JP2007119273A - Method for growing silicon carbide single crystal - Google Patents

Method for growing silicon carbide single crystal Download PDF

Info

Publication number
JP2007119273A
JP2007119273A JP2005310770A JP2005310770A JP2007119273A JP 2007119273 A JP2007119273 A JP 2007119273A JP 2005310770 A JP2005310770 A JP 2005310770A JP 2005310770 A JP2005310770 A JP 2005310770A JP 2007119273 A JP2007119273 A JP 2007119273A
Authority
JP
Japan
Prior art keywords
silicon carbide
growth
single crystal
temperature
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005310770A
Other languages
Japanese (ja)
Inventor
Tetsuya Norikane
哲也 則兼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005310770A priority Critical patent/JP2007119273A/en
Publication of JP2007119273A publication Critical patent/JP2007119273A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for growing a silicon carbide single crystal of high quality which is free from the occurrence of micropipes, almost free from dislocation densities such as screw dislocations and edge dislocations, and free from mixing of different orientation crystals. <P>SOLUTION: The method contains a first growing process where a silicon carbide single crystal is grown by heating in an inert atmosphere a silicon carbide raw material at a first temperature of 2,200-2,300°C and a silicon carbide seed crystal at a second temperature of lower than the first temperature and ≥2,200°C and controlling the growing rate of the silicon carbide single crystal to be 80 μm/h or less at pressure in the range of 13.3-26.6 kPa, a pressure reducing process where the pressure is reduced from the pressure at the first growing process at a rate of ≤0.93 kPa/h so as to accelerate the growing rate to be faster than the first growing process, and a second growing process where the silicon carbide single crystal is grown at a rate faster than the first growing process by heating the silicon carbide raw material at the first temperature and the silicon carbide seed crystal at the second temperature at pressure after reducing the pressure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光デバイスおよびパワートランジスタ等の高耐圧・大電力用半導体素子に使用される炭化珪素単結晶基板を昇華法により作製する際に、特に高品質単結晶を成長させるための結晶成長方法に関するものである。   The present invention relates to a crystal growth method for growing a high-quality single crystal particularly when a silicon carbide single crystal substrate used for a semiconductor device for high voltage and high power such as an optical device and a power transistor is manufactured by a sublimation method. It is about.

近年、炭化珪素単結晶基板は高耐圧電力用トランジスタ、高耐圧ダイオード等の高耐圧大電力用半導体デバイスの半導体基板として開発されている。そして、この炭化珪素単結晶基板の製造方法として、昇華法(改良レーリー法)が主に採用されている。図5はこの昇華法に用いられる装置の概略図で、容器体19と台座を備えた蓋体20よりなる黒鉛製坩堝の下半部内には、原料としてSiC粉末21が収容してあり、これに対向する蓋体20の下面には種結晶22が配置してある。不活性ガス雰囲気中に、この黒鉛製坩堝を配置し、減圧し、全体を1800〜2400℃に昇温する。SiC粉末21側が高温に、種結晶22側が低温になるように保持し、SiC粉末21からの昇華ガスが低温の種結晶22上で再結晶することにより単結晶23が成長する。昇温に伴い、SiC粉末21からは成長に寄与するSi、Si2C、SiC2、SiCなどの蒸気が発生し、特に融点が1400℃程度と低いSiの蒸気が初期に多く発生する。同時に、原料などに含まれる不純物の微粒子や結晶性の妨害微粒子なども坩堝内に浮遊する。これにより、種結晶上に成長する単結晶表面には、Siドロップレットや不純物微粒子などが付着し、これが起点となりマイクロパイプの発生や転位の発生につながっていると言われている。 In recent years, a silicon carbide single crystal substrate has been developed as a semiconductor substrate of a semiconductor device for high withstand voltage and high power such as a high withstand voltage power transistor and a high withstand voltage diode. And as a manufacturing method of this silicon carbide single crystal substrate, a sublimation method (improved Rayleigh method) is mainly adopted. FIG. 5 is a schematic view of an apparatus used in this sublimation method, and SiC powder 21 is contained as a raw material in the lower half of a graphite crucible comprising a container body 19 and a lid body 20 provided with a pedestal. A seed crystal 22 is disposed on the lower surface of the lid 20 facing the surface. This graphite crucible is placed in an inert gas atmosphere, the pressure is reduced, and the whole is heated to 1800 to 2400 ° C. The SiC powder 21 side is kept at a high temperature and the seed crystal 22 side is kept at a low temperature, and the sublimation gas from the SiC powder 21 is recrystallized on the low temperature seed crystal 22, whereby a single crystal 23 grows. As the temperature rises, the SiC powder 21 generates vapors such as Si, Si 2 C, SiC 2 , and SiC that contribute to growth, and in particular, a large amount of Si vapor with a low melting point of about 1400 ° C. is generated at the initial stage. At the same time, impurity fine particles and crystalline interfering fine particles contained in the raw material etc. also float in the crucible. As a result, it is said that Si droplets and impurity fine particles adhere to the surface of the single crystal growing on the seed crystal, and this is the starting point, leading to the generation of micropipes and dislocations.

一方、炭化珪素単結晶から種結晶基板を作製するために、スライス、研磨、洗浄などにより加工が行われるが、この加工の際に種結晶表面には加工変質層が導入されてしまう。加工変質層は、炭化珪素が化学的に安定であることから適切なエッチャントがなく、除去することが困難となっている。このため、成長結晶中にはマイクロパイプやらせん転位などの欠陥が種結晶表面から多数発生してくる。また、昇華法では自然核発生的な核形成により結晶形(ポリタイプ)および結晶面の制御が困難なものなっていた。   On the other hand, in order to produce a seed crystal substrate from a silicon carbide single crystal, processing is performed by slicing, polishing, cleaning, and the like, and a work-affected layer is introduced on the surface of the seed crystal during this processing. The work-affected layer does not have an appropriate etchant because silicon carbide is chemically stable, and is difficult to remove. For this reason, many defects such as micropipes and screw dislocations are generated in the grown crystal from the surface of the seed crystal. Further, in the sublimation method, it is difficult to control the crystal form (polytype) and the crystal plane due to spontaneous nucleation.

これを解決するために、成長初期に種結晶基板温度を2250℃〜2350℃、成長圧力を13.3〜40kPaとして成長初期層を形成した後、基板温度および成長圧力が最終的に2200〜2250℃、0.13〜2.7kPaになるように徐々に減じながら炭化珪素単結晶を成長させている(特許文献1参照)。   In order to solve this, after forming a growth initial layer at a seed crystal substrate temperature of 2250 ° C. to 2350 ° C. and a growth pressure of 13.3 to 40 kPa in the initial stage of growth, the substrate temperature and the growth pressure are finally adjusted to 2200 to 2250. A silicon carbide single crystal is grown while gradually reducing the temperature to 0.13 to 2.7 kPa at C (see Patent Document 1).

また、(0001)面あるいは(000−1)面に対して4〜45°のオフ角を有した基板を種結晶とし、成長初期に0.05mm/h以下の成長速度で成長させた後、以降は1mm/h以下の成長速度で成長させるということが行われている(特許文献2参照)。
特開2002−284599号公報 特開2005−29459号公報
In addition, a substrate having an off angle of 4 to 45 ° with respect to the (0001) plane or the (000-1) plane is used as a seed crystal, and after growing at a growth rate of 0.05 mm / h or less in the initial stage of growth, Thereafter, growth is performed at a growth rate of 1 mm / h or less (see Patent Document 2).
JP 2002-284599 A JP 2005-29459 A

しかしながら、いずれの方法も高品質な単結晶が得られるものの、成長初期から徐々に圧力を減圧させる際に、この速度によっては成長結晶中に種結晶の方位と異なった異方位結晶が混入しやすく、この結晶はウェーハとして使用できなくなり、歩留り低下、コストの上昇を引起こすという課題を有していた。   However, both methods can produce high-quality single crystals, but when the pressure is gradually reduced from the initial stage of growth, crystals with different orientations different from the orientation of the seed crystals are likely to be mixed into the growth crystals depending on this speed. This crystal cannot be used as a wafer, and has a problem of causing a decrease in yield and an increase in cost.

本発明は、この従来の課題を解決するもので、マイクロパイプと呼ばれる空洞状の欠陥や転位が極めて少なく、かつ、異方位結晶の混入のない高品質な単結晶を再現性よく成長させる成長方法を提供することを目的とする。   The present invention solves this conventional problem, and is a growth method for reproducibly growing a high-quality single crystal called a micropipe, which has very few hollow defects and dislocations and does not contain different orientation crystals. The purpose is to provide.

