JP2007115938A - Thin film thermistor - Google Patents

Thin film thermistor Download PDF

Info

Publication number
JP2007115938A
JP2007115938A JP2005306750A JP2005306750A JP2007115938A JP 2007115938 A JP2007115938 A JP 2007115938A JP 2005306750 A JP2005306750 A JP 2005306750A JP 2005306750 A JP2005306750 A JP 2005306750A JP 2007115938 A JP2007115938 A JP 2007115938A
Authority
JP
Japan
Prior art keywords
film
thin film
electrode
insulating
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005306750A
Other languages
Japanese (ja)
Inventor
Yasutaka Tanaka
靖崇 田中
Jun Kamiyama
準 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishizuka Electronics Corp
Original Assignee
Ishizuka Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Electronics Corp filed Critical Ishizuka Electronics Corp
Priority to JP2005306750A priority Critical patent/JP2007115938A/en
Publication of JP2007115938A publication Critical patent/JP2007115938A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film thermistor which improves its dielectric strength performance, is prevented from varying in characteristics due to an external leading terminal connected to a heat-sensitive film and the electrode material of an interdigital electrode, and demonstrates excellent long-term reliability. <P>SOLUTION: The interdigital electrodes of the thin film thermistor used as the electrodes of the heat-sensitive film formed on the one end of the long, thin insulating board, and the heat-sensitive film, are all covered with a glass protective film and configured so as to be isolated from an external atmosphere; the pair of external leading terminals connected to the pair of interdigital electrodes are formed so as to extend outside of the glass protective film; and its dielectric strength can be improved by the above glass protective film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、エアコン、冷蔵庫等の家庭電気製品や各種電子機器の温度制御装置等に用いられる温度検知用センサに用いられる薄膜サーミスタの構造に関するものである。   The present invention relates to a structure of a thin film thermistor used in a temperature detection sensor used in home electric products such as air conditioners and refrigerators, temperature control devices of various electronic devices, and the like.

従来、このような家庭電気製品や各種電子機器に用いられている温度センサとしては、図7、8に示すように金属酸化物の焼結体からなるサーミスタチップ18の両面に電極を有するものや、直方体形状の長手方向の両端部に端子電極を有する表面実装タイプのサーミスタ素子19等を2芯平行絶縁被覆電線20の一端部の絶縁被覆を剥がし露出した芯線21a、21b 間に挟持させた後、半田付けして芯線に固定し、その後、サーミスタチップやサーミスタ素子周囲にエポキシ樹脂等の絶縁材料を塗布し熱硬化させて製品としたり、サーミスタチップやサーミスタ素子を上記のように半田付けした後、有底パイプ内に挿入して周囲に絶縁材料を注入して熱硬化させて製品としていた。   Conventionally, as temperature sensors used in such household electric products and various electronic devices, as shown in FIGS. 7 and 8, there are electrodes having electrodes on both sides of a thermistor chip 18 made of a sintered metal oxide, After the surface mount type thermistor element 19 having terminal electrodes at both ends in the longitudinal direction of the rectangular parallelepiped is sandwiched between the exposed core wires 21a and 21b by peeling off the insulation coating at one end of the two-core parallel insulation coated electric wire 20 After soldering and fixing to the core wire, after applying an insulating material such as epoxy resin around the thermistor chip or thermistor element and thermosetting it, or after soldering the thermistor chip or thermistor element as described above Then, it was inserted into a bottomed pipe, and an insulating material was injected into the surrounding area to be thermally cured to obtain a product.

しかしながら、上記したような板状に成形された素子の両面に電極を形成したサーミスタチップあるいは表面実装タイプのサーミスタ素子を絶縁被覆電線の芯線間に挟持した温度センサにおいては、サーミスタチップの側面部分が露出しているために、有底金属パイプ内に直接樹脂封止した場合には、前記パイプの内壁面とサーミスタ間の距離を十分に離すことができず絶縁耐圧不良となる場合があった。このような不良の発生をなくす方法としては、予め温度センサ先端部を絶縁材料でコーティングしておき一定の厚みの絶縁層をサーミスタ素子の周囲に形成するようにしなければならない。この方法は、絶縁耐圧不良をなくせるが絶縁層を形成する分、有底金属パイプに封入後の温度センサの熱応答性が悪くなる欠点がある。また、先端部を絶縁材料でコーティングするために、サーミスタ素子が取り付けられた電線の先端部分が太くなりパイプ等に封入することができなくなる場合あり、温度センサとして組み立てるときに支障が出るなどの欠点があった。さらに、上記の理由から熱容量にバラツキが生じ、完成した温度センサの熱応答性が変動するなどの欠点があった。   However, in a temperature sensor in which electrodes are formed on both surfaces of a plate-shaped element as described above or a surface-mount type thermistor element is sandwiched between core wires of an insulation-coated electric wire, the side portion of the thermistor chip is Since it is exposed, when the resin is directly sealed in the bottomed metal pipe, the distance between the inner wall surface of the pipe and the thermistor cannot be sufficiently separated, resulting in a breakdown voltage failure. As a method of eliminating the occurrence of such a defect, it is necessary to coat the tip of the temperature sensor with an insulating material in advance and form an insulating layer having a certain thickness around the thermistor element. Although this method can eliminate the insulation breakdown voltage defect, there is a drawback that the thermal responsiveness of the temperature sensor after being sealed in the bottomed metal pipe is deteriorated as much as the insulating layer is formed. In addition, since the tip part is coated with an insulating material, the tip part of the wire to which the thermistor element is attached may become thick and cannot be sealed in a pipe or the like, which may cause problems when assembled as a temperature sensor. was there. Furthermore, for the above reasons, the heat capacity varies, and the heat response of the completed temperature sensor fluctuates.

このような欠点を解消する方法として、薄膜サーミスタチップを用いる方法がある。薄膜サーミスタは、半導体微細加工技術を用い金属酸化物からなる感熱膜と金属薄膜層からなる電極端子部を絶縁基板上にパターン形成した構造の温度センサであるために、小型化が容易であり医療用カテーテル用の温度センサや小型のパイプに封入した温度センサとして利用用途が拡大の傾向にある。薄膜サーミスタの特徴は、感熱膜及び金属薄膜層が高精度にコントロールして形成できるために電気的特性や寸法精度のバラツキが小さく、一回の生産工程で多数の薄膜サーミスタを作製できる利点がある。従って、これらの薄膜サーミスタをパイプに封入して温度センサを組み立てる場合、形状にバラツキがないために完成した温度センサの性能が安定していて信頼性に優れている特徴がある。上記のように作られた温度センサは利用用途が広く、比較的低い温度から250℃前後の高温度の用途まで広く使われている。   As a method for solving such a drawback, there is a method using a thin film thermistor chip. A thin film thermistor is a temperature sensor with a structure in which a heat sensitive film made of a metal oxide and an electrode terminal part made of a metal thin film layer are patterned on an insulating substrate using a semiconductor microfabrication technology. As a temperature sensor for a medical catheter or a temperature sensor enclosed in a small pipe, the application is tending to expand. The features of thin film thermistors are that heat sensitive films and metal thin film layers can be formed with high precision control, so there is little variation in electrical characteristics and dimensional accuracy, and there is an advantage that many thin film thermistors can be manufactured in a single production process. . Therefore, when assembling a temperature sensor by enclosing these thin film thermistors in a pipe, the performance of the completed temperature sensor is stable and excellent in reliability because there is no variation in shape. The temperature sensor made as described above has a wide range of uses, and is widely used from a relatively low temperature to a high temperature around 250 ° C.

