JP2007105140A - Three-dimensional measurement endoscope using self-mixing laser - Google Patents

Three-dimensional measurement endoscope using self-mixing laser Download PDF

Info

Publication number
JP2007105140A
JP2007105140A JP2005297282A JP2005297282A JP2007105140A JP 2007105140 A JP2007105140 A JP 2007105140A JP 2005297282 A JP2005297282 A JP 2005297282A JP 2005297282 A JP2005297282 A JP 2005297282A JP 2007105140 A JP2007105140 A JP 2007105140A
Authority
JP
Japan
Prior art keywords
endoscope
self
laser
mixing
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005297282A
Other languages
Japanese (ja)
Inventor
Takeshi Hashimoto
岳 橋本
Shigenobu Shinohara
茂信 篠原
Masatsugu Niwayama
雅嗣 庭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Original Assignee
Shizuoka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC filed Critical Shizuoka University NUC
Priority to JP2005297282A priority Critical patent/JP2007105140A/en
Publication of JP2007105140A publication Critical patent/JP2007105140A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Endoscopes (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems that, while an object is irradiated with spot light and a distance is obtained on the basis of trigonometry in order to measure the distance to the object in a conventional endoscope, a base-line length is short, there is a problem in accuracy, and measurement at multiple spots is difficult though the distance is accurately measured even in a short distance by a self-mixing semiconductor laser. <P>SOLUTION: By displacing the light emitting part of the self-mixing semiconductor laser in a direction orthogonal to an optical axis and changing the direction of a laser beam, an object surface is scanned. Or, an optical fiber is interposed in an intermediate part, the end part of the optical fiber is displaced in the direction orthogonal to the optical axis, and the direction of the laser beam is changed. Further, by two-dimensionally arraying the light emitting parts of the laser and driving them in a time division manner, the object surface is scanned. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、内視鏡における対象物までの距離を計測する技術に関する。   The present invention relates to a technique for measuring a distance to an object in an endoscope.

従来、内視鏡において対象物までの距離を計測するためには、対象物にスポット光を照射し、その画像をカメラで捉えてカメラ,照射器及びスポットの位置から三角測量の原理に基づいて、距離を求めていた(特許文献1,2参照)。
しかしながら、この手法においてはカメラ−照射器間の基軸長が内視鏡の先端部のサイズを超えることができず、その精度に問題があった。
また、三角測量によらない距離計測技術も考えられている(特許文献3,4及び非特許文献1参照)。これは対象物に照射したレーザ光と、対象物からの反射光とを自己干渉(自己混合)させ、発振周波数の変化から距離を求める技術であるが、2次元的な走査手段が必要であり装置が大きいものとなっていた。
特許2875832号 特開平5−52531号公報 特開平10−246782号公報 特開平2−112784号公報 S.Shinohara et al. "Compact and High-precision range finder with wide dynamic range and its application" IEEE Trans.Instrumrntation and Measurement. Vol.41, No.1, pp.40-44(1992)
Conventionally, in order to measure the distance to an object in an endoscope, the object is irradiated with spot light, and the image is captured by the camera, based on the principle of triangulation from the position of the camera, the irradiator and the spot. The distance was obtained (see Patent Documents 1 and 2).
However, in this method, the base axis length between the camera and the irradiator cannot exceed the size of the distal end portion of the endoscope, and there is a problem in accuracy.
Further, a distance measurement technique that does not rely on triangulation has been considered (see Patent Documents 3 and 4 and Non-Patent Document 1). This is a technique for obtaining the distance from the change in oscillation frequency by self-interference (self-mixing) of the laser light irradiated to the object and the reflected light from the object, but requires a two-dimensional scanning means. The device was large.
Japanese Patent No. 2875832 JP-A-5-52531 JP 10-246782 A Japanese Patent Laid-Open No. 2-112784 S.Shinohara et al. "Compact and High-precision range finder with wide dynamic range and its application" IEEE Trans.Instrumrntation and Measurement.Vol.41, No.1, pp.40-44 (1992)

三角測量法による限り、内視鏡における基軸長の短さを克服することは困難である。   As long as the triangulation method is used, it is difficult to overcome the short base length of the endoscope.