前記従来の課題を解決するために、本発明の炭化珪素単結晶の成長方法は、炭化珪素単結晶からなる種結晶に、所定の温度で炭化珪素原料からの昇華ガスを供給し、炭化珪素単結晶を成長させる炭化珪素単結晶の成長方法において、不活性雰囲気において、前記炭化珪素原料を2200〜2300℃の範囲内の第1の温度に、前記炭化珪素種結晶を前記第1の温度より低くかつ2200℃以上の第2の温度になるように加熱し、圧力を13.3kPa〜26.6kPaの範囲内で炭化珪素単結晶の成長速度が80μm/h以下になるように調整して炭化珪素単結晶を成長させる第一の成長工程と、前記第一の成長工程に続いて成長速度を第一の成長工程より速くするために、前記第一の成長工程における圧力から0.93kPa/h(7Torr/h)以下の速度で減圧させる減圧工程と、減圧後の圧力で、前記炭化珪素原料を前記第1の温度に、前記炭化珪素種結晶を第2の温度に加熱維持し、前記第1の成長工程における成長速度より速い成長速度で炭化珪素単結晶を成長させる第2の成長工程と、を備えることを特徴としたものである。   In order to solve the above-described conventional problems, a silicon carbide single crystal growth method of the present invention supplies a sublimation gas from a silicon carbide raw material to a seed crystal made of a silicon carbide single crystal at a predetermined temperature, thereby producing a silicon carbide single crystal. In the method for growing a silicon carbide single crystal for growing a crystal, in an inert atmosphere, the silicon carbide raw material is set to a first temperature within a range of 2200 to 2300 ° C., and the silicon carbide seed crystal is set to be lower than the first temperature. And heating to a second temperature of 2200 ° C. or higher and adjusting the pressure so that the growth rate of the silicon carbide single crystal is 80 μm / h or less within the range of 13.3 kPa to 26.6 kPa. In order to make a growth rate faster than the first growth step following the first growth step, a first growth step for growing a single crystal is 0.93 kPa / h ( 7 To r / h) Depressurization step of depressurizing at a rate of less than or equal to the above, and maintaining the silicon carbide raw material at the first temperature and the silicon carbide seed crystal at the second temperature at the pressure after depressurization, And a second growth step for growing the silicon carbide single crystal at a growth rate faster than the growth rate in the growth step.

さらに、炭化珪素単結晶の成長方法において、前記第一の成長工程の圧力と前記第二の成長工程の圧力との差である減圧幅を、17.3kPa(130Torr)以下とすることを特徴としたものである。   Further, in the method for growing a silicon carbide single crystal, a reduced pressure width that is a difference between the pressure in the first growth step and the pressure in the second growth step is 17.3 kPa (130 Torr) or less. It is a thing.

さらに、炭化珪素単結晶の成長方法において、前記第一の成長工程における炭化珪素原料と炭化珪素種結晶との間の温度勾配は5℃/cm以下であることを特徴としたものである。   Furthermore, in the method for growing a silicon carbide single crystal, the temperature gradient between the silicon carbide raw material and the silicon carbide seed crystal in the first growth step is 5 ° C./cm or less.

さらに、炭化珪素単結晶の成長方法において、前記炭化珪素種結晶は、予め表面粗さRaが0.3〜0.8nmの範囲に表面加工された種結晶であることを特徴としたものである。   Furthermore, in the method for growing a silicon carbide single crystal, the silicon carbide seed crystal is a seed crystal whose surface roughness Ra has been previously processed in the range of 0.3 to 0.8 nm. .

本発明の炭化珪素単結晶の成長方法によれば、80μm/hの成長速度で成長させる第一の成長工程から第一の成長工程より速い成長速度で成長させる第二の成長工程までの間の減圧工程における減圧速度を0.93kPa/h(7Torr/h)以下とすることにより、マイクロパイプや転位が極めて少なく、かつ、異方位結晶の混入のない高品質な単結晶を再現性よく成長させることができる。   According to the method for growing a silicon carbide single crystal of the present invention, the process from the first growth step of growing at a growth rate of 80 μm / h to the second growth step of growing at a growth rate faster than the first growth step. By setting the decompression speed in the decompression step to 0.93 kPa / h (7 Torr / h) or less, a high-quality single crystal having very few micropipes and dislocations and having no foreign crystals mixed is grown with good reproducibility. be able to.

以下に、本発明の炭化珪素単結晶の成長方法の実施の形態を図面とともに詳細に説明する。図1に、本発明実施の形態における炭化珪素単結晶を成長させる際に使用する結晶成長装置を示す。図1において、1は真空容器であり、石英やステンレスなどの高真空を保つ材料で構成されおり、必要に応じて水冷されている。2は断熱材、3は黒鉛坩堝である。断熱材2は、黒鉛坩堝3の上部温度と下部温度を上部パイロメータ4と下部パイロメータ5により測定するために、上下の中央部に穴が設けられている。結晶成長が行われる黒鉛坩堝上部には種結晶である炭化珪素種結晶6が固定されており、坩堝下部には炭化珪素原料7が収容されている。黒鉛坩堝3を加熱するために、真空容器1を介して、高周波加熱コイル8が設置されている。真空容器1は、排気口9を通して真空ポンプにより排気される。また、ガス導入口10より高純度のアルゴンガスなどを供給し、図示していないが、排気口途中に設けられた圧力調整弁により所定の圧力に保たれるようになっている。   Hereinafter, embodiments of a method for growing a silicon carbide single crystal of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a crystal growth apparatus used when growing a silicon carbide single crystal in an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a vacuum vessel, which is made of a material that maintains a high vacuum such as quartz or stainless steel, and is water-cooled as necessary. 2 is a heat insulating material, 3 is a graphite crucible. The heat insulating material 2 is provided with holes in the upper and lower central portions in order to measure the upper temperature and lower temperature of the graphite crucible 3 with the upper pyrometer 4 and the lower pyrometer 5. A silicon carbide seed crystal 6 as a seed crystal is fixed to the upper part of the graphite crucible where crystal growth is performed, and a silicon carbide raw material 7 is accommodated in the lower part of the crucible. In order to heat the graphite crucible 3, a high-frequency heating coil 8 is installed via the vacuum vessel 1. The vacuum vessel 1 is exhausted by a vacuum pump through the exhaust port 9. Further, high-purity argon gas or the like is supplied from the gas introduction port 10 and is maintained at a predetermined pressure by a pressure regulating valve provided in the middle of the exhaust port, although not shown.

続いて、炭化珪素原料7側を高温に、炭化珪素種結晶6側を低温にするために、高周波加熱コイル8を用いて加熱し、黒鉛坩堝3内の炭化珪素原料7を昇華ガスが発生する例えば2000℃以上の温度にして、昇華ガスを炭化珪素種結晶6上で再結晶化させて炭化珪素単結晶11を成長させる。   Subsequently, in order to bring the silicon carbide source material 7 side to a high temperature and the silicon carbide seed crystal 6 side to a low temperature, the silicon carbide source material 7 in the graphite crucible 3 is heated by using the high-frequency heating coil 8 to generate sublimation gas. For example, the silicon carbide single crystal 11 is grown by recrystallizing the sublimation gas on the silicon carbide seed crystal 6 at a temperature of 2000 ° C. or higher.

以下に具体的な炭化珪素単結晶の成長方法を、図1に示した炭化珪素単結晶製造装置を用いて、詳細に説明する。   Hereinafter, a specific method for growing a silicon carbide single crystal will be described in detail using the silicon carbide single crystal manufacturing apparatus shown in FIG.

炭化珪素種結晶6は、アチソン法、レーリー法および昇華法で作られた単結晶が用いられる。これらは、切断、研磨して種結晶として必要な形状とする。種結晶の最終仕上げとしては研磨ダメージを完全に取り除くために、化学機械研磨(CMP:hemical echanical olish)まで行う。本発明では、炭化珪素種結晶6の最終仕上げとしてCMPを用いたが、リアクティブイオンエッチング(RIE:Reactive Ion Etching)や水素雰囲気中での熱エッチングなどの方法を用いても同様に加工変質層を除去できる。続いて、研磨などにより炭化珪素種結晶6の表面に付着した有機物や金属不純物を取り除くために、硫酸と過酸化水素水の混合液による洗浄、アンモニアと過酸化水素水による洗浄、塩酸と過酸化水素水による洗浄を行う。この洗浄方法は、一般的にRCA洗浄と呼ばれている。その後、さらに1100℃程度で犠牲酸化を行い、フッ化水素酸により犠牲酸化膜を除去して炭化珪素種結晶6として使用する。この炭化珪素種結晶6の表面処理を行うことにより、マイクロパイプや転位が極めて少ない高品質な単結晶を再現性よく成長させることができる。 As the silicon carbide seed crystal 6, a single crystal made by the Atchison method, the Rayleigh method, and the sublimation method is used. These are cut and polished to obtain a shape necessary as a seed crystal. In order to remove polishing damage completely as the final finishing of the seed crystal, the chemical mechanical polishing: performed until (CMP C hemical M echanical P olish ). In the present invention, CMP is used as the final finish of the silicon carbide seed crystal 6, but the work-affected layer is similarly obtained by using a method such as reactive ion etching (RIE) or thermal etching in a hydrogen atmosphere. Can be removed. Subsequently, in order to remove organic substances and metal impurities adhering to the surface of the silicon carbide seed crystal 6 by polishing, cleaning with a mixed solution of sulfuric acid and hydrogen peroxide, cleaning with ammonia and hydrogen peroxide, hydrochloric acid and peroxidation Wash with hydrogen water. This cleaning method is generally called RCA cleaning. Thereafter, sacrificial oxidation is further performed at about 1100 ° C., the sacrificial oxide film is removed with hydrofluoric acid, and the silicon carbide seed crystal 6 is used. By performing the surface treatment of the silicon carbide seed crystal 6, it is possible to grow a high-quality single crystal with very few micropipes and dislocations with good reproducibility.