しかしながら、上記のように利用用途が広がるにつれて比較的高い温度で使用した場合に、感熱膜は絶縁保護膜等によって被覆されていて外気に対して保護されているが、電極端子部が外気に露出した構造であり、電極端子部や感熱膜に形成された電極を構成する金属薄膜層が白金(Pt)で形成されているために、絶縁保護膜と金属薄膜層との接触界面部分から白金を通して酸素の出入りが生じ、これによって金属酸化物から構成されたサーミスタの感熱膜の特性が変動し、経時変化率が大きくなって長期信頼性に劣る欠点があった。   However, when it is used at a relatively high temperature as the use application spreads as described above, the heat sensitive film is covered with an insulating protective film or the like and protected against the outside air, but the electrode terminal portion is exposed to the outside air. Since the metal thin film layer constituting the electrode formed on the electrode terminal portion or the heat sensitive film is formed of platinum (Pt), platinum is passed through the contact interface portion between the insulating protective film and the metal thin film layer. Oxygen entered and exited, and this changed the characteristics of the thermosensitive film of the thermistor made of metal oxide, resulting in a high rate of change with time and poor long-term reliability.

また、従来の電極端子部は絶縁被覆電線の芯線に接続固定できるような構造を有していないために、上記したような有底パイプ内に挿入固定する場合に接続部分に不要な力が加わり剥離断線が発生するなどの欠点があり、特に形状の小さなパイプ等に封入した温度センサの組み立てる場合に作業の効率が悪かった。   In addition, since the conventional electrode terminal portion does not have a structure that can be connected and fixed to the core wire of the insulation-coated electric wire, an unnecessary force is applied to the connecting portion when it is inserted and fixed in the bottomed pipe as described above. There are drawbacks such as the occurrence of disconnection disconnection, and the efficiency of work is particularly poor when assembling a temperature sensor enclosed in a small-sized pipe or the like.

本発明は、上記のような欠点を解消し信頼性の高い薄膜サーミスタを提供することを目的とする。   An object of the present invention is to provide a highly reliable thin film thermistor that eliminates the above-described drawbacks.

本発明は、上記課題を達成するためになされたものであり、請求項1の発明は、細長い絶縁基板と、前記絶縁基板の一面上に形成された絶縁膜と、前記絶縁膜上にパターン形成された金属薄膜層からなる一対の櫛歯電極と、前記櫛歯電極の端部から延びて前記絶縁基板上の一端に形成された一対の外部引出端子部と、前記絶縁膜を下地とし前記櫛歯電極上にパターン形成された金属酸化物からなる感熱膜と、前記感熱膜と保護する絶縁保護膜と、前記一対の外部引出端子部を除く前記絶縁保護膜を被覆するガラス保護膜とからなることを特徴とする薄膜サーミスタである。   The present invention has been made in order to achieve the above object, and the invention of claim 1 is directed to an elongated insulating substrate, an insulating film formed on one surface of the insulating substrate, and pattern formation on the insulating film. A pair of comb electrodes formed of a thin metal film layer, a pair of external lead terminal portions extending from ends of the comb electrodes and formed at one end on the insulating substrate, and the comb using the insulating film as a base. A heat-sensitive film made of a metal oxide patterned on a tooth electrode, an insulating protective film that protects the heat-sensitive film, and a glass protective film that covers the insulating protective film excluding the pair of external lead terminal portions This is a thin film thermistor.

本発明の請求項2に係わる発明は、前記櫛歯電極の歯部の間隔が、前記一対の外部引出端子部に近い部分と、前記一対の外部引出端子部から離れた部分で間隔が異なるように形成されていることを特徴とする請求項1に記載の薄膜サーミスタである。   The invention according to claim 2 of the present invention is such that the interval between the tooth portions of the comb electrode is different between a portion close to the pair of external lead terminal portions and a portion away from the pair of external lead terminal portions. The thin film thermistor according to claim 1, wherein the thin film thermistor is formed.

本発明の請求項3に係わる発明は、前記絶縁基板と、前記絶縁基板上に形成された一対の電極パッド及び絶縁膜と、前記一対の電極パッドを端部とし前記絶縁膜上にパターン形成された金属薄膜層からなる一対の櫛歯電極と、前記絶縁膜を下地とし前記櫛歯電極上に形成された感熱膜と、前記感熱膜を保護する絶縁保護膜と、前記絶縁保護膜と前記櫛歯電極の端部を被覆するガラス保護膜とからなる薄膜サーミスタであって、前記絶縁基板上の一端に前記電極パッド上の前記櫛歯電極の端部から延びる一対の外部引出端子部が形成さていることを特徴とする請求項1、2に記載の薄膜サーミスタである。   According to a third aspect of the present invention, the insulating substrate, a pair of electrode pads and an insulating film formed on the insulating substrate, and a pattern formed on the insulating film with the pair of electrode pads as ends. A pair of comb-shaped electrodes made of a thin metal layer, a heat-sensitive film formed on the comb-shaped electrode with the insulating film as a base, an insulating protective film for protecting the heat-sensitive film, the insulating protective film, and the comb A thin film thermistor comprising a glass protective film covering the end of the tooth electrode, wherein a pair of external lead terminal portions extending from the end of the comb electrode on the electrode pad are formed at one end on the insulating substrate. The thin film thermistor according to claim 1, wherein the thermistor is a thin film thermistor.

本発明の請求項4に係わる発明は、前記絶縁基板上に形成された前記一対の外部引出端子部を構成する第1金属下地膜がチタン(Ti)からなり、前記第1金属下地膜上に形成された第1電極薄膜と、前記第1電極薄膜から延びる櫛歯電極が白金(Pt)によって形成されていることを特徴とする請求項1、2に記載の薄膜サーミスタである。   In the invention according to claim 4 of the present invention, the first metal base film constituting the pair of external lead terminal portions formed on the insulating substrate is made of titanium (Ti), and is formed on the first metal base film. The thin film thermistor according to claim 1, wherein the formed first electrode thin film and the comb electrode extending from the first electrode thin film are formed of platinum (Pt).

本発明の請求項5に係わる発明は、前記絶縁基板上に形成された前記一対の電極パッドを構成する第2金属下地膜と第2電極薄膜が、それぞれチタン(Ti)と白金(Pt)からなり、前記一対の外部引出端子部を構成する第1金属下地膜と第1電極薄膜が、それぞれチタン(Ti)とニッケル(Ni)または金(Au)、櫛歯電極が白金(Pt)によって形成されていることを特徴とする請求項3に記載の薄膜サーミスタである。   According to a fifth aspect of the present invention, the second metal base film and the second electrode thin film constituting the pair of electrode pads formed on the insulating substrate are made of titanium (Ti) and platinum (Pt), respectively. The first metal base film and the first electrode thin film constituting the pair of external lead terminal portions are respectively formed of titanium (Ti) and nickel (Ni) or gold (Au), and the comb electrode is formed of platinum (Pt). The thin film thermistor according to claim 3, wherein the thermistor is a thin film thermistor.

