JP2007126412A - Diagnostic agent for tissue proliferation potency - Google Patents

Diagnostic agent for tissue proliferation potency Download PDF

Info

Publication number
JP2007126412A
JP2007126412A JP2005321770A JP2005321770A JP2007126412A JP 2007126412 A JP2007126412 A JP 2007126412A JP 2005321770 A JP2005321770 A JP 2005321770A JP 2005321770 A JP2005321770 A JP 2005321770A JP 2007126412 A JP2007126412 A JP 2007126412A
Authority
JP
Japan
Prior art keywords
group
labeled
hydrogen
thymidine
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005321770A
Other languages
Japanese (ja)
Other versions
JP4841231B2 (en
Inventor
Jun Toyohara
潤 豊原
Akie Gokami
明恵 後上
Akio Hayashi
明希男 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Medi Physics Co Ltd
Original Assignee
Nihon Medi Physics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Medi Physics Co Ltd filed Critical Nihon Medi Physics Co Ltd
Priority to JP2005321770A priority Critical patent/JP4841231B2/en
Publication of JP2007126412A publication Critical patent/JP2007126412A/en
Application granted granted Critical
Publication of JP4841231B2 publication Critical patent/JP4841231B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an agent stable in vivo and useful for image diagnosis of cell proliferation reflecting DNA synthesis activity by staying in the cell by the phosphorylation with thymidine kinase 1 after passing through nucleoside transporter or integrated in a DNA. <P>SOLUTION: The diagnostic agent for the tissue proliferation potency contains a specific<SP>18</SP>F-labeled nucleoside compound or its pharmacologically permissible salt as an active component. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、組織増殖能の診断を目的とした放射性フッ素標識ヌクレオシド誘導体の使用、及びその標識前駆体に関する。 The present invention relates to the use of a radioactive fluorine-labeled nucleoside derivative for the purpose of diagnosing tissue proliferating ability, and a labeled precursor thereof.

ポジトロンエミッション断層撮影(PET)法とは、ポジトロンを放出する同位体で標識された化合物を生体に投与し、体外からポジトロンカメラを用いてその生体内での動態や代謝を画像化することによって、各種疾患の診断に応用される検査法である。この目的を達する為に、炭素同位体(11C)で標識した生体物質をPETに使用することも可能であるが、その半減期(20.5分)が短いので、病院内に11C製造のためのサイクロトロンが必要であり、迅速な化合物合成と精製が求められ、その有用性は限定されている。他の同位体ではさらに短い半減期のものがあり、13Nの半減期は10分であり、15Oの半減期はさらに短く2分である。 Positron emission tomography (PET) is a method of administering a compound labeled with an isotope that emits positron into a living body, and imaging the dynamics and metabolism in the living body using a positron camera from outside the body. This is a test method applied to the diagnosis of various diseases. In order to achieve this purpose, biological substances labeled with carbon isotopes ( 11 C) can be used for PET, but their half-life (20.5 minutes) is short, so 11 C is produced in the hospital. Therefore, rapid compound synthesis and purification are required, and its usefulness is limited. Other isotopes have shorter half-lives, with 13 N having a half-life of 10 minutes and 15 O having a shorter half-life of 2 minutes.

実用的に有用な同位体として18Fは110分の半減期を有する。これは、放射性標識化合物の合成・精製およびヒトまたは動物の被検体への投与に対して十分な時間である。さらに、18Fの比較的長い半減期は病院から離れた、他施設のサイクロトロンから18F標識された化合物の供給を可能にし得る。18Fの不利な点は、生体物質とは異なるフッ素化化合物の設計、およびサイクロトロン中で発生する18Fを効率的に利用する標識前駆体の設計ならびに製造方法の困難さである。 As a practically useful isotope, 18 F has a half-life of 110 minutes. This is sufficient time for the synthesis and purification of the radiolabeled compound and for administration to a human or animal subject. Furthermore, a relatively long half-life of 18 F is away from the hospital, may allow the supply of 18 F-labeled compound from a cyclotron other facilities. 18 F disadvantage of, the biological material is a difficulty in designing and manufacturing method of the labeling precursor that utilizes 18 F generated in the design, and the cyclotron of different fluorinated compounds efficiently.

以上の理由から、PETにおける18F標識された化合物の使用は、いくつかの化合物に限定されている。最も広く使用されているPET診断法は18F-フルオロデオキシグルコースを用いた悪性腫瘍の診断である。18F-フルオロデオキシグルコースは、悪性腫瘍細胞における糖代謝の亢進を利用しており、腫瘍の細胞増殖に伴うエネルギー代謝を反映している。この本質的な理由によって、18F-フルオロデオキシグルコースは炎症や良性疾患といった病変を検出し、偽陽性を生じる欠点があり、とりわけ治療効果の早期かつ正確な判定に関しては注意を要する。これに対し、悪性腫瘍の本質である細胞増殖をより直接的に観察できれば、18F-フルオロデオキシグルコースの問題点を克服する事が可能であり、放射性同位体標識されたヌクレオシド誘導体の研究が行われてきた。多くの研究成果から、理想的な化合物は、核酸輸送担体を介して細胞内に取りこまれ、チミジンキナーゼ1によりリン酸化を受け、最終的にDNAに組みこまれる性能を有す一方で、生体内での速やかな代謝分解反応を引き起こすチミジンホスホリラーゼによる、グリコシド結合の開裂反応に抵抗性を有する化合物であることが知られている。近年、実用的に有用な18Fで標識された3´−デオキシ−3´−フルオロチミジンが合成され、生体内での高い安定性と腫瘍組織への集積が認められた(Shields A.F.ら、 Nature Med. 4、1334−1336頁(1998年))。しかしながら、この化合物は、ホスホジエステルリン酸結合に必要な3´位が18Fで置換されているため、理論的にDNAへ組み込まれず、実際にDNA合成の指標であるチミジンキナーゼ1によるリン酸化が細胞内への集積の主たる機序であり、本質的にDNA合成を反映する薬剤ではない。 For these reasons, the use of 18 F-labelled compounds in PET is limited to a few compounds. The most widely used PET diagnostic method is the diagnosis of malignant tumors using 18 F-fluorodeoxyglucose. 18 F-fluorodeoxyglucose utilizes the enhancement of sugar metabolism in malignant tumor cells, and reflects energy metabolism accompanying tumor cell growth. For this essential reason, 18 F-fluorodeoxyglucose has the disadvantage that it detects lesions such as inflammation and benign diseases and produces false positives, especially with regard to the early and accurate determination of therapeutic effects. On the other hand, if cell growth, which is the essence of malignant tumors, can be observed more directly, the problems of 18 F-fluorodeoxyglucose can be overcome, and research on radioisotope-labeled nucleoside derivatives has been conducted. I have been. From many research results, the ideal compound is incorporated into cells via a nucleic acid transport carrier, phosphorylated by thymidine kinase 1, and finally incorporated into DNA. It is known to be a compound that is resistant to the cleavage reaction of glycosidic bonds by thymidine phosphorylase that causes a rapid metabolic degradation reaction in the body. Recently, practically useful 18 F-labeled 3′-deoxy-3′-fluorothymidine has been synthesized, and high in vivo stability and accumulation in tumor tissues has been observed (Shields AF). Et al., Nature Med. 4, pp. 1334-1336 (1998)). However, since this compound is substituted with 18 F at the 3 ′ position necessary for phosphodiester phosphate bonding, it is not theoretically incorporated into DNA, and phosphorylation by thymidine kinase 1 which is an indicator of DNA synthesis is actually carried out. It is the main mechanism of intracellular accumulation and is not a drug that essentially reflects DNA synthesis.

2´位に18Fを導入した1−(2−デオキシ−2−フルオロ−β−D―アラビノフラノシル)チミン(1−(2−deoxy−2−fluoro−β−D―arabinofuranosyl)thymine)は生体内での高い安定性を示す化合物として、腫瘍の増殖能の画像化への使用が試みられている(Sun H.ら、Eur. J. Nucl. Med.32、15−22頁(2005);Sun H.ら J. Nucl. Med. 46、292−296頁(2005))。しかしながら、この化合物は、チミジンキナーゼ1への親和性が低く、むしろヒトヘルペスウイルスのチミジンキナーゼによる特異的なリン酸化反応を利用した遺伝子治療用ベクターの導入及び発現の生体内での確認に利用されている(Allaudin M.M.ら、J. Nucl. Med. 45、2063−2069頁(2004))。一方、本発明者はWO2002/058740においてヌクレオシド誘導体を開示しているが、本願発明はこれとは異なる構造のヌクレオシド誘導体によって細胞増殖の画像診断用薬剤の実用可能性を見出すことを目的とする。
国際公開第02/058740号パンフレット 米国特許第4762823号明細書 欧州特許第02221925号明細書 国際公開第91/04982号パンフレット 特表平5−505791号公報 Shields A.F.ら、 Nature Med. 4、1334−1336頁(1998年) Sun H.ら、Eur. J. Nucl. Med.32、15−22頁(2005) Sun H.ら J. Nucl. Med. 46、292−296頁(2005) Allaudin M.M.ら、J. Nucl. Med. 45、2063−2069頁(2004) Griengel H.ら、J. Med. Chem.30、1199−1204頁(1987) Rahim S.G.ら、J. Med. Chem.39、789−795頁(1996) Tjarks W.ら、 Nucleosides Nucleotides Nucleic Acids 20、695−698頁(2001年)
1- (2-deoxy-2-fluoro-β-D-arabinofuranosyl) thymine (1- (2-deoxy-2-fluoro-β-D-arabinofuranosyl) thymine) introduced with 18 F at the 2 ′ position Is a compound that exhibits high stability in vivo and has been attempted to be used for imaging of the proliferative ability of a tumor (Sun H. et al., Eur. J. Nucl. Med. 32, pages 15-22 (2005). Sun H. et al., J. Nucl. Med., 46, 292-296 (2005)). However, this compound has low affinity for thymidine kinase 1, and is rather used for in vivo introduction and expression of a gene therapy vector using a specific phosphorylation reaction of human herpesvirus by thymidine kinase. (Allaudin MM et al., J. Nucl. Med. 45, 2063-2069 (2004)). On the other hand, the present inventor discloses a nucleoside derivative in WO2002 / 058740, and the present invention aims to find out the feasibility of a diagnostic agent for cell proliferation imaging using a nucleoside derivative having a structure different from this.
International Publication No. 02/058740 Pamphlet US Pat. No. 4,762,823 European Patent No. 0221925 International Publication No. 91/04982 Pamphlet Japanese National Patent Publication No. 5-505791 Shields A. F. Et al., Nature Med. 4, pp. 1334-1336 (1998) Sun H. Et al., Eur. J. et al. Nucl. Med. 32, pages 15-22 (2005) Sun H. Et al. Nucl. Med. 46, 292-296 (2005) Allaudin M.M. M.M. Et al. Nucl. Med. 45, 2063-2069 (2004) Griengel H. et al., J. Med. Chem. 30, pp. 1199-1204 (1987) Rahim S.G. et al., J. Med. Chem. 39, 789-795 (1996) Tjarks W.D. , Nucleosides Nucleotides Nucleic Acids 20, 695-698 (2001)

本発明は、上述の如き状況を鑑み、18Fで標識可能な、3´位に水酸基を有するヌクレオシド誘導体であって、チミジンホスホリラーゼによる、グリコシド結合の開裂反応に抵抗性を有し、かつ、ヌクレオシドトランスポーターを通過した後、チミジンキナーゼ1によりリン酸化を受けて、DNA合成活性を直接反映する化合物の提供、並びに、その製造方法を目的とする。 In view of the circumstances as described above, the present invention is a nucleoside derivative having a hydroxyl group at the 3 ′ position, which can be labeled with 18 F, having resistance to cleavage reaction of glycoside bond by thymidine phosphorylase, and nucleoside An object of the present invention is to provide a compound that is directly phosphorylated by thymidine kinase 1 after passing through the transporter and directly reflects DNA synthesis activity, and a method for producing the compound.

上述の目的を達成するために、発明者らは、種々の18F標識可能な化合物を合成し、細胞増殖の画像評価が可能であるかについて鋭意研究を進めた結果、下記式(I)を有する放射性フッ素標識ヌクレオシド誘導体が細胞増殖すなわち組織増殖能の画像診断に使用できることを見出し、本発明を完成するに至った。 In order to achieve the above-mentioned object, the inventors synthesized various 18 F-labelable compounds and conducted earnest research on whether image evaluation of cell proliferation is possible. As a result, the following formula (I) was obtained. The present inventors have found that the radioactive fluorine-labeled nucleoside derivative possessed can be used for diagnostic imaging of cell proliferation, that is, tissue proliferation ability, and have completed the present invention.

即ち、本発明は、下記式(I)で表される18F標識化合物又はその医薬として許容できる塩を有効成分として含有する組織増殖能診断用薬剤である。 That is, the present invention is an agent for diagnosing tissue growth ability, which contains an 18 F-labeled compound represented by the following formula (I) or a pharmaceutically acceptable salt thereof as an active ingredient.

Figure 2007126412
Figure 2007126412

(式(I)中、Rはメチル基又は炭素原子1〜2個の18F標識フルオロアルキル置換基、Rは水素又は炭素原子1〜6個の18F標識フルオロアルキル置換基、Rは酸素又は硫黄、Rは水素又はフッ素である。ただし、R及びRの両方が18F標識フルオロアルキル置換基である場合、及び、Rがメチル基でRが水素である場合を除く。) (In the formula (I), R 1 is a methyl group or an 18 F-labeled fluoroalkyl substituent having 1 to 2 carbon atoms, R 2 is hydrogen or an 18 F-labeled fluoroalkyl substituent having 1 to 6 carbon atoms, R 3 Is oxygen or sulfur, R 4 is hydrogen or fluorine, provided that both R 1 and R 2 are 18 F-labeled fluoroalkyl substituents, and R 1 is a methyl group and R 2 is hydrogen except for.)

本発明の放射性標識化合物は、生体内において安定で、かつ、ヌクレオシドトランスポーターを通過した後、チミジンキナーゼ1によりリン酸化を受けて細胞内に滞留するか、またはDNAに組みこまれDNA合成活性を反映するので、細胞増殖すなわち組織増殖能の画像診断に有用である。
したがって、本発明の他の局面によれば、上記式(I)で表される18F標識化合物又はその医薬として許容できる塩の有効量を哺乳動物に投与した後、その生体内における分布を撮像することからなる細胞増殖の画像診断方法が提供される。ここにおいて、哺乳動物にはヒトも含まれる。
本発明において、上記式(I)で示される18F標識化合物は、塩又はこれらの水和物もしくは溶媒和物の形態であってもよい。塩としては、塩酸もしくは硫酸塩などの鉱酸または酢酸などの有機酸との塩のような医薬として許容できるものが挙げられる。また、水和物または溶媒和物としては、本発明の18F標識化合物またはその塩に対して水分子または溶媒分子が付着したものを意味する。さらに、互変異性体などの各種異性体も本発明化合物に包含されうる。
The radiolabeled compound of the present invention is stable in vivo and passes through a nucleoside transporter, and then phosphorylated by thymidine kinase 1 and stays in the cell, or is incorporated into DNA and has DNA synthesis activity. Therefore, it is useful for diagnostic imaging of cell proliferation, that is, tissue proliferation ability.
Therefore, according to another aspect of the present invention, an effective amount of the 18 F-labeled compound represented by the above formula (I) or a pharmaceutically acceptable salt thereof is administered to a mammal, and then the distribution in vivo is imaged. An image diagnostic method for cell proliferation comprising the steps of: Here, the mammal includes a human.
In the present invention, the 18 F-labeled compound represented by the above formula (I) may be in the form of a salt or a hydrate or solvate thereof. Salts include those that are pharmaceutically acceptable such as salts with mineral acids such as hydrochloric acid or sulfate or organic acids such as acetic acid. In addition, the hydrate or solvate means one in which water molecules or solvent molecules are attached to the 18 F-labeled compound of the present invention or a salt thereof. Furthermore, various isomers such as tautomers can also be included in the compounds of the present invention.

また、上記式(I)中、Rは、メチル基が好ましい。また、Rとしては、例えば、18F標識フルオロメチル基、18F標識フルオロエチル基、18F標識フルオロプロピル基、18F標識フルオロブチル基、18F標識フルオロペンチル基、18F標識フルオロヘキシル基などが挙げられ、18F標識フルオロエチル基、18F標識フルオロプロピル基、18F標識フルオロペンチル基が好ましい。また、Rは酸素が、Rは水素が好ましい。特に好ましい化合物としては、Rがメチル基、R18F標識フルオロエチル基、Rが酸素、Rが水素の化合物が挙げられる。なお、上記式(I)中、Rのフッ素は、通常、非放射性フッ素である。 In the formula (I), R 1 is preferably a methyl group. As the R 2, for example, 18 F-labeled fluoromethyl group, 18 F-labeled fluoroethyl group, 18 F-labeled fluoropropyl group, 18 F-labeled-Fluoro-butyl group, 18 F-labeled fluoropentyl group, 18 F-labeled-Fluoro-hexyl 18 F-labeled fluoroethyl group, 18 F-labeled fluoropropyl group, and 18 F-labeled fluoropentyl group are preferable. R 3 is preferably oxygen, and R 4 is preferably hydrogen. Particularly preferred compounds include compounds in which R 1 is a methyl group, R 2 is an 18 F-labeled fluoroethyl group, R 3 is oxygen, and R 4 is hydrogen. In the above formula (I), the fluorine of R 4 is usually non-radioactive fluorine.

上記式(I)の化合物中、Rがフルオロメチル基、Rが水素、Rが酸素、Rが水素の化合物の化学構造及び抗がん剤ならびに抗ウイルス剤としての用途、18F標識化合物としてのヘルペス脳炎PET診断薬としての用途は既に公知である(米国特許第4762823号明細書;欧州特許第02221925号明細書)。
また、上記式(I)の化合物中、Rがフルオロエチル基、Rが水素、Rが酸素、Rが水素の化合物の化学構造及び抗ウイルス剤としての用途は既に公知である(Griengel H.ら、J. Med. Chem.30、1199−1204頁(1987))。加えて、Rがフルオロメチル基またはフルオロエチル基で、Rが水素、Rが硫黄、Rに水素を導入した上記式(I)の化合物の化学構造及び抗ウイルス剤としての用途は既に公知である(国際公開WO9104982号公報;特表平5−505791号公報;Rahim S.G.ら、J. Med. Chem.39、789−795頁(1996))。しかし、これらの放射性フッ素標識化合物ならびに放射性画像診断薬としての用途は知られていない。
In the compound of the above formula (I), R 1 is a fluoromethyl group, R 2 is hydrogen, R 3 is oxygen, R 4 is hydrogen, the chemical structure and use as an anticancer agent and antiviral agent, 18 F The use as a diagnostic agent for herpes encephalitis PET as a labeling compound is already known (US Pat. No. 4,762,823; European Patent 0221925).
In addition, among the compounds of the above formula (I), the chemical structure of a compound in which R 1 is a fluoroethyl group, R 2 is hydrogen, R 3 is oxygen, and R 4 is hydrogen and its use as an antiviral agent is already known ( Griengel H. et al., J. Med. Chem. 30, 1199-1204 (1987)). In addition, R 1 is a fluoromethyl group or a fluoroethyl group, R 2 is hydrogen, R 3 is sulfur, and hydrogen is introduced into R 4. Already known (International Publication No. WO9104982; JP-T-5-505791; Rahim S. G. et al., J. Med. Chem. 39, pages 789-795 (1996)). However, its use as a radioactive fluorine-labeled compound and a radiographic diagnostic agent is not known.

