JP2007123141A - Anode and battery - Google Patents

Anode and battery Download PDF

Info

Publication number
JP2007123141A
JP2007123141A JP2005315876A JP2005315876A JP2007123141A JP 2007123141 A JP2007123141 A JP 2007123141A JP 2005315876 A JP2005315876 A JP 2005315876A JP 2005315876 A JP2005315876 A JP 2005315876A JP 2007123141 A JP2007123141 A JP 2007123141A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
material layer
electrode active
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005315876A
Other languages
Japanese (ja)
Other versions
JP5364230B2 (en
Inventor
Masayuki Iwama
正之 岩間
Kenichi Kawase
賢一 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005315876A priority Critical patent/JP5364230B2/en
Publication of JP2007123141A publication Critical patent/JP2007123141A/en
Application granted granted Critical
Publication of JP5364230B2 publication Critical patent/JP5364230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anode which can improve cycle characteristics and provide a battery using the same. <P>SOLUTION: On an anode collector 11 has an anode active substance layer 13 with a conductive adhesive layer 12 between. The conductive adhesive layer 12 is composed of conductive particles and a binding material. A mass ratio of the conductive particles to the binding material is preferably in a range between 70:30 and 95:5. An average particle diameter of the conductive particles is preferably in a range between 0.01 μm or more and 20 μm or less. The anode active substance layer 13 has an amorphous phase containing Si as a component element. Furthermore, the anode active substance layer 13 contains oxygen as a component element and its content is preferably in a range of 5 atom no.% or more and 40 atom no.% or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ケイ素(Si)を構成元素として含む負極およびそれを用いた電池に関する。   The present invention relates to a negative electrode containing silicon (Si) as a constituent element and a battery using the negative electrode.

近年、モバイル機器の高性能化および多機能化に伴い、それらの電源である二次電池の高容量化が要求されている。この要求に応える二次電池としてはリチウムイオン二次電池があるが、現在実用化されているものは、負極に黒鉛を用いているので、電池容量は飽和状態にあり、大幅な高容量化は難しい。そこで、負極にケイ素を用いることにより高容量化を図ることが検討されている(例えば、特許文献1参照)。
特開2004−171876号公報
In recent years, as mobile devices have higher performance and more functions, there is a demand for higher capacities of secondary batteries serving as power sources thereof. Secondary batteries that meet this demand include lithium ion secondary batteries, but those currently in practical use use graphite for the negative electrode, so the battery capacity is in a saturated state, and there is a significant increase in capacity. difficult. Thus, it has been studied to increase the capacity by using silicon for the negative electrode (see, for example, Patent Document 1).
JP 2004-171876 A

しかしながら、ケイ素は充放電に伴う膨張収縮が大きいので、充放電を繰り返すと、膨張収縮による応力により負極集電体から負極活物質層が脱落し、集電性が低下してサイクル特性が低下してしまうという問題があった。   However, silicon has a large expansion / contraction due to charging / discharging. Therefore, when charging / discharging is repeated, the negative electrode active material layer is detached from the negative electrode current collector due to the stress due to expansion / contraction, resulting in a decrease in current collection and cycle characteristics. There was a problem that.

本発明はかかる問題点に鑑みてなされたもので、その目的は、負極集電体と負極活物質層との接着性および集電性を向上させることができる負極および電池を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a negative electrode and a battery that can improve adhesion between the negative electrode current collector and the negative electrode active material layer and current collection. .

本発明による負極は、負極集電体に、導電性粒子および結着材を有する導電性接着層を介して、負極活物質層が設けられ、この負極活物質層は、構成元素としてケイ素を含む非晶質相を有するものである。   In the negative electrode according to the present invention, a negative electrode active material layer is provided on a negative electrode current collector through a conductive adhesive layer having conductive particles and a binder, and the negative electrode active material layer contains silicon as a constituent element. It has an amorphous phase.

本発明による電池は、正極および負極と共に電解質を備えたものであって、負極は、負極集電体に、導電性粒子および結着材を有する導電性接着層を介して、負極活物質層が設けられ、この負極活物質層は、構成元素としてケイ素を含む非晶質相を有するものである。   The battery according to the present invention is provided with an electrolyte together with a positive electrode and a negative electrode, and the negative electrode has a negative electrode active material layer interposed between a negative electrode current collector and a conductive adhesive layer having conductive particles and a binder. The negative electrode active material layer provided has an amorphous phase containing silicon as a constituent element.

本発明の負極によれば、導電性接着層を介して、ケイ素を含む非晶質相を有する負極活物質層を設けるようにしたので、負極活物質層の膨張収縮による応力を緩和することができ、負極集電体と負極活物質層との接着性を向上させることができる。また、集電性も向上させることができる。よって、この負極を用いた本発明の電池によれば、優れたサイクル特性を得ることができる。   According to the negative electrode of the present invention, since the negative electrode active material layer having an amorphous phase containing silicon is provided via the conductive adhesive layer, stress due to expansion and contraction of the negative electrode active material layer can be relieved. In addition, the adhesion between the negative electrode current collector and the negative electrode active material layer can be improved. In addition, current collection can be improved. Therefore, according to the battery of the present invention using this negative electrode, excellent cycle characteristics can be obtained.

特に、導電性接着層における導電性粒子と結着材との割合を、導電性粒子:結着材の質量比で70:30から95:5の範囲内とすれば、また、導電性粒子の平均粒子径を、0.01μm以上20μm以下の範囲内とすれば、より高い効果を得ることができる。   In particular, if the ratio of the conductive particles to the binder in the conductive adhesive layer is within the range of 70:30 to 95: 5 in terms of the mass ratio of the conductive particles to the binder, If the average particle size is in the range of 0.01 μm or more and 20 μm or less, a higher effect can be obtained.

更に、負極集電体を厚みが50μm以下の銅箔または銅合金箔により構成し、その十点平均粗さRzを1.0μm以上4.0μm以下とするようにすれば、また、負極活物質層が構成元素として酸素を含有し、その含有量を5原子数%以上40原子数%以下とするようにすれば、より高い効果を得ることができる。   Furthermore, if the negative electrode current collector is made of a copper foil or copper alloy foil having a thickness of 50 μm or less and the ten-point average roughness Rz is 1.0 μm or more and 4.0 μm or less, the negative electrode active material A higher effect can be obtained if the layer contains oxygen as a constituent element and the content thereof is 5 atomic% to 40 atomic%.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施の形態に係る負極10の断面構成を表したものである。負極10は、例えば、負極集電体11に、導電性接着層13を介して、ケイ素を構成元素として含む負極活物質層12が設けられた構造を有している。導電性接着層12および負極活物質層13は、負極集電体11の両面に形成されていてもよく、片面に形成されていてもよい。   FIG. 1 illustrates a cross-sectional configuration of a negative electrode 10 according to an embodiment of the present invention. The negative electrode 10 has a structure in which, for example, a negative electrode current collector 11 is provided with a negative electrode active material layer 12 containing silicon as a constituent element via a conductive adhesive layer 13. The conductive adhesive layer 12 and the negative electrode active material layer 13 may be formed on both surfaces of the negative electrode current collector 11 or may be formed on one surface.

負極集電体11は、高い導電性を有する金属材料により構成することが好ましく、特に、銅箔または同合金箔により構成することが好ましい。負極集電体11厚みは、例えば50μm以下とすることが好ましい。厚みがあまり厚いと負極活物質層13の膨張収縮により応力がかかり、負極集電体11と負極活物質層13との接着性が低下してしまうからである。また、負極集電体11の厚みは、20μm以上であることが好ましい。厚みがあまり薄いと負極活物質層13を支える能力が低下してしまうからである。   The negative electrode current collector 11 is preferably made of a metal material having high conductivity, and particularly preferably made of a copper foil or the same alloy foil. The thickness of the negative electrode current collector 11 is preferably 50 μm or less, for example. This is because if the thickness is too large, stress is applied due to the expansion and contraction of the negative electrode active material layer 13, and the adhesiveness between the negative electrode current collector 11 and the negative electrode active material layer 13 decreases. Further, the thickness of the negative electrode current collector 11 is preferably 20 μm or more. This is because if the thickness is too thin, the ability to support the negative electrode active material layer 13 is reduced.

負極集電体11の表面は粗化されていることが好ましい。負極集電体11と導電性接着層12との接着性を向上させることができるからである。負極集電体11の表面粗さは、JIS B0601付属書1記載の十点平均粗さRzで、1.0μm以上4.0μm以下の範囲内であることが好ましい。より高い効果を得ることができるからである。なお、負極集電体11の表面粗さは、導電性接着層12を介して負極活物質層13が設けられている領域において、少なくとも上記範囲内であればよい。   The surface of the negative electrode current collector 11 is preferably roughened. This is because the adhesion between the negative electrode current collector 11 and the conductive adhesive layer 12 can be improved. The surface roughness of the negative electrode current collector 11 is a ten-point average roughness Rz described in JIS B0601 Appendix 1, and is preferably in the range of 1.0 μm or more and 4.0 μm or less. This is because a higher effect can be obtained. The surface roughness of the negative electrode current collector 11 may be at least within the above range in the region where the negative electrode active material layer 13 is provided via the conductive adhesive layer 12.

導電性接着層12は、例えば、導電性粒子と結着材とを有しており、これにより導電性を確保しつつ、負極活物質層13の膨張収縮による応力を緩和し、負極集電体11と負極活物質層13との接着性を向上させることができるようになっている。導電性接着層12の厚みは、0.1μm以上20μm以下が好ましい。あまり薄いと導電性接着層12による応力緩和効果を得ることができず、あまり厚いと導電性が低下してしまうからである。   The conductive adhesive layer 12 includes, for example, conductive particles and a binder, thereby relieving stress due to expansion and contraction of the negative electrode active material layer 13 while ensuring conductivity, and a negative electrode current collector. 11 and the negative electrode active material layer 13 can be improved in adhesion. The thickness of the conductive adhesive layer 12 is preferably 0.1 μm or more and 20 μm or less. This is because if the thickness is too thin, the stress relaxation effect by the conductive adhesive layer 12 cannot be obtained, and if the thickness is too thick, the conductivity decreases.