本発明は、細長い絶縁基板上の長さ方向に対向するように櫛歯電極を設けた構造であるために、形成する前記櫛歯電極の歯部の数を調整しやすく、従って薄膜サーミスタの抵抗値を調整しやすい特徴がある。また、前記歯部間の間隔を狭くして前記歯部の数を多数設けることによって、薄膜サーミスタとして完成した後にトリミングによる抵抗値の微調整がしやすい特徴がある。   Since the present invention has a structure in which comb-shaped electrodes are provided so as to be opposed to each other in the length direction on an elongated insulating substrate, it is easy to adjust the number of teeth of the comb-shaped electrodes to be formed, and therefore the resistance of the thin film thermistor It is easy to adjust the value. In addition, by providing a large number of the tooth portions by narrowing the interval between the tooth portions, it is easy to finely adjust the resistance value by trimming after the thin film thermistor is completed.

また、本発明は、前記櫛歯電極の歯部間の間隔を長さ方向に粗密に形成することで、薄膜サーミスタとして完成した後の抵抗値を微調整しやすくできる特徴がある。   In addition, the present invention is characterized in that the resistance value after completion as a thin film thermistor can be easily fine-tuned by forming the gaps between the teeth of the comb-shaped electrode roughly in the length direction.

さらに本発明は、絶縁基板上に形成されたサーミスタ材料からなる感熱膜全体を絶縁保護膜及びガラス保護膜によって完全に被覆し、前記一対の櫛歯電極の一端に接続する一対の外部引出端子部を前記ガラス保護膜の外側に延在するように形成することによって、前記櫛歯電極と前記感熱膜が外気雰囲気から遮断されることになり、薄膜サーミスタが高温雰囲気中に置かれても、櫛歯電極材料と外気中の酸素との反応が生じにくく、結果として感熱膜の電気的特性が安定するために、高温で使用した場合でも長期信頼性に優れた薄膜サーミスタを得ることができる。特に、感熱膜の電極材料として優れた性能を有する白金(Pt)を櫛歯電極に用いた場合に、その効果は非常に大きい。   Furthermore, the present invention provides a pair of external lead terminal portions that are entirely covered with an insulating protective film and a glass protective film, and are connected to one end of the pair of comb-tooth electrodes. Is formed so as to extend to the outside of the glass protective film, so that the comb electrode and the heat sensitive film are shielded from the outside atmosphere, and even if the thin film thermistor is placed in a high temperature atmosphere, the comb Since the reaction between the tooth electrode material and oxygen in the outside air hardly occurs and as a result, the electrical characteristics of the heat sensitive film are stabilized, a thin film thermistor having excellent long-term reliability can be obtained even when used at high temperatures. In particular, when platinum (Pt) having excellent performance as an electrode material for a heat sensitive film is used for a comb electrode, the effect is very large.

また、絶縁基板と感熱膜との間に絶縁膜を設けたことで、感熱膜を構成する金属酸化物が熱処理時に絶縁基板と反応して絶縁基板中に熱拡散することを防止し、感熱膜の電気的特性を安定にする効果がある。   In addition, by providing an insulating film between the insulating substrate and the heat sensitive film, the metal oxide constituting the heat sensitive film is prevented from reacting with the insulating substrate during heat treatment and thermally diffusing into the insulating substrate. It has the effect of stabilizing the electrical characteristics of the.

また、外部引出端子部を形成する場合、絶縁基板面との密着性を改善する目的で金属下地膜を設けて、外部引出端子部にリード線を接続する場合の局部的加熱による電極剥離を防止し、さらに櫛歯電極については電極パッドを予め形成した上に櫛歯電極の端部が位置するように形成し、かつ外部引出端子部と櫛歯電極を別々に形成することにより、櫛歯電極の端部と絶縁基板との密着性を改善するとともに、外部引出端子部にリード線を接続したときの局部加熱による櫛歯電極に対する熱の影響を小さくすることができ、薄膜サーミスタとしての信頼性を向上させることができる。   Also, when forming the external lead terminal part, a metal base film is provided for the purpose of improving the adhesion to the insulating substrate surface, and electrode peeling due to local heating when connecting the lead wire to the external lead terminal part is prevented. Further, for the comb electrode, the electrode pad is formed in advance so that the end of the comb electrode is positioned, and the external lead terminal portion and the comb electrode are separately formed. The reliability of the thin film thermistor can be improved by improving the adhesion between the end of the lead wire and the insulating substrate and reducing the effect of heat on the comb electrode due to local heating when the lead wire is connected to the external lead terminal. Can be improved.

本発明の薄膜サーミスタは、細長い絶縁基板上の一端に感熱膜を形成し、他端に外部引出端子部を設けた構造であり、外部引出端子部を除く絶縁基板先端部分をガラス保護膜で被覆してあるために、金属パイプ内に封入した場合でもパイプ内壁面と薄膜サーミスタ間の絶縁距離を十分に維持できるために耐絶縁性に優れている。   The thin film thermistor of the present invention has a structure in which a heat-sensitive film is formed on one end on an elongated insulating substrate and an external lead terminal portion is provided on the other end, and the tip portion of the insulating substrate except the external lead terminal portion is covered with a glass protective film. Therefore, even when encapsulated in a metal pipe, the insulation distance between the inner wall surface of the pipe and the thin film thermistor can be sufficiently maintained, so that the insulation resistance is excellent.

以下、本発明に係る薄膜サーミスタの第1実施態様を図1〜図3を参照して説明する。図1は本発明の薄膜サーミスタの第1の実施形態の外観を示す斜視図である。図2は、図1に示した薄膜サーミスタの薄膜形成工程の一実施形態を示すA−A断面図である。図において、絶縁基板1は、厚さが50〜300μm程度のアルミナ、窒化アルミニウム、ジルコニア、石英、ムライト、ステアタイト等のセラミック基板あるいはサファイア基板からなり、その表面の平滑度が0.05μm以下に研磨されたものを使用する。図1に示す薄膜サーミスタの形状は、アルミナ基板からなる幅0.2mm、長さ0.6mmの大きさである。初めに、研磨された絶縁基板1の一表面上にスパッタ法、プラズマCVD法などを用いて二酸化ケイ素(SiO2)、窒化ケイ素(Si3N4)等からなる絶縁被膜層が、厚さ0.1〜0.5μmに成膜される。そしてフォトエッチング法を用いてパターニングし、絶縁基板1上に絶縁膜2が形成される(図2(a))。絶縁膜2は、熱処理時に後述する感熱膜と絶縁基板1の反応を防止して薄膜サーミスタとしての安定な電気的特性を得るために必要なものである。なお、本実施例において、先に絶縁基板上に後述する金属下地膜をパターン形成した後に前記絶縁膜2を設けてもよい。   Hereinafter, a first embodiment of a thin film thermistor according to the present invention will be described with reference to FIGS. FIG. 1 is a perspective view showing an appearance of a first embodiment of a thin film thermistor of the present invention. 2 is a cross-sectional view taken along line AA showing one embodiment of a thin film formation step of the thin film thermistor shown in FIG. In the figure, the insulating substrate 1 is made of a ceramic substrate or sapphire substrate such as alumina, aluminum nitride, zirconia, quartz, mullite, steatite having a thickness of about 50 to 300 μm, and the surface has a smoothness of 0.05 μm or less. Use a polished one. The shape of the thin film thermistor shown in FIG. 1 has a width of 0.2 mm and a length of 0.6 mm made of an alumina substrate. First, an insulating coating layer made of silicon dioxide (SiO 2), silicon nitride (Si 3 N 4) or the like is formed on one surface of the polished insulating substrate 1 using a sputtering method, a plasma CVD method, or the like with a thickness of 0.1 to 0. The film is formed to 5 μm. Then, patterning is performed using a photoetching method, and an insulating film 2 is formed on the insulating substrate 1 (FIG. 2A). The insulating film 2 is necessary for preventing a reaction between a heat-sensitive film, which will be described later, and the insulating substrate 1 during heat treatment and obtaining stable electrical characteristics as a thin film thermistor. In this embodiment, the insulating film 2 may be provided after a metal base film, which will be described later, is formed on the insulating substrate.