また、上記式(I)の化合物中、Rがメチル基、Rがフルオロメチル基またはフルオロエチル基で、Rが酸素、Rが水素の化合物の化学構造ならびにチミジンキナーゼ1によりリン酸化を受けることは既に公知である(Tjarks W.ら、 Nucleosides Nucleotides Nucleic Acids 20、695−698頁(2001年))。しかし、その放射性フッ素標識化合物ならびに放射性画像診断薬としての用途は従来知られていない。 Further, among the compounds of the above formula (I), R 1 is a methyl group, R 2 is a fluoromethyl group or fluoroethyl group, R 3 is oxygen, and R 4 is hydrogen. Is already known (Tjarks W. et al., Nucleosides Nucleotides Nucleic Acids 20, 695-698 (2001)). However, its use as a radioactive fluorine-labeled compound and a radioactive diagnostic imaging agent has not been known so far.

上記式(I)の放射性フッ素標識化合物は、例えば、図1に示す二種類の方法によって合成することができる(図1)。一つは、18F導入部位に脱離基(leaving group)を有する適当な長さのアルキル基が5位または3位に導入された標識前駆体を準備し、3´位及び5´位の水酸基を保護基(protecting group)で保護しておき、これとサイクロトロンで製造した18Fイオンを、相間移動触媒存在下に有機溶媒中で反応([18F]Fluorination)させた後、脱保護(deprotection)する方法である(Method 1)。また、上記式の放射性フッ素標識化合物のうち3位にフルオロアルキル基を持つ化合物は、脱離基(leaving group)を2箇所に有するアルキル基の一方の脱離基のみを18Fで置換([18F]Fluorination)したのち、もう一方の脱離基を利用してチミジンの誘導体に求核置換反応によって導入(substitution)することによっても合成できる(Method 2)。 The radioactive fluorine-labeled compound of the above formula (I) can be synthesized by, for example, two kinds of methods shown in FIG. 1 (FIG. 1). One is to prepare a labeling precursor in which an alkyl group having an appropriate length having a leaving group at the 18 F introduction site is introduced at the 5th or 3rd position. The hydroxyl group is protected with a protecting group, and this and 18 F ions produced by cyclotron are reacted in an organic solvent in the presence of a phase transfer catalyst ([ 18 F] Fluorination), followed by deprotection ( This is a method of deprotection (Method 1). Of the radioactive fluorine-labeled compounds of the above formula, a compound having a fluoroalkyl group at the 3-position replaces only one leaving group of an alkyl group having a leaving group at two positions with 18 F ([[ 18 F] Fluorination), and the other leaving group can be used to synthesize a derivative of thymidine by substitution by a nucleophilic substitution reaction (Method 2).

かくして、本発明の別の局面によれば、下式(II)で表されるヌクレオシド誘導体が標識前駆体として提供される。 Thus, according to another aspect of the present invention, a nucleoside derivative represented by the following formula (II) is provided as a labeling precursor.

Figure 2007126412
Figure 2007126412

(式(II)中、Rはメチル基又は脱離基を有する炭素原子1〜2個のアルキル置換基、Rは水素又は脱離基を有する炭素原子1〜6個のアルキル置換基、Rは酸素又は硫黄、Rは水素又はフッ素、Rは保護基である。ただし、R及びRの両方が脱離基を有する炭素原子1〜6個のアルキル置換基である場合、及び、Rがメチル基でRが水素である場合を除く。) (In the formula (II), R 1 is an alkyl substituent having 1 to 2 carbon atoms having a methyl group or a leaving group, R 2 is an alkyl substituent having 1 to 6 carbon atoms having hydrogen or a leaving group, R 3 is oxygen or sulfur, R 4 is hydrogen or fluorine, R 5 is a protecting group, provided that both R 1 and R 2 are alkyl substituents having 1 to 6 carbon atoms having a leaving group. And R 1 is a methyl group and R 2 is hydrogen.)

式(II)中、Rは、好ましくは、メチル基又はトシル基、メシル基及びトリフレート基からなる群より選ばれた脱離基を有する炭素原子1〜2個のアルキル置換基であり、中でもメチル基が特に好ましい。
式(II)中、Rは、好ましくは、水素又はトシル基、メシル基及びトリフレート基からなる群より選ばれた脱離基を有する炭素原子1〜6個のアルキル置換基であり、中でも脱離基を有するエチル基、脱離基を有するプロピル基、及び脱離基を有するペンチル基からなる群より選ばれたアルキル置換基がより好ましく、脱離基を有するエチル基が特に好ましく、脱離基としてはトシル基が好ましい。
In formula (II), R 1 is preferably an alkyl substituent of 1 to 2 carbon atoms having a leaving group selected from the group consisting of a methyl group or a tosyl group, a mesyl group and a triflate group, Of these, a methyl group is particularly preferred.
In formula (II), R 2 is preferably an alkyl substituent of 1 to 6 carbon atoms having a leaving group selected from the group consisting of hydrogen or a tosyl group, a mesyl group and a triflate group, An alkyl substituent selected from the group consisting of an ethyl group having a leaving group, a propyl group having a leaving group, and a pentyl group having a leaving group is more preferred, and an ethyl group having a leaving group is particularly preferred. The leaving group is preferably a tosyl group.

式(II)中、Rは、好ましくは、トルイル基、4´,4´−ジメトキシトリチル基、トリチル基及びベンジル基からなる群より選ばれた保護基であり、中でもトルイル基が特に好ましい。
また、式(II)中、Rは酸素が、Rは水素が好ましい。
In formula (II), R 5 is preferably a protecting group selected from the group consisting of a toluyl group, a 4 ′, 4′-dimethoxytrityl group, a trityl group and a benzyl group, and among them, a tolyl group is particularly preferable.
In formula (II), R 3 is preferably oxygen, and R 4 is preferably hydrogen.

本発明において、上記式(II)で示される標識前駆体とサイクロトロンで製造した18Fイオンを、相間移動触媒存在下に有機溶媒中で反応させることにより、上記式(I)の放射性フッ素標識化合物を製造することができる。
本発明の画像診断用薬剤の投与量や投与経路などは対象疾患や使用目的に応じて選択されるべきであるが、組織増殖能診断用薬剤として使用する場合は、例えば37MBq〜740MBq、好ましくは111MBq〜370MBqの放射能を投与する。通常は静脈内に投与するが、場合により動脈内や腹腔内または直接腫瘍等の患部内に投与するなど静脈内以外の投与経路を選択してもよい。
In the present invention, by reacting a labeling precursor represented by the above formula (II) and 18 F ions produced by a cyclotron in an organic solvent in the presence of a phase transfer catalyst, the radioactive fluorine labeled compound of the above formula (I) Can be manufactured.
The dosage and administration route of the diagnostic imaging agent of the present invention should be selected according to the target disease and purpose of use, but when used as a diagnostic agent for tissue growth ability, for example, 37 MBq to 740 MBq, preferably Administer 111 MBq to 370 MBq of radioactivity. Usually, it is administered intravenously, but in some cases, administration routes other than intravenously may be selected, for example, intraarterial, intraperitoneal, or directly into the affected area such as a tumor.

本発明において、組織増殖能診断としては、病的増殖を伴う増生、再生、移植又はウィルス感染の診断が例示される。
病的増殖を伴う増生の診断としては、例えば、増殖性炎症、良性腫瘍又は悪性腫瘍の診断が挙げられる。増殖性炎症の診断としては、例えば、慢性関節リウマチの活動度および治療効果の判定に関する診断が挙げられる。良性腫瘍の診断としては、例えば、局在診断・活動度および治療効果の判定に関する診断が挙げられる。悪性腫瘍の診断としては、例えば、原発性および転移性悪性腫瘍の局在診断・進展度診断・悪性度および治療効果の判定に関する診断が挙げられる。良性腫瘍としては、例えば、前立腺増生症、子宮内膜増生症(嚢胞性腺増生症・子宮腺筋症・子宮筋腫)、卵巣腫瘍(嚢胞腺腫)、乳腺(乳腺症・乳腺繊維腺腫)、下垂体腺腫、頭蓋咽頭腫、甲状腺腺腫、副腎皮質腺腫・クロム親和性細胞腫が挙げられる。悪性腫瘍としては、例えば、悪性リンパ腫(ホジキン病・非ホジキンリンパ腫)、咽頭癌、肺癌、食道癌、胃癌、大腸癌、肝癌、膵臓癌、腎臓腫瘍(腎臓癌・腎芽細胞腫)、膀胱腫瘍、前立腺癌、精巣腫瘍、子宮癌、卵巣癌、乳癌、甲状腺癌、神経芽細胞腫、脳腫瘍(原発性脳腫瘍・転移性脳腫瘍)、横紋筋肉腫、骨腫瘍(骨肉種・転移性骨腫瘍)、カポジ肉腫、悪性黒色腫が挙げられる。
In the present invention, the diagnosis of tissue growth ability is exemplified by diagnosis of proliferation, regeneration, transplantation or viral infection accompanied by pathological growth.
Diagnosis of growth accompanied by pathological growth includes, for example, diagnosis of proliferative inflammation, benign tumor or malignant tumor. Diagnosis of proliferative inflammation includes, for example, diagnosis relating to determination of rheumatoid arthritis activity and therapeutic effect. Diagnosis of a benign tumor includes, for example, diagnosis related to local diagnosis / activity and determination of therapeutic effect. Diagnosis of a malignant tumor includes, for example, a diagnosis of localization and progress of primary and metastatic malignant tumors, diagnosis of malignancy, and determination of therapeutic effect. Examples of benign tumors include prostatic hyperplasia, endometrial hyperplasia (cystic adenopathy / uterine adenomyosis / uterine fibroid), ovarian tumor (cyst adenoma), mammary gland (mammopathy / fibrofibroma adenoma), and pituitary gland. Examples include adenoma, craniopharyngioma, thyroid adenoma, adrenocortical adenoma, and pheochromocytoma. Examples of malignant tumors include malignant lymphoma (Hodgkin's disease / non-Hodgkin's lymphoma), pharyngeal cancer, lung cancer, esophageal cancer, stomach cancer, colon cancer, liver cancer, pancreatic cancer, kidney tumor (kidney cancer / nephroblastoma), bladder tumor , Prostate cancer, testicular cancer, uterine cancer, ovarian cancer, breast cancer, thyroid cancer, neuroblastoma, brain tumor (primary brain tumor / metastatic brain tumor), rhabdomyosarcoma, bone tumor (bone meat type / metastatic bone tumor) , Kaposi's sarcoma, and malignant melanoma.

病的増殖を伴う再生の診断としては、血液の生理的再生の機能診断及び血球などが病的に失われた際に生じる病的再生の診断が例示され、具体的には、抗がん剤治療時における骨髄の生理的造血機能の評価又は再生不良性貧血における骨髄の病態機能の診断が挙げられる。 Examples of the diagnosis of regeneration accompanied by pathological proliferation include functional diagnosis of physiological regeneration of blood and diagnosis of pathological regeneration that occurs when blood cells and the like are pathologically lost. Specifically, anticancer agents Evaluation of the physiological hematopoietic function of the bone marrow at the time of treatment or diagnosis of the pathological function of the bone marrow in aplastic anemia.

病的増殖を伴う移植の診断としては、血液系腫瘍患者の骨髄移植および抗がん剤の超大量化学療法などにおける診断が例示され、具体的には骨髄移植おける骨髄移植細胞の生着・増殖機能の診断が挙げられる。 Diagnosis of transplantation with pathological growth is exemplified by bone marrow transplantation of hematological tumor patients and ultra-high-dose chemotherapy of anticancer drugs. Specifically, bone marrow transplant cell engraftment / proliferation in bone marrow transplantation Functional diagnosis is included.

病的増殖を伴うウィルス感染の診断としては、例えば、単純ヘルペスウイルス1型もしくは2型、水痘−帯状ヘルペスウィルス、サイトメガロウィルス、エプスタイン−バール(Epstein-Barr)ウィルス又はヒト免疫不全ウィルス感染、特に、単純ヘルペスウイルス1型もしくは2型又はヒト免疫不全ウィルスによる中枢神経系感染症(ウィルス感染性脳炎または髄膜炎など)におけるウイルス感染部位および増殖の診断が挙げられる。
Diagnosis of viral infection with pathological growth includes, for example, herpes simplex virus type 1 or type 2, varicella-zoster virus, cytomegalovirus, Epstein-Barr virus or human immunodeficiency virus infection, Diagnosis of viral infection site and proliferation in central nervous system infections (such as viral infectious encephalitis or meningitis) by herpes simplex virus type 1 or type 2 or human immunodeficiency virus.

本発明の放射性フッ素標識ヌクレオシド誘導体は、生体内において安定で、かつ、ヌクレオシドトランスポーターを通過した後、チミジンキナーゼ1によりリン酸化を受けて細胞内に滞留するか、またはDNAに組みこまれDNA合成活性を反映するので、細胞増殖の画像診断に有用である。
The radiofluorine-labeled nucleoside derivative of the present invention is stable in vivo, passes through a nucleoside transporter, is phosphorylated by thymidine kinase 1 and stays in the cell, or is incorporated into DNA to synthesize DNA. Since the activity is reflected, it is useful for diagnostic imaging of cell proliferation.

以下、本発明を実施例により具体的に説明するが、本発明はこれらによって何等限定されるものではない。なお、本明細書で使用している略号の意味は下記のとおりである。
DMF:ジメチルホルムアミド、
TBAF:テトラ−n−ブチルアンモニウムフルオライド、
THF:テトラヒドロフラン、
DMAP:4−ジメチルアミノピリジン、
FMAU:1−(2−デオキシ−2−フルオロ−β−D−アラビノフラノシル)チミン、
PPh3:トリフェニルホスフィン、
NBS:N-ブロモコハク酸イミド、
HPLC:高速液体クロマトグラフィー。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In addition, the meaning of the symbol used in this specification is as follows.
DMF: dimethylformamide,
TBAF: Tetra-n-butylammonium fluoride
THF: tetrahydrofuran,
DMAP: 4-dimethylaminopyridine,
FMAU: 1- (2-deoxy-2-fluoro-β-D-arabinofuranosyl) thymine,
PPh 3 : triphenylphosphine,
NBS: N-bromosuccinimide,
HPLC: High performance liquid chromatography.

実施例1(NFT202)Example 1 (NFT202)

Figure 2007126412
Figure 2007126412

−(2−フルオロエチル)−チミジン(N −(2−Fluoroethyl)−thymidine)(2)
W.F. Edgellらの方法(J. Am. Chem. Soc., 77, 4899 (1955))に従い合成した化合物1(3.6g、17mmol)と炭酸カリウム(4.6g、33mmol)のアセトン(acetone)とDMFの混合溶液(1:1)500mLに、チミジン(2.0g、8.3mmol)を加え、50℃で7時間攪拌した。溶媒を濃縮した後、残渣をシリカゲルカラムクロマトグラフィー (SiO、クロロホルム:メタノール=5:1)により精製した。白色固体として化合物2(2.2g、94%)を得た。
N 8 - (2-fluoroethyl) - thymidine (N 8 - (2-Fluoroethyl ) -thymidine) (2)
Compound 1 (3.6 g, 17 mmol) synthesized according to the method of WF Edgell et al. (J. Am. Chem. Soc., 77, 4899 (1955)) and acetone (acetone) of potassium carbonate (4.6 g, 33 mmol) Thymidine (2.0 g, 8.3 mmol) was added to 500 mL of a mixed solution of DMF (1: 1), and the mixture was stirred at 50 ° C. for 7 hours. After concentrating the solvent, the residue was purified by silica gel column chromatography (SiO 2 , chloroform: methanol = 5: 1). Compound 2 (2.2 g, 94%) was obtained as a white solid.

1H NMR (CD3OD, 500 MHz) δ 7.85 (s, 1H, H-5), 6.29 (t, H-1’, J1’, 2’a = J1’, 2’b = 5.6 Hz), 4.62, 4.53 (each t, each 1H, H-2”), 4.39 (m, 1H, H-3'), 4.25 (m, 2H, H-1"), 3.91 (dd, 1H, H-5'a, J5'a, 4' = 2.4, J5'a, 5'b = 9.6 Hz), 3.80 (dd, 1H, H-5'b, J5'b, 4' = 2.8, J5'b, 5'a = 9.6 Hz), 3.72 (m, 1H, H-4'), 2.27 (ddd, 1H, H-2'a, J 2'a, 3' = 2.8, J 2'a, 1' = 6.0, J2'a, 2'b = 10.8 Hz), 2.21 (m, 1H, H-2'b) ), 1.89 (s, 3H, 5-CH3). 1 H NMR (CD 3 OD, 500 MHz) δ 7.85 (s, 1H, H-5), 6.29 (t, H-1 ', J 1', 2'a = J 1 ', 2'b = 5.6 Hz ), 4.62, 4.53 (each t, each 1H, H-2 "), 4.39 (m, 1H, H-3 '), 4.25 (m, 2H, H-1"), 3.91 (dd, 1H, H- 5'a, J 5'a, 4 ' = 2.4, J 5'a, 5'b = 9.6 Hz), 3.80 (dd, 1H, H-5'b, J 5'b, 4' = 2.8, J 5'b, 5'a = 9.6 Hz), 3.72 (m, 1H, H-4 '), 2.27 (ddd, 1H, H-2'a, J 2'a, 3' = 2.8, J 2'a , 1 ' = 6.0, J 2'a, 2'b = 10.8 Hz), 2.21 (m, 1H, H-2'b)), 1.89 (s, 3H, 5-CH 3 ).

実施例2(NFT203)Example 2 (NFT203)

Figure 2007126412
Figure 2007126412

−(3−フルオロプロピル)−チミジン(N −(3−Fluoropropyl)−thymidine)(4:NFT203)
アルゴン気流下、市販の化合物3(5.0g、36mmol)とTBAF(1M THF溶液 62mL、62mmol)のTHF40mLに、チミジン(1.5g、6.2mmol)を加え、室温で1時間攪拌した。溶媒を濃縮した後、残渣をシリカゲルカラムクロマトグラフィー (SiO、クロロホルム:メタノール=5:1)により精製した。白色固体として化合物2(2.0g、100%)を得た。
N 8 - (3- fluoropropyl) - thymidine (N 8 - (3-Fluoropropyl ) -thymidine) (4: NFT203)
Under an argon stream, thymidine (1.5 g, 6.2 mmol) was added to THF 40 mL of commercially available compound 3 (5.0 g, 36 mmol) and TBAF (1M THF solution 62 mL, 62 mmol), and stirred at room temperature for 1 hour. After concentrating the solvent, the residue was purified by silica gel column chromatography (SiO 2 , chloroform: methanol = 5: 1). Compound 2 (2.0 g, 100%) was obtained as a white solid.