導電性粒子としては、金属粒子あるいは炭素粒子が挙げられ、それらの1種を単独で用いてもよいが、2種以上を混合して用いてもよい。金属粒子としては、例えば、金(Au),銀(Ag),銅(Cu),スズ(Sn),ビスマス(Bi),亜鉛(Zn),ニッケル(Ni),パラジウム(Pd),クロム(Cr),インジウム(In),アンチモン(Sb),アルミニウム(Al),ゲルマニウム(Ge),タングステン(W),モリブデン(Mo),マンガン(Mn),チタン(Ti)あるいはマグネシウム(Mg) の単体または合金よりなるものが挙げられる。炭素粒子としては、例えば、カーボンブラックが挙げられる。導電性粒子の平均粒子径は、0.01μm以上20μm以下の範囲内が好ましい。平均粒子径があまり小さいと導電性粒子が凝集して、導電性に分布が生じてしまい、平均粒子径があまり大きいと導電性粒子間の接触性が低下し、導電性が低下してしまうからである。   Examples of the conductive particles include metal particles and carbon particles, and one kind thereof may be used alone, or two or more kinds may be mixed and used. Examples of the metal particles include gold (Au), silver (Ag), copper (Cu), tin (Sn), bismuth (Bi), zinc (Zn), nickel (Ni), palladium (Pd), chromium (Cr ), Indium (In), antimony (Sb), aluminum (Al), germanium (Ge), tungsten (W), molybdenum (Mo), manganese (Mn), titanium (Ti) or magnesium (Mg) The thing which consists of. Examples of the carbon particles include carbon black. The average particle diameter of the conductive particles is preferably in the range of 0.01 μm to 20 μm. If the average particle size is too small, the conductive particles aggregate, resulting in a distribution of conductivity. If the average particle size is too large, the contact between the conductive particles is reduced and the conductivity is reduced. It is.

結着材としては、例えば、熱可塑性樹脂または熱硬化性樹脂が挙げられ、そのいずれか1種を単独で用いてもよいが、2種以上を混合して用いてもよい。熱可塑性樹脂としては、水素結合性の官能基を有するものが好ましい。より高い効果を得ることができるからである。これは、金属との間で水素結合をすることにより濡れ性がよくなるためであると考えられる。水素結合性を有する官能基としては、例えば、水素基、アミド基、ウレア基、イミド基、エステル基、エーテル基、チオエーテル基、スルホン基、あるいはケトン基が挙げられる。水素結合性を有する熱可塑性樹脂としては、例えば、フェノキシ樹脂、熱可塑性ポリウレタン、ポリビニルブチラール、ポリアミド、熱可塑性ポリイミド、ポリアミドイミド、ポリカーボネート、ポリフェニレンエーテル、ポリビニルエーテル、ポリサルホン、ポリビニルアルコール、ポリビニルホルマーサル、ポリ酢酸ビニル、メタクリル樹脂、あるいはアイオノマー樹脂が挙げられる。   Examples of the binder include thermoplastic resins and thermosetting resins, and any one of them may be used alone, or two or more kinds may be mixed and used. As a thermoplastic resin, what has a hydrogen bondable functional group is preferable. This is because a higher effect can be obtained. This is considered to be because wettability is improved by hydrogen bonding with the metal. Examples of the functional group having hydrogen bonding include a hydrogen group, an amide group, a urea group, an imide group, an ester group, an ether group, a thioether group, a sulfone group, and a ketone group. Examples of the thermoplastic resin having hydrogen bonding properties include phenoxy resin, thermoplastic polyurethane, polyvinyl butyral, polyamide, thermoplastic polyimide, polyamideimide, polycarbonate, polyphenylene ether, polyvinyl ether, polysulfone, polyvinyl alcohol, polyvinyl formal, poly Examples thereof include vinyl acetate, methacrylic resin, and ionomer resin.

熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド、ポリウレタン、メラミン樹脂、あるいはウレア樹脂が挙げられる。エポキシ樹脂としては、例えば、ビルフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、ハロゲン化ビスフェノール型エポキシ樹脂、レゾルシン型エポキシ樹脂、テトラヒドロキシフェノルエタン型エポキシ樹脂、ポリアルコールポリグリコール型エポキシ樹脂、グリセリントリエーテル型エポキシ樹脂、ポイオレフィン型エポキシ樹脂、エポキシ化大豆油、シクロペンタジエンジオキシド、あるいはビニルシクロヘキセンジオキシドが挙げられる。中でも、ビルフェノールA型エポキシ樹脂あるいはノボラック型エポキシ樹脂が好ましい。   Examples of the thermosetting resin include epoxy resin, phenol resin, polyimide, polyurethane, melamine resin, and urea resin. Examples of the epoxy resin include bilphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, halogenated bisphenol type epoxy resin, resorcin type epoxy resin, tetrahydroxyphenol ether type epoxy resin, polyalcohol polyglycol Type epoxy resin, glycerin triether type epoxy resin, polyolefin type epoxy resin, epoxidized soybean oil, cyclopentadiene dioxide, or vinylcyclohexene dioxide. Among these, bilphenol A type epoxy resin or novolak type epoxy resin is preferable.

導電性接着層12における導電性粒子と結着材との割合は、導電性粒子:結着材の質量比で、70:30から95:5の範囲内であることが好ましい。導電性粒子の割合を多くすると導電性は向上するが接着性は低下してしまい、逆に結着材の割合を多くすると接着性は向上するが導電性は低下してしまうからである。   The ratio of the conductive particles to the binder in the conductive adhesive layer 12 is preferably in the range of 70:30 to 95: 5 in terms of the mass ratio of the conductive particles to the binder. When the proportion of the conductive particles is increased, the conductivity is improved but the adhesiveness is lowered. Conversely, when the proportion of the binder is increased, the adhesiveness is improved but the conductivity is lowered.

負極活物質層13は、ケイ素を含む非晶質相を有していることが好ましい。膨張収縮による応力を小さくすることができるからである。また、負極活物質層13の少なくとも一部は、気相法により形成されたものであることが好ましい。気相法により負極活物質層13を形成した場合には、負極活物質層13の膨張収縮により負極集電体11にかかる応力が大きいが、導電性接着層12により応力が緩和され、優れた特性を得ることができるからである。   The negative electrode active material layer 13 preferably has an amorphous phase containing silicon. This is because the stress due to expansion and contraction can be reduced. Moreover, it is preferable that at least a part of the negative electrode active material layer 13 is formed by a vapor phase method. When the negative electrode active material layer 13 is formed by the vapor phase method, the stress applied to the negative electrode current collector 11 due to the expansion and contraction of the negative electrode active material layer 13 is large, but the stress is relieved by the conductive adhesive layer 12 and is excellent. This is because characteristics can be obtained.

負極活物質層13において、ケイ素は単体で含まれていても、合金で含まれていても、化合物で含まれていてもよい。ケイ素以外の構成元素としては、例えば、スズ,ニッケル,銅,鉄(Fe),コバルト(Co),マンガン,亜鉛,インジウム,銀,チタン,ゲルマニウム,ビスマス,アンチモン,あるいはクロムが挙げられる。また、負極活物質層13は、構成元素として酸素(O)を含むことが好ましい。負極活物質層13の膨張収縮を抑制し、応力を緩和することができるからである。負極活物質層13に含まれる酸素の少なくとも一部は、ケイ素と結合していることが好ましく、結合の状態は一酸化ケイ素でも二酸化ケイ素でも、あるいはそれ以外の準安定状態でもよい。負極活物質層13における酸素の含有量は、5原子数%以上40原子数%以下の範囲内であることが好ましい。これよりも少ないと十分な効果を得ることができず、これよりも多いと不可逆容量が増加してしまうからである。なお、負極活物質層13には、充放電により電解液などが分解して負極活物質層13の表面に形成される被膜は含めない。よって、負極活物質層13における酸素の含有量を算出する際には、この被膜に含まれる酸素は含めない。   In the negative electrode active material layer 13, silicon may be included as a simple substance, an alloy, or a compound. Examples of constituent elements other than silicon include tin, nickel, copper, iron (Fe), cobalt (Co), manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, and chromium. The negative electrode active material layer 13 preferably contains oxygen (O) as a constituent element. This is because expansion and contraction of the negative electrode active material layer 13 can be suppressed and stress can be relaxed. At least a part of oxygen contained in the negative electrode active material layer 13 is preferably bonded to silicon, and the bonding state may be silicon monoxide, silicon dioxide, or other metastable state. The oxygen content in the negative electrode active material layer 13 is preferably in the range of 5 atomic% to 40 atomic%. If it is less than this, a sufficient effect cannot be obtained, and if it is more than this, the irreversible capacity increases. Note that the negative electrode active material layer 13 does not include a coating film that is formed on the surface of the negative electrode active material layer 13 due to decomposition of the electrolyte solution by charge and discharge. Therefore, when the oxygen content in the negative electrode active material layer 13 is calculated, oxygen contained in the coating is not included.

この負極10は、例えば、次のようにして製造することができる。   This negative electrode 10 can be manufactured as follows, for example.

まず、例えば、導電性粒子と結着材とを分散媒を用いて混合し、負極集電体11に塗布したのち、分散媒を除去することにより導電性結着層12を形成する。次いで、導電性結着層12の上に、例えば気相法により負極活物質層13を成膜する。気相法としては、例えば、物理堆積法あるいは化学堆積法が挙げられ、具体的には、真空蒸着法,スパッタ法,イオンプレーティング法,レーザーアブレーション法,CVD(Chemical Vapor Deposition ;化学気相成長)法などが挙げられる。その際、負極活物質層13に酸素を添加する場合には、例えば雰囲気中に酸素を導入する。これにより図1に示した負極10が得られる。   First, for example, conductive particles and a binder are mixed using a dispersion medium, applied to the negative electrode current collector 11, and then the dispersion medium is removed to form the conductive binder layer 12. Next, the negative electrode active material layer 13 is formed on the conductive binder layer 12 by, for example, a vapor phase method. Examples of the vapor phase method include a physical deposition method and a chemical deposition method. Specifically, a vacuum deposition method, a sputtering method, an ion plating method, a laser ablation method, a CVD (Chemical Vapor Deposition; chemical vapor deposition). ) Method. At that time, when oxygen is added to the negative electrode active material layer 13, for example, oxygen is introduced into the atmosphere. Thereby, the negative electrode 10 shown in FIG. 1 is obtained.

また、負極活物質層13は、例えば、ケイ素を構成元素として含む非晶質の粉末を用い、必要に応じて結着材と混合して導電性接着層12の上に塗布することにより形成するようにしてもよく、そののち結晶質化しない程度に熱処理を行うようにしてもよい。更に、これらと気相法とを組み合わせて負極活物質層13を形成するようにしてもよい。   The negative electrode active material layer 13 is formed by using, for example, an amorphous powder containing silicon as a constituent element, mixing with a binder as necessary, and applying the mixture onto the conductive adhesive layer 12. Alternatively, heat treatment may be performed to such an extent that it does not crystallize. Furthermore, you may make it form the negative electrode active material layer 13 combining these and a gaseous-phase method.

この負極10は、例えば、次のような二次電池に用いられる。   This negative electrode 10 is used for the following secondary batteries, for example.