次に、外部引出端子部を形成するための金属下地膜形成の工程に進む。絶縁基板1上にスパッタリングまたは蒸着等の方法によって、チタン(Ti)、クロム(Cr)、ニッケル(Ni)、タングステン(W)、タンタル(Ta)、Ni−Cr合金の少なくとも一種からなる金属薄膜層と白金(Pt)、金(Au)、パラジウム(Pd)またはパラジウム合金等の少なくとも一種からなる金属薄膜層が順次成膜形成される。続いて、フォトエッチング法によって、積層された前記金属薄膜層の不要部分を除去して、一対の第1金属下地膜3a、3bと第1電極薄膜3c、3dがパターン形成される(図2(b))。前記第1金属下地膜3a、3bは、絶縁膜2の端部に接するか、あるいは端部に接近する程度に形成される。   Next, the process proceeds to a process of forming a metal base film for forming the external lead terminal portion. A metal thin film layer made of at least one of titanium (Ti), chromium (Cr), nickel (Ni), tungsten (W), tantalum (Ta), and Ni—Cr alloy on the insulating substrate 1 by a method such as sputtering or vapor deposition. Then, a metal thin film layer made of at least one of platinum (Pt), gold (Au), palladium (Pd), or a palladium alloy is sequentially formed. Subsequently, unnecessary portions of the stacked metal thin film layers are removed by a photoetching method, and a pair of first metal base films 3a, 3b and first electrode thin films 3c, 3d are patterned (FIG. 2 ( b)). The first metal base films 3a and 3b are formed so as to be in contact with the end portion of the insulating film 2 or close to the end portion.

続いて、外部引出端子部と前記絶縁膜2上に櫛歯電極を形成する工程に進む。絶縁2と一対の第1電極薄膜3c、3d上に、白金(Pt)、金(Au)、パラジウム(Pd)またはパラジウム合金等の少なくとも一種からなる金属薄膜層を成膜する。前記第1金属下地膜3a、3bは、絶縁基板1との密着性をよくするために形成されるものであり、前記第1金属下地膜3a、3bとその上の第1電極薄膜3c、3dの総厚みは0.1〜0.5μm程度である。前記金属薄膜層を成膜後、フォトエッチング法によって、前記金属薄膜層の不要部分を除去して、前記第1金属下地膜3a、3bと第1電極薄膜3c、3d上に一対の外部引出端子部5a、5bと前記外部引出端子部5a、5bから延びて前記絶縁膜2上に対向する一対の櫛歯電極6a、6bがパターン形成される(図2(c))。7a、7bは、前記櫛歯電極6a、6bの歯部である。   Subsequently, the process proceeds to a step of forming a comb electrode on the external lead terminal portion and the insulating film 2. A metal thin film layer made of at least one of platinum (Pt), gold (Au), palladium (Pd), or a palladium alloy is formed on the insulation 2 and the pair of first electrode thin films 3c and 3d. The first metal base films 3a and 3b are formed to improve the adhesion to the insulating substrate 1, and the first metal base films 3a and 3b and the first electrode thin films 3c and 3d thereon. The total thickness is about 0.1 to 0.5 μm. After the metal thin film layer is formed, unnecessary portions of the metal thin film layer are removed by a photoetching method, and a pair of external lead terminals are provided on the first metal base films 3a and 3b and the first electrode thin films 3c and 3d. A pair of comb electrodes 6a and 6b extending from the portions 5a and 5b and the external lead terminal portions 5a and 5b and facing the insulating film 2 are patterned (FIG. 2C). Reference numerals 7a and 7b denote tooth portions of the comb electrodes 6a and 6b.

この後、感熱膜を形成する工程へ進む。前工程で形成された絶縁膜2と櫛歯電極6a、6bとを覆うように、スパッタ法などによって、0.3〜2.0μmの厚さに感熱層を成膜し、パターニング法を用いて前記絶縁膜2上に感熱膜4がパターン形成される(図2(d))。その後、感熱膜4は400〜1200℃の温度で1〜5時間の熱処理が行われる。成膜される感熱層は、マンガン、ニッケル、コバルト、鉄などからなる複合酸化物の焼結体をターゲットとして、スパッタリング法を用いて絶縁基板上に形成される。感熱膜4の電気的特性を微調整する必要がある場合は、感熱膜4上に図示しない第2の感熱膜をパターン形成し、感熱膜の厚みを調整することによって電気的特性を調整することができる。また、感熱膜の電気的特性を調整する第2の手段は、図示しないが図2(c)の絶縁膜2上に第1の感熱膜をパターン形成した後に、前記感熱膜上に櫛歯電極を形成する。そして、さらに前記櫛歯電極上に厚みを調整した第2の感熱膜を形成することによって特性の微調整が可能となる。即ち櫛歯電極が第1及び第2の感熱膜によって挟持された構造となる。   Thereafter, the process proceeds to a step of forming a heat sensitive film. A heat-sensitive layer is formed to a thickness of 0.3 to 2.0 μm by sputtering or the like so as to cover the insulating film 2 and the comb-tooth electrodes 6a and 6b formed in the previous step, and a patterning method is used. A heat sensitive film 4 is patterned on the insulating film 2 (FIG. 2D). Thereafter, the heat sensitive film 4 is heat-treated at a temperature of 400 to 1200 ° C. for 1 to 5 hours. The heat-sensitive layer to be formed is formed on an insulating substrate using a sputtering method using a composite oxide sintered body made of manganese, nickel, cobalt, iron, or the like as a target. When it is necessary to finely adjust the electrical characteristics of the heat sensitive film 4, a second heat sensitive film (not shown) is formed on the heat sensitive film 4 and the electrical characteristics are adjusted by adjusting the thickness of the heat sensitive film. Can do. The second means for adjusting the electrical characteristics of the heat sensitive film is not shown, but after the first heat sensitive film is patterned on the insulating film 2 in FIG. 2 (c), comb-shaped electrodes are formed on the heat sensitive film. Form. Further, it is possible to finely adjust the characteristics by forming a second heat-sensitive film having a thickness adjusted on the comb electrode. That is, the comb electrode is sandwiched between the first and second heat sensitive films.

続いて、絶縁保護膜と後述するガラス保護膜を形成する工程に進む。ガラス保護膜と感熱膜との反応を防止する目的で、0.5〜2.0μmの二酸化ケイ素(SiO2)、窒化ケイ素(Si3N4)等からなる絶縁保護膜8をパターン形成する。さらに、感熱膜4に対する耐湿性を向上させ、外気雰囲気の影響を小さくするために絶縁保護膜8上にガラスペーストをスクリーン印刷等の手段で塗布した後、400〜800℃で熱処理してガラス保護膜9を形成する(図2(e))。ガラス保護膜9はスクリーン印刷法の他に、基板全体に二酸化ケイ素(SiO2)、窒化ケイ素(Si3N4)等からなる絶縁保護層とガラス膜層を形成した後、フォトエッチングによるパターニングによって絶縁保護膜8とガラス保護膜9を同時形成してもよい。   Then, it progresses to the process of forming an insulating protective film and the glass protective film mentioned later. In order to prevent the reaction between the glass protective film and the heat-sensitive film, an insulating protective film 8 made of silicon dioxide (SiO 2), silicon nitride (Si 3 N 4) or the like having a thickness of 0.5 to 2.0 μm is formed in a pattern. Furthermore, in order to improve the moisture resistance to the heat sensitive film 4 and reduce the influence of the outside atmosphere, a glass paste is applied on the insulating protective film 8 by means of screen printing or the like, followed by heat treatment at 400 to 800 ° C. to protect the glass. A film 9 is formed (FIG. 2E). In addition to the screen printing method, the glass protective film 9 is formed by forming an insulating protective layer and a glass film layer made of silicon dioxide (SiO2), silicon nitride (Si3N4) or the like on the entire substrate, and then patterning by photoetching. And the glass protective film 9 may be formed simultaneously.