1H NMR (CD3OD, 500 MHz) δ 7.82 (s, 1H, H-5), 6.28 (t, H-1’, J1’, 2’a = J1’, 2’b = 5.6 Hz), 4.51, 4.42 (each t, each 1H, H-2”), 4.39 (m, 1H, H-3’), 4.04 (m, 2H, H-1”), 3.91 (dd, 1H, H-5’a, J5’a, 4’ = 2.4, J5’a, 5’b = 9.6 Hz), 3.80 (dd, 1H, H-5’b, J5’b, 4’ = 2.8, J5’b, 5’a = 9.6 Hz), 3.72 (m, 1H, H-4’), 2.27 (ddd, 1H, H-2’a, J 2’a, 3’ = 2.8, J 2’a, 1’ = 6.0, J2’a, 2’b = 10.8 Hz), 2.21 (m, 1H, H-2’b), 1.95 (m, 1H, H-2’’), 1.89 (s, 3H, 5-CH3). 1 H NMR (CD 3 OD, 500 MHz) δ 7.82 (s, 1H, H-5), 6.28 (t, H-1 ', J 1', 2'a = J 1 ', 2'b = 5.6 Hz ), 4.51, 4.42 (each t, each 1H, H-2 "), 4.39 (m, 1H, H-3 '), 4.04 (m, 2H, H-1"), 3.91 (dd, 1H, H- 5'a, J 5'a, 4 ' = 2.4, J 5'a, 5'b = 9.6 Hz), 3.80 (dd, 1H, H-5'b, J 5'b, 4' = 2.8, J 5'b, 5'a = 9.6 Hz), 3.72 (m, 1H, H-4 '), 2.27 (ddd, 1H, H-2'a, J 2'a, 3' = 2.8, J 2'a , 1 ' = 6.0, J 2'a, 2'b = 10.8 Hz), 2.21 (m, 1H, H-2'b), 1.95 (m, 1H, H-2``), 1.89 (s, 3H , 5-CH 3 ).

実施例3 (NFT401)Example 3 (NFT401)

Figure 2007126412
Figure 2007126412

1, 6−ヘキサンジオールジトシレート(1, 6−Hexanediol ditosylate)(6)
アルゴン雰囲気下、塩化トシル(TsCl)(4.91g、2.5mmol),DMAP(3.05g、25mmol)のアセトニトリル溶液(50mL)に1,6-ヘキサンジオール(1,6-hexanediol)(1.18mg、10mmol),トリエチルアミン(3.48g、25mmol)のアセトニトリル溶液を加え、室温で2時間攪拌した。析出した固体をろ過し、ろ液を酢酸エチル(ca.500mL)により希釈し、水(500mL)、飽和食塩水(500mL)で洗浄した。無水硫酸ナトリウムにより乾燥し、濃縮した後、残渣をシリカゲルカラムクロマトグラフィー(SiO2、ヘキサン:酢酸エチル=2:1)により精製した。白色固体として化合物6(2.4g、5.6mmol、56%)を得た。
1,6-Hexanediol ditosylate (6)
Under an argon atmosphere, a solution of tosyl chloride (TsCl) (4.91 g, 2.5 mmol) and DMAP (3.05 g, 25 mmol) in acetonitrile solution (50 mL) (1,6-hexanediol) (1. 18 mg, 10 mmol) and triethylamine (3.48 g, 25 mmol) in acetonitrile were added and stirred at room temperature for 2 hours. The precipitated solid was filtered, and the filtrate was diluted with ethyl acetate (ca. 500 mL), and washed with water (500 mL) and saturated brine (500 mL). After drying over anhydrous sodium sulfate and concentration, the residue was purified by silica gel column chromatography (SiO2, hexane: ethyl acetate = 2: 1). Compound 6 (2.4 g, 5.6 mmol, 56%) was obtained as a white solid.

1H NMR (CDCl3, 400 MHz) δ 7.77 (m, 4H, Tol), 7.35 (m, 4H, Tol), 3.98 (t, 4H, H-1, 6, J = 4.8 Hz), 2.45 (s, 6H, Tol-CH3), 1.60 (m, 4H, H-2, 5), 1.27 (m, 4H, H-3, 4). 1 H NMR (CDCl 3 , 400 MHz) δ 7.77 (m, 4H, Tol), 7.35 (m, 4H, Tol), 3.98 (t, 4H, H-1, 6, J = 4.8 Hz), 2.45 (s , 6H, Tol-CH 3 ), 1.60 (m, 4H, H-2, 5), 1.27 (m, 4H, H-3, 4).

−(6−フルオロ−1−ヘキシル)−チミジン(N −(6−Fluoro−1−hexyl)−thymidine)(7:NFT401)
アルゴン雰囲気下、フッ化カリウム(50mg、0.6mmol),クリプトフィックス[2.2.2](226mg、0.6mmol)をアセトニトリル(1.5mL)に溶かし、化合物6(231mg、0.5mmol)のアセトニトリル溶液(1.0mL)を加え、80℃で1時間攪拌した。この溶液に、チミジン(121mg、0.5mmol),炭酸セシウム(195mg、0.6mmol)のDMF溶液を加え、80℃でさらに1.5時間攪拌した後、放冷し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(SiO2、クロロホルム:メタノール=20:1)により精製し、白色固体として化合物7(80mg、0.23mmol、46%)を得た。
N 8 - (6- fluoro-1-hexyl) - thymidine (N 8 - (6-Fluoro -1-hexyl) -thymidine) (7: NFT401)
Under an argon atmosphere, potassium fluoride (50 mg, 0.6 mmol), cryptofix [2.2.2] (226 mg, 0.6 mmol) was dissolved in acetonitrile (1.5 mL), and compound 6 (231 mg, 0.5 mmol) was dissolved. Of acetonitrile (1.0 mL) was added, and the mixture was stirred at 80 ° C. for 1 hour. To this solution, a DMF solution of thymidine (121 mg, 0.5 mmol) and cesium carbonate (195 mg, 0.6 mmol) was added, and the mixture was further stirred at 80 ° C. for 1.5 hours, then allowed to cool and concentrated. The residue was purified by silica gel column chromatography (SiO2, chloroform: methanol = 20: 1) to obtain Compound 7 (80 mg, 0.23 mmol, 46%) as a white solid.

1H NMR (CDCl3, 500 MHz) δ7.83 (s, 1H, H-6), 6.30 (t, H-1’, J1', 2'a = J1', 2'b = 5.6 Hz), 4.45, 4.36 (each t, each 1H, H-6"), 4.39 (m, 1H, H-3'), 3.92 (m, 2H, H-1"), 3.80 (dd, 1H, H-5'a, J5'a, 4' = 2.4, J5'a, 5'b = 9.6 Hz), 3.73 (dd, 1H, H-5'b, J5'b, 4' = 2.8, J5'b, 5'a = 9.6 Hz), 3.56 (m, 1H, H-4'), 2.28 (ddd, 1H, H-2'a, J 2'a, 3' = 2.8, J 2'a, 1' = 6.0, J2'a, 2'b = 10.8 Hz), 2.20 (m, 1H, H-2'b), 1.90 (s, 3H, 5- CH3), 1.72〜1.59 (m, 4H, H-2”, 5”), 1.46〜1.35 (m, 4H, H-3”, 4”). 1 H NMR (CDCl 3 , 500 MHz) δ7.83 (s, 1H, H-6), 6.30 (t, H-1 ', J 1', 2'a = J 1 ', 2'b = 5.6 Hz ), 4.45, 4.36 (each t, each 1H, H-6 "), 4.39 (m, 1H, H-3 '), 3.92 (m, 2H, H-1"), 3.80 (dd, 1H, H- 5'a, J 5'a, 4 ' = 2.4, J 5'a, 5'b = 9.6 Hz), 3.73 (dd, 1H, H-5'b, J 5'b, 4' = 2.8, J 5'b, 5'a = 9.6 Hz), 3.56 (m, 1H, H-4 '), 2.28 (ddd, 1H, H-2'a, J 2'a, 3' = 2.8, J 2'a , 1 ' = 6.0, J 2'a, 2'b = 10.8 Hz), 2.20 (m, 1H, H-2'b), 1.90 (s, 3H, 5-CH 3 ), 1.72 to 1.59 (m, 4H, H-2 '', 5 ''), 1.46 to 1.35 (m, 4H, H-3 '', 4 '').

実施例4(NFTS202)Example 4 (NFTS202)

Figure 2007126412
Figure 2007126412

1−(2−デオキシ−4−チオ−エリスロ−ペントフラノシル)−N −(2−フルオロエチル)−チミン(1−(2−Deoxy-4−thio-erythro-pentofuranosyl)−N 3 −(2−fluoroethyl)-thymine)(9:NFTS202)
M.R. Dysonらの方法およびG.P. Otter らの方法(Carbohydrate Research, 216, 237 (1991): J. Chem. Soc. Perkin. Trans., 2, 2343 (1998))に従って合成した化合物8(129mg、0.5mmol)と、炭酸セシウム(195mg、0.6mmol)のDMF溶液に市販の2−フルオロ−1-ブロモエタン(2−fluoro−1−bromoehtane)(127mg、1mmol)を加え、80℃で10時間攪拌した後、放冷し、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(SiO2、クロロホルム:メタノール=20:1)により精製し、白色固体として化合物9(122mg、0.4mmol、80%)を得た。
1- (2-deoxy-4-thio - erythro - pentofuranosyl) -N 3 - (2-fluoroethyl) - thymine (1- (2-Deoxy-4 -thio-erythro-pentofuranosyl) -N 3 - ( 2-fluoroethyl) -thymine) (9: NFTS202)
Compound 8 (129 mg, 0. 2) synthesized according to the method of MR Dyson et al. And the method of GP Otter et al. (Carbohydrate Research, 216, 237 (1991): J. Chem. Soc. Perkin. Trans., 2, 2343 (1998)). 5 mmol) and commercially available 2-fluoro-1-bromoehtane (127 mg, 1 mmol) were added to a DMF solution of cesium carbonate (195 mg, 0.6 mmol), and the mixture was stirred at 80 ° C. for 10 hours. Thereafter, the mixture was allowed to cool and concentrated. The residue was purified by silica gel column chromatography (SiO2, chloroform: methanol = 20: 1) to obtain Compound 9 (122 mg, 0.4 mmol, 80%) as a white solid.

1H NMR (CDCl3, 500 MHz) δ6.60 (dd, H-1’, J1’, 2’a = 4.6, J1’, 2’b = 7.0 Hz), 5.74 (m, 1H, H-3’), 4.81 (dd, 1H, H-5’a, J5’a, 4’ = 2.4, J5’a, 5’b = 10.0 Hz), ), 4.54-4.77 (m, 2H, H-5’b, H-1”b), 4.60 (m, 1H, H-1”a), 4.55 (m, 1H, H-4’), 4.35 (m, 1H, H-2”a), 4.33 (m, 1H, H-2”a), 2.99 (ddd, 1H, H-2’a, J 2’a, 3’ = 1.2, J 2’a, 1’ = 4.6, J2’a, 2’b = 11.2 Hz), 2.83 (m, 1H, 2”-OH), 2.30 (ddd, 1H, H-2’b, J 2’b, 3’ = 5.2, J 2’b, 1’ = 7.0, J2’b, 2’a = 11.2 Hz), 1.65 (s, 3H, 5- CH3); 1 H NMR (CDCl 3 , 500 MHz) δ 6.60 (dd, H-1 ', J 1', 2'a = 4.6, J 1 ', 2'b = 7.0 Hz), 5.74 (m, 1H , H-3 '), 4.81 (dd, 1H, H-5'a, J 5'a, 4' = 2.4, J 5'a, 5'b = 10.0 Hz),), 4.54 4.77 (m, 2H, H-5'b, H-1 "b), 4.60 (m, 1H, H-1" a), 4.55 (m, 1H, H-4 '), 4.35 (m, 1H, H-2``a), 4.33 (m, 1H, H-2''a), 2.99 (ddd, 1H, H-2'a, J 2'a, 3 ' = 1.2, J 2' a, 1 ' = 4.6, J 2'a, 2'b = 11.2 Hz), 2.83 (m, 1H, 2 ”-OH), 2.30 (ddd, 1H, H-2'b, J 2'b, 3 ' = 5.2, J 2'b, 1' = 7.0, J 2'b, 2'a = 11.2 Hz), 1.65 (s, 3H, 5-CH 3 );

実施例5(NFAU202)Example 5 (NFAU202)

Figure 2007126412
Figure 2007126412

1−(2−デオキシ−2−フルオロ−β−D−アラビノフラノシル)−N −(2−フルオロエチル)−チミン(1-(2-Deoxy-2-fluoro-β-D-arabinofuranosyl)-N 3 -(2−fluoroethyl)-thymine)(10:NFAU202)
アルゴン気流下、W. F. Edgellらの方法(J. Am. Chem. Soc., 77, 4899 (1955))に従い合成した化合物1(541mg、2.5mmol)と炭酸カリウム(630mg、4.6mmol)のアセトンとDMFの混合溶液(1:1)30mLに、C.J.WildsとM. J. Damhaらの方法(Nucleic Acids Research, 28, 3625 (2000))により合成したFMAU(323mg、1.2mmol)を加え、50℃で8時間攪拌した。溶媒を濃縮した後、残渣をシリカゲルカラムクロマトグラフィー (SiO、クロロホルム:メタノール=5:1)により精製した。白色固体として化合物10(272mg、72%)を得た。
1- (2 -Deoxy-2-fluoro-β-D- arabinofuranosyl) -N 3- (2-fluoroethyl) -thymine (1- (2-Deoxy-2-fluoro-β-D-arabinofuranosyl) -N 3- (2-fluoroethyl) -thymine) (10: NFAU202)
Acetone of Compound 1 (541 mg, 2.5 mmol) and potassium carbonate (630 mg, 4.6 mmol) synthesized according to the method of WF Edgell et al. (J. Am. Chem. Soc., 77, 4899 (1955)) under an argon stream. FMAU (323 mg, 1.2 mmol) synthesized by the method of CJWilds and M. J. Damha et al. (Nucleic Acids Research, 28, 3625 (2000)) was added to 30 mL of a mixed solution of DMF and DMF (1: 1). Stir at 8 ° C. for 8 hours. After concentrating the solvent, the residue was purified by silica gel column chromatography (SiO 2 , chloroform: methanol = 5: 1). Compound 10 (272 mg, 72%) was obtained as a white solid.

1H NMR (CD3OD, 500 MHz) δ 7.73 (s, 1H, H-5), 6.20 (dd, 1H, H-1’, J1’, F =17 Hz, J1’, 2’ = 4.0 Hz), 5.03 (dt, 1H, H-2’, J2’, F =52 Hz, J1’, 2’ = J2’, 3’ = 2.5 Hz), 4.58 (dd, 2H, H-2’’, J2’’, F =47 Hz, J1’, 2’b = 5.0 Hz), 4.32 (m, 1H, H-3’), 4.28 (m, 2H, H-1’’), 3.91 (m, 1H, H-4’), 3.86 (dd, 1H, H-5’a, J5’a, 4’ = 12.0, J5’a, 5’b = 4.0 Hz), 3.76 (dd, 1H, H-5’b, J5’b, 4’ = 12.0, J5’b, 5’a = 4.0 Hz), 2.66 (s, 3H, 5-CH3). 1 H NMR (CD 3 OD, 500 MHz) δ 7.73 (s, 1H, H-5), 6.20 (dd, 1H, H-1 ', J 1', F = 17 Hz, J 1 ', 2' = 4.0 Hz), 5.03 (dt, 1H, H-2 ', J 2', F = 52 Hz, J 1 ', 2' = J 2 ', 3' = 2.5 Hz), 4.58 (dd, 2H, H- 2`` , J 2 '', F = 47 Hz, J 1 ', 2'b = 5.0 Hz), 4.32 (m, 1H, H-3'), 4.28 (m, 2H, H-1``) , 3.91 (m, 1H, H-4 '), 3.86 (dd, 1H, H-5'a, J 5'a, 4' = 12.0, J 5'a, 5'b = 4.0 Hz), 3.76 ( dd, 1H, H-5'b, J 5'b, 4 ' = 12.0, J 5'b, 5'a = 4.0 Hz), 2.66 (s, 3H, 5-CH 3 ).

実施例6Example 6
3´,5´−ジ−O−トルオイル―N3 ', 5'-Di-O-Toluoyl-N 8 ―(2―p―トルエンスルホキシエチル)−チミン(3´,5´-Di-O-toluoyl-N-(2-p-Toluenesulfoxyethyl) -thymine (3 ', 5'-Di-O-toluoyl-N 8 -(2-p-toluenesulfoxyethyl)-thymine)-(2-p-toluenesulfoxyethyl) -thymine)

Figure 2007126412
Figure 2007126412

3´、5´−ジ−O−トルオイルチミジン(3´、5´−Di−O−toluoylthymidine)(12)
アルゴン雰囲気下、チミジン(1.95g、8mmol)のピリジン(pyridine)溶液(80mL)に塩化トルイル(TolCl)(2.1mL、16.1mmol)を加え、室温で16時間攪拌した。反応液を氷水にあけ5分攪拌した後、析出した固体をろ取した。水で洗浄した後、シリカゲルカラムクロマトグラフィー(SiO、ヘキサン:酢酸エチル=3:1)により精製した。白色固体として化合物12(3.4g、7.1mmol、89%)を得た。
3 ′, 5′-Di-O-toluoylthymidine (3 ′, 5′-Di-O-toluoylthymidine) (12)
Toluidine chloride (TolCl) (2.1 mL, 16.1 mmol) was added to a pyridine solution (80 mL) of thymidine (1.95 g, 8 mmol) in an argon atmosphere, and the mixture was stirred at room temperature for 16 hours. The reaction solution was poured into ice water and stirred for 5 minutes, and the precipitated solid was collected by filtration. After washing with water, silica gel column chromatography (SiO 2, hexane: ethyl acetate = 3: 1). Compound 12 (3.4 g, 7.1 mmol, 89%) was obtained as a white solid.