この発明は、三角測量法に代わる新しい計測手法において、小型化に係る提案を行うものである。これまでレーザ光を用いる距離計は、三角測量法の一つとして存在していた。ここではレーザ光を連続三角波で周波数変調することにより距離を測定する技術を採用するとともに、かかる技術を内視鏡へ適用する際の構造を提案する。
非接触型の距離計測法として、これまで三角測量法、光切断法、モアレトポグラフィ法が使われてきている。この発明では、レーザ光を連続三角波で周波数変調する自己混合半導体レーザ(Self-Mixing Laser Diode:以下「SM−LD」という)による距離計を用いることとする。
The present invention provides a proposal for downsizing in a new measurement technique that replaces the triangulation method. Until now, distance meters using laser light have existed as one of the triangulation methods. Here, a technique for measuring the distance by frequency-modulating laser light with a continuous triangular wave is adopted, and a structure for applying this technique to an endoscope is proposed.
As a non-contact type distance measuring method, the triangulation method, the light section method, and the moire topography method have been used so far. In the present invention, a distance meter using a self-mixing laser diode (hereinafter referred to as “SM-LD”) that modulates the frequency of laser light with a continuous triangular wave is used.

SM−LDを用いる距離計の原理自体は既に知られているが、以下に概略を説明する。
図1にSM−LD距離速度計の基本構成を示す。発振器(1)により発生された三角波電圧はレーザダイオード電流源(2)に与えられるため、レーザダイオード(3)に与えられる電流は三角波で変調されることとなる。ダイオードへの注入電流増加時には共振器内の屈折率の減少と温度上昇を引き起こし、レーザ光の周波数が低くなる。またレーザ光強度も変調される。周波数変調されたレーザダイオードからの出射光は、レンズを通り、ターゲット表面に照射される。ターゲット表面で散乱した光の一部は出射光と同一の経路を逆に辿りレーザダイオード共振器に戻る。
すると、その戻り光は共振器内の光と自己干渉(自己混合)を起こし、レーザダイオードパッケージに内蔵されているフォトダイオード(4)の出力波形に、変調三角波及び外部共振器共振状態の変化に起因する階段状の変化(モードホップ)が重なって現れる。
The principle of the distance meter using SM-LD is already known, but the outline will be described below.
FIG. 1 shows the basic configuration of the SM-LD range velocimeter. Since the triangular wave voltage generated by the oscillator (1) is applied to the laser diode current source (2), the current applied to the laser diode (3) is modulated by the triangular wave. When the injection current to the diode increases, the refractive index in the resonator decreases and the temperature rises, and the frequency of the laser light decreases. The laser light intensity is also modulated. Light emitted from the frequency-modulated laser diode passes through the lens and is irradiated onto the target surface. A part of the light scattered on the target surface reversely follows the same path as the emitted light and returns to the laser diode resonator.
Then, the return light causes self-interference (self-mixing) with the light in the resonator, and the output waveform of the photodiode (4) incorporated in the laser diode package changes to the modulation triangular wave and the resonance state of the external resonator. The resulting step-like changes (mode hops) appear to overlap.