上記した薄膜サーミスタは、ひとつの薄膜サーミスタの構造を示したものである。実際は絶縁基板上に上記構造を有する薄膜サーミスタが多数配列された薄膜サーミスタ集合基板が形成され、個々の薄膜サーミスタチップに切断分離するために、ダイシングテープ等に貼着してからレーザースクライブ装置またはダイシングソー等を用いて切断する。このようにして図1に示すような個々の薄膜サーミスタチップが完成する。   The thin film thermistor described above shows the structure of one thin film thermistor. Actually, a thin film thermistor aggregate substrate in which a large number of thin film thermistors having the above structure are arranged on an insulating substrate is formed, and is cut and separated into individual thin film thermistor chips. Cut with a saw. Thus, individual thin film thermistor chips as shown in FIG. 1 are completed.

上記図1、2に示した薄膜サーミスタは、櫛歯電極6a、6bの歯部7a、7bの間隔が均等な構造のものであるが、図3に示すように、歯部7a、7bの間隔が不均等に形成した薄膜サーミスタであってもよい。図3のような薄膜サーミスタの場合、歯部7a、7bの間隔が密に形成された部分は抵抗値が低くなるために、この部分をトリミングすることによって最終的な抵抗値調整を精密に行うことができる。図3の構造は、上記したように櫛歯電極6a、6bの歯部7a、7bの間隔が不均等な構造である以外は、図1、2と実質的に同じ構造であるので製造工程の説明は省略する。   The thin film thermistor shown in FIGS. 1 and 2 has a structure in which the intervals between the tooth portions 7a and 7b of the comb electrodes 6a and 6b are equal, but as shown in FIG. 3, the interval between the tooth portions 7a and 7b. May be a thin film thermistor formed unevenly. In the case of the thin film thermistor as shown in FIG. 3, since the resistance value is low in the portion where the distance between the tooth portions 7a and 7b is formed, the final resistance value adjustment is performed precisely by trimming this portion. be able to. The structure in FIG. 3 is substantially the same as that in FIGS. 1 and 2 except that the intervals between the teeth 7a and 7b of the comb electrodes 6a and 6b are not uniform as described above. Description is omitted.

次に、比較的高い雰囲気中で使用することができる電気的特性の安定な構造を有する本発明薄膜サーミスタの他の実施形態について説明する。   Next, another embodiment of the thin film thermistor of the present invention having a structure with stable electrical characteristics that can be used in a relatively high atmosphere will be described.

図4は本発明の薄膜サーミスタの他の実施形態の外観を示す斜視図である。図5は、図4に示した薄膜サーミスタの薄膜形成工程の一実施形態を示す断面図であり、図4のB−B断面図である。図において、絶縁基板1は、厚さが50〜300μm程度のアルミナ、窒化アルミニウム、ジルコニア、石英、ムライト、ステアタイト等のセラミック基板あるいはサファイア基板からなり、その表面の平滑度が0.05μm以下に研磨されたものを使用する。図4に示す薄膜サーミスタの形状は、アルミナ基板からなる幅0.2mm、長さ0.6mmの大きさである。初めに、研磨された絶縁基板1の一表面上にスパッタ法、プラズマCVD法などを用いて二酸化ケイ素(SiO2)、窒化ケイ素(Si3N4)等からなる絶縁層2が、厚さ0.1〜0.5μmに成膜され、フォトエッチング法を用いてパターニングして、絶縁基板1上の感熱膜形成の下地層として形成される(図5(a))。絶縁膜2は、熱処理時に後述する感熱膜と絶縁基板1の反応を防止して薄膜サーミスタとしての安定な電気的特性を得るために必要なものである。   FIG. 4 is a perspective view showing the appearance of another embodiment of the thin film thermistor of the present invention. 5 is a cross-sectional view showing an embodiment of a thin film formation step of the thin film thermistor shown in FIG. 4, and is a cross-sectional view taken along the line BB of FIG. In the figure, the insulating substrate 1 is made of a ceramic substrate or sapphire substrate such as alumina, aluminum nitride, zirconia, quartz, mullite, steatite having a thickness of about 50 to 300 μm, and the surface has a smoothness of 0.05 μm or less. Use a polished one. The shape of the thin film thermistor shown in FIG. 4 has a width of 0.2 mm and a length of 0.6 mm made of an alumina substrate. First, an insulating layer 2 made of silicon dioxide (SiO 2), silicon nitride (Si 3 N 4) or the like is formed on one surface of the polished insulating substrate 1 using a sputtering method, a plasma CVD method, or the like with a thickness of 0.1 to 0. The film is formed to a thickness of 0.5 μm and patterned using a photoetching method to form a base layer for forming a thermal film on the insulating substrate 1 (FIG. 5A). The insulating film 2 is necessary for preventing a reaction between a heat-sensitive film, which will be described later, and the insulating substrate 1 during heat treatment and obtaining stable electrical characteristics as a thin film thermistor.

次に、後述する櫛歯電極と外部引出端子部を接続するための電極パッド12を形成する工程に進む。絶縁基板1上にスパッタリングまたは蒸着等の方法によって、金属薄膜層10、11が順次成膜される(図5(b))。絶縁基板1上に形成される金属薄膜層10は、チタン(Ti)、クロム(Cr)、ニッケル(Ni)、タングステン(W)、タンタル(Ta)、Ni−Cr合金の少なくとも一種からなる金属薄膜層であり、さらに前記金属薄膜層10上には、白金(Pt)、金(Au)、パラジウム(Pd)またはパラジウム合金等の少なくとも一種からなる金属薄膜層11が成膜形成される。これら金属薄膜層10、11は、真空チャンバ内で連続的に形成することによって、前記金属薄膜層10、11の境界部に酸化膜等の剥離層が形成されないように行われる。前記金属薄膜層10は、絶縁基板1との密着性をよくするために形成されるものであり、前記金属薄膜層の総厚みは0.1〜0.5μm程度である。   Next, the process proceeds to a step of forming an electrode pad 12 for connecting a comb-tooth electrode and an external lead terminal portion, which will be described later. Metal thin film layers 10 and 11 are sequentially formed on the insulating substrate 1 by a method such as sputtering or vapor deposition (FIG. 5B). The metal thin film layer 10 formed on the insulating substrate 1 is a metal thin film made of at least one of titanium (Ti), chromium (Cr), nickel (Ni), tungsten (W), tantalum (Ta), and Ni—Cr alloy. Further, a metal thin film layer 11 made of at least one of platinum (Pt), gold (Au), palladium (Pd), palladium alloy, and the like is formed on the metal thin film layer 10. The metal thin film layers 10 and 11 are formed continuously in a vacuum chamber so that a peeling layer such as an oxide film is not formed at the boundary between the metal thin film layers 10 and 11. The metal thin film layer 10 is formed to improve the adhesion to the insulating substrate 1, and the total thickness of the metal thin film layer is about 0.1 to 0.5 μm.

続いて、フォトエッチング法によって、金属薄膜層10、11の不要部分を除去して、第2金属下地膜10a、10bと第2電極薄膜11a、11bからなる電極パッド12a、12bがパターン形成される(図5(c))。図5(c)は、図5のA−A線断面図であるために、第2金属下地膜10b、第2電極薄膜11b及び電極パッド12bが図面上に表示されていないが、電極パッド12bは櫛歯電極6b側に電極パッド12aと同様に形成されている。   Subsequently, unnecessary portions of the metal thin film layers 10 and 11 are removed by a photoetching method, and electrode pads 12a and 12b composed of the second metal base films 10a and 10b and the second electrode thin films 11a and 11b are patterned. (FIG. 5C). 5C is a cross-sectional view taken along the line AA of FIG. 5, the second metal base film 10b, the second electrode thin film 11b, and the electrode pad 12b are not displayed on the drawing, but the electrode pad 12b Is formed on the comb electrode 6b side in the same manner as the electrode pad 12a.

次に、櫛歯電極を形成する工程に進む。先ず、基板全体に白金(Pt)、パラジウム(Pd)またはパラジウム合金、金(Au)等からなる少なくとも一種の金属薄膜層をスパッタリング、イオンプレーティングまたは蒸着等の方法で成膜する。成膜後、フォトエッチング法を用いて、成膜した前記金属薄膜層をパターニングして電極パッド12a、12bから延びる端部14a、14bと櫛歯電極13a、13bをパターン形成する(図5(e))。なお、本実施形態においては、先に絶縁基板上に感熱膜をパターン形成した後に前記櫛歯電極13a、13bを設けてもよい。   Next, it progresses to the process of forming a comb-tooth electrode. First, at least one metal thin film layer made of platinum (Pt), palladium (Pd), palladium alloy, gold (Au) or the like is formed on the entire substrate by a method such as sputtering, ion plating, or vapor deposition. After the film formation, the formed metal thin film layer is patterned using a photo-etching method to pattern the end portions 14a and 14b extending from the electrode pads 12a and 12b and the comb-tooth electrodes 13a and 13b (FIG. 5E )). In the present embodiment, the comb electrodes 13a and 13b may be provided after the heat-sensitive film is first patterned on the insulating substrate.

続いて、感熱膜を形成する工程へ進む。前工程で形成された絶縁膜2を覆うように、スパッタ法などによって、基板全体に0.3〜2.0μmの厚さに感熱層を成膜し、パターニング法を用いて絶縁膜2上に感熱膜4をパターン形成する(図5(d))。その後、感熱膜4は400〜1200℃の温度で1〜5時間の熱処理が行われる。成膜される感熱層は、マンガン、ニッケル、コバルト、鉄などからなる複合酸化物の焼結体をターゲットとして、スパッタリング法を用いて絶縁基板上に形成される。感熱膜4の電気的特性を微調整する必要がある場合は、感熱膜4上に図示しない第2の感熱膜をパターン形成し、感熱膜の厚みを調整することによっても電気的特性を調整することができる。   Then, it progresses to the process of forming a thermal film. A heat-sensitive layer is formed to a thickness of 0.3 to 2.0 μm over the entire substrate by sputtering or the like so as to cover the insulating film 2 formed in the previous step, and is formed on the insulating film 2 using a patterning method. The heat sensitive film 4 is patterned (FIG. 5D). Thereafter, the heat sensitive film 4 is heat-treated at a temperature of 400 to 1200 ° C. for 1 to 5 hours. The heat-sensitive layer to be formed is formed on an insulating substrate using a sputtering method using a composite oxide sintered body made of manganese, nickel, cobalt, iron, or the like as a target. When it is necessary to finely adjust the electrical characteristics of the heat sensitive film 4, a second heat sensitive film (not shown) is formed on the heat sensitive film 4 to adjust the electrical characteristics by adjusting the thickness of the heat sensitive film. be able to.

この後、外部引出端子部を形成する工程に進む。先ず、基板全体にチタン(Ti)、クロム(Cr)、銅(Cu)、ニッケル(Ni)、モリブデン(Mo)、タングステン(W)、金(Au)、Ni−Cr合金、Ni−Ti合金等の少なくとも一種からなる第1金属薄膜層及び金(Au)、ニッケル(Ni)またはNi−Cr合金の少なくとも一種からなる第2金属薄膜層をスパッタリング、イオンプレーティングまたは蒸着等の方法で成膜する。成膜後、前記第1及び第2金属薄膜層の不要部分を除去して、第3金属下地膜15a、15bと第3電極薄膜16a、16bからなる外部引出端子部17a、17bが、電極パッド12a、12bの端部14a、14bと接続するようにパターン形成される(図5(f))。   Then, it progresses to the process of forming an external extraction terminal part. First, titanium (Ti), chromium (Cr), copper (Cu), nickel (Ni), molybdenum (Mo), tungsten (W), gold (Au), Ni—Cr alloy, Ni—Ti alloy, etc. A first metal thin film layer made of at least one of the above and a second metal thin film layer made of at least one of gold (Au), nickel (Ni) or Ni—Cr alloy are formed by a method such as sputtering, ion plating or vapor deposition. . After the film formation, unnecessary portions of the first and second metal thin film layers are removed, and external lead terminal portions 17a and 17b composed of the third metal base films 15a and 15b and the third electrode thin films 16a and 16b are formed into electrode pads. Patterns are formed so as to be connected to the end portions 14a and 14b of 12a and 12b (FIG. 5 (f)).

次に、絶縁保護膜と後述するガラス保護膜を形成する工程に進む。ガラス保護膜と感熱膜との反応を防止する目的で、0.5〜2.0μmの二酸化ケイ素(SiO2)、窒化ケイ素(Si3N4)等からなる絶縁保護膜8をパターン形成する。さらに、感熱膜4に対する耐湿性を向上させ、外気雰囲気の影響を小さくするために絶縁保護膜8上にガラスペーストをスクリーン印刷等の手段で塗布した後、400〜800℃で熱処理してガラス保護膜9を形成する(図5(g))。ガラス保護膜9はスクリーン印刷法の他に、基板全体に二酸化ケイ素(SiO2)、窒化ケイ素(Si3N4)等からなる絶縁保護層とガラス膜層を形成した後、フォトエッチングによるパターニングによって絶縁保護膜8とガラス保護膜9を同時形成してもよい。   Next, it progresses to the process of forming an insulating protective film and the glass protective film mentioned later. In order to prevent the reaction between the glass protective film and the heat-sensitive film, an insulating protective film 8 made of silicon dioxide (SiO 2), silicon nitride (Si 3 N 4) or the like having a thickness of 0.5 to 2.0 μm is formed in a pattern. Furthermore, in order to improve the moisture resistance to the heat sensitive film 4 and reduce the influence of the outside atmosphere, a glass paste is applied on the insulating protective film 8 by means of screen printing or the like, followed by heat treatment at 400 to 800 ° C. to protect the glass. A film 9 is formed (FIG. 5G). In addition to the screen printing method, the glass protective film 9 is formed by forming an insulating protective layer and a glass film layer made of silicon dioxide (SiO2), silicon nitride (Si3N4) or the like on the entire substrate, and then patterning by photoetching. And the glass protective film 9 may be formed simultaneously.