1H NMR (CDCl3, 500 MHz) δ 8.45 (bs, 1H, NH), 7.96 (m, 4H, o-Tol), 7.26 (m, 5H, H-6, m-Tol), 6.46 (dd, H-1’, J1’, 2’a = 4.4, J1’, 2’b = 6.8 Hz), 5.64 (m, 1H, H-3'), 4.79 (dd, 1H, H-5'a, J5'a, 4' = 2.8, J5'a, 5'b = 9.6 Hz), ), 4.65 (dd, 1H, H-5'b, J5'b, 4' = 2.8, J5'b, 5'a = 9.6 Hz), 5.53 (m, 1H, H-4'), 2.70 (ddd, 1H, H-2'a, J 2'a, 3' = 1.2, J 2'a, 1' = 4.4, J2'a, 2'b = 11.2 Hz), 2.44, 2.43 (each s, each 3H, Tol-CH3), 2.31 (ddd, 1H, H-2'b, J 2'b, 3' = 5.2, J 2'b, 1' = 6.8, J2'b, 2'a = 11.2 Hz), 1.62 (s, 3H, 5- CH3); 13C NMR (CDCl3, 100 MHz) δ 166.10, 166.04, 163.06, 150.11, 144.64, 134.44, 129.85, 129.53, 129.51, 129.32, 126.54, 126.25, 111.64, 84.91, 82.82, 77.28, 74.91, 64.18, 38.08, 21.76, 21.72, 12.13. 1 H NMR (CDCl 3 , 500 MHz) δ 8.45 (bs, 1H, NH), 7.96 (m, 4H, o-Tol), 7.26 (m, 5H, H-6, m-Tol), 6.46 (dd, H-1 ', J 1', 2'a = 4.4, J 1 ', 2'b = 6.8 Hz), 5.64 (m, 1H, H-3'), 4.79 (dd, 1H, H-5'a , J 5'a, 4 ' = 2.8, J 5'a, 5'b = 9.6 Hz),), 4.65 (dd, 1H, H-5'b, J 5'b, 4' = 2.8, J 5 'b, 5'a = 9.6 Hz) , 5.53 (m, 1H, H-4'), 2.70 (ddd, 1H, H-2'a, J 2'a, 3 '= 1.2, J 2'a, 1 ' = 4.4, J 2'a, 2'b = 11.2 Hz), 2.44, 2.43 (each s, each 3H, Tol-CH 3 ), 2.31 (ddd, 1H, H-2'b, J 2'b , 3 ' = 5.2, J 2'b, 1' = 6.8, J 2'b, 2'a = 11.2 Hz), 1.62 (s, 3H, 5-CH 3 ); 13 C NMR (CDCl 3 , 100 MHz ) δ 166.10, 166.04, 163.06, 150.11, 144.64, 134.44, 129.85, 129.53, 129.51, 129.32, 126.54, 126.25, 111.64, 84.91, 82.82, 77.28, 74.91, 64.18, 38.08, 21.76, 21.72, 12.13.

3´,5´−ジ−O−トルオイル−N −(2−ヒドロキシエチル)−チミジン(3´,5´−Di−O−toluoyl−N −(2−hydorxyethyl)−thymidine)(13)
アルゴン雰囲気下、化合物12(3.7g、8mmol)をTHF(120mL) に溶かし、TBAF(1.0M in THF、80mL、80mmol)、2-ブロモエタノール(2−bromoethanol)(14mL、0.2mol)を加え室温で2時間攪拌した。反応液を氷水にあけ5分攪拌した後、析出した固体をろ取した。固体を水に入れ15分攪拌した後、再びろ取し、デシケーターにより乾燥させ白色固体として化合物13(3.3g、6.5mmol、81%)を得た。
3', 5'-di -O- toluoyl -N 8 - (2-hydroxyethyl) - thymidine (3', 5'-Di-O -toluoyl-N 8 - (2-hydorxyethyl) -thymidine) (13)
Under an argon atmosphere, compound 12 (3.7 g, 8 mmol) was dissolved in THF (120 mL), TBAF (1.0 M in THF, 80 mL, 80 mmol), 2-bromoethanol (14 mL, 0.2 mol) And stirred at room temperature for 2 hours. The reaction solution was poured into ice water and stirred for 5 minutes, and the precipitated solid was collected by filtration. The solid was put into water and stirred for 15 minutes, and then collected again by filtration and dried by a desiccator to obtain Compound 13 (3.3 g, 6.5 mmol, 81%) as a white solid.

1H NMR (CDCl3, 500 MHz) δ 7.96 (m, 4H, o-Tol), 7.26 (m, 5H, H-6, m-Tol), 6.48 (dd, H-1’, J1’, 2’a = 4.4, J1’, 2’b = 6.8 Hz), 5.64 (m, 1H, H-3’), 4.79 (dd, 1H, H-5’a, J5’a, 4’ = 2.4, J5’a, 5’b = 9.6 Hz), ), 4.66 (dd, 1H, H-5’b, J5’b, 4’ = 2.8, J5’b, 5’a = 9.6 Hz), 5.53 (m, 1H, H-4'), 4.21 (m, 1H, H-1"), 3.86 (m, 1H, H-2"), 2.72 (ddd, 1H, H-2'a, J 2'a, 3' = 1.2, J 2'a, 1' = 4.4, J2'a, 2'b = 11.2 Hz), 2.53 (m, 1H, 2"-OH), 2.44, 2.43 (each s, each 3H, Tol-CH3), 2.31 (ddd, 1H, H-2'b, J 2'b, 3' = 5.2, J 2'b, 1' = 6.8, J2'b, 2'a = 11.2 Hz), 1.65 (s, 3H, 5- CH3); 13C NMR (CDCl3, 100 MHz) δ 166.06, 166.34, 164.12, 151.56, 144.61, 132.93, 129.81, 129.51, 129.48, 129.30, 126.51, 126.25, 110.99, 85.78, 82.85, 77.25, 74.89, 64.13, 61.79, 43.97, 38.19, 21.73, 21.69, 12.84. 1 H NMR (CDCl 3 , 500 MHz) δ 7.96 (m, 4H, o-Tol), 7.26 (m, 5H, H-6, m-Tol), 6.48 (dd, H-1 ', J 1', 2'a = 4.4, J 1 ', 2'b = 6.8 Hz), 5.64 (m, 1H, H-3'), 4.79 (dd, 1H, H-5'a, J 5'a, 4 ' = 2.4, J 5'a, 5'b = 9.6 Hz),), 4.66 (dd, 1H, H-5'b, J 5'b, 4 ' = 2.8, J 5'b, 5'a = 9.6 Hz ), 5.53 (m, 1H, H-4 '), 4.21 (m, 1H, H-1''), 3.86 (m, 1H, H-2''), 2.72 (ddd, 1H, H-2'a, J 2'a, 3 ' = 1.2, J 2'a, 1' = 4.4, J 2'a, 2'b = 11.2 Hz), 2.53 (m, 1H, 2 "-OH), 2.44, 2.43 (each s, each 3H, Tol-CH 3 ), 2.31 (ddd, 1H, H-2'b, J 2'b, 3 ' = 5.2, J 2'b, 1' = 6.8, J 2'b, 2 ' a = 11.2 Hz), 1.65 (s, 3H, 5-CH 3 ); 13 C NMR (CDCl 3 , 100 MHz) δ 166.06, 166.34, 164.12, 151.56, 144.61, 132.93, 129.81, 129.51, 129.48, 129.30, 126.51 , 126.25, 110.99, 85.78, 82.85, 77.25, 74.89, 64.13, 61.79, 43.97, 38.19, 21.73, 21.69, 12.84.

3´,5´−ジ−O−トルオイル−N −(2−p−トルエンスルホキシエチル)−チミン(3´,5´-Di-O-toluoyl-N -(2-p-toluenesulfoxyethyl)-thymine)(14)
アルゴン雰囲気下、化合物13(522mg、1.0mmol)のピリジン溶液(10mL)に塩化トシル(229mg、1.2mmol)を加え、0℃で16時間攪拌した。クロロホルム(ca.50mL)により希釈し、1N塩酸(40mL)、水(40mL)、飽和重曹水(40mL)さらに飽和食塩水(40mL)で洗浄した。無水硫酸ナトリウムにより乾燥し、濃縮した後、残渣をシリカゲルカラムクロマトグラフィー(SiO、ヘキサン:酢酸エチル=1:1)により精製した。白色固体として化合物14(500mg、0.74mmol、74%)を得た。
3', 5'-di -O- toluoyl -N 8 - (2-p- toluenesulfonyl carboxyethyl) - thymine (3', 5'-Di-O -toluoyl-N 8 - (2-p-toluenesulfoxyethyl) -thymine) (14)
Tosyl chloride (229 mg, 1.2 mmol) was added to a pyridine solution (10 mL) of compound 13 (522 mg, 1.0 mmol) in an argon atmosphere, and the mixture was stirred at 0 ° C. for 16 hours. The mixture was diluted with chloroform (ca. 50 mL), and washed with 1N hydrochloric acid (40 mL), water (40 mL), saturated aqueous sodium hydrogen carbonate (40 mL), and saturated brine (40 mL). After drying over anhydrous sodium sulfate and concentrated, the residue was purified by silica gel column chromatography (SiO 2, hexane: ethyl acetate = 1: 1). Compound 14 (500 mg, 0.74 mmol, 74%) was obtained as a white solid.

1H NMR (CDCl3, 500 MHz) δ 7.96 (m, 4H, o-Tol), 7.69 (m, 2H, o-Ts), 7.26 (m, 7H, H-6, m-Tol, m-Ts), 6.44 (dd, H-1’, J1’, 2’a = 4.4, J1’, 2’b = 6.8 Hz), 5.63 (m, 1H, H-3’), 4.81 (dd, 1H, H-5'a, J5'a, 4' = 2.4, J5'a, 5'b = 10.0 Hz), 4.65 (dd, 1H, H-5'b, J5'b, 4' = 2.8, J5'b, 5'a = 10.0 Hz), 5.54 (m, 1H, H-4'), 4.27 (m, 1H, H-2"), 4.22 (m, 1H, H-1"), 2.71 (ddd, 1H, H-2'a, J 2'a, 3' = 1.2, J 2'a, 1' = 4.4, J2'a, 2'b = 11.2 Hz), 2.53 (m, 1H, H-2"), 2.45, 2.42, 2.40 (each s, each 3H, Ts-CH3, Tol-CH3), 2.28 (ddd, 1H, H-2'b, J 2'b, 3' = 5.2, J 2'b, 1' = 6.8, J2'b, 2'a = 11.2 Hz), 1.58 (s, 3H, 5- CH3); 13C NMR (CDCl3, 100 MHz) δ 166.05, 166.12, 162.81, 150.60, 144.70, 144.57, 144.55, 132.86, 132.77, 129.79, 129.50, 129.46, 129.28, 127.79, 126.48, 126.25, 110.52, 85.72, 82.86, 77.21, 74.89, 66.30, 64.14, 39.73, 38.09, 21.71, 21.66, 21.55, 12.75.
1 H NMR (CDCl 3 , 500 MHz) δ 7.96 (m, 4H, o-Tol), 7.69 (m, 2H, o-Ts), 7.26 (m, 7H, H-6, m-Tol, m-Ts ), 6.44 (dd, H-1 ', J 1', 2'a = 4.4, J 1 ', 2'b = 6.8 Hz), 5.63 (m, 1H, H-3'), 4.81 (dd, 1H , H-5'a, J 5'a, 4 ' = 2.4, J 5'a, 5'b = 10.0 Hz), 4.65 (dd, 1H, H-5'b, J 5'b, 4' = 2.8, J 5'b, 5'a = 10.0 Hz), 5.54 (m, 1H, H-4 '), 4.27 (m, 1H, H-2 "), 4.22 (m, 1H, H-1") , 2.71 (ddd, 1H, H-2'a, J 2'a, 3 ' = 1.2, J 2'a, 1' = 4.4, J 2'a, 2'b = 11.2 Hz), 2.53 (m, 1H, H-2 "), 2.45, 2.42, 2.40 (each s, each 3H, Ts-CH 3, Tol-CH 3 ), 2.28 (ddd, 1H, H-2'b, J 2'b, 3 ' = 5.2, J 2'b, 1 ' = 6.8, J 2'b, 2'a = 11.2 Hz), 1.58 (s, 3H, 5-CH 3 ); 13 C NMR (CDCl 3 , 100 MHz) δ 166.05 , 166.12, 162.81, 150.60, 144.70, 144.57, 144.55, 132.86, 132.77, 129.79, 129.50, 129.46, 129.28, 127.79, 126.48, 126.25, 110.52, 85.72, 82.86, 77.21, 74.89, 66.30, 64.14, 39.73, 38.09 , 21.66, 21.55, 12.75.

実施例7Example 7
3´,5´−ジ−O−トルオイル−N3 ', 5'-Di-O-Toluoyl-N 8 −(2−メタンスルホキシエチル)−チミジン(3´,5´-Di-O-toluonyl-N-(2-Methanesulfoxyethyl) -thymidine (3 ', 5'-Di-O-toluonyl-N 8 -(2-methansulfoxyethyl)-thymidine)-(2-methansulfoxyethyl) -thymidine)

Figure 2007126412
Figure 2007126412

3´,5´−ジ−O−トルオイル−N −(2−メタンスルホキシエチル)−チミジン(3´,5´−Di−O−toluonyl-N −(2−methansulfoxyethyl)−thymidine)(15)
アルゴン雰囲気下、化合物13(350mg、0.67mmol)のピリジン溶液(6.7mL)に塩化メシル(MsCl)(63μg、0.81mmol)を加え、0℃で16時間攪拌した。クロロホルム(ca.50mL)により希釈し、1N塩酸(40mL)、水(40mL)、飽和重曹水(40mL)さらに飽和食塩水(40mL)で洗浄した。無水硫酸ナトリウムにより乾燥し、濃縮した後、残渣をシリカゲルカラムクロマトグラフィー(SiO、ヘキサン:酢酸エチル=3:1)により精製した。白色固体として化合物15(312mg、0.52mmol、78%)を得た。
3', 5'-di -O- toluoyl -N 8 - (2-methanesulfonyl carboxyethyl) - thymidine (3', 5'-Di-O -toluonyl-N 8 - (2-methansulfoxyethyl) -thymidine) ( 15)
Under an argon atmosphere, mesyl chloride (MsCl) (63 μg, 0.81 mmol) was added to a pyridine solution (6.7 mL) of compound 13 (350 mg, 0.67 mmol), and the mixture was stirred at 0 ° C. for 16 hours. The mixture was diluted with chloroform (ca. 50 mL), and washed with 1N hydrochloric acid (40 mL), water (40 mL), saturated aqueous sodium hydrogen carbonate (40 mL), and saturated brine (40 mL). After drying over anhydrous sodium sulfate and concentrated, the residue was purified by silica gel column chromatography (SiO 2, hexane: ethyl acetate = 3: 1). Compound 15 (312 mg, 0.52 mmol, 78%) was obtained as a white solid.

1H NMR (CDCl3, 500 MHz) δ 7.93 (m, 4H, o-Tol), 7.28 (m, 5H, H-6, m-Tol), 6.46 (dd, H-1’, J1’, 2’a = 5.5, J1’, 2’b = 8.5 Hz), 5.63 (m, 1H, H-3’), 4.78 (dd, 1H, H-5’a, J5’a, 4’ = 2.5, J5’a, 5’b = 12.0 Hz), 4.65 (dd, 1H, H-5’b, J5’b, 4’ = 4.0, J5’b, 5’a = 12.0 Hz), 5.53 (m, 1H, H-4’), 4.47 (m, 1H, H-2”), 4.31 (m, 1H, H-1”), 3.01 (s, 3H, Ms-CH3), 2.72 (ddd, 1H, H-2’a, J 2’a, 3’ = J 2’a, 1’ = 5.5, J2’a, 2’b = 14.0 Hz), 2.43, 2.42 (each s, each 3H, Tol-CH3), 2.31 (ddd, 1H, H-2’b, J 2’b, 3’ = 6.5, J 2’b, 1’ = 8.5, J2’b, 2’a = 14.0 Hz), 1.64 (s, 3H, 5- CH3); 13C NMR (CDCl3, 100 MHz) δ 166.04, 166.02, 163.04, 150.75, 144.56, 133.02, 129.79, 129.51, 129.45, 129.27, 126.49, 126.25, 110.67, 85.80, 82.86, 74.88, 65.73, 64.18, 40.06, 38.09, 37.82, 21.71, 21.66, 21.55, 12.80. 1 H NMR (CDCl 3 , 500 MHz) δ 7.93 (m, 4H, o-Tol), 7.28 (m, 5H, H-6, m-Tol), 6.46 (dd, H-1 ', J 1', 2'a = 5.5, J 1 ', 2'b = 8.5 Hz), 5.63 (m, 1H, H-3'), 4.78 (dd, 1H, H-5'a, J 5'a, 4 ' = 2.5, J 5'a, 5'b = 12.0 Hz), 4.65 (dd, 1H, H-5'b, J 5'b, 4 ' = 4.0, J 5'b, 5'a = 12.0 Hz), 5.53 (m, 1H, H-4 '), 4.47 (m, 1H, H-2''), 4.31 (m, 1H, H-1''), 3.01 (s, 3H, Ms-CH 3 ), 2.72 ( ddd, 1H, H-2'a, J 2'a, 3 ' = J 2'a, 1' = 5.5, J 2'a, 2'b = 14.0 Hz), 2.43, 2.42 (each s, each 3H , Tol-CH 3 ), 2.31 (ddd, 1H, H-2'b, J 2'b, 3 ' = 6.5, J 2'b, 1' = 8.5, J 2'b, 2'a = 14.0 Hz ), 1.64 (s, 3H, 5-CH 3 ); 13 C NMR (CDCl 3 , 100 MHz) δ 166.04, 166.02, 163.04, 150.75, 144.56, 133.02, 129.79, 129.51, 129.45, 129.27, 126.49, 126.25, 110.67 , 85.80, 82.86, 74.88, 65.73, 64.18, 40.06, 38.09, 37.82, 21.71, 21.66, 21.55, 12.80.