すなわち、図2に示すように、レーザダイオード(3)の内部の反射面(11,12)で構成される長さL1の内部共振器と、外部の対象物(6)の表面の反射面(13)とレーザ表面の反射面(12)で構成される長さL2の外部共振器とが結合された複合共振器が構成されており、変調周波数と複合共振器の共振周波数との間で干渉が生じ、発振強度に影響を与える。
この階段状の変化(モードホップ)は、変調三角波の上昇部と下降部とにおいて周期的である。モードホップ信号の周波数(周期)は、レーザダイオードとターゲット間の距離Lと、レーザダイオードの光軸方向のターゲット速度vに依存する。したがって、モードホップ周波数(周期)を計測すれば、レーザダイオードからターゲットまでの距離及びターゲットの速度が決定される。このように、SM−LD距離速度計測の光学系は、フォトダイオードを内蔵したレーザダイオードパッケージと集光レンズだけで、非常にコンパクトに構成することができる。
That is, as shown in FIG. 2, the internal resonator having a length L1 constituted by the internal reflection surfaces (11, 12) of the laser diode (3) and the reflection surface of the surface of the external object (6) ( 13) and an external resonator having a length L2 constituted by the reflection surface (12) of the laser surface are combined, and interference occurs between the modulation frequency and the resonance frequency of the composite resonator. Affects the oscillation intensity.
This step-like change (mode hop) is periodic at the rising and falling portions of the modulated triangular wave. The frequency (period) of the mode hop signal depends on the distance L between the laser diode and the target and the target velocity v in the optical axis direction of the laser diode. Therefore, if the mode hop frequency (period) is measured, the distance from the laser diode to the target and the speed of the target are determined. As described above, the SM-LD distance-velocity measuring optical system can be configured to be very compact by using only a laser diode package and a condenser lens with a built-in photodiode.

自己混合半導体レーザは、周期的に発振周波数を変化させる半導体レーザと、該半導体レーザから放射された光を対象物に照射するとともに該対象物からの反射光の一部を前記半導体レーザに帰還し結合させる光学系と、前記半導体レーザの出力を計測する光電変換素子と、該光電変換素子の出力変化から対象物までの距離を求める演算回路とを具備してなり、小型化が図れる。
SM−LD距離速度計測の光学系は小型であるが、基本構造のままでは照射点の1点までの距離しか測れない。そこで回転ミラーや振動ミラーにより走査を行うことにより、これまで複数点の距離を計測していた。しかしながら、かかる構成では内視鏡のような小型機器に用いることは困難である。
The self-mixing semiconductor laser irradiates an object with light emitted from the semiconductor laser that periodically changes the oscillation frequency and returns a part of the reflected light from the object to the semiconductor laser. The optical system to be coupled, a photoelectric conversion element that measures the output of the semiconductor laser, and an arithmetic circuit that obtains the distance from the change in output of the photoelectric conversion element to the object can be miniaturized.
Although the SM-LD distance velocity measurement optical system is small, only the distance to one irradiation point can be measured with the basic structure. Therefore, the distance of a plurality of points has been measured so far by scanning with a rotating mirror or a vibrating mirror. However, it is difficult to use such a configuration for a small device such as an endoscope.

図3に、内視鏡(20)の先端部に撮像素子であるCCD(22)と、SM−LD(8)とを設けた例を示している。CCD(22)には撮像用のレンズ(21)が設けられ、SM−LD(8)には投射用のレンズ(5)が設けられている。単体のSM−LDでは一箇所にのみ光を照射するので、一点でのみの距離計測となるから、ここでは2次元配列した複数のSM−LD素子を用いることが望ましい。
SM−LD素子を複数配置すれば、それぞれからの信号を処理して複数点までの距離情報を得る。これには内視鏡の先端部に設ける形態と、中間部または操作側に設けて光ファイバーで伝送する形態とがある。SM−LD素子の配置も好ましくは2次元の面状配置であるが、格納空間の制約により1次元のアレイ状配置となることもある。
FIG. 3 shows an example in which a CCD (22) and an SM-LD (8) as an image pickup device are provided at the distal end portion of the endoscope (20). The CCD (22) is provided with an imaging lens (21), and the SM-LD (8) is provided with a projection lens (5). Since a single SM-LD irradiates light only at one point, distance measurement is performed only at one point. Therefore, it is desirable here to use a plurality of two-dimensionally arranged SM-LD elements.
If a plurality of SM-LD elements are arranged, signals from each are processed to obtain distance information up to a plurality of points. There are a form provided at the distal end of the endoscope and a form provided at the intermediate part or the operation side and transmitted by an optical fiber. The arrangement of the SM-LD elements is also preferably a two-dimensional planar arrangement, but may be a one-dimensional array arrangement due to storage space constraints.