このように表面処理された炭化珪素種結晶6を、結晶成長部の黒鉛坩堝3の内面の上部に機械的またはカーボン系接着剤などを用いた接着による接合方法を用いて固定する。炭化珪素原料7を炭化珪素種結晶6に対向するように設置した黒鉛坩堝3を真空容器1内に置き、ロータリーポンプとターボ分子ポンプを用いて真空度3×10-4Paになるまで真空引きを行う。続いて、パイロメータの測定可能な温度である1200℃程度まで黒鉛坩堝3の外側に設置される高周波コイル8により黒鉛坩堝3を加熱昇温し、ベーキングを兼ねて真空度3×10-4Paまで待機する。ベーキングにおいて、黒鉛坩堝3、炭化珪素原料7や断熱材2などに吸着したガスや水分などを排出することができる。 The surface-treated silicon carbide seed crystal 6 is fixed to the upper part of the inner surface of the graphite crucible 3 in the crystal growth portion by using a bonding method using mechanical or carbon-based adhesive. The graphite crucible 3 in which the silicon carbide raw material 7 is placed so as to face the silicon carbide seed crystal 6 is placed in the vacuum vessel 1 and evacuated to a vacuum degree of 3 × 10 −4 Pa using a rotary pump and a turbo molecular pump. I do. Subsequently, the temperature of the graphite crucible 3 is heated by the high-frequency coil 8 installed outside the graphite crucible 3 up to about 1200 ° C., which is a measurable temperature of the pyrometer, and the degree of vacuum is increased to 3 × 10 −4 Pa for baking. stand by. In baking, gas or moisture adsorbed on the graphite crucible 3, the silicon carbide raw material 7, the heat insulating material 2, and the like can be discharged.

次に、高純度Arガスを導入し、真空容器1内の圧力が80〜93.3kPa(600〜700Torr)になるように調整する。この状態で、炭化珪素原料粉末7側の温度を2200〜2300℃内の所定の温度、例えば2230℃に加熱する。そして、炭化珪素種結晶6側の温度が炭化珪素原料7側の温度である2230℃より低くかつ2200℃以上になるように高周波コイル8と黒鉛坩堝3の相対位置を調節する。   Next, high-purity Ar gas is introduced and the pressure in the vacuum vessel 1 is adjusted to 80 to 93.3 kPa (600 to 700 Torr). In this state, the temperature on the silicon carbide raw material powder 7 side is heated to a predetermined temperature within 2200 to 2300 ° C., for example, 2230 ° C. And the relative position of the high frequency coil 8 and the graphite crucible 3 is adjusted so that the temperature by the side of the silicon carbide seed crystal 6 is lower than 2230 degreeC which is the temperature by the side of the silicon carbide raw material 7, and becomes 2200 degreeC or more.

ここで、不活性ガスとして高純度Arガスのみとしたが、必要に応じて窒素ガスなどを添加することもできる。   Here, only high-purity Ar gas is used as the inert gas, but nitrogen gas or the like can be added as necessary.

続いて、成長初期において、炭化珪素単結晶の成長速度が80μm/h以下となるようAr雰囲気圧力を13.3〜26.6kPaとなるように調節し、この状態で成長初期層を形成する。   Subsequently, in the initial stage of growth, the Ar atmosphere pressure is adjusted to 13.3 to 26.6 kPa so that the growth rate of the silicon carbide single crystal is 80 μm / h or less, and an initial growth layer is formed in this state.

ここで、炭化珪素種結晶6側の温度を炭化珪素原料7側の温度より低くかつ2200℃以上とすることにより、基板表面に付着した原料分子の基板表面でのマイグレーションが活発になり、不要な2次元核発生や15Rや3Cといった異種ポリタイプの発生を抑制でき、単結晶基板表面の昇華再結晶化も活発になり、表面の乱れた部分が再構成される。このとき、炭化珪素種結晶温度でのSi、Si2C、SiC2、SiCの種結晶近傍での昇華ガスの蒸気圧が、飽和蒸気圧より過度になってしまうと、原料分子の結晶表面への付着量が瞬間的に多くなってしまい、基板表面での原料分子のマイグレーションが阻害されてしまうため、炭化珪素種結晶温度での昇華ガスの蒸気圧が飽和蒸気圧より過度にならないように雰囲気圧力を13.3〜26.6kPaにし、成長速度として80μm/hとしておく必要がある。 Here, by setting the temperature on the silicon carbide seed crystal 6 side to be lower than the temperature on the silicon carbide source material 7 side and 2200 ° C. or higher, the migration of source molecules attached to the substrate surface becomes active and unnecessary. Generation of heterogeneous polytypes such as two-dimensional nuclei and 15R and 3C can be suppressed, and sublimation recrystallization of the surface of the single crystal substrate becomes active, and the disordered portion of the surface is reconstructed. At this time, if the vapor pressure of the sublimation gas in the vicinity of the Si, Si 2 C, SiC 2 , and SiC seed crystals at the silicon carbide seed crystal temperature becomes excessively higher than the saturated vapor pressure, the crystal molecules of the source molecules are moved to the crystal surface. The amount of deposition of the sublimation gas at the silicon carbide seed crystal temperature does not become excessively higher than the saturation vapor pressure, because the amount of adhesion of the material increases momentarily and hinders the migration of source molecules on the substrate surface. It is necessary to set the pressure to 13.3 to 26.6 kPa and the growth rate to 80 μm / h.

これらの作用により、従来種結晶基板表面から発生していたマイクロパイプやらせん転位などの結晶欠陥が抑制される。また、この初期成長層を形成する際に炭化珪素原料温度と炭化珪素種結晶温度との差を原料表面と種結晶基板表面との間の距離で割った温度勾配を5℃/cmにしておくことが好ましい。これは、温度勾配が大きいと異種ポリタイプである15Rが混入しやすくなり、この部分からマイクロパイプが多数発生するからである。   By these actions, crystal defects such as micropipes and screw dislocations that have conventionally occurred from the surface of the seed crystal substrate are suppressed. Further, when forming the initial growth layer, a temperature gradient obtained by dividing the difference between the silicon carbide source temperature and the silicon carbide seed crystal temperature by the distance between the source surface and the seed crystal substrate surface is set to 5 ° C./cm. It is preferable. This is because when the temperature gradient is large, 15R, which is a different polytype, is likely to be mixed, and a large number of micropipes are generated from this portion.

その後、成長速度が成長初期層を形成する速度より速くなるような圧力まで、減圧幅17.3kPa(130Torr)以下の範囲内で、減圧速度0.93kPa/h(7Torr/h)以下で減圧を行う。また、炭化珪素種結晶6側の温度を炭化珪素原料7側の温度より低くかつ2200℃以上を維持させたまま、この状態で所望の成長量を得るために結晶成長を行う。減圧速度を0.93kPa/h(7Torr/h)以下とすることにより、初期成長層形成時の安定な状態から急激な成長速度の変化を抑え、2次元的あるいは3次元的な核発生を抑制することができ、成長初期層から後の成長において異方位結晶が導入されるのを抑制することができる。さらに、この減圧速度の範囲で減圧幅を17.3kPa(130Torr)以下の範囲とすることにより、異方位結晶の混入を抑制することができる。もちろん、成長初期層の圧力を13.3kPaとすると、減圧幅はMAXで13.3kPaまでということになる。   Thereafter, the pressure is reduced within a range of 17.3 kPa (130 Torr) or less at a decompression rate of 0.93 kPa / h (7 Torr / h) or less until a pressure at which the growth rate becomes higher than the rate of forming the initial growth layer. Do. Further, crystal growth is performed in order to obtain a desired growth amount while maintaining the temperature on the silicon carbide seed crystal 6 side lower than the temperature on the silicon carbide raw material 7 side and 2200 ° C. or higher. By reducing the decompression rate to 0.93 kPa / h (7 Torr / h) or less, a rapid change in the growth rate is suppressed from the stable state during initial growth layer formation, and two-dimensional or three-dimensional nucleation is suppressed. It is possible to suppress the introduction of different orientation crystals in the subsequent growth from the initial growth layer. Further, by setting the reduced pressure range to 17.3 kPa (130 Torr) or less within the range of the reduced pressure rate, mixing of differently oriented crystals can be suppressed. Of course, if the pressure of the initial growth layer is 13.3 kPa, the reduced pressure range is up to 13.3 kPa in MAX.

これら本発明の実施の形態により、マイクロパイプと呼ばれる空洞状の発生はなく、転位密度<5×103個/cm2と低く、異方位結晶の混入のない炭化珪素単結晶を再現性よく製造することができる。 According to these embodiments of the present invention, a silicon carbide single crystal having no dislocation density <5 × 10 3 pieces / cm 2 and having no misorientation crystals is produced with good reproducibility without the occurrence of a hollow shape called a micropipe. can do.

本発明の炭化珪素単結晶の成長方法における減圧工程の減圧速度について、具体的に説明していく。   The decompression speed of the decompression step in the silicon carbide single crystal growth method of the present invention will be specifically described.