実施例8Example 8
3´,5´−ジ−O−トルオイル−N3 ', 5'-Di-O-Toluoyl-N 8 −(2−p−メトキシフェニルスルホキシエチル)−チミジン(3´,5´-Di-O-toluoyl-N-(2-p-methoxyphenylsulfoxyethyl) -thymidine (3 ', 5'-Di-O-toluoyl-N 8 -(2-p-methoxyphenylsulfoxyethyl)-thymidine)-(2-p-methoxyphenylsulfoxy) -thymidine)

Figure 2007126412
Figure 2007126412

3´,5´−ジ−O−トルオイル−N −(2−p−メトキシフェニルスルホキシエチル)−チミジン(3´,5´−Di−O−toluoyl-N −(2−p−methoxyphenylsulfoxyethyl)−thymidine)(16)
アルゴン雰囲気下、化合物13(816mg、1.56mmol)のピリジン溶液(15mL)に塩化パラメトキシフェニルスルホニル(p-MeOPhSO2Cl)(387mg、1.87mmol)を加え、0℃で16時間攪拌した。クロロホルム(ca.150mL)により希釈し、1N塩酸(140mL)、水(140mL)、飽和重曹水(140mL)さらに飽和食塩水(140mL)で洗浄した。無水硫酸ナトリウムにより乾燥し、濃縮した後、残渣をシリカゲルカラムクロマトグラフィー(SiO、ヘキサン:酢酸エチル=3:1)により精製した。白色固体として化合物16(227mg、0.33mmol、21%)を得た。
3', 5'-di -O- toluoyl -N 8 - (2-p- methoxyphenyl sulphoxide ethyl) - thymidine (3', 5'-Di-O -toluoyl-N 8 - (2-p-methoxyphenylsulfoxyethyl ) -Thymidine) (16)
Under an argon atmosphere, paramethoxyphenylsulfonyl chloride (p-MeOPhSO 2 Cl) (387 mg, 1.87 mmol) was added to a pyridine solution (15 mL) of compound 13 (816 mg, 1.56 mmol), and the mixture was stirred at 0 ° C. for 16 hours. The mixture was diluted with chloroform (ca. 150 mL), and washed with 1N hydrochloric acid (140 mL), water (140 mL), saturated aqueous sodium hydrogen carbonate (140 mL), and saturated brine (140 mL). After drying over anhydrous sodium sulfate and concentrated, the residue was purified by silica gel column chromatography (SiO 2, hexane: ethyl acetate = 3: 1). Compound 16 (227 mg, 0.33 mmol, 21%) was obtained as a white solid.

1H NMR (CDCl3, 500 MHz) δ 7.94 (m, 4H, o-Tol), 7.79 (m, 2H, o-ph), 7.26 (m, 5H, H-6, m-Tol), 6.95 (m, 2H, m-Ts), 6.44 (dd, H-1’, J1’, 2’a = 5.5, J1’, 2’b = 8.0 Hz), 5.63 (m, 1H, H-3’), 4.80 (dd, 1H, H-5’a, J5’a, 4’ = 2.5, J5’a, 5’b = 12.0 Hz), 4.65 (dd, 1H, H-5’b, J5’b, 4’ = 3.0, J5’b, 5’a = 12.0 Hz), 5.53 (m, 1H, H-4’), 4.28-4.20 (m, 4H, H-1”, 2”), 3.83 (s, 3H, Ph-CH3), 2.71 (ddd, 1H, H-2’a, J 2’a, 3’ = J 2’a, 1’ = 5.5, J2’a, 2’b = 14.0 Hz), 2.44, 2.42 (each s, each 3H, Tol-CH3), 2.28 (ddd, 1H, H-2’b, J 2’b, 3’ = 6.0, J 2’b, 1’ = 8.0, J2’b, 2’a = 14.0 Hz), 1.59 (s, 3H, 5- CH3); 13C NMR (CDCl3, 100 MHz) δ 166.10, 166.07, 163.71, 162.86, 150.66, 144.62, 144.60, 132.84, 130.05, 129.85, 129.55, 129.51, 129.32, 127.33, 126.52, 126.30, 114.41, 110.61, 85.78, 82.89, 77.22, 74.94, 66.15, 64.20, 60.40, 55.64, 39.80, 38.14, 21.76, 21.70, 12.80. 1 H NMR (CDCl 3 , 500 MHz) δ 7.94 (m, 4H, o-Tol), 7.79 (m, 2H, o-ph), 7.26 (m, 5H, H-6, m-Tol), 6.95 ( m, 2H, m-Ts), 6.44 (dd, H-1 ', J 1', 2'a = 5.5, J 1 ', 2'b = 8.0 Hz), 5.63 (m, 1H, H-3' ), 4.80 (dd, 1H, H-5'a, J 5'a, 4 ' = 2.5, J 5'a, 5'b = 12.0 Hz), 4.65 (dd, 1H, H-5'b, J 5'b, 4 ' = 3.0, J 5'b, 5'a = 12.0 Hz), 5.53 (m, 1H, H-4'), 4.28-4.20 (m, 4H, H-1 ", 2") , 3.83 (s, 3H, Ph-CH 3 ), 2.71 (ddd, 1H, H-2'a, J 2'a, 3 ' = J 2'a, 1' = 5.5, J 2'a, 2 ' b = 14.0 Hz), 2.44, 2.42 (each s, each 3H, Tol-CH 3 ), 2.28 (ddd, 1H, H-2'b, J 2'b, 3 ' = 6.0, J 2'b, 1 ' = 8.0, J 2'b, 2'a = 14.0 Hz), 1.59 (s, 3H, 5-CH 3 ); 13 C NMR (CDCl 3 , 100 MHz) δ 166.10, 166.07, 163.71, 162.86, 150.66, 144.62, 144.60, 132.84, 130.05, 129.85, 129.55, 129.51, 129.32, 127.33, 126.52, 126.30, 114.41, 110.61, 85.78, 82.89, 77.22, 74.94, 66.15, 64.20, 60.40, 55.64, 39.80, 38.14, 21.76, 2170 12.80.

実施例9Example 9
3´,5´−ジ−O−トルオイル−N3 ', 5'-Di-O-Toluoyl-N 8 −(2−ブロモエチル)−チミジン(3´,5´−Di−O−toluoyl-N-(2-Bromoethyl) -thymidine (3 ', 5'-Di-O-toluoyl-N 8 −(2−bromoethyl)−thymidine)-(2-bromoethyl) -thymidine)

Figure 2007126412
Figure 2007126412

3´,5´−ジ−O−トルオイル−N −(2−ブロモエチル)−チミジン(3´,5´−Di−O−toluoyl-N −(2−bromoethyl)−thymidine)(17)
アルゴン雰囲気下、化合物13(552mg、1.0mmol)のピリジン溶液(10mL)にPPh(314mg、1.2mmol)、NBS(213mg、1.2mmol)を加え、室温で30分攪拌した。クロロホルム(ca.100mL)により希釈し、飽和重曹水(100mL)さらに飽和食塩水(100mL)で洗浄した。無水硫酸マグネシウムにより乾燥し、濃縮した後、残渣をシリカゲルカラムクロマトグラフィー(SiO2、ヘキサン:酢酸エチル=1:1)により精製した。白色固体として化合物17(150mg、0.26mmol、26%)を得た。
3', 5'-di -O- toluoyl -N 8 - (2-bromoethyl) - thymidine (3', 5'-Di-O -toluoyl-N 8 - (2-bromoethyl) -thymidine) (17)
Under an argon atmosphere, PPh 3 (314 mg, 1.2 mmol) and NBS (213 mg, 1.2 mmol) were added to a pyridine solution (10 mL) of compound 13 (552 mg, 1.0 mmol), and the mixture was stirred at room temperature for 30 minutes. The mixture was diluted with chloroform (ca. 100 mL), and washed with saturated aqueous sodium hydrogen carbonate (100 mL) and saturated brine (100 mL). After drying over anhydrous magnesium sulfate and concentration, the residue was purified by silica gel column chromatography (SiO2, hexane: ethyl acetate = 1: 1). Compound 17 (150 mg, 0.26 mmol, 26%) was obtained as a white solid.

1H NMR (CDCl3, 500 MHz) δ 7.93 (m, 4H, o-Tol), 7.28 (m, 5H, H-6, m-Tol), 6.48 (dd, H-1’, J1’, 2’a = 5.5, J1’, 2’b = 9.0 Hz), 5.64 (m, 1H, H-3’), 4.80 (dd, 1H, H-5’a, J5’a, 4’ = 2.5, J5’a, 5’b = 12.0 Hz), 4.65 (dd, 1H, H-5’b, J5’b, 4’ = 3.5, J5’b, 5’a = 12.0 Hz), 5.53 (m, 1H, H-4’), 4.35 (m, 1H, H-1”), 3.54 (m, 1H, H-2”), 2.71 (ddd, 1H, H-2’a, J 2’a, 3’ = 1.0, J 2’a, 1’ = 5.5, J2’a, 2’b = 14.0 Hz), 2.44, 2.43 (each s, each 3H, Tol-CH3), 2.31 (ddd, 1H, H-2’b, J 2’b, 3’ = 7.0, J 2’b, 1’ = 9.0, J2’b, 2’a = 14.0 Hz), 1.65 (s, 3H, 5- CH3); 13C NMR (CDCl3, 100 MHz) δ 166.07, 166.03, 162.79, 160.62, 150.64, 144.62, 144.59, 132.88, 129.81, 129.53, 129.48, 129.31, 126.53, 126.27, 110.84, 85.65, 82.82, 77.21, 74.86, 64.10, 42.19, 38.11, 27.25, 21.74, 21.70, 12.83. 1 H NMR (CDCl 3 , 500 MHz) δ 7.93 (m, 4H, o-Tol), 7.28 (m, 5H, H-6, m-Tol), 6.48 (dd, H-1 ', J 1', 2'a = 5.5, J 1 ', 2'b = 9.0 Hz), 5.64 (m, 1H, H-3'), 4.80 (dd, 1H, H-5'a, J 5'a, 4 ' = 2.5, J 5'a, 5'b = 12.0 Hz), 4.65 (dd, 1H, H-5'b, J 5'b, 4 ' = 3.5, J 5'b, 5'a = 12.0 Hz), 5.53 (m, 1H, H-4 '), 4.35 (m, 1H, H-1''), 3.54 (m, 1H, H-2''), 2.71 (ddd, 1H, H-2'a, J 2 'a, 3' = 1.0, J 2'a, 1 ' = 5.5, J 2'a, 2'b = 14.0 Hz), 2.44, 2.43 (each s, each 3H, Tol-CH 3 ), 2.31 (ddd , 1H, H-2'b, J 2'b, 3 ' = 7.0, J 2'b, 1' = 9.0, J 2'b, 2'a = 14.0 Hz), 1.65 (s, 3H, 5- CH 3 ); 13 C NMR (CDCl 3 , 100 MHz) δ 166.07, 166.03, 162.79, 160.62, 150.64, 144.62, 144.59, 132.88, 129.81, 129.53, 129.48, 129.31, 126.53, 126.27, 110.84, 85.65, 82.82, 77.21 , 74.86, 64.10, 42.19, 38.11, 27.25, 21.74, 21.70, 12.83.

実施例10([ 18 F]NFT202)
−(2−[ 18 F]フルオロエチル)−チミジンの合成(Radiosynthesis of N −(2−[ 18 F]fluoroethyl)−thymidine([ 18 F]NFT202)
18F]フルオライド(Fluoride)水溶液(1580MBq)、40mmol/Lクリプトフィックス[2.2.2]アセトニトリル溶液(0.25mL、10μmol)、66mmol/L炭酸カリウム水溶液(750μL、5μmol)の混合溶液をアルミブロック(110℃)を用いて濃縮しアセトニトリル(1mL)を用いて2回共沸した。標識前駆体14(13.5mg、20μmol)のアセトニトリル溶液(1mL)を加え、130℃で5分攪拌した(step1)。次に、0.24Mナトリウムエトキシド/エタノール溶液1.0mL(240μmol)を加え、室温で10分間放置した後、1.0M酢酸ナトリウム水溶液(0.3mL、300μmol)を加えて中和した(step2)。アルミブロック(110℃)を用いてアセトニトリル、エタノールを蒸散させ、水(2.5mL)で希釈し濾過(0.45μ)した後、濾液をHPLCを用いて精製し、[18F]NFT202(73.2MBq)を合成した。
Example 10 ([ 18 F] NFT202)
N 8 - (2- [18 F ] fluoroethyl) - Synthesis of thymidine (Radiosynthesis of N 8 - (2- [18 F] fluoroethyl) -thymidine ([18 F] NFT202)
A mixed solution of [ 18 F] fluoride aqueous solution (1580 MBq), 40 mmol / L cryptofix [2.2.2] acetonitrile solution (0.25 mL, 10 μmol), 66 mmol / L potassium carbonate aqueous solution (750 μL, 5 μmol). The mixture was concentrated using an aluminum block (110 ° C.) and azeotroped twice using acetonitrile (1 mL). A label precursor 14 (13.5 mg, 20 μmol) in acetonitrile (1 mL) was added, and the mixture was stirred at 130 ° C. for 5 minutes (step 1). Next, 1.0 mL (240 μmol) of 0.24 M sodium ethoxide / ethanol solution was added and allowed to stand at room temperature for 10 minutes, and then neutralized by adding 1.0 M aqueous sodium acetate solution (0.3 mL, 300 μmol) (step 2 ). After evaporating acetonitrile and ethanol using an aluminum block (110 ° C.), diluting with water (2.5 mL) and filtering (0.45 μ), the filtrate was purified using HPLC, and [ 18 F] NFT202 (73 .2MBq) was synthesized.

Figure 2007126412
Figure 2007126412

精製;HPLC 固定相:C18 column (300 x 30 mm, 10μ)
移動相: 水:エタノール=3:1 (v/v)
流速 :6 .0 mL/min
検出器:NaI (Tl) シンチレータ−, UV検出器 (254 nm)
Purification; HPLC stationary phase: C18 column (300 x 30 mm, 10μ)
Mobile phase: Water: ethanol = 3: 1 (v / v)
Flow rate: 6.0 mL / min
Detector: NaI (Tl) scintillator, UV detector (254 nm)

実施例11Example 11
3´,5´−ジ−O−トルオイル−N3 ', 5'-Di-O-Toluoyl-N 8 −(3−p−トルエンスルホキシ−1−プロピル)−チミジン(3´,5´-Di-O-toluoyl-N-(3-p-Toluenesulfoxy-1-propyl) -thymidine (3 ', 5'-Di-O-toluoyl-N 8 -(3-p-toluenesulfoxy-1-propyl)-thymidine)-(3-p-toluenesulfoxy-1-propyl) -thymidine)

Figure 2007126412
Figure 2007126412

3´,5´-ジ−O−トルオイル−N −(3−ヒドロキシ−1−プロピル)−チミジン(3´,5´-Di−O−toluoyl−N −(3−hydroxy−1−propyl)−thymidine)(18)
アルゴン雰囲気下、化合物12(485mg、1.0mmol)をTHF(10mL)に溶かし、TBAF(1.0M in THF、10mL、10mmol)、3−ブロモ−1―プロパノール(3−bromo−1−propanol)(2.8mL、30mmmol)を加え室温で2時間攪拌した。反応液を氷水にあけ5分攪拌した後、析出した固体をろ取した。 固体を水に入れ15分攪拌した後、再びろ取し、デシケーターにより乾燥させ 白色固体として化合物18(414mg、0.77mmol、77%)を得た。
3', 5'-di -O- toluoyl -N 8 - (3- hydroxy-1-propyl) - thymidine (3', 5'-Di-O -toluoyl-N 8 - (3-hydroxy-1-propyl ) -Thymidine) (18)
Under an argon atmosphere, Compound 12 (485 mg, 1.0 mmol) was dissolved in THF (10 mL), TBAF (1.0 M in THF, 10 mL, 10 mmol), 3-bromo-1-propanol (3-bromo-1-propanol) (2.8 mL, 30 mmol) was added and stirred at room temperature for 2 hours. The reaction solution was poured into ice water and stirred for 5 minutes, and the precipitated solid was collected by filtration. The solid was added to water and stirred for 15 minutes, and then collected again by filtration and dried by a desiccator to obtain Compound 18 (414 mg, 0.77 mmol, 77%) as a white solid.

1H NMR (CDCl3, 400 MHz) δ 7.87 (m, 4H, o-Tol), 7.24-7.19 (m, 5H, H-6, m-Tol), 6.41 (dd, H-1’, J1’, 2’a = 4.4, J1’, 2’b = 6.8 Hz), 5.56 (m, 1H, H-3’), 4.73 (dd, 1H, H-5’a, J5’a, 4’ = 2.4, J5’a, 5’b = 9.6 Hz), ), 4.58 (dd, 1H, H-5’b, J5’b, 4’ = 2.8, J5’b, 5’a = 9.6 Hz), 5.46 (m, 1H, H-4’), 4.03 (m, 1H, H-1”), 3.42 (m, 1H, H-3”), 3.19 (m, 1H, 2”-OH), 2.63 (ddd, 1H, H-2’a, J 2’a, 3’ = 1.2, J 2’a, 1’ = 4.4, J2’a, 2’b = 11.2 Hz), 2.37, 2.36 (each s, each 3H, Tol-CH3), 2.25 (ddd, 1H, H-2’b, J 2’b, 3’ = 5.2, J 2’b, 1’ = 6.8, J2’b, 2’a = 11.2 Hz), 1.79 (m, 2H, H-2”), 1.58 (s, 3H, 5- CH3); 13C NMR (CDCl3, 100 MHz) δ 171.13, 166.06, 166.01, 163.92, 151.23, 144.62, 132.90, 129.80, 129.51, 129.46, 129.30, 126.52, 126.24, 110.83, 85.71, 82.85, 77.25, 74.83, 64.07, 60.37, 58.53, 38.19, 37.83, 30.47, 21.73, 21.69, 21.03, 14.18, 12.87. 1 H NMR (CDCl 3 , 400 MHz) δ 7.87 (m, 4H, o-Tol), 7.24-7.19 (m, 5H, H-6, m-Tol), 6.41 (dd, H-1 ', J 1 ', 2'a = 4.4, J 1', 2'b = 6.8 Hz), 5.56 (m, 1H, H-3 '), 4.73 (dd, 1H, H-5'a, J 5'a, 4 ' = 2.4, J 5'a, 5'b = 9.6 Hz),), 4.58 (dd, 1H, H-5'b, J 5'b, 4' = 2.8, J 5'b, 5'a = 9.6 Hz), 5.46 (m, 1H, H-4 '), 4.03 (m, 1H, H-1 "), 3.42 (m, 1H, H-3"), 3.19 (m, 1H, 2 "-OH ), 2.63 (ddd, 1H, H-2'a, J 2'a, 3 ' = 1.2, J 2'a, 1' = 4.4, J 2'a, 2'b = 11.2 Hz), 2.37, 2.36 (each s, each 3H, Tol-CH 3 ), 2.25 (ddd, 1H, H-2'b, J 2'b, 3 ' = 5.2, J 2'b, 1' = 6.8, J 2'b, 2'a = 11.2 Hz), 1.79 (m, 2H, H-2 ”), 1.58 (s, 3H, 5-CH 3 ); 13 C NMR (CDCl 3 , 100 MHz) δ 171.13, 166.06, 166.01, 163.92 , 151.23, 144.62, 132.90, 129.80, 129.51, 129.46, 129.30, 126.52, 126.24, 110.83, 85.71, 82.85, 77.25, 74.83, 64.07, 60.37, 58.53, 38.19, 37.83, 30.47, 21.73, 14.69, 21.87, 14.18 .