CCD(22)で撮像された対象物(6)の像は、制御装置(23)内の信号処理回路で処理され、SM−LD(8)から得られた距離情報とともに表示装置(24)に表示される。一点のみの距離情報であれば、表示エリアの一部に数値情報として表示するが、多点で距離情報が得られれば三次元表示することが可能となる。
一点のみの距離情報を得るにあたっては、複数配置されたSM−LD素子のうち一つを利用して距離表示を希望する対象点にレーザ光を照射することとなる。あとで説明するアクチュエータによるスキャンを行うときには、アクチュエータによる変位を制御し、任意の対象点にレーザ光を照射する。これらはスキャン動作の一時停止と考えることができる。
一方で、三次元表示するには右目用画像と左目用画像とを作成し、表示装置(24)として立体視可能な表示器を用いる必要がある。簡易化するならば等高線表示とし、基準位置の等高線を白あるいは黄色で表示し、基準位置より遠い等高線を徐々に青く、基準位置より近い等高線を徐々に赤く表示することとすれば、通常のカラー表示器が採用できる。
また、単体のSM−LD素子が小型であっても三次元表示するために2次元配列を行うと大型化するため、内視鏡(20)の先端部に収納することは困難となる。この場合には図4に示すように、光ファイバー(23)を用いて、光伝送することにより解決できる。
SM−LD(8)からのレーザ光は結像用のレンズ(10)により光ファイバー(23)の端面に照射される。この光は、光ファイバー(23)内を通過し、他の端面より放射されるが、投射用のレンズ(5)により、対象物(6)の表面に焦点を結ぶように調節される。対象物からの反射光も同様に逆の経路を辿りSM−LD(8)にフィードバックされる。
The image of the object (6) picked up by the CCD (22) is processed by the signal processing circuit in the control device (23), and is displayed on the display device (24) together with the distance information obtained from the SM-LD (8). Is displayed. If the distance information is only one point, it is displayed as numerical information in a part of the display area. However, if the distance information is obtained at multiple points, three-dimensional display is possible.
In obtaining distance information of only one point, laser light is irradiated to a target point for which distance display is desired using one of a plurality of arranged SM-LD elements. When scanning by an actuator, which will be described later, displacement by the actuator is controlled and an arbitrary target point is irradiated with laser light. These can be considered as temporary suspension of the scanning operation.
On the other hand, for three-dimensional display, it is necessary to create a right-eye image and a left-eye image, and use a stereoscopic display device as the display device (24). If simplified, contour lines are displayed, the contour lines at the reference position are displayed in white or yellow, contour lines far from the reference position are gradually blue, and contour lines near the reference position are gradually displayed in red. A display can be used.
Further, even if a single SM-LD element is small, if it is two-dimensionally arranged for three-dimensional display, it will become large, and it will be difficult to store it at the distal end of the endoscope (20). In this case, as shown in FIG. 4, it can be solved by optical transmission using an optical fiber (23).
The laser light from the SM-LD (8) is irradiated to the end face of the optical fiber (23) by the imaging lens (10). This light passes through the optical fiber (23) and is emitted from the other end face, but is adjusted by the projection lens (5) to focus on the surface of the object (6). Similarly, the reflected light from the object follows the reverse path and is fed back to the SM-LD (8).

複数のSM−LD素子を用いて2次元に配列すると大型化し、コスト的にも割高である。
解決策として、ピエゾ素子のような小型のアクチュエータにより照射点を変位させて、複数点までの距離情報を得る。このためには、SM−LD素子そのものを変位させる形態と、SM−LD素子からの光を伝送してきた光ファイバーの端面を変位させる形態とがある。この例を図5に示す。
図5(a)は、SM−LD(8)にアクチュエータ(24)を結合させ、光軸と直交する方向に変位させる。これにより照射点の変位が期待できる。図5(b)は光ファイバー(23)を光中継に用いた際の例である。図5(a)と同様にSM−LD(8)を変位させている。図5(c)は図5(b)と同じく光ファイバー(23)を用いる例であるが、ここではSM−LD(8)ではなく、光ファイバー(23)の端面をアクチュエータ(24)により光軸と直交する方向に移動させている。図5(c)の変形として対象物(6)側の光ファイバー(23)の端面を変位させてもよいことは、当業者にとって自明であろう。
また、SM−LD(8)や光ファイバー(23)端面の変位に代えて、レンズ(5,10)を光軸と直交する方向に変位させても同様の効果が得られるものである。なお、図5(d)は、先に述べたSM−LD素子を複数配列し、時分割で順次発光させることにより対象物(6)の異なる位置を照射する例を示している。時分割の駆動に代えて、液晶シャッタなどの電子的シャッタを用いて等価的に順次発光する構成も可能である。
If a two-dimensional arrangement is made using a plurality of SM-LD elements, the size increases and the cost is high.
As a solution, the irradiation point is displaced by a small actuator such as a piezo element to obtain distance information up to a plurality of points. For this purpose, there are a form in which the SM-LD element itself is displaced and a form in which the end face of the optical fiber that has transmitted light from the SM-LD element is displaced. An example of this is shown in FIG.
In FIG. 5A, the actuator (24) is coupled to the SM-LD (8) and displaced in the direction perpendicular to the optical axis. Thereby, the displacement of the irradiation point can be expected. FIG. 5B is an example when the optical fiber (23) is used for optical relay. Similar to FIG. 5A, the SM-LD (8) is displaced. FIG. 5 (c) is an example using the optical fiber (23) as in FIG. 5 (b), but here the end surface of the optical fiber (23) is not the SM-LD (8) but the optical axis by the actuator (24). It is moved in the orthogonal direction. It will be obvious to those skilled in the art that the end face of the optical fiber (23) on the object (6) side may be displaced as a modification of FIG. 5 (c).
Further, the same effect can be obtained by displacing the lenses (5, 10) in the direction orthogonal to the optical axis instead of the displacement of the end face of the SM-LD (8) or the optical fiber (23). FIG. 5D shows an example in which a plurality of SM-LD elements described above are arranged and light is emitted sequentially in a time-division manner to irradiate different positions of the object (6). Instead of time-division driving, an equivalent sequential light emission using an electronic shutter such as a liquid crystal shutter is also possible.

これまで述べた2次元配列のSM−LD素子を用いる構成と、単一のSM−LD素子を用いてアクチュエータでレーザ光の照射位置を変位させる構成との、中間に位置する構成をここで提案する。
SM−LD素子を1次元のアレイ状に配置し、この素子群をアクチュエータにより変位させることにより、実質的に2次元の面状配置と等価な信号を得る構成とする。
この実施例においても、SM−LDを変位させる構成、光ファイバーの端面を変位させる構成、レンズを変位させる構成など、上記実施例2における各種の変形が考えられる。
Proposed here is an intermediate configuration between the configuration using the two-dimensional SM-LD elements described so far and the configuration using a single SM-LD element to displace the irradiation position of the laser beam with an actuator. To do.
The SM-LD elements are arranged in a one-dimensional array, and this element group is displaced by an actuator to obtain a signal substantially equivalent to a two-dimensional planar arrangement.
Also in this embodiment, various modifications in the second embodiment are conceivable, such as a configuration for displacing the SM-LD, a configuration for displacing the end face of the optical fiber, and a configuration for displacing the lens.

SM−LD素子を複数設けたとしても、干渉が生じるので同時に動作させることはできない。通常の操作ではそれほどの悪影響はないが、高速性が要求される場合には欠点となる。その解決のためには、レーザの周波数を異ならせて干渉を防ぐようにすればよい。また、駆動用の三角波の位相を90度程度ずらせて影響が打ち消されるような駆動法を採用することも可能である。さらには、偏光フィルタを採用し、ビーム光間の干渉を防ぐことも可能である。   Even if a plurality of SM-LD elements are provided, they cannot be operated simultaneously because of interference. Normal operation does not have a significant adverse effect, but is disadvantageous when high speed is required. In order to solve this problem, interference may be prevented by changing the frequency of the laser. It is also possible to employ a driving method in which the influence is canceled by shifting the phase of the driving triangular wave by about 90 degrees. Furthermore, it is also possible to employ a polarizing filter to prevent interference between the light beams.

この発明は、SM−LD(自己混合半導体レーザ)を用いることにより、これまでの三角測量に基づく計測に比べて、基線長の影響を受けることなく対象物までの距離測定が可能となった。また、単体のSM−LD素子(または光ファイバー端面あるいはレンズ)を光軸に直交する方向に変位させることにより、面走査が可能となり、これにより三次元画像表示(立体視)が可能となった。   In the present invention, by using an SM-LD (self-mixing semiconductor laser), the distance to the object can be measured without being affected by the baseline length as compared with the conventional measurement based on triangulation. In addition, surface scanning is possible by displacing a single SM-LD element (or an optical fiber end face or lens) in a direction perpendicular to the optical axis, thereby enabling three-dimensional image display (stereoscopic view).

自己混合半導体レーザ(SM−LD)の基本構成を示す図Diagram showing the basic configuration of a self-mixing semiconductor laser (SM-LD) SM−LDにおける内部共振回路と外部共振回路を示す図The figure which shows the internal resonance circuit and external resonance circuit in SM-LD 内視鏡の先端部にSM−LDを設けた構成を示す図The figure which shows the structure which provided SM-LD in the front-end | tip part of an endoscope 内視鏡の操作部にSM−LDを設けた構成を示す図The figure which shows the structure which provided SM-LD in the operation part of the endoscope 照射点を変位させる各種構成例を示す図。(a)はSM−LDをアクチュエータにより変位させる例、(b)は光ファイバーを中間に設けた例、(c)は光ファイバーの端面をアクチュエータにより変位させる例、(d)はSM−LD素子をアレイ状に配置し順次照射を行う例をそれぞれ示している。The figure which shows the various structural examples which displace an irradiation point. (a) is an example in which the SM-LD is displaced by an actuator, (b) is an example in which an optical fiber is provided in the middle, (c) is an example in which the end face of the optical fiber is displaced by an actuator, and (d) is an array of SM-LD elements. Each of the examples is arranged in the shape and sequentially irradiated.

符号の説明Explanation of symbols

1 発振部
2 駆動部
3 フォトダイオード
4 レーザダイオード
5,10,21 レンズ
6 対象物
7 測定回路
8 SM−LD(自己混合半導体レーザ)
20 内視鏡
22 CCD
23 光ファイバー
DESCRIPTION OF SYMBOLS 1 Oscillator 2 Driver 3 Photodiode 4 Laser diode 5, 10, 21 Lens 6 Object 7 Measuring circuit 8 SM-LD (self-mixing semiconductor laser)
20 Endoscope 22 CCD
23 Optical fiber

Claims (9)

自己混合レーザを備えた内視鏡において、対象物の複数箇所にレーザ光を照射する手段を有することにより、対象物の複数点において距離を計測してなる自己混合レーザを用いる三次元計測内視鏡。 Endoscope equipped with a self-mixing laser A three-dimensional measurement endoscope that uses a self-mixing laser that measures the distance at multiple points of an object by having means for irradiating laser light to multiple points of the object mirror. 自己混合レーザを備えた内視鏡において、自己混合レーザの発光部の位置を光軸と直交する方向に移動させるアクチュエータを備え、対象物の複数箇所にレーザ光を照射することにより、対象物の複数点において距離を計測してなる自己混合レーザを用いる三次元計測内視鏡。 An endoscope provided with a self-mixing laser is provided with an actuator that moves the position of the light-emitting portion of the self-mixing laser in a direction perpendicular to the optical axis, and by irradiating laser light to a plurality of locations on the target, A three-dimensional measuring endoscope that uses a self-mixing laser that measures distances at multiple points. 自己混合レーザを備えた内視鏡において、レーザの発光部を内視鏡中間部または操作部に設け、該発光部から光ファイバーによりレーザ光を内視鏡先端部まで導くとともに、内視鏡先端部において光ファイバー端を光軸と直交する方向に移動させるアクチュエータを備え、対象物の複数箇所にレーザ光を照射することにより、対象物の複数点において距離を計測してなる自己混合レーザを用いる三次元計測内視鏡。 In an endoscope provided with a self-mixing laser, a laser light emitting part is provided in an endoscope intermediate part or an operation part, and laser light is guided from the light emitting part to an endoscope tip part by an optical fiber. 3D using a self-mixing laser that includes an actuator that moves the optical fiber end in a direction orthogonal to the optical axis and that measures the distance at multiple points of the object by irradiating multiple points of the object with laser light Measuring endoscope. 自己混合レーザを備えた内視鏡において、レーザ発光部を複数個備え、これらレーザ発光部を時分割駆動することにより、対象物の複数箇所にレーザ光を照射し、対象物の複数箇所において距離を計測してなる自己混合レーザを用いる三次元計測内視鏡。 In an endoscope equipped with a self-mixing laser, a plurality of laser light emitting units are provided, and by driving these laser light emitting units in a time-sharing manner, laser light is irradiated to a plurality of locations on the object, and distances are obtained at the plurality of locations on the object. 3D measuring endoscope using self-mixing laser. 自己混合レーザを備えた内視鏡において、偏光の異なる2種類以上のレーザ発光部を備え、対象物の複数箇所にレーザ光を同時に照射することにより、対象物の複数箇所において距離を計測してなる自己混合レーザを用いる三次元計測内視鏡。 In an endoscope equipped with a self-mixing laser, two or more types of laser light emitting units having different polarizations are provided, and laser light is simultaneously irradiated to a plurality of locations on the target, thereby measuring distances at the plurality of locations on the target. A three-dimensional measuring endoscope using a self-mixing laser. 自己混合レーザを備えた内視鏡において、発振周波数の異なる2種類以上のレーザ発光部を備え、対象物の複数箇所にレーザ光を同時に照射することにより、対象物の複数箇所において距離を計測してなる自己混合レーザを用いる三次元計測内視鏡。 An endoscope equipped with a self-mixing laser is equipped with two or more types of laser light emitting units having different oscillation frequencies, and simultaneously irradiates a laser beam to a plurality of locations on the target to measure distances at a plurality of locations on the target. A three-dimensional measuring endoscope using a self-mixing laser. 前記内視鏡において、レーザ発光部を内視鏡の先端部に設けてなる請求項4乃至6記載の自己混合レーザを用いる三次元計測内視鏡。 7. A three-dimensional measurement endoscope using a self-mixing laser according to claim 4, wherein a laser light-emitting portion is provided at a distal end portion of the endoscope. 前記内視鏡において、レーザ発光部を内視鏡の中間部に設け、該発光部から光ファイバーによりレーザ光を内視鏡先端部まで導いてなる請求項4乃至6記載の自己混合レーザを用いる三次元計測内視鏡。 7. The tertiary using the self-mixing laser according to claim 4, wherein a laser light emitting part is provided in an intermediate part of the endoscope, and laser light is guided from the light emitting part to the distal end part of the endoscope by an optical fiber. Former measuring endoscope. 前記内視鏡において、レーザ発光部を内視鏡の操作部に設け、該発光部から光ファイバーによりレーザ光を内視鏡先端部まで導いてなる請求項4乃至6記載の自己混合レーザを用いる三次元計測内視鏡。 7. A tertiary using a self-mixing laser according to claim 4, wherein a laser light emitting part is provided in an operation part of the endoscope in the endoscope, and laser light is guided from the light emitting part to the distal end part of the endoscope by an optical fiber. Former measuring endoscope.
JP2005297282A 2005-10-12 2005-10-12 Three-dimensional measurement endoscope using self-mixing laser Pending JP2007105140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005297282A JP2007105140A (en) 2005-10-12 2005-10-12 Three-dimensional measurement endoscope using self-mixing laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005297282A JP2007105140A (en) 2005-10-12 2005-10-12 Three-dimensional measurement endoscope using self-mixing laser

Publications (1)

Publication Number Publication Date
JP2007105140A true JP2007105140A (en) 2007-04-26

Family

ID=38031478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005297282A Pending JP2007105140A (en) 2005-10-12 2005-10-12 Three-dimensional measurement endoscope using self-mixing laser

Country Status (1)

Country Link
JP (1) JP2007105140A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112335142A (en) * 2018-06-26 2021-02-05 通快光电器件有限公司 VCSEL device for SMI sensor for recording three-dimensional images
WO2023232460A1 (en) * 2022-05-30 2023-12-07 Ams International Ag Self-mixing interferometry sensor module for multilayer target detection, electronic device and method of multilayer target detection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501279A (en) * 2001-08-23 2005-01-13 ユニバーシティ・オブ・ワシントン Collect depth-enhanced images

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501279A (en) * 2001-08-23 2005-01-13 ユニバーシティ・オブ・ワシントン Collect depth-enhanced images

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112335142A (en) * 2018-06-26 2021-02-05 通快光电器件有限公司 VCSEL device for SMI sensor for recording three-dimensional images
JP2021528863A (en) * 2018-06-26 2021-10-21 トルンプ フォトニック コンポーネンツ ゲゼルシャフト ミット ベシュレンクテル ハフツング VCSEL device for SMI sensor for recording 3D images
JP7174780B2 (en) 2018-06-26 2022-11-17 トルンプ・フォトニック・コンポウネンツ・ゲゼルシャフト・ミット・ベシュレンクター・ハフトゥング VCSEL device for SMI sensors for recording 3D images
US11973320B2 (en) 2018-06-26 2024-04-30 Trumpf Photonic Components Gmbh VCSEL device for an SMI sensor for recording three-dimensional pictures
WO2023232460A1 (en) * 2022-05-30 2023-12-07 Ams International Ag Self-mixing interferometry sensor module for multilayer target detection, electronic device and method of multilayer target detection

Similar Documents

Publication Publication Date Title
JP2007144024A (en) Three-dimensional measurement endoscope using self-mixing laser
TWI801364B (en) Semiconductor photonic circuit and method for providing frequency chirped light beam
US7699469B2 (en) System and method for tracking eyeball motion
CA2597712C (en) Laser radar system and system and method for providing chirped electromagnetic radiation
JP5149486B2 (en) Interferometer, shape measurement method
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
JP5403972B2 (en) Dimension measuring device
CN105143820A (en) Depth scanning with multiple emitters
JP7419394B2 (en) LIDAR system with mode field expander
US11054524B2 (en) Optimizing a lidar system using sub-sweep sampling
CN111487639A (en) Laser ranging device and method
US20220121080A1 (en) Optical beam scanning based on waveguide switching and position-to-angle conversion of a lens and applications
JP2012063230A (en) Laser radar apparatus
JP2004527765A (en) Optical sensor for distance measurement
JP4997406B1 (en) Shape measuring device, depth measuring device and film thickness measuring device
KR101175780B1 (en) 3-Dimension depth camera using the Infrared laser projection display
CN110716189A (en) Transmitter and distance measurement system
JP2017073546A (en) Edge emitting laser light source and three-dimensional image obtaining apparatus including the same
JP2018155649A (en) Electromagnetic wave detector, program, and electromagnetic wave detection system
JP2007105140A (en) Three-dimensional measurement endoscope using self-mixing laser
JP2018136243A (en) Electromagnetic wave detection device, program, and electromagnetic wave detection system
KR102085705B1 (en) 3 demensional camera
JP2019129510A (en) Electromagnetic wave detection device and information acquisition system
CN211148903U (en) Transmitter and distance measurement system
JP2001153612A (en) Three-dimensional image pickup device and method, and inteference light generating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019