炭化珪素種結晶としては、直径約10mm、厚さ0.3〜0.5mm、ポリタイプ6Hのレーリー基板を用いた。これは、レーリー基板の品質がマイクロパイプが0で、転位密度が5×103〜1×104/cm2と安定しているので、成長結晶中の欠陥を正確に比較評価することができるからである。 As the silicon carbide seed crystal, a Rayleigh substrate having a diameter of about 10 mm, a thickness of 0.3 to 0.5 mm, and a polytype 6H was used. This is because the quality of the Rayleigh substrate is 0 for micropipes and the dislocation density is stable at 5 × 10 3 to 1 × 10 4 / cm 2 , so that defects in the grown crystal can be accurately compared and evaluated. Because.

レーリー基板は、成長面として使用しないカーボン面をダイヤスラリーによりRa=1.7nm程度まで研磨、成長面として使用するSi面をCMPによりRa=0.3〜0.8nmまで研磨し、1%HFで10min、超純水による流水洗浄5min、アンモニアと過酸化水素混合溶液で140℃ 10min、超純水による流水洗浄5min、5%HFで5min、超純水による流水洗浄5min、塩酸と過酸化水素混合溶液で140℃ 10min、超純水による流水洗浄5min、5%HFで5min、超純水による流水洗浄5min、1100℃ 6h犠牲酸化、5%HFで10min、超純水による流水洗浄10minの処理を施した。   For a Rayleigh substrate, a carbon surface not used as a growth surface is polished to about Ra = 1.7 nm with a diamond slurry, and a Si surface used as a growth surface is polished to Ra = 0.3 to 0.8 nm by CMP to 1% HF For 10 min, flowing water cleaning with ultrapure water for 5 min, ammonia and hydrogen peroxide mixed solution at 140 ° C. for 10 min, flowing water cleaning with ultrapure water for 5 min, 5% HF for 5 min, flowing water cleaning with ultrapure water for 5 min, hydrochloric acid and hydrogen peroxide Treatment with mixed solution at 140 ° C. for 10 min, flowing water cleaning with ultrapure water for 5 min, 5% HF for 5 min, flowing water cleaning with ultrapure water for 5 min, 1100 ° C. for 6 h sacrificial oxidation, 5% HF for 10 min, flowing water cleaning with ultrapure water for 10 min Was given.

黒鉛坩堝の内径24mm、深さ80mmの坩堝に、炭化珪素原料(大平洋ランダム株式会社製GMF−SP)を高さ52mmになるように充填した。種結晶は黒鉛坩堝の蓋の中央に突出している直径10mm、高さ8mmの台座下面に貼付け保持した。   A graphite crucible having an inner diameter of 24 mm and a depth of 80 mm was filled with a silicon carbide raw material (GMF-SP manufactured by Taihei Random Co., Ltd.) so as to have a height of 52 mm. The seed crystal was pasted and held on the bottom surface of a pedestal having a diameter of 10 mm and a height of 8 mm protruding from the center of the lid of the graphite crucible.

この黒鉛坩堝を断熱材で覆い、真空容器にセットした。2×10-4Paになるまでターボ分子ポンプにより真空引きを行い、1200℃まで昇温し、3×10-4Paになるまでベーキングを行い、Arガスを導入し80kPa(600Torr)になるように調節し、黒鉛坩堝下部が2230℃になるまで昇温する。このとき、黒鉛坩堝上部温度が2220℃になるようにコイル位置を調節する。その後、50minかけて25.3kPa(190Torr)まで減圧を行い、この状態で5h成長を行う。 The graphite crucible was covered with a heat insulating material and set in a vacuum container. Vacuuming is performed with a turbo molecular pump until 2 × 10 −4 Pa, the temperature is raised to 1200 ° C., baking is performed until 3 × 10 −4 Pa, and Ar gas is introduced to reach 80 kPa (600 Torr). The temperature is raised until the lower part of the graphite crucible reaches 2230 ° C. At this time, the coil position is adjusted so that the upper temperature of the graphite crucible becomes 2220 ° C. Thereafter, the pressure is reduced to 25.3 kPa (190 Torr) over 50 minutes, and growth is performed in this state for 5 hours.

この後、12kPa(90Torr)まで0.13〜1.33kPa/h(1〜10Torr/h)の減圧速度で減圧を行い、異方位結晶混入の確認を行った。初期成長層と減圧工程の間に、成長雰囲気ガスに窒素ガスを添加して炭化珪素単結晶を着色し、成長条件が変化した位置が分かるように窒素マーカーを導入した。成長した結晶は、成長方向と平行にスライスし、鏡面研磨し、透過顕微鏡観察による断面観察を行った。そして、初期成長層の成長速度とマイクロパイプの発生本数も調べた。   Then, pressure reduction was performed at a pressure reduction rate of 0.13 to 1.33 kPa / h (1 to 10 Torr / h) up to 12 kPa (90 Torr), and mixing of differently oriented crystals was confirmed. Between the initial growth layer and the decompression step, nitrogen gas was added to the growth atmosphere gas to color the silicon carbide single crystal, and a nitrogen marker was introduced so that the position where the growth conditions changed could be seen. The grown crystal was sliced parallel to the growth direction, mirror-polished, and subjected to cross-sectional observation by transmission microscope observation. The growth rate of the initial growth layer and the number of micropipes generated were also examined.

減圧速度を変化させた場合の、異方位結晶混入の有無、初期成長層の成長速度およびマイクロパイプ発生本数の結果を表1に示す。   Table 1 shows the results of the presence or absence of different orientation crystals, the growth rate of the initial growth layer, and the number of generated micropipes when the decompression rate was changed.

Figure 2007119273
減圧速度1.07kPa/h(8Torr/h)以上において、図2に示すように初期成長層12と減圧工程のほぼ界面の窒素マーカー13の近傍から異方位結晶14が混入されているという結果が得られた。この理由として、以下のようなことが考えられる。昇華法において、種結晶としてc面を成長面として使用する場合、種結晶は面方位が(0001)からずれの無いジャスト基板や(0001)から方位を故意にずらしたオフ基板が使用される。ジャスト基板といっても、完全にジャストにすることは難しく、0.5°程度のオフ角が存在してしまう。このため、種結晶表面としては、図3(a)に示すように、原子ステップ15とテラス16から構成されるような表面状態になる。この上に単結晶を安定した成長条件で成長させているときは、図3(b)に示すように、テラス16に原料分子17が吸着し、途中で脱離する分子もあるが、この原料分子17が基板表面でマイグレーションし、原子ステップ15に到達しステップフロー的に結晶成長が進行するという過程をたどる。しかしながら、安定した成長条件から成長条件を変化させ、急激にテラス16上に吸着する原料分子17が増加すると、図3(c)に示すように、吸着した原料分子17が原子ステップ15に向かってマイグレーションしていく途中で他の原料分子と結びつき、そこで新たな成長核18の発生を起こしてしまう。この成長核18は、テラス16上で発生するため、種結晶の結晶構造の情報が受継がれにくく、これが異方位結晶の核の原因となってしまう。この図3(c)に示した状態が、減圧速度1.07kPa/h(8Torr/h)以上の減圧速度の条件に相当していると予想される。
Figure 2007119273
As shown in FIG. 2, when the decompression speed is 1.07 kPa / h (8 Torr / h) or more, as shown in FIG. 2, the result is that the differently oriented crystal 14 is mixed from the vicinity of the nitrogen marker 13 at the interface between the initial growth layer 12 and the decompression process. Obtained. The following can be considered as this reason. In the sublimation method, when the c-plane is used as a growth surface as a seed crystal, a just substrate in which the plane orientation is not deviated from (0001) or an off-substrate whose orientation is intentionally deviated from (0001) is used. Even if it is a just substrate, it is difficult to make it completely just, and an off angle of about 0.5 ° exists. For this reason, the seed crystal surface is in a surface state composed of atomic steps 15 and terraces 16 as shown in FIG. When a single crystal is grown on this under stable growth conditions, as shown in FIG. 3 (b), there are molecules that adsorb raw material molecules 17 on terraces 16 and desorb in the middle. The molecule 17 migrates on the surface of the substrate, reaches the atomic step 15 and follows the process of crystal growth in a step flow. However, when the growth conditions are changed from a stable growth condition and the number of raw material molecules 17 adsorbed on the terrace 16 abruptly increases, the adsorbed raw material molecules 17 move toward the atomic step 15 as shown in FIG. In the course of migration, it is combined with other raw material molecules, where new growth nuclei 18 are generated. Since the growth nuclei 18 are generated on the terrace 16, information on the crystal structure of the seed crystal is difficult to be inherited, and this causes the nuclei of differently oriented crystals. It is expected that the state shown in FIG. 3C corresponds to a pressure reduction speed condition of 1.07 kPa / h (8 Torr / h) or higher.

また、初期成長層の成長速度は70μm/h程度であり、断面観察からではあるが、このときに発生していたマイクロパイプの本数は0であった。   In addition, the growth rate of the initial growth layer was about 70 μm / h, and the number of micropipes generated at this time was zero although it was from cross-sectional observation.