3´,5´−ジ−O−トルオイル−N −(3−p−トルエンスルホキシ−1−プロピル)−チミジン(3´,5´−Di−O−toluoyl-N −(3−p−toluenesulfoxy−1−propyl)−thymidine)(19)
アルゴン雰囲気下、化合物18(267mg、0.5mmol)のピリジン溶液(5mL)に塩化トシル(117mg、0.6mmol)を加え、0℃で16時間攪拌した。クロロホルム(ca.20mL)により希釈し、1N塩酸(15mL)、水(15mL)、飽和重曹水(15mL)さらに飽和食塩水(15mL)で洗浄した。無水硫酸ナトリウムにより乾燥し、濃縮した後、残渣をシリカゲルカラムクロマトグラフィー(SiO2、ヘキサン:酢酸エチル=1:1)により精製した。白色固体として化合物19(205mg、0.30mmol、60%)を得た。
3', 5'-di -O- toluoyl -N 8 - (3-p- toluene sulfoxylate-1-propyl) - thymidine (3', 5'-Di-O -toluoyl-N 8 - (3-p -Toluenesulfoxy-1-propyl) -thymidine) (19)
Tosyl chloride (117 mg, 0.6 mmol) was added to a pyridine solution (5 mL) of compound 18 (267 mg, 0.5 mmol) under an argon atmosphere, and the mixture was stirred at 0 ° C. for 16 hours. The mixture was diluted with chloroform (ca. 20 mL), and washed with 1N hydrochloric acid (15 mL), water (15 mL), saturated aqueous sodium hydrogen carbonate (15 mL), and saturated brine (15 mL). After drying over anhydrous sodium sulfate and concentration, the residue was purified by silica gel column chromatography (SiO2, hexane: ethyl acetate = 1: 1). Compound 19 (205 mg, 0.30 mmol, 60%) was obtained as a white solid.

1H NMR (CDCl3, 400 MHz) δ 7.87 (m, 4H, o-Tol), 7.71 (m, 2H, o-Ts), 7.26-7.19 (m, 7H, H-6, m-Tol, m-Ts), 6.40 (dd, H-1’, J1’, 2’a = 4.4, J1’, 2’b = 6.8 Hz), 5.56 (m, 1H, H-3’), 4.72 (dd, 1H, H-5’a, J5’a, 4’ = 2.4, J5’a, 5’b = 10.0 Hz), 4.58 (dd, 1H, H-5’b, J5’b, 4’ = 2.8, J5’b, 5’a = 10.0 Hz), 5.45 (m, 1H, H-4’), 4.02 (t, 1H, H-3”, J3”, 2” = 5.2 Hz), 3.91 (m, 1H, H-1”), 2.64 (ddd, 1H, H-2’a, J 2’a, 3’ = 1.2, J 2’a, 1’ = 4.4, J2’a, 2’b = 11.2 Hz), 2.37, 2.36, 2.35 (each s, each 3H, Ts-CH3, Tol-CH3), 2.25 (ddd, 1H, H-2’b, J 2’b, 3’ = 5.2, J 2’b, 1’ = 6.8, J2’b, 2’a = 11.2 Hz), 1.89 (m, 1H, H-2”), 1.54 (s, 3H, 5- CH3); 13C NMR (CDCl3, 100 MHz) δ 166.08, 163.03, 150.71, 144.69, 144.59, 144.54, 132.99, 132.65, 129.82, 129.81, 129.56, 129.48, 129.30, 127.94, 126.54, 126.29, 110.72, 85.62, 82.78, 77.25, 74.92, 86.53, 64.15, 38.16, 38.10, 27.15, 21.74, 21.69, 21.62, 12.83. 1 H NMR (CDCl 3 , 400 MHz) δ 7.87 (m, 4H, o-Tol), 7.71 (m, 2H, o-Ts), 7.26-7.19 (m, 7H, H-6, m-Tol, m -Ts), 6.40 (dd, H-1 ', J 1', 2'a = 4.4, J 1 ', 2'b = 6.8 Hz), 5.56 (m, 1H, H-3'), 4.72 (dd , 1H, H-5'a, J 5'a, 4 ' = 2.4, J 5'a, 5'b = 10.0 Hz), 4.58 (dd, 1H, H-5'b, J 5'b, 4 ' = 2.8, J 5'b, 5'a = 10.0 Hz), 5.45 (m, 1H, H-4'), 4.02 (t, 1H, H-3 ”, J 3”, 2 ” = 5.2 Hz) , 3.91 (m, 1H, H-1 ”), 2.64 (ddd, 1H, H-2'a, J 2'a, 3 ' = 1.2, J 2'a, 1' = 4.4, J 2'a, 2'b = 11.2 Hz), 2.37, 2.36, 2.35 (each s, each 3H, Ts-CH 3, Tol-CH 3 ), 2.25 (ddd, 1H, H-2'b, J 2'b, 3 ' = 5.2, J 2'b, 1 ' = 6.8, J 2'b, 2'a = 11.2 Hz), 1.89 (m, 1H, H-2 ”), 1.54 (s, 3H, 5-CH 3 ); 13 C NMR (CDCl 3 , 100 MHz) δ 166.08, 163.03, 150.71, 144.69, 144.59, 144.54, 132.99, 132.65, 129.82, 129.81, 129.56, 129.48, 129.30, 127.94, 126.54, 126.29, 110.72, 85.62, 82.78, 77.25 , 74.92, 86.53, 64.15, 38.16, 38.10, 27.15, 21.74, 21.69, 21.62, 12.83.

実施例12([ 18 F]NFT203)
−(3−[ 18 F]フルオロプロピル)−チミジンの合成(Radiosynthesis of N −(3−[ 18 F]fluoropropyl)−thymidine)([ 18 F]NFT203)
18F]フルオライド(Fluoride)水溶液(1666MBq)、40mmol/Lクリプトフィックス[2.2.2]アセトニトリル溶液(1.0mL、40μmol)、66mmmol/L炭酸カリウム水溶液(0.3μL、20μmol)の混合溶液をアルミブロック(110℃)を用いて濃縮しアセトニトリル(1.0mL)を用いて2回共沸した。標識前駆体19(27.6mg、40μmol)のアセトニトリル溶液(1.0mL)を加え、80℃で10分攪拌した(step1)。次に、0.24Mナトリウムエトキシド/エタノール溶液1.0mL(240μmol)を加え、室温で10分間放置した後、1.0M酢酸ナトリウム水溶液(0.3mL、300μmol)を加えて中和した(step2)。アルミブロック(110℃)を用いてアセトニトリル、エタノールを蒸散させ、水(2.5mL) で希釈し濾過(0.45μ)をした後HPLCを用いて精製し、[18F]NFT203(167.2MBq)を合成した。
Example 12 ([ 18 F] NFT203)
N 8 - (3- [18 F ] fluoropropyl) - Synthesis of thymidine (Radiosynthesis of N 8 - (3- [18 F] fluoropropyl) -thymidine) ([18 F] NFT203)
[ 18 F] Fluoride aqueous solution (1666 MBq), 40 mmol / L cryptofix [2.2.2] acetonitrile solution (1.0 mL, 40 μmol), 66 mmol / L potassium carbonate aqueous solution (0.3 μL, 20 μmol) The solution was concentrated using an aluminum block (110 ° C.) and azeotroped twice using acetonitrile (1.0 mL). A label precursor 19 (27.6 mg, 40 μmol) in acetonitrile (1.0 mL) was added, and the mixture was stirred at 80 ° C. for 10 minutes (step 1). Next, 1.0 mL (240 μmol) of 0.24 M sodium ethoxide / ethanol solution was added and allowed to stand at room temperature for 10 minutes, and then neutralized by adding 1.0 M aqueous sodium acetate solution (0.3 mL, 300 μmol) (step 2 ). Acetonitrile and ethanol were evaporated using an aluminum block (110 ° C.), diluted with water (2.5 mL), filtered (0.45 μ), purified using HPLC, and [ 18 F] NFT203 (167.2 MBq). ) Was synthesized.

Figure 2007126412
Figure 2007126412

精製;HPLC 固定相:C18 column (300 x 30 mm, 10μ)
移動相:水:エタノール= 3:1 (v/v)
流速 :5.0 ml/ml
検出器:NaI (Tl) シンチレータ−, UV検出器 (254 nm)
Purification; HPLC stationary phase: C18 column (300 x 30 mm, 10μ)
Mobile phase: Water: Ethanol = 3: 1 (v / v)
Flow rate: 5.0 ml / ml
Detector: NaI (Tl) scintillator, UV detector (254 nm)

実施例13Example 13
1,6−ヘキサンジオールジトシレート(1,6−hexanediol ditosylate)1,6-hexanediol ditosylate

Figure 2007126412
Figure 2007126412

1, 6−ヘキサンジオールジトシレート(1, 6−hexanediol ditosylate)(20)
アルゴン雰囲気下、塩化トシル(4.91g、2.5mmol),DMAP(3.05g、25mmol)のアセトニトリル溶液(50mL)に1,6-ヘキサンジオール(1,6-hexanediol)(1.18mg、10mmol),トリエチルアミン(3.48g、25mmol)のアセトニトリル溶液を加え、室温で2時間攪拌した。析出した固体をろ過し、ろ液を酢酸エチル(ca.500mL)により希釈し、水(500mL)、飽和食塩水(500mL)で洗浄した。無水硫酸ナトリウムにより乾燥し、濃縮した後、残渣をシリカゲルカラムクロマトグラフィー(SiO2、ヘキサン:酢酸エチル=2:1)により精製した。白色固体として化合物20(2.4g、5.6mmol、56%)を得た。
1,6-hexanediol ditosylate (20)
Under an argon atmosphere, 1,6-hexanediol (1.18 mg, 10 mmol) was added to an acetonitrile solution (50 mL) of tosyl chloride (4.91 g, 2.5 mmol) and DMAP (3.05 g, 25 mmol). ), Triethylamine (3.48 g, 25 mmol) in acetonitrile was added and stirred at room temperature for 2 hours. The precipitated solid was filtered, and the filtrate was diluted with ethyl acetate (ca. 500 mL), and washed with water (500 mL) and saturated brine (500 mL). After drying over anhydrous sodium sulfate and concentration, the residue was purified by silica gel column chromatography (SiO2, hexane: ethyl acetate = 2: 1). Compound 20 (2.4 g, 5.6 mmol, 56%) was obtained as a white solid.

1H NMR (CDCl3, 400 MHz) δ 7.77 (m, 4H, Tol), 7.35 (m, 4H, Tol), 3.98 (t, 4H, H-1, 6, J = 4.8 Hz), 2.45 (s, 6H, Tol-CH3), 1.60 (m, 4H, H-2, 5), 1.27 (m, 4H, H-3, 4). 1 H NMR (CDCl 3 , 400 MHz) δ 7.77 (m, 4H, Tol), 7.35 (m, 4H, Tol), 3.98 (t, 4H, H-1, 6, J = 4.8 Hz), 2.45 (s , 6H, Tol-CH 3 ), 1.60 (m, 4H, H-2, 5), 1.27 (m, 4H, H-3, 4).

実施例14([ 18 F]NFT401)
−(6−[ 18 F]フルオロヘキシル)−チミジンの合成(Radiosynthesis of N −(6−[ 18 F]fluorohexyl)−thymidine)([ 18 F]NFT401)
18F]フルオライド(Fluoride)水溶液(3630MBq)、40mmol/Lクリプトフィックス[2.2.2]アセトニトリル溶液(1.2mL、53μmol)、66mmol/L炭酸カリウム水溶液(0.3mL、20μmol)の混合溶液をアルミブロック(110℃)を用いて濃縮しアセトニトリル(1mL)を用いて2回共沸した。標識前駆体20(17.0mg、40μmol)のアセトニトリル溶液(1mL)を加え、80℃で10分攪拌した(step1)。次に、チミジン(Thymidine)(19.3mg、80μmol)のDMF溶液(0.5mL)及び炭酸セシウム(52.1mg、160μmol)のDMF懸濁液(0.5mL)を加えて、80℃で15分攪拌した(step2)。アルミブロック(110℃)を用いてアセトニトリルを蒸散させ、水(2.5mL)で希釈しHPLCを用いて精製し、[18F]NFT401(145.1MBq)を合成した。
Example 14 ([ 18 F] NFT401)
N 8 - (6- [18 F ] fluoro-hexyl) - Synthesis of thymidine (Radiosynthesis of N 8 - (6- [18 F] fluorohexyl) -thymidine) ([18 F] NFT401)
[ 18 F] Fluoride aqueous solution (3630 MBq), 40 mmol / L cryptofix [2.2.2] acetonitrile solution (1.2 mL, 53 μmol), 66 mmol / L potassium carbonate aqueous solution (0.3 mL, 20 μmol) The solution was concentrated using an aluminum block (110 ° C.) and azeotroped twice using acetonitrile (1 mL). A label precursor 20 (17.0 mg, 40 μmol) in acetonitrile (1 mL) was added, and the mixture was stirred at 80 ° C. for 10 minutes (step 1). Next, a DMF solution (0.5 mL) of thymidine (19.3 mg, 80 μmol) and a DMF suspension (0.5 mL) of cesium carbonate (52.1 mg, 160 μmol) were added, and 15 ° C. was added at 15 ° C. Stir for minutes (step 2). Acetonitrile was evaporated using an aluminum block (110 ° C.), diluted with water (2.5 mL), and purified using HPLC to synthesize [ 18 F] NFT401 (145.1 MBq).

Figure 2007126412
Figure 2007126412

精製;HPLC 固定相:C18 column (300 x 30 mm, 10μ)
移動相: 水:エタノール=3:1 (v/v)
流速 :5 .0 mL/min
検出器:NaI (Tl) シンチレータ−, UV検出器 (254 nm)
Purification; HPLC stationary phase: C18 column (300 x 30 mm, 10μ)
Mobile phase: Water: ethanol = 3: 1 (v / v)
Flow rate: 5.0 mL / min
Detector: NaI (Tl) scintillator, UV detector (254 nm)

実施例15(NFT201)
−(フルオロメチル)−チミジン(N −(fluoromethyl)−thymidine)(21:NFT201)
K. K. Ogiliveらの方法(Nucleic Acids Research, 6, 1695 (1979))に従い,市販のチミジン11から1工程でNFT201(21)を合成した。
Example 15 (NFT201)
N 8 - (fluoromethyl) - thymidine (N 8 - (fluoromethyl) -thymidine ) (21: NFT201)
NFT201 (21) was synthesized from commercially available thymidine 11 in one step according to the method of KK Ogilive et al. (Nucleic Acids Research, 6, 1695 (1979)).

1H NMR (CD3OD, 500 MHz) δ7.89 (s, 1H), 6.28 (t, J = 6.5 Hz, 1H), 5.97 (d, J = 50.5 Hz, 2H), 4.40 (quint, J= 3.0 Hz, 1H), 3.92 (q, J = 3.0Hz, 1H), 3.80 (dd, J = 12.5 and 3.0Hz, 1H), 3.73 (dd, J = 12.5 and 3.5Hz, 1H), 2.28 (ddd, J = 13.5, 6.5 and 3.5Hz, 1H), 2.22 (dd, J = 13.5 and 3.5Hz, 1H), 1.91 (s, 3H).

Figure 2007126412
1 H NMR (CD 3 OD, 500 MHz) δ7.89 (s, 1H), 6.28 (t, J = 6.5 Hz, 1H), 5.97 (d, J = 50.5 Hz, 2H), 4.40 (quint, J = 3.0 Hz, 1H), 3.92 (q, J = 3.0Hz, 1H), 3.80 (dd, J = 12.5 and 3.0Hz, 1H), 3.73 (dd, J = 12.5 and 3.5Hz, 1H), 2.28 (ddd, J = 13.5, 6.5 and 3.5Hz, 1H), 2.22 (dd, J = 13.5 and 3.5Hz, 1H), 1.91 (s, 3H).
Figure 2007126412

実施例16(FT202)
5−(2−フルオロエチル)−2’-デオキシウリジン(5−(2−Fluoroethyl)−2’−deoxyuridine)(22:FT202)
J.D. Fissekisらの方法およびH. Grienglらの方法(J. Org. Chem., 29, 2670 (1964): J. Med. Chem., 30, 1199 (1987))に従い,市販のγ−ブチロラクトン(γ−Butyrolactone)から9工程でFT202を合成した。
Example 16 (FT202)
5- (2-Fluoroethyl) -2′-deoxyuridine (22: FT202)
According to the method of JD Fissekis et al. And the method of H. Griengl et al. (J. Org. Chem., 29, 2670 (1964): J. Med. Chem., 30, 1199 (1987)), commercially available γ-butyrolactone (γ FT202 was synthesized in 9 steps from -Butyrolactone).

1H NMR (CD3OD, 500 MHz) δ7.92 (s, 1H), 6.26 (t, J = 6.5 Hz, 1H), 4.53 (dtd, J = 47.0, 5.5 and 3.0 Hz, 2H), 4.37 (quint, J= 3.0 Hz, 1H), 3.92 (q, J = 3.0Hz, 1H), 3.80 (dd, J = 12.0 and 3.0Hz, 1H), 3.73 (dd, J = 12.0 and 3.5Hz, 1H), 2.71 (td, J = 5.5 and 2.0Hz, 1H), 2.68 (td, J = 5.5 and 1.5Hz, 1H), 2.26 (m, 1H), 2.21 (m, 1H). 1 H NMR (CD 3 OD, 500 MHz) δ7.92 (s, 1H), 6.26 (t, J = 6.5 Hz, 1H), 4.53 (dtd, J = 47.0, 5.5 and 3.0 Hz, 2H), 4.37 ( quint, J = 3.0 Hz, 1H), 3.92 (q, J = 3.0Hz, 1H), 3.80 (dd, J = 12.0 and 3.0Hz, 1H), 3.73 (dd, J = 12.0 and 3.5Hz, 1H), 2.71 (td, J = 5.5 and 2.0Hz, 1H), 2.68 (td, J = 5.5 and 1.5Hz, 1H), 2.26 (m, 1H), 2.21 (m, 1H).

Figure 2007126412
Figure 2007126412

実施例17(FTS202)
1−(2−デオキシ−4−チオ−エリスロ−ペントフラノシル)−5−(2−フルオロエチル)−ウラシル(1−(2−Deoxy-4−thio-erythro-pentofuranosyl)-5−(2−fluoroethyl)-uracil)(23:FTS202)
S.G.Rahimらの方法およびJ.A.Secristらの方法(J. Med. Chem., 39, 789 (1996): J. Med. Chem., 34, 2361 (1991))に従い,市販のD-エリスロ-ペントフラノシド(D-erythro-pentofuranoside)から12工程でFTS202(23)を合成した。
Example 17 (FTS202)
1- (2-Deoxy-4-thio-erythro-pentofuranosyl) -5- (2-fluoroethyl) -uracil (1- (2-Deoxy-4-thio-erythro-pentofuranosyl) -5- (2- fluorethyl) -uracil) (23: FTS202)
According to the method of SGRahim et al. And the method of JASecrist et al. (J. Med. Chem., 39, 789 (1996): J. Med. Chem., 34, 2361 (1991)), commercially available D-erythro-pentofuranoside ( FTS202 (23) was synthesized from D-erythro-pentofuranoside) in 12 steps.