上記した各種金属薄膜層の組み合わせの中で、第2及び第3金属下地膜10a、10b、15a、15bとしてチタン(Ti)、第2電極薄膜11a、11b、前記櫛歯電極13a、13b及び端部14a、14bとして白金(Pt)を用い、外部引出端子部となる第3電極薄膜16a、16bにニッケル(Ni)または金(Au)を形成した本発明構造の薄膜サーミスタについて、電気的特性に関する長期信頼性や機械的試験を行った結果、優れた性能が得られることが判明した。   Among the combinations of the various metal thin film layers described above, the second and third metal base films 10a, 10b, 15a, 15b are titanium (Ti), the second electrode thin films 11a, 11b, the comb electrodes 13a, 13b, and the ends. Regarding the thin film thermistor having the structure of the present invention in which platinum (Pt) is used as the portions 14a and 14b and the third electrode thin films 16a and 16b serving as the external lead terminal portions are formed with nickel (Ni) or gold (Au) As a result of long-term reliability and mechanical tests, it was found that excellent performance was obtained.

上述した薄膜サーミスタの構造は、ひとつの薄膜サーミスタの構造を示したものであるが、実際は絶縁基板上に上述の構造を有する薄膜サーミスタが多数配列された薄膜サーミスタ集合基板が形成される。その後、薄膜サーミスタ集合基板は、図6に示すように短冊状に切断され、外部引出端子部に所定の電線等のリード線をはんだ付や導電性接着剤等の方法で接続し、最後に薄膜サーミスタチップ間に形成された溝部分に沿って割ることによって個々のセンサとして完成する。この方法は短冊状に複数の薄膜サーミスタチップが整列した状態で作業ができるために効率の高い方法である。もちろん、薄膜サーミスタ集合基板をダイシングテープ等に貼着してからレーザースクライブ装置またはダイシングソー等を用いて切断分離して、個々の薄膜サーミスタチップに形成したものを用いてリード線等を取り付けて組み立てても良い。   The structure of the thin film thermistor described above shows the structure of one thin film thermistor, but in reality, a thin film thermistor aggregate substrate in which a number of thin film thermistors having the structure described above are arranged on an insulating substrate is formed. Thereafter, the thin film thermistor aggregate substrate is cut into strips as shown in FIG. 6, and a lead wire such as a predetermined wire is connected to the external lead terminal portion by a method such as soldering or conductive adhesive, and finally the thin film Each sensor is completed by dividing along a groove formed between the thermistor chips. This method is highly efficient because the work can be performed with a plurality of thin film thermistor chips arranged in a strip shape. Of course, after attaching the thin film thermistor assembly substrate to dicing tape, etc., it is cut and separated using a laser scribing device or dicing saw, etc., and assembled by attaching lead wires etc. using those formed on each thin film thermistor chip May be.

本発明の薄膜サーミスタの第1の実施形態の外観を示す斜視図である。It is a perspective view which shows the external appearance of 1st Embodiment of the thin film thermistor of this invention. 図1に示した薄膜サーミスタの製造工程の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the manufacturing process of the thin film thermistor shown in FIG. 図1の櫛歯電極の歯部の間隔が異なる構造の薄膜サーミスタの外観を示す斜視図である。It is a perspective view which shows the external appearance of the thin film thermistor of a structure where the space | interval of the tooth | gear part of the comb electrode of FIG. 1 differs. 本発明の薄膜サーミスタの他の実施形態の外観を示す斜視図である。It is a perspective view which shows the external appearance of other embodiment of the thin film thermistor of this invention. 図4に示した薄膜サーミスタの製造工程の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the manufacturing process of the thin film thermistor shown in FIG. 短冊状に配列した複数の薄膜サーミスタが形成された基板の外観を示す斜視図である。It is a perspective view which shows the external appearance of the board | substrate with which the some thin film thermistor arranged in strip shape was formed. 従来の温度センサの斜視図である。It is a perspective view of the conventional temperature sensor.

符号の説明Explanation of symbols

1 絶縁基板
2 絶縁膜
3a、3b 第1金属下地膜
3c、3d 第1電極薄膜
4 感熱膜
5a、5b 外部引出端子部
6a、6b 櫛歯電極
7a、7b 歯部
8 絶縁保護膜
9 ガラス保護膜
10a、10b 第2金属下地膜
11a、11b 第2電極薄膜
12a、12b 電極パッド
13a、13b 櫛歯電極
14 端部
15a、15b 第3金属下地膜
16a、16b 第3電極薄膜
17a、17b 外部引出端子部
DESCRIPTION OF SYMBOLS 1 Insulating substrate 2 Insulating film 3a, 3b 1st metal base film 3c, 3d 1st electrode thin film 4 Thermal sensitive film 5a, 5b External lead-out terminal part 6a, 6b Comb electrode 7a, 7b Tooth part 8 Insulating protective film 9 Glass protective film 10a, 10b 2nd metal base film 11a, 11b 2nd electrode thin film 12a, 12b Electrode pad 13a, 13b Comb electrode 14 End 15a, 15b 3rd metal base film 16a, 16b 3rd electrode thin film 17a, 17b External extraction terminal Part

Claims (5)