これらのことより、初期成長層形成後の減圧速度は0.93kPa/h(7Torr/h)以下であることが好ましいことが分かった。   From these facts, it was found that the pressure reduction rate after forming the initial growth layer is preferably 0.93 kPa / h (7 Torr / h) or less.

本発明の炭化珪素単結晶の成長方法における減圧工程の減圧幅について、具体的に説明していく。   The reduced pressure range of the reduced pressure step in the silicon carbide single crystal growth method of the present invention will be specifically described.

炭化珪素種結晶としては、直径約10mm、厚さ0.3〜0.5mm、ポリタイプ6Hのレーリー基板を用い、表面の処理と洗浄に関しては実施例1と同様であるので省略する。   As the silicon carbide seed crystal, a Rayleigh substrate having a diameter of about 10 mm, a thickness of 0.3 to 0.5 mm, and a polytype 6H is used.

黒鉛坩堝の内径24mm、深さ80mmの坩堝に、炭化珪素原料(大平洋ランダム株式会社製GMF−SP)を高さ52mmになるように充填した。種結晶は黒鉛坩堝の蓋の中央に突出している直径10mm、高さ8mmの台座下面に貼付け保持した。   A graphite crucible having an inner diameter of 24 mm and a depth of 80 mm was filled with a silicon carbide raw material (GMF-SP manufactured by Taihei Random Co., Ltd.) so as to have a height of 52 mm. The seed crystal was pasted and held on the bottom surface of a pedestal having a diameter of 10 mm and a height of 8 mm protruding from the center of the lid of the graphite crucible.

この黒鉛坩堝を断熱材で覆い、真空容器にセットした。2×10-4Paになるまでターボ分子ポンプにより真空引きを行い、1200℃まで昇温し、3×10-4Paになるまでベーキングを行い、Arガスを導入し80kPa(600Torr)になるように調節し、黒鉛坩堝下部が2230℃になるまで昇温した。このとき、黒鉛坩堝上部温度が2220℃になるようにコイル位置を調節した。その後、50minかけて25.3kPa(190Torr)まで減圧を行い、この圧力下で5h成長を行った。この後、25.3kPaの圧力より0.67kPa/h(5Torr/h)の減圧速度で6.7〜22kPa(50〜165Torr)の間で減圧幅を変化させて減圧を行い、減圧後の圧力が目標とする圧力に到達した時点で成長を止め、異方位結晶混入の確認を行った。初期成長層と減圧工程の境界および減圧工程において1.33kPa(10Torr)ごとに成長雰囲気ガスに窒素ガスを混入して炭化珪素単結晶を着色し、窒素マーカーを導入し、成長条件が変化した位置が分かるようにした。成長した結晶は、成長方向と平行にスライスし、鏡面研磨し、透過顕微鏡観察による断面観察を行った。今回も、ついでに、初期成長層の成長速度とマイクロパイプの発生本数も調べた。 The graphite crucible was covered with a heat insulating material and set in a vacuum container. Vacuuming is performed with a turbo molecular pump until 2 × 10 −4 Pa, the temperature is raised to 1200 ° C., baking is performed until 3 × 10 −4 Pa, and Ar gas is introduced to reach 80 kPa (600 Torr). The temperature was raised until the lower part of the graphite crucible reached 2230 ° C. At this time, the coil position was adjusted so that the upper temperature of the graphite crucible was 2220 ° C. Thereafter, the pressure was reduced to 25.3 kPa (190 Torr) over 50 minutes, and growth was performed for 5 hours under this pressure. Thereafter, the pressure is reduced by changing the pressure reduction range from 6.7 to 22 kPa (50 to 165 Torr) at a pressure reduction rate of 0.67 kPa / h (5 Torr / h) from the pressure of 25.3 kPa. When the pressure reached the target pressure, the growth was stopped and mixed with different orientation crystals was confirmed. The boundary between the initial growth layer and the depressurization process, and the position where the growth conditions have changed by introducing nitrogen gas into the growth atmosphere gas by coloring nitrogen gas into the growth atmosphere gas every 1.33 kPa (10 Torr) and introducing nitrogen markers I was able to understand. The grown crystal was sliced parallel to the growth direction, mirror-polished, and subjected to cross-sectional observation by transmission microscope observation. This time, we also investigated the growth rate of the initial growth layer and the number of micropipes.

減圧幅を変化させた場合の、異方位結晶混入の有無、初期成長層の成長速度およびマイクロパイプ発生本数の結果を表2に示す。   Table 2 shows the results of the presence / absence of mixing of differently oriented crystals, the growth rate of the initial growth layer, and the number of generated micropipes when the decompression width is changed.

Figure 2007119273
減圧幅18.7kPa(140Torr)以上において、異方位結晶が混入されていることがわかった。減圧幅18.7kPa(140Torr)では、断面観察より成長終了間際に異方位結晶が混入しており、減圧幅20kPa(150Torr)、21.3kPa(160Torr)、22kPa(165Torr)では、減圧幅が18.7kPa(140Torr)になった近辺から異方位結晶が混入しているという結果が得られた。昇華法による単結晶の成長において、図4に示すように、成長温度が一定の条件化では、成長圧力が減少していくとともに成長速度が反比例的あるいは指数関数的に速くなる関係がある。これは、原料粉末から昇華する原料分子が圧力の減少とともに急激に増加することを意味している。このことから、減圧幅18.7kPa(140Torr)以上において異方位結晶が混入した理由は、17.3kPa(130Torr)の減圧幅を越えた圧力での成長において、急激に原料粉末から昇華した原料分子が成長単結晶表面に到達し、図3(c)における現象と同様のことが起こったためと考えられる。
Figure 2007119273
It was found that different orientation crystals were mixed at a reduced pressure width of 18.7 kPa (140 Torr) or more. In the reduced pressure width 18.7 kPa (140 Torr), different orientation crystals are mixed just before the end of the growth from the cross-sectional observation, and in the reduced pressure width 20 kPa (150 Torr), 21.3 kPa (160 Torr), and 22 kPa (165 Torr), the reduced pressure width is 18 The result was that differently oriented crystals were mixed from around 7 kPa (140 Torr). In the growth of a single crystal by the sublimation method, as shown in FIG. 4, there is a relationship in which the growth pressure decreases and the growth rate increases inversely or exponentially when the growth temperature is constant. This means that the raw material molecules sublimated from the raw material powder increase rapidly as the pressure decreases. From this, the reason why the hetero-oriented crystal was mixed at a reduced pressure width of 18.7 kPa (140 Torr) or more is that the raw material molecules rapidly sublimated from the raw material powder during growth at a pressure exceeding the reduced pressure width of 17.3 kPa (130 Torr). This is thought to be due to the fact that the same phenomenon as that in FIG.

また、初期成長層における成長速度は65〜77μm/h程度であり、断面観察からではあるが、発生していたマイクロパイプの本数は0であった。   In addition, the growth rate in the initial growth layer was about 65 to 77 μm / h, and the number of micropipes that were generated was 0, although from the cross-sectional observation.

これらのことより、初期成長層形成後の最適な減圧速度での減圧幅は17.3kPa(130Torr)以下が好ましいことが分かった。   From these facts, it was found that the pressure reduction width at the optimum pressure reduction speed after the formation of the initial growth layer is preferably 17.3 kPa (130 Torr) or less.

本発明の炭化珪素単結晶の成長方法における第一の成長工程の炭化珪素原料と炭化珪素種結晶との間の温度勾配について、具体的に説明していく。   The temperature gradient between the silicon carbide raw material and the silicon carbide seed crystal in the first growth step in the method for growing a silicon carbide single crystal of the present invention will be specifically described.

炭化珪素種結晶としては、直径約10mm、厚さ0.3〜0.5mm、ポリタイプ6Hのレーリー基板を用い、表面の処理と洗浄に関しては実施例1と同様であるので省略する。   As the silicon carbide seed crystal, a Rayleigh substrate having a diameter of about 10 mm, a thickness of 0.3 to 0.5 mm, and a polytype 6H is used.

黒鉛坩堝の内径24mm、深さ80mmの坩堝に、炭化珪素原料粉末(大平洋ランダム株式会社製GMF−SP)を高さ60mmになるように充填した。種結晶は黒鉛坩堝の蓋の下面に貼付け保持した。炭化珪素原料粉末表面と種結晶表面との間の距離は、20mmになるようにした。   A graphite crucible having an inner diameter of 24 mm and a depth of 80 mm was filled with silicon carbide raw material powder (GMF-SP manufactured by Taiyo Random Co., Ltd.) to a height of 60 mm. The seed crystal was stuck and held on the lower surface of the lid of the graphite crucible. The distance between the silicon carbide raw material powder surface and the seed crystal surface was set to 20 mm.