1H NMR (DMSO-d6, 400 MHz) δ 11.4 (s, 1H), 7.91 (s, 1H), 6.27 (t, J = 7.4 Hz, 1H), 5.26 (d, J = 3.8 Hz, 1H), 5.18 (t, J = 5.4 Hz, 1H), 4.50 (dt, J = 40.0 and 6.4 Hz, 2H), 4.37 (quint, J= 3.5 Hz, 1H), 3.60 (m, 2H), 3.29 (m, 1H), 2.68 (td, J = 6.2 and 3.3Hz, 1H), 2.62 (td, J = 6.0 and 3.7Hz, 1H), 2.18 (d, J = 4.0 Hz, 1H), 2.16 (d, J = 3.8 Hz, 1H). 1 H NMR (DMSO-d 6 , 400 MHz) δ 11.4 (s, 1H), 7.91 (s, 1H), 6.27 (t, J = 7.4 Hz, 1H), 5.26 (d, J = 3.8 Hz, 1H), 5.18 (t, J = 5.4 Hz, 1H), 4.50 (dt, J = 40.0 and 6.4 Hz, 2H), 4.37 (quint, J = 3.5 Hz, 1H), 3.60 (m, 2H ), 3.29 (m, 1H), 2.68 (td, J = 6.2 and 3.3Hz, 1H), 2.62 (td, J = 6.0 and 3.7Hz, 1H), 2.18 (d, J = 4.0 Hz, 1H), 2.16 (d, J = 3.8 Hz, 1H).

Figure 2007126412
Figure 2007126412

実施例18
2−[ 14 C]−NFT202の合成
実施例1と同様に、アルゴン気流下、W. F. Edgellらの方法(J. Am. Chem. Soc., 77, 4899 (1955))に従い合成したフルオロトシロキシエタン(Fluorotosyloxyethane)(6.8mg、33.8μmol)、KCO(9.3mg、67.6μmol)、2−[14C]−チミジン(thymidine) (37MBq、16.9μmol)を5mLのAcetone/DMF溶媒中で50℃一晩反応させた。反応液を10mLのetherで希釈し、SepPak Silicaカートリッジカラムを通して、未反応のフルオロトシロキシエタン(Fluorotosyloxyethane)を吸着させ、10mLのCHCl/MeOH=5/1で目的物を溶出した。溶出画分の溶媒を留去後、TLC(Silicagel 60)にて精製を行い。2−[14C]−NFT202を得た(35.2MBq、95%)。
Example 18
Synthesis of 2-[ < 14 > C] -NFT202 It was synthesized according to the method of WF Edgell et al. (J. Am. Chem. Soc., 77, 4899 (1955)) under an argon stream as in Example 1. Fluorotosyloxyethane (6.8 mg, 33.8 μmol), K 2 CO 3 (9.3 mg, 67.6 μmol), 2- [ 14 C] -thymidine (37 MBq, 16.9 μmol). The reaction was allowed to proceed overnight at 50 ° C. in 5 mL of Acetone / DMF solvent. The reaction solution was diluted with 10 mL of ether, unreacted fluorotosyloxyethane was adsorbed through a SepPak Silica cartridge column, and the target product was eluted with 10 mL of CHCl 3 / MeOH = 5/1. After evaporating the solvent of the eluted fraction, purification was performed with TLC (Silicagel 60). 2-[< 14 > C] -NFT202 was obtained (35.2 MBq, 95%).

実施例19
フルオロチミジン誘導体のインビトロにおけるリン酸化能の検討
フルオロチミジン誘導体の組換え型ヒトチミジンキナーゼ1(rTK)に対するリン酸化活性を測定した。rTKは、Lunato AG ら、(J. Med. Chem. 42、3378−3389頁(1999))の方法に従い、調製した。リン酸化活性はγ-33P−ATPのリン酸転移反応により得られる、放射性リン酸化モノヌクレオシドを薄相クロマトグラフによって分離定量した。すなわち、反応溶液(50mM Tris−HCl(pH7.6)、5mM MgCl、15mM NaF、125mM KCl、10mM DTTと0.5%BSA)に1mMのγ-33P−ATPおよび基質100μMを加え、615ng/mLのrTKを添加する事により、反応を開始させた。酵素反応は、37℃、15分間行い、引き続き100℃、3分の加熱処理によって反応を停止させた。反応停止後の反応溶液を、遠心し、上清を回収して、PEI−cellulose plate(Merack)に2μLづつ添加した。薄相板は、イソ酪酸/水酸化アンモニウム/水(isobutylic acid/ammonium hydroxide/water)=66/1/33で12時間展開し、BAS−1500にて放射性ピーク成分の割合を解析した。
Example 19
Examination of in vitro phosphorylation ability of fluorothymidine derivatives The phosphorylation activity of fluorothymidine derivatives against recombinant human thymidine kinase 1 (rTK 1 ) was measured. rTK 1 was prepared according to the method of Lunato AG et al. (J. Med. Chem. 42, pages 3378-3389 (1999)). The phosphorylation activity was determined by separating and quantifying radioactive phosphorylated mononucleoside obtained by phosphoryl transfer reaction of γ- 33 P-ATP by thin phase chromatography. That is, 1 mM γ- 33 P-ATP and substrate 100 μM were added to a reaction solution (50 mM Tris-HCl (pH 7.6), 5 mM MgCl 2 , 15 mM NaF, 125 mM KCl, 10 mM DTT and 0.5% BSA), and 615 ng The reaction was started by adding / mL of rTK 1 . The enzyme reaction was carried out at 37 ° C. for 15 minutes, and then the reaction was stopped by heat treatment at 100 ° C. for 3 minutes. The reaction solution after stopping the reaction was centrifuged, and the supernatant was collected and added to PEI-cellulose plate (Merack) in 2 μL units. The thin phase plate was developed with isobutyric acid / ammonium hydroxide / water = 66/1/33 for 12 hours, and the ratio of radioactive peak components was analyzed with BAS-1500.

フルオロチミジン誘導体の組換え型ヒトチミジンキナーゼ1(rTK)に対するリン酸化活性を表4に示す。リン酸化活性は天然の基質であるチミジン(thymidine)を100とした場合の相対活性で示した。リン酸化能はチミジン(thymidine)>NFT202>NFT201=NFTS202>FTS202=NFT203=FT202>NFAU202の順であった。 Table 4 shows the phosphorylation activity of fluorothymidine derivatives against recombinant human thymidine kinase 1 (rTK 1 ). The phosphorylation activity was shown as relative activity when the natural substrate, thymidine, was taken as 100. The phosphorylating ability was in the order of thymidine>NFT202> NFT201 = NFTS202> FTS202 = NFT203 = FT202> NFAU202.

Figure 2007126412
Figure 2007126412

実施例20
フルオロチミジン誘導体のヌクレオシドトランスポーター輸送活性の検討
フルオロチミジン誘導体のヌクレオシドトランスポーターに対する親和性を測定した。材料として、ICRマウス(雌♀、7〜8週齢、体重30g)の赤血球を用いた。ケタミン(100mg/kg)+キシラジン(10mg/kg)の腹腔内投与により麻酔をほどこし、心臓採血により、静脈血を 3.2%クエン酸三ナトリウム水溶液中に採取した。採取した血液を、4℃、3,000rpm×10分遠心処理し、血漿と白血球層を取り除いた。その後、緩衝液(140mM NaCl、1.4mM MgSO、18mM Tris−HCl pH7.4)で4回洗浄して赤血球を得た。フルオロチミジン誘導体の核酸輸送担体に対する親和性は、Gati WP ら、(Biochem Pharmacol. 33、3325−3331頁(1984);Molecular Pharmacol.23、146−152頁(1982))の方法を参考に実施した。すなわち、赤血球を緩衝液にてヘマトクリット値が11%になるように希釈した。2−[14C]−チミジン(Thymidine)(37KBq/mL)を含む0.05-0.50mM(0.05、0.1、0.25、0.50)のチミジン(thymidine)溶液ならびに、フルオロチミジン誘導体を0.0−2.0mM(0、0.5、1.0、2.0)含む計16通りのアッセイ溶液を調製した。それぞれ0.2mLのアッセイ溶液を、予め1.5mLチューブに入れた0.2mLの赤血球溶液に加え、3秒間取り込ませた。その後、ヌクレオシドトランスポーターの選択的阻害剤である、0.02mM ニトロベンジルチオイノシン(nitrobenzylthioinosine(NBMPR))溶液を 0.4mL加えることにより、2−[14C]−チミジン(Thymidine)の取り込みを停止させた。試料は、すばやく12,800gで1分間遠心処理し、再度1.0mLのNBMPR溶液で洗浄後、0.5mLの5%過塩素酸溶液で2−[14C]−チミジン(Thymidine)を抽出した。過塩素酸処理後のチューブを再度遠心し、上清を0.15mL分取後、10mLの液体シンチレータ(ACS−II;Amersham Bioscience)を加え、放射能を液体シンチレーションカウンター(LSC−5000;Aloka)にて測定した。測定は、各サンプルに付き2回実施し、平均値を求め、初速度:V(pmoles thymidine/μg packed erythrocyte/sec)を求めた。フルオロチミジン誘導体のKi値は、Lineweaver−Burk plot(1/v〜1/s plot)より得られたプロットの勾配 (Kmapp/Vmax)を各フルオロチミジン誘導体(阻害剤と解釈される)の濃度に対してプロットする2次プロット(replot、Kmapp/Vmax〜i)により求めた(大西正健著、酵素反応速度論実験入門:学会出版センター)。
Example 20
Examination of nucleoside transporter transport activity of fluorothymidine derivatives The affinity of fluorothymidine derivatives for nucleoside transporters was measured. As materials, erythrocytes of ICR mice (female, 7-8 weeks old, body weight 30 g) were used. Anesthesia was given by intraperitoneal administration of ketamine (100 mg / kg) + xylazine (10 mg / kg), and venous blood was collected in a 3.2% trisodium citrate aqueous solution by cardiac blood sampling. The collected blood was centrifuged at 3,000 rpm × 10 minutes at 4 ° C. to remove plasma and leukocyte layer. Thereafter, erythrocytes were obtained by washing 4 times with a buffer (140 mM NaCl, 1.4 mM MgSO 4 , 18 mM Tris-HCl pH 7.4). The affinity of the fluorothymidine derivative for the nucleic acid transport carrier was determined with reference to the method of Gati WP et al. (Biochem Pharmacol. 33, 3325-3331 (1984); Molecular Pharmacol. 23, 146-152 (1982)). . That is, erythrocytes were diluted with a buffer solution so that the hematocrit value was 11%. A 0.05-0.50 mM (0.05, 0.1, 0.25, 0.50) thymidine solution containing 2- [ 14 C] -thymidine (37 KBq / mL), and A total of 16 assay solutions containing 0.0-2.0 mM (0, 0.5, 1.0, 2.0) of fluorothymidine derivatives were prepared. Each 0.2 mL of assay solution was added to 0.2 mL of red blood cell solution previously placed in a 1.5 mL tube and allowed to ingest for 3 seconds. Subsequently, the uptake of 2- [ 14 C] -thymidine was stopped by adding 0.4 mL of 0.02 mM nitrobenzylthioinosin (NBMPR) solution, which is a selective inhibitor of nucleoside transporter. I let you. The sample was quickly centrifuged at 12,800 g for 1 minute, washed again with 1.0 mL of NBMPR solution, and 2- [ 14 C] -thymidine was extracted with 0.5 mL of 5% perchloric acid solution. . The tube after perchloric acid treatment was centrifuged again, 0.15 mL of the supernatant was collected, 10 mL of liquid scintillator (ACS-II; Amersham Bioscience) was added, and the radioactivity was measured with a liquid scintillation counter (LSC-5000; Aloka). Measured with The measurement was carried out twice for each sample, the average value was determined, and the initial velocity: V (pmoles thymidine / μg packed erythrocyte / sec) was determined. The Ki value of the fluorothymidine derivative is calculated by changing the slope of the plot (Kmap / Vmax) obtained from Lineweaver-Burk plot (1 / v to 1 / s plot) to the concentration of each fluorothymidine derivative (interpreted as an inhibitor). It was calculated | required by the secondary plot (replot, Kmapp / Vmax-i) plotted against (Masashi Onishi, Introductory enzyme kinetics experiment: Academic Publishing Center).

結果を表5に示す。チミジン(Thymidine)のKm値は、0.26±0.09mMであった。ヌクレオシドトランスポーターに対する親和性はNFTS202>FTS202>Thymidine>NFT201>NFT203=NFAU202>FT202=NFT202の順であった。 The results are shown in Table 5. The Km value of thymidine was 0.26 ± 0.09 mM. The affinity for the nucleoside transporter was in the order of NFTS202> FTS202> Thymidine> NFT201> NFT203 = NFAU202> FT202 = NFT202.

Figure 2007126412
Figure 2007126412

実施例21
フルオロチミジン誘導体のインビトロにおける代謝分解感受性に関する検討
フルオロチミジン誘導体のチミジンホスホリラーゼに対する分解感受性を評価した。20 nmolの基質を含む0.1 Mリン酸カリウム緩衝液(pH7.4)に0.015 unitの酵素液(大腸菌由来,Sigma社製)を添加することにより,反応を開始させた。酵素反応は,25℃, 60分間行い,次いで2 Nの過塩素酸水溶液を加えることにより停止させた。反応停止後の反応溶液を遠心し,回収した上清に一定量の水酸化カリウム水溶液を加えて中和させた。中和した試料を遠心し,上清を回収した。回収した上清中の親化合物濃度を,高速液体クロマトグラフィーを用いて,絶対検量線法にて定量した(カラム:Mightysil RP-18 GP Aqua(関東化学),移動相:メタノール/水/TFA混液)。
Example 21
Study on in vitro metabolic degradation sensitivity of fluorothymidine derivatives The sensitivity of fluorothymidine derivatives to thymidine phosphorylase was evaluated. The reaction was started by adding 0.015 unit enzyme solution (from E. coli, Sigma) to 0.1 M potassium phosphate buffer (pH 7.4) containing 20 nmol substrate. The enzymatic reaction was carried out at 25 ° C for 60 minutes and then stopped by adding 2 N aqueous perchloric acid. The reaction solution after stopping the reaction was centrifuged, and a certain amount of aqueous potassium hydroxide solution was added to the recovered supernatant to neutralize it. The neutralized sample was centrifuged and the supernatant was collected. The concentration of the parent compound in the collected supernatant was quantified by high-performance liquid chromatography using an absolute calibration curve method (column: Mightysil RP-18 GP Aqua (Kanto Chemical), mobile phase: methanol / water / TFA mixture) ).

フルオロチミジン誘導体の,チミジンホスホリレースに対する代謝安定性を表6に示す。0分点における親化合物濃度を100%として,60分点における親化合物濃度の相対値を示した。代謝分解が認められたのは、陽性対照のチミジン(Thymidine)とFT202のみであった。 Table 6 shows the metabolic stability of fluorothymidine derivatives to thymidine phosphorylase. The relative value of the parent compound concentration at 60 minutes was shown with the parent compound concentration at 0 minutes as 100%. Metabolic degradation was observed only in the positive controls Thymidine and FT202.

Figure 2007126412
Figure 2007126412

実施例22
チミジンキナーゼ1依存的な2−[ 14 C]−NFT202の細胞取り込み
2−[14C]−NFT202のチミジンキナーゼ1依存的な細胞への取り込みに関して、チミジンキナーゼ欠損細胞株L−M(TK−)及びその親株であるL−M細胞との取り込みを比較検討した。対数増殖期のL−M及びL−M(TK−)細胞を2.0×10個ずつ24穴プレートに植え、一晩培養後に2−[14C]−NFT202 1.85KBq(0.8nmol)加えて1時間細胞に取りこませた。細胞を3回氷冷リン酸緩衝液で洗い、細胞を0.5mLの0.2N NaOHで溶解後、10mLの液体シンチレータ(ACS−II;Amersham Bioscience)を加え、細胞に取り込まれた放射能を液体シンチレーションカウンター(LSC−5000;Aloka)にて測定した。その結果、2−[14C]−NFT202はL−M細胞へ24.70±1.71(pmol/10cells/h)とL−M(TK−)細胞の3.06±1.22(pmol/10cells/h)に比べて、8倍以上の高集積を示した(Student‘s t−test;p<0.000005)。
Example 22
Respect thymidine kinase 1 dependent 2- [14 C] -NFT202 cellular uptake 2- [14 C] thymidine kinase 1 -NFT202 dependent uptake into cells, the thymidine kinase-deficient cell line L-M (TK-) And the uptake with the LM cell which is the parent strain was compared. 2.0 × 10 5 LM and LM (TK−) cells in logarithmic growth phase were seeded in a 24-well plate and cultured overnight, then 2- [ 14 C] -NFT202 1.85 KBq (0.8 nmol) In addition, the cells were taken up for 1 hour. The cells were washed three times with ice-cold phosphate buffer, and the cells were lysed with 0.5 mL of 0.2N NaOH, and then 10 mL of liquid scintillator (ACS-II; Amersham Bioscience) was added to reduce the radioactivity incorporated into the cells. It measured with the liquid scintillation counter (LSC-5000; Aloka). As a result, 2- [ 14 C] -NFT202 was transferred to LM cells at 24.70 ± 1.71 (pmol / 10 6 cells / h) and LM (TK−) cells at 3.06 ± 1.22. Compared with (pmol / 10 6 cells / h), the accumulation was 8 times higher (Student's t-test; p <0.000005).

実施例23
2−[ 14 C]−NFT202の細胞取り込みと増殖度との相関
2−[14C]−NFT202の細胞集積が、増殖度の違いを反映するか否かを明らかにする目的で、増殖状態の異なるA549ヒト肺がん細胞株への2−[14C]−NFT202取り込みと細胞増殖マーカーであるS期画分の割合の変化を比較検討した。A549細胞への2−[14C]−NFT202取り込みアッセイ方法は、実施例22と同様に行った。S期画分の測定は、取り込み実験と同様に培養したA549細胞株をトリプシン処理によって回収し、15mL遠心チューブに集めた。細胞を遠心処理によって沈殿させ、CycleTESTTM PLUS DNA Reagent Kit(Beckton Dickinson)を用いてKit添付の手順書にしたがってDNA分析のための試料を調製した。 試料の細胞あたりのDNA含量はフローサイトメトリー(FACS Caliber;Beckton Dickinson)によってヒストグラムで表され、S期画分の割合(%S−Phase)はMod−Fit LT software(Beckton Dickinson)を用いて算出した。
Example 23
2- Correlation between [ 14 C] -NFT202 cellular uptake and proliferation degree In order to clarify whether the cell accumulation of 2- [ 14 C] -NFT202 reflects the difference in proliferation degree, The change in the ratio of 2- [ 14 C] -NFT202 incorporation into different A549 human lung cancer cell lines and the proportion of the S phase fraction, which is a cell proliferation marker, was compared. The 2- [ 14 C] -NFT202 uptake assay method into A549 cells was performed in the same manner as in Example 22. For measurement of the S-phase fraction, the A549 cell line cultured as in the uptake experiment was collected by trypsin treatment and collected in a 15 mL centrifuge tube. Cells were sedimented by centrifugation and samples for DNA analysis were prepared using the CycleTest PLUS DNA Reagent Kit (Beckton Dickinson) according to the protocol attached to the Kit. The DNA content per cell of the sample is represented by a histogram by flow cytometry (FACS Caliber; Beckton Dickinson), and the proportion of the S-phase fraction (% S-Phase) is calculated using Mod-Fit LT software (Beckton Dickinson) did.