図2は、その二次電池の構成を表すものである。この二次電池は、いわゆるコイン型といわれるものであり、外装カップ21に収容された負極10と、外装缶22の内に収容された正極23とが、セパレータ24を介して積層されたものである。   FIG. 2 shows the configuration of the secondary battery. This secondary battery is a so-called coin-type battery, in which the negative electrode 10 accommodated in the exterior cup 21 and the positive electrode 23 accommodated in the exterior can 22 are stacked via a separator 24. is there.

外装カップ21および外装缶22の周縁部は絶縁性のガスケット25を介してかしめることにより密閉されている。外装カップ21および外装缶22は、例えば、ステンレスあるいはアルミニウムなどの金属によりそれぞれ構成されている。   The peripheral portions of the outer cup 21 and the outer can 22 are sealed by caulking through an insulating gasket 25. The exterior cup 21 and the exterior can 22 are made of, for example, a metal such as stainless steel or aluminum.

正極23は、例えば、正極集電体23Aと、正極集電体23Aに設けられた正極活物質層23Bとを有しており、正極活物質層23Bの側が負極活物質層12と対向するように配置されている。正極集電体23Aは、例えば、アルミニウム,ニッケルあるいはステンレスなどにより構成されている。   The positive electrode 23 includes, for example, a positive electrode current collector 23A and a positive electrode active material layer 23B provided on the positive electrode current collector 23A so that the positive electrode active material layer 23B side faces the negative electrode active material layer 12. Is arranged. The positive electrode current collector 23A is made of, for example, aluminum, nickel, stainless steel, or the like.

正極活物質層23Bは、例えば、正極活物質としてリチウムを吸蔵および放出することが可能な正極材料のいずれか1種または2種以上を含んでおり、必要に応じて炭素材料などの導電材およびポリフッ化ビニリデンなどの結着材を含んでいてもよい。リチウムを吸蔵および放出することが可能な正極材料としては、例えば、一般式Lix MIO2 で表されるリチウム含有金属複合酸化物が好ましい。リチウム含有金属複合酸化物は、高電圧を発生可能であると共に、高密度であるため、二次電池の更なる高容量化を図ることができるからである。なお、MIは1種類以上の遷移金属であり、例えばコバルトおよびニッケルのうちの少なくとも一方が好ましい。xは電池の充放電状態によって異なり、通常0.05≦x≦1.10の範囲内の値である。このようなリチウム含有金属複合酸化物の具体例としては、LiCoO2 あるいはLiNiO2 などが挙げられる。 The positive electrode active material layer 23B includes, for example, any one or more of positive electrode materials capable of inserting and extracting lithium as a positive electrode active material, and a conductive material such as a carbon material and the like as necessary. A binder such as polyvinylidene fluoride may be included. As the positive electrode material capable of inserting and extracting lithium, for example, a lithium-containing metal composite oxide represented by the general formula Li x MIO 2 is preferable. This is because the lithium-containing metal composite oxide can generate a high voltage and has a high density, so that the capacity of the secondary battery can be further increased. MI is one or more kinds of transition metals, and for example, at least one of cobalt and nickel is preferable. x varies depending on the charge / discharge state of the battery and is usually a value in the range of 0.05 ≦ x ≦ 1.10. Specific examples of such a lithium-containing metal composite oxide include LiCoO 2 and LiNiO 2 .

なお、正極23は、例えば、正極活物質と導電材と結着材とを混合して合剤を調製し、この合剤を分散媒に分散させて合剤スラリーを作製し、この合剤スラリーを金属箔よりなる正極集電体23Aに塗布し乾燥させたのち、圧縮成型し正極活物質層23Bを形成することにより作製することができる。   The positive electrode 23 is prepared by mixing a positive electrode active material, a conductive material, and a binder, for example, and preparing a mixture slurry by dispersing the mixture in a dispersion medium. Is applied to a positive electrode current collector 23A made of a metal foil, dried, and then compression molded to form the positive electrode active material layer 23B.

セパレータ24は、負極10と正極23とを隔離し、両極の接触による電流の短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータ24は、例えば、ポリエチレンやポリプロピレンにより構成されている。   The separator 24 separates the negative electrode 10 and the positive electrode 23 and allows lithium ions to pass through while preventing a short circuit of current due to contact between both electrodes. The separator 24 is made of, for example, polyethylene or polypropylene.

セパレータ24には、液状の電解質である電解液が含浸されている。この電解液は、例えば、溶媒と、この溶媒に溶解された電解質塩とを含んでおり、必要に応じて添加剤を含んでいてもよい。溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、1,3−ジオキソール−2−オン、4−ビニル−1,3−ジオキソラン−2−オン、あるいはハロゲン原子を有する炭酸エステル誘導体などの非水溶媒が挙げられる。溶媒はいずれか1種を単独で用いてもよいが、2種以上を混合して用いてもよい。中でも、1,3−ジオキソール−2−オンおよび4−ビニル−1,3−ジオキソラン−2−オンの少なくとも一方を用いるようにすれば、電解液の分解反応を抑制することができるので好ましい。また、ハロゲン原子を有する炭酸エステル誘導体を用いるようにしても、電解液の分解反応を抑制することができるので好ましい。   The separator 24 is impregnated with an electrolytic solution that is a liquid electrolyte. This electrolytic solution contains, for example, a solvent and an electrolyte salt dissolved in this solvent, and may contain an additive as necessary. Examples of the solvent include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,3-dioxol-2-one, 4-vinyl-1,3-dioxolan-2-one, or a halogen atom. Non-aqueous solvents such as carbonic acid ester derivatives are included. Any one of the solvents may be used alone, or two or more of them may be mixed and used. Among them, it is preferable to use at least one of 1,3-dioxol-2-one and 4-vinyl-1,3-dioxolan-2-one because the decomposition reaction of the electrolytic solution can be suppressed. In addition, it is preferable to use a carbonic acid ester derivative having a halogen atom because the decomposition reaction of the electrolytic solution can be suppressed.

ハロゲン原子を有する炭酸エステル誘導体は、環式化合物でも鎖式化合物でもよいが、環式化合物の方がより高い効果を得ることができるので好ましい。このような環式化合物としては、4−フルオロ−1,3−ジオキソラン−2−オン、4−クロロ−1,3−ジオキソラン−2−オン、4−ブロモ−1,3−ジオキソラン−2−オン、あるいは4,5−ジフルオロ−1,3−ジオキソラン−2−オンなどが挙げられ、中でも、4−フルオロ−1,3−ジオキソラン−2−オンが好ましい。より高い効果を得ることができるからである。   The carbonic acid ester derivative having a halogen atom may be either a cyclic compound or a chain compound, but the cyclic compound is preferable because a higher effect can be obtained. Such cyclic compounds include 4-fluoro-1,3-dioxolan-2-one, 4-chloro-1,3-dioxolan-2-one, 4-bromo-1,3-dioxolan-2-one Or 4,5-difluoro-1,3-dioxolan-2-one, among which 4-fluoro-1,3-dioxolan-2-one is preferred. This is because a higher effect can be obtained.

電解質塩としては、例えば、LiPF6 ,LiCF3 SO3 あるいはLiClO4 などのリチウム塩が挙げられる。電解質塩は、いずれか1種を単独で用いてもよいが、2種以上を混合して用いてもよい。 Examples of the electrolyte salt include lithium salts such as LiPF 6 , LiCF 3 SO 3, and LiClO 4 . Any one electrolyte salt may be used alone, or two or more electrolyte salts may be mixed and used.

この二次電池は、例えば、負極10、電解液が含浸されたセパレータ24および正極23を積層して、外装カップ21と外装缶22との中に入れ、それらをかしめることにより製造することができる。   This secondary battery can be manufactured, for example, by laminating the negative electrode 10, the separator 24 impregnated with the electrolytic solution, and the positive electrode 23, placing them in the outer cup 21 and the outer can 22, and caulking them. it can.

この二次電池では、充電を行うと、例えば、正極23からリチウムイオンが放出され、電解液を介して負極10に吸蔵される。放電を行うと、例えば、負極10からリチウムイオンが放出され、電解液を介して正極23に吸蔵される。この充放電に伴い負極活物質層13は膨張収縮するが、本実施の形態では、負極活物質層13にケイ素を含む非晶質相を有すると共に、導電性結着層12を設けるようにしたので、負極活物質層13の膨張収縮による応力が緩和される。   In the secondary battery, when charged, for example, lithium ions are extracted from the positive electrode 23 and inserted in the negative electrode 10 through the electrolytic solution. When discharging is performed, for example, lithium ions are released from the negative electrode 10 and inserted in the positive electrode 23 via the electrolytic solution. Although the negative electrode active material layer 13 expands and contracts with this charge and discharge, in the present embodiment, the negative electrode active material layer 13 has an amorphous phase containing silicon and is provided with the conductive binder layer 12. Therefore, the stress due to the expansion and contraction of the negative electrode active material layer 13 is relieved.

本実施の形態に係る負極10は、次のような二次電池に用いてもよい。   The negative electrode 10 according to the present embodiment may be used for the following secondary battery.

図3は、その二次電池の構成を表すものである。この二次電池は、リード31,32が取り付けられた電極巻回体30をフィルム状の外装部材41内部に収容したものであり、小型化,軽量化および薄型化が可能となっている。リード31,32は、それぞれ、外装部材41の内部から外部に向かい例えば同一方向に導出されている。リード31,32は、例えば、アルミニウム,銅,ニッケルあるいはステンレスなどの金属材料によりそれぞれ構成されており、それぞれ薄板状または網目状とされている。   FIG. 3 shows the configuration of the secondary battery. In this secondary battery, the wound electrode body 30 to which the leads 31 and 32 are attached is housed in a film-like exterior member 41, and can be reduced in size, weight, and thickness. The leads 31 and 32 are led out from the inside of the exterior member 41 to the outside, for example, in the same direction. The leads 31 and 32 are made of a metal material such as aluminum, copper, nickel, or stainless steel, respectively, and have a thin plate shape or a mesh shape, respectively.

外装部材41は、例えば、ナイロンフィルム,アルミニウム箔およびポリエチレンフィルムをこの順に貼り合わせた矩形状のアルミラミネートフィルムにより構成されている。外装部材41は、例えば、ポリエチレンフィルム側と電極巻回体30とが対向するように配設されており、各外縁部が融着あるいは接着剤により互いに密着されている。外装部材41とリード31,32との間には、外気の侵入を防止するための密着フィルム42が挿入されている。密着フィルム42は、リード31,32に対して密着性を有する材料、例えば、ポリエチレン,ポリプロピレン,変性ポリエチレンあるいは変性ポリプロピレンなどのポリオレフィン樹脂により構成されている。   The exterior member 41 is made of, for example, a rectangular aluminum laminated film in which a nylon film, an aluminum foil, and a polyethylene film are bonded together in this order. The exterior member 41 is disposed, for example, so that the polyethylene film side and the electrode winding body 30 face each other, and the outer edge portions are in close contact with each other by fusion or an adhesive. An adhesion film 42 for preventing the entry of outside air is inserted between the exterior member 41 and the leads 31 and 32. The adhesion film 42 is made of a material having adhesion to the leads 31 and 32, for example, a polyolefin resin such as polyethylene, polypropylene, modified polyethylene, or modified polypropylene.

なお、外装部材41は、上述したアルミラミネートフィルムに代えて、他の構造を有するラミネートフィルム,ポリプロピレンなどの高分子フィルムあるいは金属フィルムにより構成するようにしてもよい。   The exterior member 41 may be made of a laminated film having another structure, a polymer film such as polypropylene, or a metal film instead of the above-described aluminum laminated film.

図4は、図3に示した電極巻回体30のI−I線に沿った断面構造を表すものである。電極巻回体30は、負極10と正極33とをセパレータ34および電解質層35を介して積層し、巻回したものであり、最外周部は保護テープ36により保護されている。   FIG. 4 shows a cross-sectional structure taken along line II of the electrode winding body 30 shown in FIG. The electrode winding body 30 is obtained by laminating and winding the negative electrode 10 and the positive electrode 33 with the separator 34 and the electrolyte layer 35 interposed therebetween, and the outermost peripheral portion is protected by a protective tape 36.

負極10は、負極集電体11の両面に導電性結着層12を介して負極活物質層13が設けられた構造を有している。正極33も、正極集電体33Aの両面に正極活物質層33Bが設けられた構造を有しており、正極活物質層33Bと負極活物質層12とが対向するように配置されている。正極集電体33A,正極活物質層33Bおよびセパレータ34の構成は、それぞれ上述した正極集電体23A,正極活物質層23Bおよびセパレータ24と同様である。   The negative electrode 10 has a structure in which a negative electrode active material layer 13 is provided on both surfaces of a negative electrode current collector 11 via a conductive binder layer 12. The positive electrode 33 also has a structure in which the positive electrode active material layer 33B is provided on both surfaces of the positive electrode current collector 33A, and the positive electrode active material layer 33B and the negative electrode active material layer 12 are arranged to face each other. The configurations of the positive electrode current collector 33A, the positive electrode active material layer 33B, and the separator 34 are the same as those of the positive electrode current collector 23A, the positive electrode active material layer 23B, and the separator 24 described above.

電解質層35は、高分子化合物よりなる保持体に電解液を保持させたいわゆるゲル状の電解質により構成されている。ゲル状の電解質は高いイオン伝導率を得ることができると共に、電池の漏液を防止することができるので好ましい。電解液の構成は、図2に示したコイン型の二次電池と同様である。高分子材料としては、例えばポリフッ化ビニリデンが挙げられる。   The electrolyte layer 35 is configured by a so-called gel electrolyte in which an electrolytic solution is held in a holding body made of a polymer compound. A gel electrolyte is preferable because high ion conductivity can be obtained and battery leakage can be prevented. The configuration of the electrolytic solution is the same as that of the coin-type secondary battery shown in FIG. An example of the polymer material is polyvinylidene fluoride.

この二次電池は、例えば、次のようにして製造することができる。   For example, the secondary battery can be manufactured as follows.

まず、負極10および正極33のそれぞれに、保持体に電解液を保持させた電解質層35を形成し、リード31,32を取り付ける。次いで、電解質層35が形成された負極10と正極33とをセパレータ34を介して積層し、巻回して、最外周部に保護テープ36を接着して電極巻回体30を形成する。続いて、例えば、外装部材41の間に電極巻回体30を挟み込み、外装部材41の外縁部同士を熱融着などにより密着させて封入する。その際、リード31,32と外装部材41との間には密着フィルム42を挿入する。これにより、図3,4に示した二次電池が完成する。   First, on each of the negative electrode 10 and the positive electrode 33, an electrolyte layer 35 in which an electrolytic solution is held in a holding body is formed, and leads 31 and 32 are attached. Next, the negative electrode 10 on which the electrolyte layer 35 is formed and the positive electrode 33 are laminated via the separator 34 and wound, and the protective tape 36 is adhered to the outermost peripheral portion to form the electrode winding body 30. Subsequently, for example, the electrode winding body 30 is sandwiched between the exterior members 41, and the outer edge portions of the exterior members 41 are sealed and sealed by thermal fusion or the like. At that time, the adhesion film 42 is inserted between the leads 31 and 32 and the exterior member 41. Thereby, the secondary battery shown in FIGS. 3 and 4 is completed.

また、次のようにして製造してもよい。まず、負極10および正極33のそれぞれにリード31,32を取り付けたのち、負極10と正極33とをセパレータ34を介して積層して巻回し、最外周部に保護テープ36を接着して、電極巻回体30の前駆体である巻回体を形成する。次いで、この巻回体を外装部材41に挟み、一辺を除く外周縁部を熱融着して袋状としたのち、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤などの他の材料とを含む電解質用組成物を、外装部材41の内部に注入する。続いて、外装部材41の開口部を真空雰囲気下で熱融着して密封し、熱を加えてモノマーを重合させて高分子化合物とすることによりゲル状の電解質層35を形成する。これにより、図3,4に示した二次電池が完成する。   Moreover, you may manufacture as follows. First, after the leads 31 and 32 are attached to the negative electrode 10 and the positive electrode 33, the negative electrode 10 and the positive electrode 33 are laminated and wound via the separator 34, and the protective tape 36 is adhered to the outermost peripheral portion to A wound body that is a precursor of the wound body 30 is formed. Next, the wound body is sandwiched between exterior members 41, and the outer peripheral edge except for one side is heat-sealed into a bag shape, and then the electrolyte, the monomer that is the raw material of the polymer compound, the polymerization initiator, An electrolyte composition containing another material such as a polymerization inhibitor is injected into the exterior member 41 as necessary. Subsequently, the opening of the exterior member 41 is heat-sealed and sealed in a vacuum atmosphere, and heat is applied to polymerize the monomer to form a polymer compound, thereby forming the gel electrolyte layer 35. Thereby, the secondary battery shown in FIGS. 3 and 4 is completed.

この二次電池の作用は、図2に示したコイン型の二次電池と同様である。   The operation of this secondary battery is the same as that of the coin-type secondary battery shown in FIG.

このように本実施の形態によれば、導電性接着層12を介して、ケイ素を含む非晶質相を有する負極活物質層13を設けるようにしたので、負極活物質層13の膨張収縮による応力を緩和することができ、負極集電体11と負極活物質層13との接着性を向上させることができる。また、集電性も向上させることができる。よって、優れたサイクル特性を得ることができる。   As described above, according to the present embodiment, since the negative electrode active material layer 13 having an amorphous phase containing silicon is provided via the conductive adhesive layer 12, the negative electrode active material layer 13 is expanded and contracted. The stress can be relaxed, and the adhesion between the negative electrode current collector 11 and the negative electrode active material layer 13 can be improved. In addition, current collection can be improved. Therefore, excellent cycle characteristics can be obtained.

特に、導電性接着層12における導電性粒子と結着材との割合を、導電性粒子:結着材の質量比で70:30から95:5の範囲内とすれば、また、導電性粒子の平均粒子径を、0.01μm以上20μm以下の範囲内とすれば、より高い効果を得ることができる。   In particular, if the ratio of the conductive particles and the binder in the conductive adhesive layer 12 is within the range of 70:30 to 95: 5 in terms of the mass ratio of the conductive particles: binder, the conductive particles A higher effect can be obtained if the average particle diameter is within the range of 0.01 μm or more and 20 μm or less.

更に、負極集電体11の厚みを50μm以下、その十点平均粗さRzを1.0μm以上4.0μm以下とするようにすれば、また、負極活物質層13が構成元素として酸素を含有し、その含有量を5原子数%以上40原子数%以下とするようにすれば、より高い効果を得ることができる。   Furthermore, if the thickness of the negative electrode current collector 11 is 50 μm or less and the ten-point average roughness Rz is 1.0 μm or more and 4.0 μm or less, the negative electrode active material layer 13 contains oxygen as a constituent element. And if the content shall be 5 atomic% or more and 40 atomic% or less, a higher effect can be acquired.

更に、本発明の具体的な実施例について図面を参照して詳細に説明する。   Further, specific embodiments of the present invention will be described in detail with reference to the drawings.

(実施例1−1)
図1に示した負極10を作製した。まず、導電性粒子として、平均粒子径が2μmの銀粒子を用意すると共に、結着材として、熱可塑性ポリイミドとビスフェノールA型エポキシ樹脂とを1:1の質量比で混合したものを用意した。次いで、導電性粒子80質量%と、結着材20質量%とを、イソプロピルアルコールを分散媒として混合し、表面粗さRz1.0μm、厚み20μmの銅箔よりなる負極集電体11の上に塗布したのち、イソプロピルアルコールを揮発させて厚み1μmの導電性結着層12を形成した。
(Example 1-1)
The negative electrode 10 shown in FIG. 1 was produced. First, silver particles having an average particle diameter of 2 μm were prepared as conductive particles, and a mixture of thermoplastic polyimide and bisphenol A type epoxy resin at a mass ratio of 1: 1 was prepared as a binder. Next, 80% by mass of conductive particles and 20% by mass of a binder are mixed using isopropyl alcohol as a dispersion medium, and the negative electrode current collector 11 made of a copper foil having a surface roughness Rz of 1.0 μm and a thickness of 20 μm is formed. After coating, isopropyl alcohol was volatilized to form a conductive binder layer 12 having a thickness of 1 μm.

続いて、導電性結着層12の上に、電子ビーム蒸着法によりケイ素を蒸着して厚み6μmの負極活物質層13を成膜した。その際、雰囲気中に酸素ガスを導入し、負極活物質層13に酸素を添加した。作製した負極10について、X線回折測定およびラマン分光測定を行ったところ、負極活物質層13におけるケイ素の結晶性は非晶質であることが確認された。また、EDX(エネルギー分散型X線分析装置)により元素分析を行ったところ、負極活物質層13Bにおける酸素の含有量は5原子数%であった。更に、作製した負極10について、断面をミクロトームにより切り出し、走査電子顕微鏡(Scanning Electron Microscope;SEM)とEDXとを併用して構造を調べたところ、負極集電体11と負極活物質層13との間に、導電性結着層12が形成されていることが確認された。   Subsequently, a negative electrode active material layer 13 having a thickness of 6 μm was formed on the conductive binder layer 12 by depositing silicon by an electron beam evaporation method. At that time, oxygen gas was introduced into the atmosphere, and oxygen was added to the negative electrode active material layer 13. When the produced negative electrode 10 was subjected to X-ray diffraction measurement and Raman spectroscopic measurement, it was confirmed that the crystallinity of silicon in the negative electrode active material layer 13 was amorphous. When elemental analysis was performed using EDX (energy dispersive X-ray analyzer), the oxygen content in the negative electrode active material layer 13B was 5 atomic%. Furthermore, when the cross section of the produced negative electrode 10 was cut out with a microtome and the structure was examined using a scanning electron microscope (SEM) and EDX together, the negative electrode current collector 11 and the negative electrode active material layer 13 were In the meantime, it was confirmed that the conductive binder layer 12 was formed.

実施例1−1に対する比較例1−1として、導電性結着層を形成せずに、負極集電体に負極活物質層を直接成膜したことを除き、他は実施例1−1と同様にして負極を作製した。   As Comparative Example 1-1 with respect to Example 1-1, except that the conductive binder layer was not formed and the negative electrode active material layer was directly formed on the negative electrode current collector, the rest was the same as Example 1-1. A negative electrode was produced in the same manner.

比較例1−2として、負極集電体に導電性結着層を介して負極活物質層を成膜したのち、800℃で10時間の加熱処理を行ったことを除き、他は実施例1−1と同様にして負極を作製した。比較例1−2の負極についてX線回折測定を行ったところ、ケイ素に帰属するピークがみられた。すなわち、負極活物質層におけるケイ素の結晶性は非晶質から結晶質に変化していることが確認された。   As Comparative Example 1-2, except that the negative electrode active material layer was formed on the negative electrode current collector through the conductive binder layer, and then heat treatment was performed at 800 ° C. for 10 hours, the others were Example 1. A negative electrode was produced in the same manner as in Example-1. When X-ray diffraction measurement was performed on the negative electrode of Comparative Example 1-2, a peak attributable to silicon was observed. That is, it was confirmed that the crystallinity of silicon in the negative electrode active material layer changed from amorphous to crystalline.

比較例1−3として、負極活物質層の形成方法を変えたことを除き、他は実施例1−1と同様にして負極を作製した。負極活物質層は、結晶性ケイ素粒子と、ポリフッ化ビニリデンと、分散媒とを混合して導電性結着層の上に塗布し、分散媒を揮発させたのち、熱処理することにより形成した。   As Comparative Example 1-3, a negative electrode was produced in the same manner as in Example 1-1 except that the method for forming the negative electrode active material layer was changed. The negative electrode active material layer was formed by mixing crystalline silicon particles, polyvinylidene fluoride, and a dispersion medium, applying the mixture on the conductive binder layer, volatilizing the dispersion medium, and then performing heat treatment.

比較例1−4として、導電性結着層を形成せずに、比較例1−3と同様にして負極活物質層を形成したことを除き、他は実施例1−1と同様にして負極を作製した。すなわち、実施例1−1と同様の負極集電体を用い、結晶性ケイ素粉末を塗布して熱処理することにより負極活物質層を形成した。   As Comparative Example 1-4, the negative electrode active material layer was formed in the same manner as in Comparative Example 1-3 without forming the conductive binder layer, and the negative electrode was the same as in Example 1-1. Was made. That is, using the same negative electrode current collector as in Example 1-1, a crystalline silicon powder was applied and heat-treated to form a negative electrode active material layer.

次いで、作製した実施例1−1および比較例1−1〜1−4の負極10を用いて、図2に示したようなコイン型の試験電池を作製した。対極はリチウム金属板とし、セパレータには多孔質ポリプロピレンフィルムを用いると共に、電解液には炭酸エチレンと炭酸ジエチルとを炭酸エチレン:炭酸ジエチル=1:2の体積比で混合した溶媒にLiPF6 を1mol/lの濃度で溶解させたものを用いた。 Next, a coin-type test battery as shown in FIG. 2 was produced using the produced negative electrode 10 of Example 1-1 and Comparative Examples 1-1 to 1-4. The counter electrode is a lithium metal plate, a porous polypropylene film is used as a separator, and 1 mol of LiPF 6 is mixed in a solvent in which ethylene carbonate and diethyl carbonate are mixed in a volume ratio of ethylene carbonate: diethyl carbonate = 1: 2 as an electrolyte. A solution dissolved at a concentration of / l was used.

作製した実施例1−1および比較例1−1〜1−4の試験電池について、1mA/cm2 の電流密度で充放電を50サイクル行い、1サイクル目に対する50サイクル目の放電容量の割合を放電容量維持率として求めた。その結果を表1に示す。 The manufactured test batteries of Example 1-1 and Comparative Examples 1-1 to 1-4 were charged and discharged at a current density of 1 mA / cm 2 for 50 cycles, and the ratio of the discharge capacity at the 50th cycle to the first cycle was determined. It calculated | required as a discharge capacity maintenance factor. The results are shown in Table 1.

Figure 2007123141
Figure 2007123141

表1に示したように、導電性接着層12を設けると共に、負極活物質層13におけるケイ素の結晶性を非晶質とした実施例1−1によれば、導電性接着層を設けなかった比較例1−1に比べて放電容量維持率を大幅に向上させることができた。これに対して、負極活物質層におけるケイ素の結晶性を結晶質とした比較例1−2によれば、導電性接着層を設けても放電容量維持率を向上させることができなかった。また、負極活物質層を結晶性ケイ素粉末を用いて焼成により形成した比較例1−3においても、導電性接着層を設けなかった比較例1−4と比べて、放電容量維持率を向上させることができなかった。   As shown in Table 1, according to Example 1-1 in which the conductive adhesive layer 12 was provided and the silicon crystallinity of the negative electrode active material layer 13 was amorphous, the conductive adhesive layer was not provided. Compared to Comparative Example 1-1, the discharge capacity retention rate could be significantly improved. On the other hand, according to Comparative Example 1-2 in which the crystallinity of silicon in the negative electrode active material layer was crystalline, the discharge capacity retention rate could not be improved even when the conductive adhesive layer was provided. Moreover, also in Comparative Example 1-3 in which the negative electrode active material layer is formed by firing using crystalline silicon powder, the discharge capacity retention rate is improved as compared with Comparative Example 1-4 in which the conductive adhesive layer is not provided. I couldn't.

すなわち、導電性接着層12を設けると共に、負極活物質層13にケイ素を含む非晶質相を有するようにすれば、サイクル特性を向上させることができることが分かった。   That is, it was found that the cycle characteristics can be improved by providing the conductive adhesive layer 12 and making the negative electrode active material layer 13 have an amorphous phase containing silicon.

(実施例2−1−1〜2−6−3)
導電性接着層12における導電性粒子と結着材との混合割合および導電性接着層12の厚みを表2に示したように変えたことを除き、他は実施例1−1と同様にして負極10および試験電池を作製した。なお、実施例2−3−3は実施例1−1と同一である。作製した実施例2−1−1〜2−6−3の試験電池についても、実施例1−1と同様にして放電容量維持率を求めた。得られた結果を表2に示す。
(Examples 2-1-1 to 2-6-3)
Except that the mixing ratio of the conductive particles and the binder in the conductive adhesive layer 12 and the thickness of the conductive adhesive layer 12 were changed as shown in Table 2, the others were the same as in Example 1-1. A negative electrode 10 and a test battery were produced. In addition, Example 2-3-3 is the same as Example 1-1. For the produced test batteries of Examples 2-1-1 to 2-6-3, the discharge capacity retention ratio was determined in the same manner as in Example 1-1. The obtained results are shown in Table 2.

Figure 2007123141
Figure 2007123141

表2に示したように、導電性接着層12における導電性粒子の割合を大きくするに従い放電容量維持率は向上したのち低下する傾向がみられ、また、導電性接着層12の厚みを厚くするに従い放電容量維持率は向上したのち低下する傾向がみられた。すなわち、導電性接着層12における導電性粒子と結着材との割合を、導電性粒子:結着材の質量比で70:30から95:5の範囲内とすれば、また、導電性接着層12の厚みを0.1μm以上20μm以下の範囲内とすれば、優れた効果を得られることが分かった。   As shown in Table 2, the discharge capacity retention rate tends to decrease after increasing the proportion of the conductive particles in the conductive adhesive layer 12, and the thickness of the conductive adhesive layer 12 is increased. Accordingly, the discharge capacity retention rate tended to decrease after improving. That is, if the ratio of the conductive particles and the binder in the conductive adhesive layer 12 is within the range of 70:30 to 95: 5 in terms of the mass ratio of the conductive particles: binder, the conductive adhesive layer 12 It has been found that if the thickness of the layer 12 is in the range of 0.1 μm or more and 20 μm or less, an excellent effect can be obtained.

(実施例3−1〜3−19)
導電性接着層12における導電性粒子の種類を表3に示したように変えたことを除き、他は実施例1−1と同様にして負極10および試験電池を作製した。作製した実施例3−1〜3−19の試験電池についても、実施例1−1と同様にして放電容量維持率を求めた。得られた結果を実施例1−1の結果と共に表3に示す。
(Examples 3-1 to 3-19)
A negative electrode 10 and a test battery were produced in the same manner as in Example 1-1 except that the type of conductive particles in the conductive adhesive layer 12 was changed as shown in Table 3. For the produced test batteries of Examples 3-1 to 3-19, the discharge capacity retention ratio was determined in the same manner as in Example 1-1. The obtained results are shown in Table 3 together with the results of Example 1-1.

Figure 2007123141
Figure 2007123141

表3に示したように、いずれも実施例1−1と同様に高い放電容量維持率を得ることができた。すなわち、いずれの導電性粒子を用いても、優れた効果を得られることが分かった。   As shown in Table 3, all were able to obtain a high discharge capacity retention rate as in Example 1-1. That is, it was found that an excellent effect can be obtained by using any conductive particle.

(実施例4−1〜4−7)
導電性接着層12における導電性粒子の平均粒子径を表4に示したように変えたことを除き、他は実施例1−1と同様にして負極10および試験電池を作製した。作製した実施例4−1〜4−7の試験電池についても、実施例1−1と同様にして放電容量維持率を求めた。得られた結果を実施例1−1の結果と共に表4に示す。
(Examples 4-1 to 4-7)
A negative electrode 10 and a test battery were produced in the same manner as in Example 1-1 except that the average particle diameter of the conductive particles in the conductive adhesive layer 12 was changed as shown in Table 4. For the produced test batteries of Examples 4-1 to 4-7, the discharge capacity retention ratio was determined in the same manner as in Example 1-1. The obtained results are shown in Table 4 together with the results of Example 1-1.

Figure 2007123141
Figure 2007123141

表4に示したように、導電性粒子の平均粒子径を大きくするに従い放電容量維持率は向上したのち低下する傾向がみられた。すなわち、導電性粒子の平均粒子径を0.01μm以上20μm以下の範囲内とすれば、優れた効果を得られることが分かった。   As shown in Table 4, there was a tendency that the discharge capacity retention rate improved and then decreased as the average particle size of the conductive particles was increased. That is, it has been found that excellent effects can be obtained if the average particle diameter of the conductive particles is in the range of 0.01 μm to 20 μm.

(実施例5−1〜5−6)
導電性接着層12において結着材として用いる熱硬化性樹脂の種類を表5に示したように変えたことを除き、他は実施例1−1と同様にして負極10および試験電池を作製した。作製した実施例5−1〜5−6の試験電池についても、実施例1−1と同様にして放電容量維持率を求めた。得られた結果を実施例1−1の結果と共に表5に示す。
(Examples 5-1 to 5-6)
A negative electrode 10 and a test battery were produced in the same manner as in Example 1-1 except that the type of thermosetting resin used as the binder in the conductive adhesive layer 12 was changed as shown in Table 5. . For the manufactured test batteries of Examples 5-1 to 5-6, the discharge capacity retention ratio was determined in the same manner as in Example 1-1. The obtained results are shown in Table 5 together with the results of Example 1-1.

Figure 2007123141
Figure 2007123141

表5に示したように、いずれも実施例1−1と同様に高い放電容量維持率を得ることができた。すなわち、樹脂の種類を変えても、優れた効果を得られることが分かった。   As shown in Table 5, all were able to obtain a high discharge capacity retention rate as in Example 1-1. That is, it was found that excellent effects could be obtained even if the type of resin was changed.

(実施例6−1−1〜6−2−4)
負極集電体11の表面粗さRzまたは厚みを表6に示したように変えたことを除き、他は実施例1−1と同様にして負極10および試験電池を作製した。なお、実施例6−1−2および実施例6−2−1は実施例1−1と同一である。作製した実施例6−1−1〜6−2−4の試験電池についても、実施例1−1と同様にして放電容量維持率を求めた。得られた結果を表6に示す。
(Examples 6-1-1 to 6-2-4)
A negative electrode 10 and a test battery were produced in the same manner as in Example 1-1 except that the surface roughness Rz or thickness of the negative electrode current collector 11 was changed as shown in Table 6. In addition, Example 6-1-2 and Example 6-2-1 are the same as Example 1-1. For the manufactured test batteries of Examples 6-1 to 6-2-4, the discharge capacity retention ratio was determined in the same manner as in Example 1-1. The results obtained are shown in Table 6.

Figure 2007123141
Figure 2007123141

表6に示したように、負極集電体11の表面粗さRzを大きくするに従い放電容量維持率は向上したのち低下する傾向がみられ、負極集電体11の厚みを厚くすると放電容量維持率は低下する傾向がみられた。すなわち、負極集電体11の表面粗さRzを1.0μm以上4.0μm以下の範囲内とすれば、また、負極集電体11の厚みを20μm以上50μm以下の範囲内とすれば、優れた効果を得られることが分かった。   As shown in Table 6, as the surface roughness Rz of the negative electrode current collector 11 is increased, the discharge capacity retention rate tends to decrease and then decreases. When the thickness of the negative electrode current collector 11 is increased, the discharge capacity maintenance is maintained. The rate tended to decrease. That is, if the surface roughness Rz of the negative electrode current collector 11 is in the range of 1.0 μm or more and 4.0 μm or less, and the thickness of the negative electrode current collector 11 is in the range of 20 μm or more and 50 μm or less, excellent. It was found that the effect can be obtained.

(実施例7−1〜7−4)
負極活物質層13における酸素の含有量を表7に示したように変えたことを除き、他は実施例1−1と同様にして負極10および試験電池を作製した。なお、酸素の含有量は、負極活物質層13成膜する際に導入する酸素ガスの量を調節することにより制御し、分析は実施例1−1と同様にして行った。作製した実施例7−1〜7−4の試験電池についても、実施例1−1と同様にして放電容量維持率を求めた。得られた結果を実施例1−1の結果と共に表7に示す。
(Examples 7-1 to 7-4)
A negative electrode 10 and a test battery were produced in the same manner as in Example 1-1 except that the oxygen content in the negative electrode active material layer 13 was changed as shown in Table 7. The oxygen content was controlled by adjusting the amount of oxygen gas introduced when the negative electrode active material layer 13 was formed, and the analysis was performed in the same manner as in Example 1-1. For the produced test batteries of Examples 7-1 to 7-4, the discharge capacity retention ratio was determined in the same manner as in Example 1-1. The obtained results are shown in Table 7 together with the results of Example 1-1.

Figure 2007123141
Figure 2007123141

表7に示したように、酸素の含有量を増加させるに従い放電容量維持率は向上したのち低下する傾向がみられた。すなわち、負極活物質層13における酸素の含有量を5原子数%以上40原子数%以下の範囲内とすれば、優れた効果を得られることが分かった。   As shown in Table 7, there was a tendency for the discharge capacity retention rate to improve and then decrease as the oxygen content was increased. That is, it was found that excellent effects can be obtained if the oxygen content in the negative electrode active material layer 13 is in the range of 5 atomic% to 40 atomic%.

以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は上記実施の形態および実施例に限定されるものではなく、種々変形可能である。例えば、上記実施の形態および実施例では、液状の電解質である電解液、またはいわゆるゲル状の電解質を用いる場合について説明したが、他の電解質を用いるようにしてもよい。他の電解質としては、イオン伝導性を有する固体電解質、固体電解質と電解液とを混合したもの、あるいは固体電解質とゲル状の電解質とを混合したものが挙げられる。   Although the present invention has been described with reference to the embodiments and examples, the present invention is not limited to the above embodiments and examples, and various modifications can be made. For example, in the above-described embodiments and examples, the case where an electrolytic solution which is a liquid electrolyte or a so-called gel electrolyte is used has been described, but another electrolyte may be used. Examples of other electrolytes include solid electrolytes having ionic conductivity, a mixture of a solid electrolyte and an electrolyte solution, and a mixture of a solid electrolyte and a gel electrolyte.

なお、固体電解質には、例えば、イオン伝導性を有する高分子化合物に電解質塩を分散させた高分子固体電解質、またはイオン伝導性ガラスあるいはイオン性結晶などよりなる無機固体電解質を用いることができる。高分子固体電解質の高分子化合物としては、例えば、ポリエチレンオキサイドあるいはポリエチレンオキサイドを含む架橋体などのエーテル系高分子化合物、ポリメタクリレートなどのエステル系高分子化合物、アクリレート系高分子化合物を単独あるいは混合して、または共重合させて用いることができる。また、無機固体電解質としては、窒化リチウムあるいはリン酸リチウムなどを含むもの用いることができる。   As the solid electrolyte, for example, a polymer solid electrolyte in which an electrolyte salt is dispersed in a polymer compound having ion conductivity, or an inorganic solid electrolyte made of ion conductive glass or ionic crystals can be used. Examples of the polymer compound of the solid polymer electrolyte include, for example, an ether polymer compound such as polyethylene oxide or a crosslinked product containing polyethylene oxide, an ester polymer compound such as polymethacrylate, and an acrylate polymer compound. Or can be copolymerized. In addition, as the inorganic solid electrolyte, one containing lithium nitride or lithium phosphate can be used.

また、上記実施の形態および実施例では、コイン型または巻回ラミネート型の二次電池について説明したが、本発明は、円筒型,角型,ボタン型,薄型,大型あるいは積層ラミネート型などの他の形状を有する二次電池についても同様に適用することができる。加えて、二次電池に限らず、一次電池についても適用することができる。   In the above embodiments and examples, a coin type or wound laminate type secondary battery has been described. However, the present invention is not limited to a cylindrical type, a square type, a button type, a thin type, a large size, or a laminated laminate type. The present invention can be similarly applied to a secondary battery having the shape. In addition, the present invention can be applied not only to secondary batteries but also to primary batteries.

本発明の一実施の形態に係る負極の構成を表す断面図である。It is sectional drawing showing the structure of the negative electrode which concerns on one embodiment of this invention. 図1に示した負極を用いた二次電池の構成を表す断面図である。It is sectional drawing showing the structure of the secondary battery using the negative electrode shown in FIG. 図1に示した負極を用いた他の二次電池の構成を表す分解斜視図である。It is a disassembled perspective view showing the structure of the other secondary battery using the negative electrode shown in FIG. 図3に示した二次電池のI−I線に沿った構造を表す断面図である。It is sectional drawing showing the structure along the II line of the secondary battery shown in FIG.

符号の説明Explanation of symbols

10…負極、11…負極集電体、12…導電性結着層、13…負極活物質層、21…外装カップ、22…外装缶、23,33…正極、23A,33A…正極集電体、23B,33B…正極活物質層、24,34…セパレータ、25…ガスケット、31,32…リード、30…電極巻回体、35…電解質層、36…保護テープ、41…外装部材、42…密着フィルム
DESCRIPTION OF SYMBOLS 10 ... Negative electrode, 11 ... Negative electrode collector, 12 ... Conductive binder layer, 13 ... Negative electrode active material layer, 21 ... Exterior cup, 22 ... Exterior can, 23, 33 ... Positive electrode, 23A, 33A ... Positive electrode collector , 23B, 33B ... positive electrode active material layer, 24, 34 ... separator, 25 ... gasket, 31, 32 ... lead, 30 ... electrode winding body, 35 ... electrolyte layer, 36 ... protective tape, 41 ... exterior member, 42 ... Adhesive film

Claims (18)

負極集電体に、導電性粒子および結着材を有する導電性接着層を介して、負極活物質層が設けられ、
この負極活物質層は、構成元素としてケイ素を含む非晶質相を有する
ことを特徴とする負極。
The negative electrode current collector is provided with a negative electrode active material layer through a conductive adhesive layer having conductive particles and a binder,
The negative electrode active material layer has an amorphous phase containing silicon as a constituent element.
前記導電性接着層における導電性粒子と結着材との割合は、導電性粒子:結着材の質量比で、70:30から95:5の範囲内である
ことを特徴とする請求項1記載の負極。
The ratio between the conductive particles and the binder in the conductive adhesive layer is in a range of 70:30 to 95: 5 in terms of a mass ratio of conductive particles: binder. The negative electrode described.
前記導電性接着層は、前記導電性粒子として、金(Au),銀(Ag),銅(Cu),スズ(Sn),ビスマス(Bi),亜鉛(Zn),ニッケル(Ni),パラジウム(Pd),クロム(Cr),インジウム(In),アンチモン(Sb),アルミニウム(Al),ゲルマニウム(Ge),タングステン(W),モリブデン(Mo),マンガン(Mn),チタン(Ti)およびマグネシウム(Mg) からなる群のうちの少なくとも1種を含む金属粒子、並びに炭素粒子のうちの1種以上を含む
ことを特徴とする請求項1記載の負極。
The conductive adhesive layer includes, as the conductive particles, gold (Au), silver (Ag), copper (Cu), tin (Sn), bismuth (Bi), zinc (Zn), nickel (Ni), palladium ( Pd), chromium (Cr), indium (In), antimony (Sb), aluminum (Al), germanium (Ge), tungsten (W), molybdenum (Mo), manganese (Mn), titanium (Ti) and magnesium ( 2. The negative electrode according to claim 1, comprising at least one of metal particles including at least one of the group consisting of Mg) and carbon particles.
前記導電性粒子の平均粒子径は、0.01μm以上20μm以下の範囲内である
ことを特徴とする請求項1記載の負極。
2. The negative electrode according to claim 1, wherein an average particle diameter of the conductive particles is in a range of 0.01 μm to 20 μm.
前記導電性接着層は、前記結着材として、熱可塑性樹脂および熱硬化性樹脂のうちの少なくとも一方を含む
ことを特徴とする請求項1記載の負極。
The negative electrode according to claim 1, wherein the conductive adhesive layer includes at least one of a thermoplastic resin and a thermosetting resin as the binder.
前記導電性接着層は、前記結着材として、水素結合性を有する熱可塑性樹脂と、エポキシ樹脂,フェノール樹脂,ポリイミド,ポリウレタン,メラミン樹脂,ウレア樹脂からなる群のうちの少なくとも1種の熱硬化性樹脂とを含む
ことを特徴とする請求項5記載の負極。
The conductive adhesive layer has at least one thermosetting member selected from the group consisting of a thermoplastic resin having hydrogen bonding properties and an epoxy resin, a phenol resin, a polyimide, a polyurethane, a melamine resin, and a urea resin as the binder. The negative electrode according to claim 5, further comprising a functional resin.
前記負極集電体は、厚みが50μm以下の銅箔または銅合金箔よりなり、その十点平均粗さRzは1.0μm以上4.0μm以下である
ことを特徴とする請求項1記載の負極。
2. The negative electrode according to claim 1, wherein the negative electrode current collector is made of a copper foil or a copper alloy foil having a thickness of 50 μm or less, and a ten-point average roughness Rz is 1.0 μm or more and 4.0 μm or less. .
前記負極活物質層の少なくとも一部は気相法により形成された
ことを特徴とする請求項1記載の負極。
The negative electrode according to claim 1, wherein at least a part of the negative electrode active material layer is formed by a vapor phase method.
前記負極活物質層は、酸素を構成元素として含有し、その含有量は5原子数%以上40原子数%以下である
ことを特徴とする請求項1記載の負極。
The negative electrode according to claim 1, wherein the negative electrode active material layer contains oxygen as a constituent element, and the content thereof is 5 atomic% to 40 atomic%.
正極および負極と共に電解質を備えた電池であって、
前記負極は、負極集電体に、導電性粒子および結着材を有する導電性接着層を介して、負極活物質層が設けられ、
この負極活物質層は、構成元素としてケイ素を含む非晶質相を有する
ことを特徴とする電池。
A battery comprising an electrolyte together with a positive electrode and a negative electrode,
The negative electrode is provided with a negative electrode active material layer on a negative electrode current collector through a conductive adhesive layer having conductive particles and a binder,
The negative electrode active material layer has an amorphous phase containing silicon as a constituent element.
前記導電性接着層における導電性粒子と結着材との割合は、導電性粒子:結着材の質量比で、70:30から95:5の範囲内である
ことを特徴とする請求項10記載の電池。
The ratio between the conductive particles and the binder in the conductive adhesive layer is in a range of 70:30 to 95: 5 in terms of a mass ratio of conductive particles: binder. The battery described.
前記導電性接着層は、前記導電性粒子として、金(Au),銀(Ag),銅(Cu),スズ(Sn),ビスマス(Bi),亜鉛(Zn),ニッケル(Ni),パラジウム(Pd),クロム(Cr),インジウム(In),アンチモン(Sb),アルミニウム(Al),ゲルマニウム(Ge),タングステン(W),モリブデン(Mo),マンガン(Mn),チタン(Ti)およびマグネシウム(Mg) からなる群のうちの少なくとも1種を含む金属粒子、並びに炭素粒子のうちの1種以上を含む
ことを特徴とする請求項10記載の電池。
The conductive adhesive layer includes, as the conductive particles, gold (Au), silver (Ag), copper (Cu), tin (Sn), bismuth (Bi), zinc (Zn), nickel (Ni), palladium ( Pd), chromium (Cr), indium (In), antimony (Sb), aluminum (Al), germanium (Ge), tungsten (W), molybdenum (Mo), manganese (Mn), titanium (Ti) and magnesium ( 11. The battery according to claim 10, comprising at least one of metal particles including at least one of the group consisting of Mg) and carbon particles.
前記導電性粒子の平均粒子径は、0.01μm以上20μm以下の範囲内である
ことを特徴とする請求項10記載の電池。
The battery according to claim 10, wherein an average particle diameter of the conductive particles is in a range of 0.01 μm to 20 μm.
前記導電性接着層は、前記結着材として、熱可塑性樹脂および熱硬化性樹脂のうちの少なくとも一方を含む
ことを特徴とする請求項10記載の電池。
The battery according to claim 10, wherein the conductive adhesive layer includes at least one of a thermoplastic resin and a thermosetting resin as the binder.
前記導電性接着層は、前記結着材として、水素結合性を有する熱可塑性樹脂と、エポキシ樹脂,フェノール樹脂,ポリイミド,ポリウレタン,メラミン樹脂,ウレア樹脂からなる群のうちの少なくとも1種の熱硬化性樹脂とを含む
ことを特徴とする請求項14記載の電池。
The conductive adhesive layer has at least one thermosetting member selected from the group consisting of a thermoplastic resin having hydrogen bonding properties and an epoxy resin, a phenol resin, a polyimide, a polyurethane, a melamine resin, and a urea resin as the binder. The battery according to claim 14, comprising: a functional resin.
前記負極集電体は、厚みが50μm以下の銅箔または銅合金箔よりなり、その十点平均粗さRzは1.0μm以上4.0μm以下である
ことを特徴とする請求項10記載の電池。
The battery according to claim 10, wherein the negative electrode current collector is made of a copper foil or a copper alloy foil having a thickness of 50 μm or less, and a ten-point average roughness Rz is 1.0 μm or more and 4.0 μm or less. .
前記負極活物質層の少なくとも一部は気相法により形成された
ことを特徴とする請求項10記載の電池。
The battery according to claim 10, wherein at least a part of the negative electrode active material layer is formed by a vapor phase method.
前記負極活物質層は、酸素を構成元素として含有し、その含有量は5原子数%以上40原子数%以下である
ことを特徴とする請求項10記載の電池。
The battery according to claim 10, wherein the negative electrode active material layer contains oxygen as a constituent element, and the content thereof is 5 atomic% to 40 atomic%.
JP2005315876A 2005-10-31 2005-10-31 Negative electrode and battery Active JP5364230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005315876A JP5364230B2 (en) 2005-10-31 2005-10-31 Negative electrode and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005315876A JP5364230B2 (en) 2005-10-31 2005-10-31 Negative electrode and battery

Publications (2)

Publication Number Publication Date
JP2007123141A true JP2007123141A (en) 2007-05-17
JP5364230B2 JP5364230B2 (en) 2013-12-11

Family

ID=38146752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005315876A Active JP5364230B2 (en) 2005-10-31 2005-10-31 Negative electrode and battery

Country Status (1)

Country Link
JP (1) JP5364230B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008077993A (en) * 2006-09-21 2008-04-03 Mitsubishi Chemicals Corp Electrode and non-aqueous secondary battery
JP2009026491A (en) * 2007-07-17 2009-02-05 Mitsubishi Chemicals Corp Metal foil and its manufacturing method, secondary battery current collector, electrode for secondary battery, and nonaqueous secondary battery
JP2009238488A (en) * 2008-03-26 2009-10-15 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2009272206A (en) * 2008-05-09 2009-11-19 Toyota Central R&D Labs Inc Lithium secondary battery and negative electrode therefor
JP2011090933A (en) * 2009-10-23 2011-05-06 Toyota Central R&D Labs Inc Negative electrode for lithium secondary battery, and lithium secondary battery
CN102694145A (en) * 2012-06-20 2012-09-26 东莞新能源科技有限公司 Lithium ion battery anode pole piece
KR101201807B1 (en) 2011-08-31 2012-11-15 삼성에스디아이 주식회사 Lithium secondary battery
CN102842701A (en) * 2012-08-17 2012-12-26 东莞新能源科技有限公司 Lithium ion battery anode pole piece and lithium ion battery comprising same
US20130209889A1 (en) * 2010-10-21 2013-08-15 Koji Takahata Battery electrode and use thereof
WO2013121624A1 (en) * 2012-02-13 2013-08-22 日本電気株式会社 Negative electrode for lithium secondary battery and method for manufacturing same
KR101316366B1 (en) 2009-01-26 2013-10-08 도요타지도샤가부시키가이샤 Positive electrode for lithium secondary battery, and process for producing same
WO2014017506A1 (en) * 2012-07-24 2014-01-30 国立大学法人岩手大学 Negative electrode for lithium secondary battery
JP2014086615A (en) * 2012-10-25 2014-05-12 Meidensha Corp Lamination electric double layer capacitor and manufacturing method therefor
KR101416803B1 (en) * 2011-08-18 2014-08-06 비나텍주식회사 Electrode for Electrochemical Energy Storage Device
JP2014207090A (en) * 2013-04-11 2014-10-30 ユニチカ株式会社 Current collector, method for manufacturing the same, and electrode
KR101539906B1 (en) * 2015-01-19 2015-07-28 성균관대학교산학협력단 Electrode structure for lithium secondary battery and lithium secondary battery having the electrode structure
JP2016514356A (en) * 2013-03-12 2016-05-19 エネヴェート・コーポレーション Electrode, electrochemical cell, and method for forming electrode and electrochemical cell
KR20180005622A (en) * 2016-07-06 2018-01-16 린다 종 Lithium attached electrodes and method of making same
KR20180014178A (en) * 2010-01-18 2018-02-07 에네베이트 코포레이션 Composite material film for electrochemical storage
KR20190057966A (en) * 2017-11-21 2019-05-29 주식회사 엘지화학 Negative electrode for lithium secondary battery and preparing method thereof
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US10431808B2 (en) 2010-12-22 2019-10-01 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US10707478B2 (en) 2017-12-07 2020-07-07 Enevate Corporation Silicon particles for battery electrodes
JP2020155415A (en) * 2020-06-24 2020-09-24 古河機械金属株式会社 All-solid type lithium ion battery electrode and all-solid type lithium ion battery
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US11183712B2 (en) 2010-01-18 2021-11-23 Enevate Corporation Electrolyte compositions for batteries
WO2022077850A1 (en) * 2020-10-15 2022-04-21 宁德新能源科技有限公司 Electrochemical device and electronic device
WO2022124160A1 (en) * 2020-12-11 2022-06-16 株式会社豊田自動織機 Electrode for power storage device and method for manufacturing same
EP4207353A4 (en) * 2020-12-11 2023-11-01 Dongguan Amperex Technology Limited Electrochemical device and electronic device
WO2024026866A1 (en) * 2022-08-05 2024-02-08 宁德时代新能源科技股份有限公司 Conductive binder, preparation method, secondary battery, battery module, battery pack, and electrical device
EP4216299A4 (en) * 2020-10-15 2024-03-27 Ningde Amperex Technology Ltd Pole piece, electrochemical apparatus containing same, and electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997625A (en) * 1995-09-29 1997-04-08 Seiko Instr Inc Nonaqueous electrolytic secondary battery and manufacture thereof
JP2000003731A (en) * 1998-06-16 2000-01-07 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000012091A (en) * 1998-06-23 2000-01-14 Fuji Photo Film Co Ltd Nonaqoeus secondary battery and its manufacture
JP2002216746A (en) * 2001-01-17 2002-08-02 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and its manufacturing method
JP2004095264A (en) * 2002-08-30 2004-03-25 Mitsubishi Materials Corp Negative electrode for lithium ion secondary battery and lithium ion secondary battery manufactured by using the same
JP2004164921A (en) * 2002-11-11 2004-06-10 Nec Corp Lithium secondary battery
JP2004200011A (en) * 2002-12-19 2004-07-15 Mitsubishi Materials Corp Cathode for lithium-ion secondary battery and lithium-ion secondary battery manufactured using the cathode
JP2004288520A (en) * 2003-03-24 2004-10-14 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997625A (en) * 1995-09-29 1997-04-08 Seiko Instr Inc Nonaqueous electrolytic secondary battery and manufacture thereof
JP2000003731A (en) * 1998-06-16 2000-01-07 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000012091A (en) * 1998-06-23 2000-01-14 Fuji Photo Film Co Ltd Nonaqoeus secondary battery and its manufacture
JP2002216746A (en) * 2001-01-17 2002-08-02 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and its manufacturing method
JP2004095264A (en) * 2002-08-30 2004-03-25 Mitsubishi Materials Corp Negative electrode for lithium ion secondary battery and lithium ion secondary battery manufactured by using the same
JP2004164921A (en) * 2002-11-11 2004-06-10 Nec Corp Lithium secondary battery
JP2004200011A (en) * 2002-12-19 2004-07-15 Mitsubishi Materials Corp Cathode for lithium-ion secondary battery and lithium-ion secondary battery manufactured using the cathode
JP2004288520A (en) * 2003-03-24 2004-10-14 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008077993A (en) * 2006-09-21 2008-04-03 Mitsubishi Chemicals Corp Electrode and non-aqueous secondary battery
JP2009026491A (en) * 2007-07-17 2009-02-05 Mitsubishi Chemicals Corp Metal foil and its manufacturing method, secondary battery current collector, electrode for secondary battery, and nonaqueous secondary battery
JP2009238488A (en) * 2008-03-26 2009-10-15 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2009272206A (en) * 2008-05-09 2009-11-19 Toyota Central R&D Labs Inc Lithium secondary battery and negative electrode therefor
KR101316366B1 (en) 2009-01-26 2013-10-08 도요타지도샤가부시키가이샤 Positive electrode for lithium secondary battery, and process for producing same
JP2011090933A (en) * 2009-10-23 2011-05-06 Toyota Central R&D Labs Inc Negative electrode for lithium secondary battery, and lithium secondary battery
KR102065283B1 (en) 2010-01-18 2020-01-10 에네베이트 코포레이션 Composite material film for electrochemical storage
US11183712B2 (en) 2010-01-18 2021-11-23 Enevate Corporation Electrolyte compositions for batteries
KR20180014178A (en) * 2010-01-18 2018-02-07 에네베이트 코포레이션 Composite material film for electrochemical storage
US20130209889A1 (en) * 2010-10-21 2013-08-15 Koji Takahata Battery electrode and use thereof
US9705126B2 (en) * 2010-10-21 2017-07-11 Toyota Jidosha Kabushiki Kaisha Battery electrode and use thereof
US10388943B2 (en) 2010-12-22 2019-08-20 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US11177467B2 (en) 2010-12-22 2021-11-16 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US10985361B2 (en) 2010-12-22 2021-04-20 Enevate Corporation Electrodes configured to reduce occurrences of short circuits and/or lithium plating in batteries
US11784298B2 (en) 2010-12-22 2023-10-10 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US10431808B2 (en) 2010-12-22 2019-10-01 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US11837710B2 (en) 2010-12-22 2023-12-05 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US10516155B2 (en) 2010-12-22 2019-12-24 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
KR101416803B1 (en) * 2011-08-18 2014-08-06 비나텍주식회사 Electrode for Electrochemical Energy Storage Device
KR101201807B1 (en) 2011-08-31 2012-11-15 삼성에스디아이 주식회사 Lithium secondary battery
US8980474B2 (en) 2011-08-31 2015-03-17 Samsung Sdi Co., Ltd. Lithium secondary battery
JPWO2013121624A1 (en) * 2012-02-13 2015-05-11 日本電気株式会社 Negative electrode for lithium secondary battery and method for producing the same
CN104137305A (en) * 2012-02-13 2014-11-05 日本电气株式会社 Negative electrode for lithium secondary battery and method for manufacturing same
WO2013121624A1 (en) * 2012-02-13 2013-08-22 日本電気株式会社 Negative electrode for lithium secondary battery and method for manufacturing same
CN102694145A (en) * 2012-06-20 2012-09-26 东莞新能源科技有限公司 Lithium ion battery anode pole piece
JPWO2014017506A1 (en) * 2012-07-24 2016-07-11 国立大学法人岩手大学 Negative electrode for lithium secondary battery
CN104508870A (en) * 2012-07-24 2015-04-08 国立大学法人岩手大学 Negative electrode for lithium secondary battery
WO2014017506A1 (en) * 2012-07-24 2014-01-30 国立大学法人岩手大学 Negative electrode for lithium secondary battery
CN102842701A (en) * 2012-08-17 2012-12-26 东莞新能源科技有限公司 Lithium ion battery anode pole piece and lithium ion battery comprising same
JP2014086615A (en) * 2012-10-25 2014-05-12 Meidensha Corp Lamination electric double layer capacitor and manufacturing method therefor
JP2016514356A (en) * 2013-03-12 2016-05-19 エネヴェート・コーポレーション Electrode, electrochemical cell, and method for forming electrode and electrochemical cell
JP2014207090A (en) * 2013-04-11 2014-10-30 ユニチカ株式会社 Current collector, method for manufacturing the same, and electrode
US10141576B2 (en) 2015-01-19 2018-11-27 Research & Business Foundation Sungkyunkwan University Electrode structure for lithium secondary battery and lithium secondary battery having the electrode structure
KR101539906B1 (en) * 2015-01-19 2015-07-28 성균관대학교산학협력단 Electrode structure for lithium secondary battery and lithium secondary battery having the electrode structure
KR20180005622A (en) * 2016-07-06 2018-01-16 린다 종 Lithium attached electrodes and method of making same
KR102539340B1 (en) * 2016-07-06 2023-06-02 라이캡 테크놀로지스 인크. Lithium attached electrodes and method of making same
US11545659B2 (en) 2017-11-21 2023-01-03 Lg Energy Solution, Ltd. Negative electrode for lithium secondary battery and manufacturing method thereof
KR20190057966A (en) * 2017-11-21 2019-05-29 주식회사 엘지화학 Negative electrode for lithium secondary battery and preparing method thereof
KR102358448B1 (en) * 2017-11-21 2022-02-04 주식회사 엘지에너지솔루션 Negative electrode for lithium secondary battery and preparing method thereof
US11539041B2 (en) 2017-12-07 2022-12-27 Enevate Corporation Silicon particles for battery electrodes
US10707478B2 (en) 2017-12-07 2020-07-07 Enevate Corporation Silicon particles for battery electrodes
US11916228B2 (en) 2017-12-07 2024-02-27 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US11901500B2 (en) 2017-12-07 2024-02-13 Enevate Corporation Sandwich electrodes
US11309536B2 (en) 2017-12-07 2022-04-19 Enevate Corporation Silicon particles for battery electrodes
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US11777077B2 (en) 2017-12-07 2023-10-03 Enevate Corporation Silicon particles for battery electrodes
JP6998993B2 (en) 2020-06-24 2022-02-10 古河機械金属株式会社 Electrodes for all-solid-state lithium-ion batteries and all-solid-state lithium-ion batteries
JP2020155415A (en) * 2020-06-24 2020-09-24 古河機械金属株式会社 All-solid type lithium ion battery electrode and all-solid type lithium ion battery
WO2022077850A1 (en) * 2020-10-15 2022-04-21 宁德新能源科技有限公司 Electrochemical device and electronic device
EP4216299A4 (en) * 2020-10-15 2024-03-27 Ningde Amperex Technology Ltd Pole piece, electrochemical apparatus containing same, and electronic device
EP4207353A4 (en) * 2020-12-11 2023-11-01 Dongguan Amperex Technology Limited Electrochemical device and electronic device
WO2022124160A1 (en) * 2020-12-11 2022-06-16 株式会社豊田自動織機 Electrode for power storage device and method for manufacturing same
WO2024026866A1 (en) * 2022-08-05 2024-02-08 宁德时代新能源科技股份有限公司 Conductive binder, preparation method, secondary battery, battery module, battery pack, and electrical device

Also Published As

Publication number Publication date
JP5364230B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5364230B2 (en) Negative electrode and battery
JP4622803B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, and production method thereof
KR101191487B1 (en) Battery
JP4968503B2 (en) Lithium secondary battery
JP4432871B2 (en) Negative electrode, method for producing the same, and battery
JP4940625B2 (en) Electrolyte and battery
JP5758560B2 (en) Charging method of lithium ion secondary battery
KR101384429B1 (en) Anode and battery
JP5018173B2 (en) Lithium ion secondary battery
JP2006338996A (en) Negative electrode for secondary battery, secondary battery, and manufacturing method of negative electrode for secondary battery
JP5135712B2 (en) Secondary battery
JP2007128766A (en) Negative electrode active substance and battery
JP4296427B2 (en) Negative electrode and battery
JP2006179305A (en) Battery
JP2008053054A (en) Battery
JP2006236684A (en) Negative electrode, battery, and their manufacturing methods
JP4821217B2 (en) Positive electrode active material, positive electrode and battery
JP2006236685A (en) Negative electrode, battery, and their manufacturing method
JP5098144B2 (en) Negative electrode and battery
KR20060052502A (en) Battery
JP5082266B2 (en) Negative electrode and secondary battery
JP4941632B2 (en) Negative electrode and battery
JP4877475B2 (en) Negative electrode and battery
JP2004349005A (en) Negative electrode and battery using it
JP4232735B2 (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120829

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120905

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5364230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250