この黒鉛坩堝を断熱材で覆い、真空容器にセットした。2×10-4Paになるまでターボ分子ポンプにより真空引きを行い、1200℃まで昇温し、3×10-4Paになるまでベーキングを行い、Arガスを導入し80kPa(600Torr)になるように調節し、黒鉛坩堝下部が2230℃になるまで昇温した。このとき、黒鉛坩堝上部温度が2210℃〜2230℃の間で変化するようにコイル位置を調節した。その後、50minかけて25.3kPa(190Torr)まで減圧を行い、この状態で5h成長を行った。この後、0.67kPa/h(5Torr/h)の減圧速度で8kPa(60Torr)まで減圧を行い、この圧力で64h成長を行った。成長した結晶は、結晶表面側の一部は成長方向と垂直方向に、残りの結晶は成長方向と平行方向にスライスし、研磨を行った。平行方向にスライスした結晶に関しては、透過偏向顕微鏡観察により、初期成長層に15Rなどの異種ポリタイプが混入していないかどうかの確認を行った。垂直方向にスライスした結晶に関しては、溶融KOHにより500℃ 5minエッチングを行い、顕微鏡観察によりマイクロパイプと転位の数を計測し、それぞれ密度を算出した。 The graphite crucible was covered with a heat insulating material and set in a vacuum container. Vacuuming is performed with a turbo molecular pump until 2 × 10 −4 Pa, the temperature is raised to 1200 ° C., baking is performed until 3 × 10 −4 Pa, and Ar gas is introduced to reach 80 kPa (600 Torr). The temperature was raised until the lower part of the graphite crucible reached 2230 ° C. At this time, the coil position was adjusted so that the upper temperature of the graphite crucible varied between 2210 ° C and 2230 ° C. Thereafter, the pressure was reduced to 25.3 kPa (190 Torr) over 50 minutes, and growth was performed in this state for 5 hours. Thereafter, the pressure was reduced to 8 kPa (60 Torr) at a pressure reduction rate of 0.67 kPa / h (5 Torr / h), and growth was performed at this pressure for 64 hours. The grown crystal was polished by cutting a part of the crystal surface side in a direction perpendicular to the growth direction and the remaining crystal in a direction parallel to the growth direction. For crystals sliced in the parallel direction, it was confirmed by observation with a transmission deflection microscope whether different types of polytypes such as 15R were mixed in the initial growth layer. The crystal sliced in the vertical direction was etched with molten KOH at 500 ° C. for 5 min, the number of micropipes and dislocations was measured by microscopic observation, and the density was calculated.

温度勾配を0〜10℃/cmで変化させた場合の、成長初期の異種ポリタイプ混入の有無、マイクロパイプ密度、転位密度の結果を表3に示す。温度勾配は、坩堝下部温度と坩堝上部温度との差を原料表面と種結晶表面との間の距離20mmで割って算出した。   Table 3 shows the results of presence / absence of mixing of different polytypes at the initial stage of growth, micropipe density, and dislocation density when the temperature gradient was changed at 0 to 10 ° C./cm. The temperature gradient was calculated by dividing the difference between the crucible lower temperature and the crucible upper temperature by the distance of 20 mm between the raw material surface and the seed crystal surface.

Figure 2007119273
7℃/cm以上の温度勾配において、種結晶表面と成長単結晶の界面から15R異種ポリタイプが混入していることが観察でき、この領域からマイクロパイプが発生していた。転位密度としては、0〜15℃/cmの間のすべての温度勾配条件において、5×103/cm2以下となっていた。7℃/cm以上の温度勾配において15R異種ポリタイプが混入した理由としては、温度勾配が大きいということは原料側温度と成長結晶との間の温度差が大きいということであり、これは種結晶周辺の過飽和度が大きいということを意味している。過飽和度が大きいということは、種結晶表面に到達する原料から昇華した原料分子の量が多くなり、図3(c)に示した現象と同様のことが起こり、テラス上に種結晶の結晶構造を受継がない核が発生し、これにより15Rが混入したものと考えられる。
Figure 2007119273
In a temperature gradient of 7 ° C./cm or more, it was observed that a 15R heteropolytype was mixed from the interface between the seed crystal surface and the grown single crystal, and micropipes were generated from this region. The dislocation density was 5 × 10 3 / cm 2 or less under all temperature gradient conditions between 0 ° C. and 15 ° C./cm. The reason why the 15R heteropolytype is mixed in a temperature gradient of 7 ° C./cm or more is that the large temperature gradient means that the temperature difference between the raw material side temperature and the grown crystal is large. This means that the degree of supersaturation in the surrounding area is large. A large degree of supersaturation means that the amount of raw material molecules sublimated from the raw material reaching the surface of the seed crystal increases, and the same phenomenon as shown in FIG. 3C occurs, and the crystal structure of the seed crystal on the terrace It is considered that nuclei that do not inherit are generated and 15R is mixed in.

これらのことから、第1の成長工程においては、温度勾配としては5℃/cm以下とすることが好ましいことがわかった。   From these facts, it was found that the temperature gradient is preferably 5 ° C./cm or less in the first growth step.

温度勾配は、上述のように第1の成長工程において問題となるが、第2の成長工程においては、炭化珪素原料7を2200〜2300℃の範囲内の第1の温度に、炭化珪素種結晶6を第1の温度より低くかつ2200℃以上の第2の温度になるように加熱された状態であればよく減圧下で温度変化が生じ温度勾配が多少変化しても問題とならない。   As described above, the temperature gradient becomes a problem in the first growth step. In the second growth step, the silicon carbide seed crystal is brought to the first temperature within the range of 2200 to 2300 ° C. It is sufficient that 6 is heated to a second temperature lower than the first temperature and 2200 ° C. or higher, and there is no problem even if the temperature gradient is changed under a reduced pressure and the temperature gradient is slightly changed.

本発明の炭化珪素単結晶の成長方法における炭化珪素種結晶の表面状態について、具体的に説明していく。   The surface state of the silicon carbide seed crystal in the silicon carbide single crystal growth method of the present invention will be specifically described.

炭化珪素種結晶としては、直径約10mm、厚さ0.3〜0.5mm、ポリタイプ6Hのレーリー基板を用いた。成長面でないカーボン面をダイヤスラリーによりRa=1.7nm程度まで研磨、成長面であるSi面をCMPによりRa=0.3〜0.8nmまで研磨したものと、成長面でないカーボン面をダイヤスラリーによりRa=1.7nm程度まで研磨、成長面であるSi面をパッドを用いたダイヤスラリーによるポリッシュによりRa=1nmまで研磨したもの、の2種類を用意した。種結晶の洗浄は、実施例1と全く同じであるので省略する。   As the silicon carbide seed crystal, a Rayleigh substrate having a diameter of about 10 mm, a thickness of 0.3 to 0.5 mm, and a polytype 6H was used. A carbon surface that is not a growth surface is polished to about Ra = 1.7 nm with diamond slurry, a Si surface that is a growth surface is polished to Ra = 0.3 to 0.8 nm by CMP, and a carbon surface that is not a growth surface is diamond slurry. Two types were prepared: polishing to Ra = 1.7 nm by polishing, and polishing the Si surface as a growth surface to Ra = 1 nm by polishing with a diamond slurry using a pad. Since cleaning of the seed crystal is exactly the same as in Example 1, it is omitted.

黒鉛坩堝の内径24mm、深さ80mmの坩堝に、炭化珪素原料粉末(大平洋ランダム株式会社製GMF−SP)を高さ60mmになるように充填した。種結晶は黒鉛坩堝の蓋の下面に貼付け保持した。炭化珪素原料粉末表面と種結晶表面との間の距離は、20mmになるようにした。   A graphite crucible having an inner diameter of 24 mm and a depth of 80 mm was filled with silicon carbide raw material powder (GMF-SP manufactured by Taiyo Random Co., Ltd.) to a height of 60 mm. The seed crystal was stuck and held on the lower surface of the lid of the graphite crucible. The distance between the silicon carbide raw material powder surface and the seed crystal surface was set to 20 mm.

この黒鉛坩堝を断熱材で覆い、真空容器にセットした。2×10-4Paになるまでターボ分子ポンプにより真空引きを行い、1200℃まで昇温し、3×10-4Paになるまでベーキングを行い、Arガスを導入し80kPa(600Torr)になるように調節し、黒鉛坩堝下部が2230℃になるまで昇温した。このとき、黒鉛坩堝上部温度が2220℃になるようにコイル位置を調節した。その後、50minかけて25.3kPa(190Torr)まで減圧を行い、この状態で5h成長を行った。この後、0.67kPa/h(5Torr/h)の減圧速度で8kPa(60Torr)まで減圧を行い、この圧力で64h成長を行った。成長した結晶は、成長方向と垂直方向にスライスし、鏡面研磨を行った。この結晶に関しては、溶融KOHにより500℃ 5minエッチングを行い、顕微鏡によりマイクロパイプと転位の数を計測し、それぞれ密度を算出した。 The graphite crucible was covered with a heat insulating material and set in a vacuum container. Vacuuming is performed with a turbo molecular pump until 2 × 10 −4 Pa, the temperature is raised to 1200 ° C., baking is performed until 3 × 10 −4 Pa, and Ar gas is introduced to reach 80 kPa (600 Torr). The temperature was raised until the lower part of the graphite crucible reached 2230 ° C. At this time, the coil position was adjusted so that the upper temperature of the graphite crucible was 2220 ° C. Thereafter, the pressure was reduced to 25.3 kPa (190 Torr) over 50 minutes, and growth was performed in this state for 5 hours. Thereafter, the pressure was reduced to 8 kPa (60 Torr) at a pressure reduction rate of 0.67 kPa / h (5 Torr / h), and growth was performed at this pressure for 64 hours. The grown crystal was sliced in the direction perpendicular to the growth direction and mirror polished. For this crystal, etching was performed at 500 ° C. for 5 minutes with molten KOH, the number of micropipes and dislocations was measured with a microscope, and the density was calculated.

CMPまで行った種結晶を用いた場合と、ダイヤポリッシュまで行った種結晶を用いた場合のそれぞれについて結晶欠陥の評価を行った。また、再現性をとるために、それぞれに対して3回の成長と評価を行った。結果を表4に示す。   Crystal defects were evaluated for each of the case where the seed crystal that had been subjected to CMP was used and the case where the seed crystal that was subjected to diamond polishing was used. Moreover, in order to take reproducibility, three times of growth and evaluation were performed for each. The results are shown in Table 4.

Figure 2007119273
種結晶をCMP処理まで施した場合は、マイクロパイプ密度0本/cm2、転位密度<4×103個/cm2が再現性よく得られた。種結晶の処理がダイヤモンドのポリッシュまでの場合は、マイクロパイプ密度<5本/cm2、転位密度<1.9×104個/cm2と欠陥が多く、成長ごとに非常に値がばらついており、非常に不安定であった。これらのことから、種結晶の単結晶を成長させる表面をCMP処理まで行い、Ra=0.3〜0.8nmとすることにより、マイクロパイプ密度0本/cm2、転位密度<4×103個/cm2が再現性よく得られることがわかった。
Figure 2007119273
When the seed crystal was subjected to CMP treatment, a micropipe density of 0 pieces / cm 2 and a dislocation density of <4 × 10 3 pieces / cm 2 were obtained with good reproducibility. When the processing of the seed crystal is up to diamond polish, there are many defects such as micropipe density <5 / cm 2 and dislocation density <1.9 × 10 4 / cm 2, and the value varies greatly with each growth. It was very unstable. From these facts, the surface on which the single crystal of the seed crystal is grown is subjected to CMP treatment, and Ra = 0.3 to 0.8 nm, whereby the micropipe density is 0 / cm 2 and the dislocation density is less than 4 × 10 3. It was found that pieces / cm 2 can be obtained with good reproducibility.

本発明にかかる炭化珪素単結晶の成長方法は、昇華法を用いて種結晶から単結晶を成長させる場合において、結晶の成長過程で新たな欠陥を発生させること無く高品質な単結晶を成長させることができるため、昇華法により成長できる単結晶である硫化カドミウム(CdS)、セレン化カドミウム(CdSe)、硫化亜鉛(ZnS)、窒化アルミニウム(AlN)、窒化ホウ素(BN)などにも適用できる。   The silicon carbide single crystal growth method according to the present invention grows a high-quality single crystal without generating new defects in the crystal growth process when a single crystal is grown from a seed crystal using a sublimation method. Therefore, the present invention can also be applied to cadmium sulfide (CdS), cadmium selenide (CdSe), zinc sulfide (ZnS), aluminum nitride (AlN), boron nitride (BN), and the like which are single crystals that can be grown by a sublimation method.

本発明の実施の形態における炭化珪素単結晶成長用の成長装置の概略構成図Schematic configuration diagram of a growth apparatus for silicon carbide single crystal growth in an embodiment of the present invention 本発明の実施例1における炭化珪素成長における減圧速度が大の場合の異方位結晶が混入した炭化珪素単結晶の断面を示す図The figure which shows the cross section of the silicon carbide single crystal in which the different direction crystal was mixed in the case of the decompression speed | rate in the silicon carbide growth in Example 1 of this invention being large 本発明の実施例1における異方位結晶混入のメカニズムを説明するための図The figure for demonstrating the mechanism of the hetero-oriented crystal mixing in Example 1 of this invention 炭化珪素単結晶の成長速度と成長圧力の関係を示す図Figure showing the relationship between the growth rate and growth pressure of silicon carbide single crystals 炭化珪素単結晶を成長させるための昇華法装置の概略図Schematic diagram of a sublimation apparatus for growing silicon carbide single crystals

符号の説明Explanation of symbols

1 真空容器
2 断熱材
3 黒鉛坩堝
4 上部パイロメータ
5 下部パイロメータ
6 炭化珪素種結晶
7 炭化珪素原料
8 高周波加熱コイル
9 排気口
10 ガス導入口
11 炭化珪素単結晶
12 初期成長層
13 窒素マーカー
14 異方位結晶
15 原子ステップ
16 テラス
17 原料分子
18 成長核
19 容器体
20 蓋体
21 SiC粉末
22 種結晶
23 単結晶
DESCRIPTION OF SYMBOLS 1 Vacuum vessel 2 Heat insulating material 3 Graphite crucible 4 Upper pyrometer 5 Lower pyrometer 6 Silicon carbide seed crystal 7 Silicon carbide raw material 8 High frequency heating coil 9 Exhaust port 10 Gas inlet 11 Silicon carbide single crystal 12 Initial growth layer 13 Nitrogen marker 14 Different orientation Crystal 15 Atomic step 16 Terrace 17 Raw material molecule 18 Growth nucleus 19 Container body 20 Lid body 21 SiC powder 22 Seed crystal 23 Single crystal

Claims (4)

炭化珪素単結晶からなる種結晶に、所定の温度で炭化珪素原料からの昇華ガスを供給し、炭化珪素単結晶を成長させる炭化珪素単結晶の成長方法において、
不活性雰囲気において、前記炭化珪素原料を2200〜2300℃の範囲内の第1の温度に、前記炭化珪素種結晶を前記第1の温度より低くかつ2200℃以上の第2の温度になるように加熱し、圧力を13.3kPa〜26.6kPaの範囲内で炭化珪素単結晶の成長速度が80μm/h以下になるように調整して炭化珪素単結晶を成長させる第一の成長工程と、
前記第一の成長工程に続いて成長速度を第一の成長工程より速くするために、前記第一の成長工程における圧力から0.93kPa/h(7Torr/h)以下の速度で減圧させる減圧工程と、
減圧後の圧力で、前記炭化珪素原料を前記第1の温度に、前記炭化珪素種結晶を第2の温度に加熱維持し、前記第1の成長工程における成長速度より速い成長速度で炭化珪素単結晶を成長させる第2の成長工程と、を備えることを特徴とする炭化珪素単結晶の成長方法。
In a silicon carbide single crystal growth method of supplying a sublimation gas from a silicon carbide raw material to a seed crystal composed of a silicon carbide single crystal at a predetermined temperature to grow a silicon carbide single crystal,
In an inert atmosphere, the silicon carbide raw material is set to a first temperature within a range of 2200 to 2300 ° C., and the silicon carbide seed crystal is set to a second temperature lower than the first temperature and higher than 2200 ° C. A first growth step of growing the silicon carbide single crystal by heating and adjusting the pressure so that the growth rate of the silicon carbide single crystal is 80 μm / h or less within the range of 13.3 kPa to 26.6 kPa;
In order to make the growth rate higher than that of the first growth step following the first growth step, the pressure reduction step of reducing pressure from the pressure in the first growth step at a rate of 0.93 kPa / h (7 Torr / h) or less. When,
The silicon carbide raw material is heated to the first temperature and the silicon carbide seed crystal is heated to the second temperature at a pressure after the pressure reduction, and the silicon carbide single crystal is grown at a growth rate faster than the growth rate in the first growth step. And a second growth step for growing the crystal. A method for growing a silicon carbide single crystal, comprising:
前記第一の成長工程の圧力と前記第二の成長工程の圧力との差である減圧幅を、17.3kPa(130Torr)以下とすることを特徴とする請求項1記載の炭化珪素単結晶の成長方法。 2. The silicon carbide single crystal according to claim 1, wherein a reduced pressure width that is a difference between the pressure in the first growth step and the pressure in the second growth step is 17.3 kPa (130 Torr) or less. Growth method. 前記第一の成長工程における炭化珪素原料と炭化珪素種結晶との間の温度勾配は5℃/cm以下であることを特徴とする請求項1記載の炭化珪素単結晶の成長方法。 The method for growing a silicon carbide single crystal according to claim 1, wherein a temperature gradient between the silicon carbide raw material and the silicon carbide seed crystal in the first growth step is 5 ° C / cm or less. 前記炭化珪素種結晶は、予め表面粗さRaが0.3〜0.8nmの範囲に表面加工された種結晶であることを特徴とする請求項1に記載の炭化珪素単結晶の成長方法。

2. The method for growing a silicon carbide single crystal according to claim 1, wherein the silicon carbide seed crystal is a seed crystal whose surface roughness Ra is previously processed in a range of 0.3 to 0.8 nm.