結果を図2に示す。2−[14C]−NFT202のA549細胞への取り込みは、細胞増殖マーカーのS期画分(%S−Phase)とよく相関した(r=0.92) The results are shown in FIG. Incorporation of 2- [ 14 C] -NFT202 into A549 cells correlated well with the S-phase fraction (% S-Phase) of cell proliferation marker (r 2 = 0.92).

実施例24
18 F]NFT202の正常マウスを用いた体内分布
4週齢のddYマウス(平均体重28.9g,各群4匹)にラボナール麻酔を施し、[18F]NFT202を1匹あたり約1.48MBq尾静脈投与した。各時間経過後に心採血により屠殺し、臓器重量と放射能量をシングルチャンネルアナライザーにて測定した。組織への放射能取りこみは、時間に対する組織gあたりの投与量の百分率で算出した(表7)。その結果、増殖組織である小腸における放射能の取りこみは、非増殖組織である脳及び筋肉より明らかに高かった。また、下肢骨(増殖組織の骨髄を含む)への放射能集積も認められた。
Example 24
Biodistribution using normal mice of [ 18 F] NFT202 A 4-week-old ddY mouse (average body weight 28.9 g, 4 mice in each group) was subjected to labonal anesthesia, and [ 18 F] NFT202 was about 1.48 MBq per mouse. It was administered intravenously. After each time, the mice were sacrificed by cardiac blood sampling, and the organ weight and radioactivity were measured with a single channel analyzer. Incorporation of radioactivity into the tissue was calculated as a percentage of the dose per tissue g with respect to time (Table 7). As a result, the uptake of radioactivity in the small intestine, which is a proliferating tissue, was clearly higher than that of brain and muscle, which are non-proliferating tissues. Radioactivity accumulation in the lower limb bones (including the bone marrow of the proliferating tissue) was also observed.

Figure 2007126412
Figure 2007126412

実施例25
18 F]NFT202の腫瘍移植マウスを用いた体内分布
ルイス肺癌細胞株を皮下移植したC57BL/6マウスにおける体内分布を実施例24と同様に実施した。その結果(表8)、増殖組織である小腸における放射能の取りこみは、非増殖組織である筋肉より明らかに高かった。また、下肢骨(増殖組織の骨髄を含む)への放射能集積も認められた。腫瘍における放射能の取りこみは、非増殖組織である筋肉より高かった。
Example 25
Biodistribution of [ 18 F] NFT202 using tumor-transplanted mice Biodistribution was performed in the same manner as in Example 24 in C57BL / 6 mice subcutaneously transplanted with a Lewis lung cancer cell line. As a result (Table 8), the uptake of radioactivity in the small intestine, a proliferating tissue, was clearly higher than that of muscle, a non-proliferating tissue. Radioactivity accumulation in the lower limb bones (including the bone marrow of the proliferating tissue) was also observed. The uptake of radioactivity in the tumor was higher than the non-proliferating tissue muscle.

Figure 2007126412
Figure 2007126412

実施例26
18 F]NFT203の腫瘍移植マウスを用いた体内分布
ルイス肺癌細胞株を皮下移植したC57BL/6マウスにおける体内分布を実施例24と同様に実施した。その結果(表9)、増殖組織である小腸における放射能の取りこみは、非増殖組織である筋肉より明らかに高かった。また、下肢骨(増殖組織の骨髄を含む)への放射能集積も認められた。腫瘍における放射能の取りこみは、非増殖組織である筋肉より高かった。
Example 26
[18 F] Biodistribution <br/> Lewis lung carcinoma cell lines using tumor implantation mice NFT203 was prepared as in Example 24 Biodistribution in C57BL / 6 mice were implanted subcutaneously. As a result (Table 9), the uptake of radioactivity in the small intestine, a proliferating tissue, was clearly higher than that of muscle, a non-proliferating tissue. Radioactivity accumulation in the lower limb bones (including the bone marrow of the proliferating tissue) was also observed. The uptake of radioactivity in the tumor was higher than the non-proliferating tissue muscle.

Figure 2007126412
Figure 2007126412

実施例27
18 F]NFT401の腫瘍移植マウスを用いた体内分布
ルイス肺癌細胞株を皮下移植したC57BL/6マウスにおける体内分布を実施例24と同様に実施した。その結果(表10)、増殖組織である小腸における放射能の取りこみは、非増殖組織である筋肉より明らかに高かった。また、下肢骨(増殖組織の骨髄を含む)への放射能集積も認められた。腫瘍における放射能の取りこみは、投与後30分において、非増殖組織である筋肉より高かった。
Example 27
Biodistribution of [ 18 F] NFT401 using tumor-transplanted mice Biodistribution in C57BL / 6 mice subcutaneously transplanted with a Lewis lung cancer cell line was carried out in the same manner as in Example 24. As a result (Table 10), the uptake of radioactivity in the small intestine, a proliferating tissue, was clearly higher than that of muscle, a non-proliferating tissue. Radioactivity accumulation in the lower limb bones (including the bone marrow of the proliferating tissue) was also observed. The uptake of radioactivity in the tumor was higher than non-proliferating tissue muscle 30 minutes after administration.

Figure 2007126412
Figure 2007126412

実施例28
18 F]NFT202のインビボ代謝
18F]NFT202の生体内での安定性を確認する目的で、マウス血漿及び尿中代謝物の分析を行った。[18F]NFT202投与後マウスの血漿TLCラジオクロマトグラムでは5つの放射化学的成分が確認された(図3)。放射化学的成分比(%)を表11に示す。30分点では、血漿中放射能の74.8、80.1%が未変化体の[18F]NFT202であった.2時間点では5成分のすべてが検出され、血漿中放射能の40%強が未変化体であり、同程度の割合で原点成分(A)が観察された。
Example 28
In [18 F] NFT202 in vivo metabolism [18 F] order to confirm the in vivo stability of NFT202, it was analyzed for mouse plasma and urine metabolites. Five radiochemical components were identified in the plasma TLC radiochromatogram of mice after [ 18 F] NFT202 administration (FIG. 3). The radiochemical component ratio (%) is shown in Table 11. At 30 minutes, 74.8, 80.1% of plasma radioactivity was unchanged [ 18 F] NFT202. At 2 hours, all 5 components were detected, and more than 40% of plasma radioactivity was unchanged, and the origin component (A) was observed at a similar rate.

尿のTLCラジオクロマトグラム分析の結果を図4及び表12に示す。30分点では、放射化学的成分の98%が未変化体であった。一方、2時間点では、尿中放射能の81.4%、58.8%が未変化体であり、残りの大部分が原点成分(A)であった。以上の結果から、[18F]NFT202の生体内で比較的安定であることが確認された。 The results of TLC radiochromatogram analysis of urine are shown in FIG. At 30 minutes, 98% of the radiochemical component was unchanged. On the other hand, at 2 hours, 81.4% and 58.8% of the urinary radioactivity were unchanged, and most of the remaining was the origin component (A). From the above results, it was confirmed that [ 18 F] NFT202 is relatively stable in vivo.

Figure 2007126412
Figure 2007126412

Figure 2007126412
Figure 2007126412

本発明の放射性フッ素標識ヌクレオシド誘導体は、生体内において安定で、かつ、ヌクレオシドトランスポーターを通過した後、チミジンキナーゼ1によりリン酸化を受けて細胞内に滞留するか、またはDNAに組みこまれDNA合成活性を反映するので、細胞増殖の画像診断に有用である。 The radiofluorine-labeled nucleoside derivative of the present invention is stable in vivo and passes through a nucleoside transporter, and is then phosphorylated by thymidine kinase 1 to stay in the cell, or is incorporated into DNA and synthesized into DNA. Since the activity is reflected, it is useful for diagnostic imaging of cell proliferation.

本発明の放射性フッ素標識化合物を製造するスキームを示す反応式である。It is reaction formula which shows the scheme which manufactures the radioactive fluorine labeled compound of this invention. 2−[14C]−NFT202の細胞取り込みと増殖度との相関を示すグラフである。It is a graph which shows the correlation with the cellular uptake | capture of 2-[< 14 > C] -NFT202, and the proliferation degree. [18F]NFT202投与後マウスの血漿TLCラジオクロマトグラムである。It is a plasma TLC radiochromatogram of a mouse | mouth after [ 18 F] NFT202 administration. [18F]NFT202投与後マウスの尿のTLCラジオクロマトグラムである。It is a TLC radiochromatogram of mouse urine after administration of [ 18 F] NFT202.

Claims (14)

下記式(I)で表される18F標識化合物又はその医薬として許容できる塩を有効成分として含有する組織増殖能診断用薬剤。
Figure 2007126412
(式(I)中、Rはメチル基又は炭素原子1〜2個の18F標識フルオロアルキル置換基、Rは水素又は炭素原子1〜6個の18F標識フルオロアルキル置換基、Rは酸素又は硫黄、Rは水素又はフッ素である。ただし、R及びRの両方が18F標識フルオロアルキル置換基である場合、及び、Rがメチル基でRが水素である場合を除く。)
An agent for diagnosing tissue proliferative ability, comprising an 18 F-labeled compound represented by the following formula (I) or a pharmaceutically acceptable salt thereof as an active ingredient.
Figure 2007126412
(In the formula (I), R 1 is a methyl group or an 18 F-labeled fluoroalkyl substituent having 1 to 2 carbon atoms, R 2 is hydrogen or an 18 F-labeled fluoroalkyl substituent having 1 to 6 carbon atoms, R 3 Is oxygen or sulfur, R 4 is hydrogen or fluorine, provided that both R 1 and R 2 are 18 F-labeled fluoroalkyl substituents, and R 1 is a methyl group and R 2 is hydrogen except for.)
がメチル基である請求項1に記載の薬剤。 The drug according to claim 1, wherein R 1 is a methyl group. 18F標識フルオロエチル基、18F標識フルオロプロピル基、及び18F標識フルオロペンチル基からなる群より選ばれたフルオロアルキル置換基である請求項2に記載の薬剤。 R 2 is 18 F-labeled fluoroethyl group, 18 F-labeled fluoropropyl group, and 18 F-labeled fluoropentyl agent according to claim 2 is a fluoroalkyl substituent selected from the group consisting of groups. が酸素でRは水素である請求項3に記載の薬剤。 The drug according to claim 3, wherein R 3 is oxygen and R 4 is hydrogen. 18F標識フルオロエチル基である請求項4に記載の薬剤。 The drug according to claim 4, wherein R 2 is an 18 F-labeled fluoroethyl group. 下記式(II)で示されるヌクレオシド誘導体。
Figure 2007126412
(式(II)中、Rはメチル基又は脱離基を有する炭素原子1〜2個のアルキル置換基、Rは水素又は脱離基を有する炭素原子1〜6個のアルキル置換基、Rは酸素又は硫黄、Rは水素又はフッ素、Rは保護基である。ただし、R及びRの両方が脱離基を有する炭素原子1〜6個のアルキル置換基である場合、及び、Rがメチル基でRが水素である場合を除く。)
A nucleoside derivative represented by the following formula (II).
Figure 2007126412
(In the formula (II), R 1 is an alkyl substituent having 1 to 2 carbon atoms having a methyl group or a leaving group, R 2 is an alkyl substituent having 1 to 6 carbon atoms having hydrogen or a leaving group, R 3 is oxygen or sulfur, R 4 is hydrogen or fluorine, R 5 is a protecting group, provided that both R 1 and R 2 are alkyl substituents having 1 to 6 carbon atoms having a leaving group. And R 1 is a methyl group and R 2 is hydrogen.)
及びRはそれぞれ独立にトシル基、メシル基及びトリフレート基からなる群より選ばれた脱離基を有するアルキル置換基である請求項6に記載の誘導体。 The derivative according to claim 6, wherein R 1 and R 2 are each independently an alkyl substituent having a leaving group selected from the group consisting of a tosyl group, a mesyl group and a triflate group. はトルイル基、4´,4´−ジメトキシトリチル基、トリチル基及びベンジル基からなる群より選ばれた保護基である請求項7項に記載の誘導体。 The derivative according to claim 7, wherein R 5 is a protecting group selected from the group consisting of a toluyl group, a 4 ', 4'-dimethoxytrityl group, a trityl group and a benzyl group. が、メチル基である請求項8に記載の誘導体。 The derivative according to claim 8, wherein R 1 is a methyl group. が、脱離基を有するエチル基、脱離基を有するプロピル基及び脱離基を有するペンチル基からなる群より選ばれたアルキル置換基である請求項9に記載の誘導体。 The derivative according to claim 9, wherein R 2 is an alkyl substituent selected from the group consisting of an ethyl group having a leaving group, a propyl group having a leaving group, and a pentyl group having a leaving group. が酸素でRは水素である請求項10に記載の誘導体。 The derivative according to claim 10, wherein R 3 is oxygen and R 4 is hydrogen. が脱離基を有するエチル基である請求項11項に記載の誘導体。 The derivative according to claim 11, wherein R 2 is an ethyl group having a leaving group. 脱離基がトシル基である請求項12に記載の誘導体。 The derivative according to claim 12, wherein the leaving group is a tosyl group. 保護基がトルイル基である請求項13に記載の誘導体。

The derivative according to claim 13, wherein the protecting group is a toluyl group.

JP2005321770A 2005-11-07 2005-11-07 Tissue proliferative diagnostic agent Expired - Fee Related JP4841231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005321770A JP4841231B2 (en) 2005-11-07 2005-11-07 Tissue proliferative diagnostic agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005321770A JP4841231B2 (en) 2005-11-07 2005-11-07 Tissue proliferative diagnostic agent

Publications (2)

Publication Number Publication Date
JP2007126412A true JP2007126412A (en) 2007-05-24
JP4841231B2 JP4841231B2 (en) 2011-12-21

Family

ID=38149360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321770A Expired - Fee Related JP4841231B2 (en) 2005-11-07 2005-11-07 Tissue proliferative diagnostic agent

Country Status (1)

Country Link
JP (1) JP4841231B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008109080A2 (en) * 2007-03-01 2008-09-12 Siemens Medical Solutions Usa, Inc. Nucleoside based proliferation imaging markers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142195A (en) * 1985-10-16 1987-06-25 スロ−ン−ケツタリング インステイテユ−ト フオ− キヤンサ− リサ−チ 5-monofluoromethyl-and 5-difluoromethyl-uracil nucleoside
WO2002058740A1 (en) * 2001-01-23 2002-08-01 Nihon Medi-Physics Co., Ltd. Drugs for the diagnosis of tissue-reproductive activity or the treatment of proliferative diseases
US20040157867A1 (en) * 2001-01-19 2004-08-12 Klecker Raymond W. Pyrimidine phosphorylase as a target for imaging and therapy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142195A (en) * 1985-10-16 1987-06-25 スロ−ン−ケツタリング インステイテユ−ト フオ− キヤンサ− リサ−チ 5-monofluoromethyl-and 5-difluoromethyl-uracil nucleoside
US20040157867A1 (en) * 2001-01-19 2004-08-12 Klecker Raymond W. Pyrimidine phosphorylase as a target for imaging and therapy
WO2002058740A1 (en) * 2001-01-23 2002-08-01 Nihon Medi-Physics Co., Ltd. Drugs for the diagnosis of tissue-reproductive activity or the treatment of proliferative diseases

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008109080A2 (en) * 2007-03-01 2008-09-12 Siemens Medical Solutions Usa, Inc. Nucleoside based proliferation imaging markers
WO2008109080A3 (en) * 2007-03-01 2009-04-30 Siemens Medical Solutions Nucleoside based proliferation imaging markers
US7928210B2 (en) 2007-03-01 2011-04-19 Siemens Medical Solutions Usa, Inc. Nucleoside based proliferation imaging markers

Also Published As

Publication number Publication date
JP4841231B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP4210118B2 (en) Drug for diagnosis of tissue proliferative ability or proliferative disease
US6677315B2 (en) Nucleosides for imaging and treatment applications
US7928210B2 (en) Nucleoside based proliferation imaging markers
KR101639268B1 (en) 18 f-labelled folates
KR20080000620A (en) Click chemistry method for synthesizing molecular imaging probes
JP2009108108A (en) Nucleoside for imaging and treatment application
EP2776382B1 (en) 18f-saccharide-folates
Gonzalez et al. The 4-N-acyl and 4-N-alkyl gemcitabine analogues with silicon-fluoride-acceptor: application to 18F-radiolabeling
ES2397255T3 (en) Nucleoside analogs useful as positron emission tomography imaging (PET) agents
JP4841231B2 (en) Tissue proliferative diagnostic agent
US20080170993A1 (en) Thymidine analogs for imaging
Kim et al. Assessment of tumor cell proliferation using [18F] fluorodeoxyadenosine and [18F] fluoroethyluracil
Schweifer et al. [18F] Fluoro-azomycin-2´-deoxy-β-d-ribofuranoside—A new imaging agent for tumor hypoxia in comparison with [18F] FAZA
JP5179811B2 (en) Uracil compounds or salts thereof, imaging agents containing these as active ingredients, and imaging agents for diagnosing tumors containing these as active ingredients
Alauddin et al. Biodistribution and PET imaging of [18F]-fluoroadenosine derivatives
JPH10510046A (en) Use of nucleoside analog compositions for tissue imaging and therapy and gene transfection
TWI394587B (en) A radiolabeled nucleoside analogue, a method for preparing the same and the use thereof
JP2023156482A (en) Guanosine derivative and production method therefor
US20100196273A1 (en) Novel agent for in vivo pet imaging of tumor proliferation
Gonzalez-Espinoza Synthesis of Gemcitabine Analogues with Silicon-Fluoride Acceptors for 18F Labeling
US7145000B2 (en) Markable compounds for easy synthesis of 3&#39;-[18F] fluoro-3&#39;-deoxynucleotides, and method for their production
JP2019085344A (en) Radioactive fluorine-labeled compound
Chopra Abbreviated name:[18 F] FMAU
AU3400200A (en) Composition use of nucleoside analogues and gene transfection for tissue imaging and therapy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees