法。   The method of measuring a complex dielectric constant according to claim 9, wherein an innermost layer of the axisymmetric layers is a layer formed of a cylindrical material. 前記軸対象の一部の層が、その層の構成物質を内側の層に巻き付けて形成したものであることを特徴とする請求項6〜10のいずれかに記載の複素誘電率測定方法。   The complex dielectric constant measuring method according to any one of claims 6 to 10, wherein the partial layer of the axial object is formed by winding a constituent material of the layer around an inner layer. 前記伝播特性パラメータとしてSパラメータを用いることを特徴とする請求項6〜11のいずれかに記載の複素誘電率測定方法。
The complex dielectric constant measurement method according to claim 6, wherein an S parameter is used as the propagation characteristic parameter.
JP2005322547A 2005-11-07 2005-11-07 Device and method for measuring complex permittivity Pending JP2007127606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005322547A JP2007127606A (en) 2005-11-07 2005-11-07 Device and method for measuring complex permittivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005322547A JP2007127606A (en) 2005-11-07 2005-11-07 Device and method for measuring complex permittivity

Publications (1)

Publication Number Publication Date
JP2007127606A true JP2007127606A (en) 2007-05-24

Family

ID=38150374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005322547A Pending JP2007127606A (en) 2005-11-07 2005-11-07 Device and method for measuring complex permittivity

Country Status (1)

Country Link
JP (1) JP2007127606A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308778A (en) * 2013-07-03 2013-09-18 四川大学 Dielectric constant measuring device
JP2019105541A (en) * 2017-12-13 2019-06-27 日本無線株式会社 Constant measurement device of dielectric material
US11275167B2 (en) 2013-11-11 2022-03-15 Astyx MPS GmbH Measuring device for determining a distance in a conducting structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045287A (en) * 2002-07-12 2004-02-12 Communication Research Laboratory System for evaluation-monitoring liquid dielectric, and device for manufacturing liquid dielectric

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045287A (en) * 2002-07-12 2004-02-12 Communication Research Laboratory System for evaluation-monitoring liquid dielectric, and device for manufacturing liquid dielectric

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6010063385, 栗山有美, "800,900MHz帯における導波管を貫通する誘電体チューブを用いた液体材料の複素誘電率測定", 信学技報, 20031111, Vol. 103, No. 440, p. 99−104, JP, 電子情報通信学会 *
JPN6010063386, 西方敦博, "方形導波管を貫通する誘電体チューブを用いた液体ファントム材料の複素誘電率測定", 信学技報, 20021017, Vol. 102, No.405, p. 27−33, JP, 電子情報通信学会 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308778A (en) * 2013-07-03 2013-09-18 四川大学 Dielectric constant measuring device
US11275167B2 (en) 2013-11-11 2022-03-15 Astyx MPS GmbH Measuring device for determining a distance in a conducting structure
US11644558B2 (en) 2013-11-11 2023-05-09 Astyx MPS GmbH Measuring device for determining a distance in a conducting structure
JP2019105541A (en) * 2017-12-13 2019-06-27 日本無線株式会社 Constant measurement device of dielectric material

Similar Documents

Publication Publication Date Title
Jha et al. A generalized rectangular cavity approach for determination of complex permittivity of materials
Ansari et al. Design and application of the CSRR-based planar sensor for noninvasive measurement of complex permittivity
JP4072601B2 (en) Apparatus for measuring complex permittivity using cavity resonators
Jha et al. An improved rectangular cavity approach for measurement of complex permeability of materials
Hasar Accurate complex permittivity inversion from measurements of a sample partially filling a waveguide aperture
Haq et al. Inverse modeling and optimization of CSRR-based microwave sensors for industrial applications
WO2020181789A1 (en) Test system for microwave dielectric changes of solid material during force bearing process
Gabriel et al. Use of time domain spectroscopy for measuring dielectric properties with a coaxial probe
JP5499379B2 (en) Liquid dielectric constant measuring apparatus and measuring method
JP2007127606A (en) Device and method for measuring complex permittivity
Gillis et al. Perturbations from ducts on the modes of acoustic thermometers
Drobakhin et al. OPEN†ENDED WAVEGUIDE CUTOFF RESONATORS FOR MONITORING DIELECTRICS PARAMETERS OF GASES
CN110501355B (en) Plane microwave cavity dropping type liquid dielectric substance value detection sensor
US20200011811A1 (en) Resonant sensing device
Staszek et al. Complex permittivity and permeability estimation by reflection measurements of open and short coaxial transmission line
RU2679458C1 (en) Gas uhf sensor
CN114442012A (en) Device and method for screening magnetic permeability of soft magnetic material at high flux
Samant et al. Design of CPW fed IDC resonator for non invasive testing of chemical solvents
Barrera-Figueroa et al. On experimental determination of the free-field correction of laboratory standard microphones at normal incidence
Faz et al. A cylindrical cavity resonator for material measurements with coupled resonant modes for sensing and position offset compensation of the dielectric specimen
JP2008241468A (en) Electromagnetic characteristics measuring method
Kalisiak et al. Design of a Waveguide Test Cell for Q Band Liquid Permittivity Measurements
Gregory et al. RF and microwave dielectric measurements upon layered materials using coaxial sensors.
Drobakhin et al. Measurement of dielectric material properties using coupled biconical resonators
Mathur et al. An E Fficient Method for Computing the Interaction of Open Ended Circular Waveguide with a Layered Media

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308