JP2005310770A 2005-10-26 2005-10-26 Method for growing silicon carbide single crystal Pending JP2007119273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005310770A JP2007119273A (en) 2005-10-26 2005-10-26 Method for growing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005310770A JP2007119273A (en) 2005-10-26 2005-10-26 Method for growing silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JP2007119273A true JP2007119273A (en) 2007-05-17

Family

ID=38143507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005310770A Pending JP2007119273A (en) 2005-10-26 2005-10-26 Method for growing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP2007119273A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290895A (en) * 2007-05-23 2008-12-04 Panasonic Corp Method for producing silicon carbide single crystal
JP2010116275A (en) * 2008-11-11 2010-05-27 Bridgestone Corp Production method of silicon carbide single crystal
CN102912443A (en) * 2012-10-17 2013-02-06 北京七星华创电子股份有限公司 Silicon carbide crystal crystal growing furnace control system
WO2013031856A1 (en) 2011-08-29 2013-03-07 新日鐵住金株式会社 Silicon carbide single crystal wafer and manufacturing method for same
JP2013189323A (en) * 2012-03-12 2013-09-26 Sumitomo Electric Ind Ltd Method for manufacturing silicon carbide single crystal
JP2014034485A (en) * 2012-08-08 2014-02-24 Mitsubishi Electric Corp Method for producing single crystal
WO2014069859A1 (en) * 2012-10-31 2014-05-08 엘지이노텍 주식회사 Epitaxial wafer and method for manufacturing same
WO2014077368A1 (en) 2012-11-15 2014-05-22 新日鐵住金株式会社 Silicon carbide single crystal substrate and process for producing same
JP2014101252A (en) * 2012-11-20 2014-06-05 Sumitomo Electric Ind Ltd Silicon carbide substrate, silicon carbide ingot, and production methods thereof
WO2016051485A1 (en) 2014-09-30 2016-04-07 新日鉄住金マテリアルズ株式会社 Silicon carbide single crystal wafer and method for producing silicon carbide single crystal ingot
US9422639B2 (en) 2014-03-06 2016-08-23 Sumitomo Electric Industries, Ltd. Silicon carbide substrate, silicon carbide ingot, and methods for manufacturing silicon carbide substrate and silicon carbide ingot
JP2016188174A (en) * 2016-08-02 2016-11-04 住友電気工業株式会社 Silicon carbide substrate and silicon carbide ingot
JP2018140903A (en) * 2017-02-28 2018-09-13 昭和電工株式会社 Method for manufacturing silicon carbide single crystal ingot
CN113388888A (en) * 2021-06-22 2021-09-14 山东天岳先进科技股份有限公司 Silicon carbide crystal, seed crystal used by same and preparation method of seed crystal

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290895A (en) * 2007-05-23 2008-12-04 Panasonic Corp Method for producing silicon carbide single crystal
JP2010116275A (en) * 2008-11-11 2010-05-27 Bridgestone Corp Production method of silicon carbide single crystal
KR101530057B1 (en) * 2011-08-29 2015-06-18 신닛테츠스미킨 카부시키카이샤 Silicon carbide single crystal wafer and manufacturing method for same
JP5506954B2 (en) * 2011-08-29 2014-05-28 新日鐵住金株式会社 Silicon carbide single crystal substrate
CN103620095B (en) * 2011-08-29 2017-02-15 新日铁住金株式会社 Silicon carbide single crystal wafer and manufacturing method for same
JP2014028757A (en) * 2011-08-29 2014-02-13 Nippon Steel & Sumitomo Metal Silicon carbide single crystal ingot and substrate cut from the same
CN103620095A (en) * 2011-08-29 2014-03-05 新日铁住金株式会社 Silicon carbide single crystal wafer and manufacturing method for same
US9234297B2 (en) 2011-08-29 2016-01-12 Nippon Steel & Sumitomo Metal Corporation Silicon carbide single crystal wafer and manufacturing method for same
WO2013031856A1 (en) 2011-08-29 2013-03-07 新日鐵住金株式会社 Silicon carbide single crystal wafer and manufacturing method for same
JP2013189323A (en) * 2012-03-12 2013-09-26 Sumitomo Electric Ind Ltd Method for manufacturing silicon carbide single crystal
JP2014034485A (en) * 2012-08-08 2014-02-24 Mitsubishi Electric Corp Method for producing single crystal
CN102912443B (en) * 2012-10-17 2016-02-17 北京七星华创电子股份有限公司 Silicon carbide crystal growth furnace control system
CN102912443A (en) * 2012-10-17 2013-02-06 北京七星华创电子股份有限公司 Silicon carbide crystal crystal growing furnace control system
WO2014069859A1 (en) * 2012-10-31 2014-05-08 엘지이노텍 주식회사 Epitaxial wafer and method for manufacturing same
CN104584190A (en) * 2012-10-31 2015-04-29 Lg伊诺特有限公司 Epitaxial wafer and method for manufacturing same
US9873954B2 (en) 2012-10-31 2018-01-23 Lg Innotek Co., Ltd. Epitaxial wafer and method for fabricating the same
WO2014077368A1 (en) 2012-11-15 2014-05-22 新日鐵住金株式会社 Silicon carbide single crystal substrate and process for producing same
JPWO2014077368A1 (en) * 2012-11-15 2017-01-05 新日鐵住金株式会社 Method for producing silicon carbide single crystal
JP5692466B2 (en) * 2012-11-15 2015-04-01 新日鐵住金株式会社 Method for producing silicon carbide single crystal
US10119200B2 (en) 2012-11-15 2018-11-06 Showa Denko K.K. Silicon carbide single crystal substrate and process for producing same
JP2014101252A (en) * 2012-11-20 2014-06-05 Sumitomo Electric Ind Ltd Silicon carbide substrate, silicon carbide ingot, and production methods thereof
US9422639B2 (en) 2014-03-06 2016-08-23 Sumitomo Electric Industries, Ltd. Silicon carbide substrate, silicon carbide ingot, and methods for manufacturing silicon carbide substrate and silicon carbide ingot
US9605358B2 (en) 2014-03-06 2017-03-28 Sumitomo Electric Industries, Ltd. Silicon carbide substrate, silicon carbide ingot, and methods for manufacturing silicon carbide substrate and silicon carbide ingot
WO2016051485A1 (en) 2014-09-30 2016-04-07 新日鉄住金マテリアルズ株式会社 Silicon carbide single crystal wafer and method for producing silicon carbide single crystal ingot
KR20180010344A (en) 2014-09-30 2018-01-30 신닛테츠스미킹 마테리알즈 가부시키가이샤 Silicon carbide single crystal wafer
US10202706B2 (en) 2014-09-30 2019-02-12 Showa Denko K.K. Silicon carbide single crystal wafer and method of manufacturing a silicon carbide single crystal ingot
JP2016188174A (en) * 2016-08-02 2016-11-04 住友電気工業株式会社 Silicon carbide substrate and silicon carbide ingot
JP2018140903A (en) * 2017-02-28 2018-09-13 昭和電工株式会社 Method for manufacturing silicon carbide single crystal ingot
CN113388888A (en) * 2021-06-22 2021-09-14 山东天岳先进科技股份有限公司 Silicon carbide crystal, seed crystal used by same and preparation method of seed crystal

Similar Documents

Publication Publication Date Title
JP2007119273A (en) Method for growing silicon carbide single crystal
JP6237848B2 (en) Method for manufacturing silicon carbide single crystal substrate for epitaxial silicon carbide wafer and silicon carbide single crystal substrate for epitaxial silicon carbide wafer
CN106435733B (en) Silicon carbide single crystal and silicon carbide single crystal wafer
JP4954654B2 (en) Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
KR102106722B1 (en) Method for manufacturing epitaxial silicon carbide single crystal wafer
JP4603386B2 (en) Method for producing silicon carbide single crystal
JP4954593B2 (en) Epitaxial silicon carbide single crystal substrate manufacturing method, and device using the obtained epitaxial silicon carbide single crystal substrate
KR20130137247A (en) Silicon carbide single crystal wafer and manufacturing method for same
JP5045272B2 (en) Method for manufacturing single crystal silicon carbide substrate
JP2009091222A (en) PRODUCTION METHOD FOR SiC SINGLE CRYSTAL, SiC SINGLE CRYSTAL WAFER AND SiC SEMICONDUCTOR DEVICE
JP2006117512A (en) Method for producing silicon carbide single crystal and silicon carbide single crystal grown by the method, single crystal ingot and silicon carbide single crystal wafer
JP4830073B2 (en) Method for growing silicon carbide single crystal
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
JP4690906B2 (en) Seed crystal for growing silicon carbide single crystal, method for producing the same, and method for producing silicon carbide single crystal
JP5786759B2 (en) Method for manufacturing epitaxial silicon carbide wafer
JPH11268989A (en) Production of single crystal
JP2008290895A (en) Method for producing silicon carbide single crystal
JP4408247B2 (en) Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP4494856B2 (en) Seed crystal for silicon carbide single crystal growth, method for producing the same, and crystal growth method using the same
US7455730B2 (en) Method for growth of silicon carbide single crystal, silicon carbide seed crystal, and silicon carbide single crystal
JP5761264B2 (en) Method for manufacturing SiC substrate
JP5370025B2 (en) Silicon carbide single crystal ingot
JP2005029459A (en) Method for growing silicon carbide single crystal, silicon carbide seed crystal, and silicon carbide single crystal
WO2023187882A1 (en) Aln single crystal substrate
Bakin SiC Homoepitaxy and Heteroepitaxy