細長い絶縁基板と、前記絶縁基板の一面上に形成された絶縁膜と、前記絶縁膜上にパターン形成された金属薄膜層からなる一対の櫛歯電極と、前記櫛歯電極の端部から延びて前記絶縁基板上の一端に形成された一対の外部引出端子部と、前記絶縁膜を下地とし前記櫛歯電極上にパターン形成された金属酸化物からなる感熱膜と、前記感熱膜を保護する絶縁保護膜と、前記一対の外部引出端子部を除く前記絶縁保護膜を被覆するガラス保護膜とからなることを特徴とする薄膜サーミスタ。   An elongated insulating substrate, an insulating film formed on one surface of the insulating substrate, a pair of comb-shaped electrodes made of a metal thin film layer patterned on the insulating film, and extending from an end of the comb-shaped electrode A pair of external lead terminal portions formed at one end on the insulating substrate, a heat-sensitive film made of a metal oxide patterned on the comb-tooth electrode with the insulating film as a base, and an insulation for protecting the heat-sensitive film A thin film thermistor comprising: a protective film; and a glass protective film covering the insulating protective film excluding the pair of external lead terminal portions. 前記櫛歯電極の歯部の間隔が、前記一対の外部引出端子部に近い部分と、前記一対の外部引出端子部から離れた部分で間隔が異なるように形成されていることを特徴とする請求項1に記載の薄膜サーミスタ。   The interval between the tooth portions of the comb electrode is formed so that the interval is different between a portion close to the pair of external extraction terminal portions and a portion apart from the pair of external extraction terminal portions. Item 2. The thin film thermistor according to item 1. 前記絶縁基板と、前記絶縁基板上に形成された一対の電極パッド及び絶縁膜と、前記一対の電極パッドを端部とし前記絶縁膜上にパターン形成された金属薄膜層からなる一対の櫛歯電極と、前記絶縁膜を下地とし前記櫛歯電極上に形成された感熱膜と、前記感熱膜を保護する絶縁保護膜と、前記絶縁保護膜と前記櫛歯電極の端部を被覆するガラス保護膜とからなる薄膜サーミスタであって、前記絶縁基板上の一端に前記電極パッド上の前記櫛歯電極の端部から延びる一対の外部引出端子部が形成さていることを特徴とする請求項1、2に記載の薄膜サーミスタ。   A pair of comb electrodes comprising the insulating substrate, a pair of electrode pads and an insulating film formed on the insulating substrate, and a metal thin film layer patterned on the insulating film with the pair of electrode pads as ends. A heat-sensitive film formed on the comb-shaped electrode with the insulating film as a base, an insulating protective film for protecting the heat-sensitive film, and a glass protective film for covering the end portions of the insulating protective film and the comb-shaped electrode 2. A thin film thermistor comprising: a pair of external lead terminal portions extending from an end portion of the comb-shaped electrode on the electrode pad at one end on the insulating substrate. The thin film thermistor described in 1. 前記絶縁基板上に形成された前記一対の外部引出端子部を構成する第1金属下地膜がチタン(Ti)からなり、前記第1金属下地膜上に形成された第1電極薄膜と、前記第1電極薄膜から延びる櫛歯電極が白金(Pt)によって形成されていることを特徴とする請求項1、2に記載の薄膜サーミスタ。   A first metal base film that constitutes the pair of external lead terminal portions formed on the insulating substrate is made of titanium (Ti); a first electrode thin film formed on the first metal base film; 3. The thin film thermistor according to claim 1, wherein the comb electrode extending from the one electrode thin film is made of platinum (Pt). 前記絶縁基板上に形成された前記一対の電極パッドを構成する第2金属下地膜と第2電極薄膜が、それぞれチタン(Ti)と白金(Pt)からなり、前記一対の外部引出端子部を構成する第1金属下地膜と第1電極薄膜が、それぞれチタン(Ti)とニッケル(Ni)または金(Au)、櫛歯電極が白金(Pt)によって形成されていることを特徴とする請求項3に記載の薄膜サーミスタ。
The second metal base film and the second electrode thin film constituting the pair of electrode pads formed on the insulating substrate are made of titanium (Ti) and platinum (Pt), respectively, and constitute the pair of external lead terminal portions. The first metal underlayer and the first electrode thin film are formed of titanium (Ti) and nickel (Ni) or gold (Au), respectively, and the comb-shaped electrode is formed of platinum (Pt). The thin film thermistor described in 1.
JP2005306750A 2005-10-21 2005-10-21 Thin film thermistor Pending JP2007115938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306750A JP2007115938A (en) 2005-10-21 2005-10-21 Thin film thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005306750A JP2007115938A (en) 2005-10-21 2005-10-21 Thin film thermistor

Publications (1)

Publication Number Publication Date
JP2007115938A true JP2007115938A (en) 2007-05-10

Family

ID=38097851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306750A Pending JP2007115938A (en) 2005-10-21 2005-10-21 Thin film thermistor

Country Status (1)

Country Link
JP (1) JP2007115938A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038733B1 (en) * 2008-10-02 2011-06-03 이규순 Thermistor Assembly and Method for Manufacturing the Same
JP2012079976A (en) * 2010-10-04 2012-04-19 Semitec Corp Thin film thermistor
JP5509393B1 (en) * 2012-07-13 2014-06-04 Semitec株式会社 Thin film thermistor element and manufacturing method thereof
JP2014241395A (en) * 2013-05-13 2014-12-25 株式会社村田製作所 Electronic component
EP2902761A4 (en) * 2012-09-28 2016-02-17 Mitsubishi Materials Corp Temperature sensor
JP2019129187A (en) * 2018-01-22 2019-08-01 三菱マテリアル株式会社 Thermistor sensor and manufacturing method thereof
JP7076045B1 (en) * 2020-12-15 2022-05-26 株式会社メイコー Thin temperature sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188103A (en) * 1986-02-13 1987-08-17 東芝ライテック株式会社 Illumination lamp support unit
JPH03229507A (en) * 1990-02-05 1991-10-11 Alps Electric Co Ltd Electrode constitution for surface acoustic wave
JPH10125508A (en) * 1996-10-18 1998-05-15 Ishizuka Denshi Kk Chip thermistor and its manufacture
JP2003173901A (en) * 2001-09-28 2003-06-20 Ishizuka Electronics Corp Thin film thermistor and method of adjusting its resistance value

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188103A (en) * 1986-02-13 1987-08-17 東芝ライテック株式会社 Illumination lamp support unit
JPH03229507A (en) * 1990-02-05 1991-10-11 Alps Electric Co Ltd Electrode constitution for surface acoustic wave
JPH10125508A (en) * 1996-10-18 1998-05-15 Ishizuka Denshi Kk Chip thermistor and its manufacture
JP2003173901A (en) * 2001-09-28 2003-06-20 Ishizuka Electronics Corp Thin film thermistor and method of adjusting its resistance value

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101038733B1 (en) * 2008-10-02 2011-06-03 이규순 Thermistor Assembly and Method for Manufacturing the Same
JP2012079976A (en) * 2010-10-04 2012-04-19 Semitec Corp Thin film thermistor
JP5509393B1 (en) * 2012-07-13 2014-06-04 Semitec株式会社 Thin film thermistor element and manufacturing method thereof
US9659691B2 (en) 2012-07-13 2017-05-23 Semitec Corporation Thin-film thermistor element and method of manufacturing the same
EP2902761A4 (en) * 2012-09-28 2016-02-17 Mitsubishi Materials Corp Temperature sensor
JP2014241395A (en) * 2013-05-13 2014-12-25 株式会社村田製作所 Electronic component
JP2019129187A (en) * 2018-01-22 2019-08-01 三菱マテリアル株式会社 Thermistor sensor and manufacturing method thereof
JP7076045B1 (en) * 2020-12-15 2022-05-26 株式会社メイコー Thin temperature sensor
WO2022130508A1 (en) * 2020-12-15 2022-06-23 株式会社メイコー Thin temperature sensor

Similar Documents

Publication Publication Date Title
US6151771A (en) Resistance temperature detector (RTD) formed with a surface-mount-device (SMD) structure
JP2007115938A (en) Thin film thermistor
JP6585844B2 (en) Sensor element and method for manufacturing the sensor element
JP5316959B2 (en) Thin film thermistor sensor
EP3159667A1 (en) Thermocouple for gas turbine environments
KR20150058261A (en) Temperature sensor
JP2015534082A (en) Temperature probe and method of manufacturing temperature probe
US5726624A (en) Temperature sensor with internal rigid substrate
JP2011044621A (en) Temperature sensor
JP2022551043A (en) Sensor element and method for manufacturing sensor element
JP6988585B2 (en) Sensor element and gas sensor equipped with it
JP4871548B2 (en) Thin film thermistor
JP2000150204A (en) Ntc thermistor and chip ntc thermistor
JP3312752B2 (en) Thin film thermistor
KR20010030871A (en) Heating element and method for producing the same
JP7394214B2 (en) Sensor element and method for manufacturing sensor element
JP4751101B2 (en) Temperature sensor
JPH0616835U (en) Temperature sensor
JPH11354302A (en) Thin-film resistor element
JP4434699B2 (en) Resistor and manufacturing method thereof
JP2012079976A (en) Thin film thermistor
JP2006080322A (en) Chip type compound electronic part
JP2645153B2 (en) Thin film temperature sensor element
JPH10172806A (en) Temperature sensor and its manufacture
KR101848764B1 (en) Micro temperature sensor and fabrication method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081009

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20101012

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20101026

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20101221

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412