JP2007101482A - Measuring tip and analytical method therefor - Google Patents

Measuring tip and analytical method therefor Download PDF

Info

Publication number
JP2007101482A
JP2007101482A JP2005294812A JP2005294812A JP2007101482A JP 2007101482 A JP2007101482 A JP 2007101482A JP 2005294812 A JP2005294812 A JP 2005294812A JP 2005294812 A JP2005294812 A JP 2005294812A JP 2007101482 A JP2007101482 A JP 2007101482A
Authority
JP
Japan
Prior art keywords
color
substrate
reagent
reagent region
chart
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005294812A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Yajima
浩義 矢島
Toshihiko Yoshioka
俊彦 吉岡
Shuzo Yoshizumi
修三 吉住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005294812A priority Critical patent/JP2007101482A/en
Publication of JP2007101482A publication Critical patent/JP2007101482A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring tip and its analytical method, wherein both visual qualitative analysis and quantitative values is achieved. <P>SOLUTION: The measuring tip 1 is provided with a substrate 2; a sample inlet part 5; a channel 6 on the substrate 2; a filter 7; a reagent region 3; and a substrate cover 8. The sample inlet part 5 is arranged at an end face of the substrate 2, and the inlet part 5, the channel 6, the filter 7, and the reagent region 3 are linked via the channel 6. The filter 7 is arranged between the sample inlet part 5 and the reagent region 3. The reagent region 3 has both an enzyme, which reacts at least with a substrate, and a color reagent which reacts with a reactant of the enzyme, and the sections of the substrate 2 that are not involved in reactions of the substrate have at least one or more collation color chart 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,血液など体液中の成分分析に用いる,測定チップならびにその分析方法に関するものである。   The present invention relates to a measuring chip used for analyzing components in body fluids such as blood and an analysis method thereof.

測定チップは,例えば血液など体液中のアルブミン,グルコース,白血球,潜血,pH,比重,クレアチニン,等の存在/不存在,量を測定するために用いられる.従来の測定チップは,液体を付けた後の試薬領域の色を,試験結果のレベルまたは量の判定のための照合カラーチャートと目視で比較する.カラーチャートは基本濃度判定ランクの数量の色調が,一定ランク間隔で印刷されている.カラーチャートは,測定チップとは別のチャート紙であったり,あるいは測定チップ保管手段に添付または貼付されている(例えば特許文献1参照)。   The measurement chip is used to measure the presence / absence and amount of albumin, glucose, leukocytes, occult blood, pH, specific gravity, creatinine, etc. in body fluids such as blood. The conventional measuring chip visually compares the color of the reagent area after applying the liquid with a reference color chart for judging the level or amount of the test result. In the color chart, the color tone of the basic density judgment rank is printed at regular rank intervals. The color chart is a chart paper different from the measurement chip, or is attached or attached to the measurement chip storage means (see, for example, Patent Document 1).

測定チップ上に比較用カラー領域が構成された,従来の測定チップを図10に示す(例えば特許文献2参照).図10の様に基板100上に,2つの比較用カラー領域101と試薬領域102が構成されており,2つの比較用カラー領域101の各々は,存在/不存在の結果を示す試薬領域102で出現しうる最大量の色,または最も濃い色とされている.一滴以上の試験液が試薬領域102に付けられ,試薬領域102中に結果として生じた色合いは,比較用カラー領域101の各々の色合いと比較して,試験物質の存在/不存在を目視で判定している.ここで,試薬領域102と2つの照合カラー領域101はごく近接して設置されている。   FIG. 10 shows a conventional measurement chip in which a color area for comparison is formed on the measurement chip (see, for example, Patent Document 2). As shown in FIG. 10, two comparison color areas 101 and a reagent area 102 are configured on the substrate 100, and each of the two comparison color areas 101 is a reagent area 102 indicating the presence / absence result. The maximum amount of color that can appear, or the darkest color. One or more drops of the test solution is applied to the reagent area 102, and the resulting color in the reagent area 102 is compared with the color of each color area 101 for comparison to visually determine the presence / absence of the test substance. is doing. Here, the reagent region 102 and the two collation color regions 101 are placed in close proximity.

従来の測定チップの分析方法では,試験片の一部分に形成された試薬領域を含む,試験片の像をカラーイメージセンサで撮像し,得られる複数の色信号から試薬部における測定波長毎の反射率を求め,さらに測定チップ上に設けた標準反射部分として,試薬領域が形成されていない試験片の部分の同様な反射率を用いて,事前に準備された検量線の補正を行い,補正を行った検量線を用いて測定チップの分析を行っている(例えば特許文献3)。
特開平11−326320号公報 特開2001−264327号公報 特開平07−005110号公報
In a conventional measuring chip analysis method, an image of a test piece including a reagent region formed on a part of the test piece is picked up by a color image sensor, and the reflectance for each measurement wavelength in the reagent portion is obtained from a plurality of color signals obtained. In addition, the calibration curve prepared in advance is corrected by using the same reflectivity of the part of the test piece where the reagent area is not formed as the standard reflection part provided on the measurement chip. The measurement chip is analyzed using the calibration curve (for example, Patent Document 3).
Japanese Patent Laid-Open No. 11-326320 JP 2001-264327 A JP 07-005110 A

しかしながら,従来の測定チップにおいては,試薬領域と照合カラーチャートとを目視にて判断を行わなければならず,如何に不連続ではなく連続的な照合カラーチャートを用いたとしても,分解能の高い定量値を得ることは出来なかった.また,照合カラーチャートが測定チップと分離されている場合,多くの照合用カラーチャートは測定チップ保管容器に貼付されているので,大気にさらされていることによる退色が発生し,正確な分析を行えなかった。   However, in the conventional measuring chip, the reagent region and the collation color chart must be visually determined, and no matter how discontinuous the collation color chart is used, the quantitative determination with high resolution is possible. The value could not be obtained. In addition, when the collation color chart is separated from the measurement chip, many collation color charts are attached to the measurement chip storage container, so fading occurs due to exposure to the atmosphere, and accurate analysis is performed. I couldn't.

測定チップ上に比較用カラー領域が構成された測定チップも,比較用カラー領域は分析物の存在/不存在を判断するもので,定性的な分析物の濃度判断や定量値を得ることが出来なかった。   A measurement chip with a comparison color area on the measurement chip also determines the presence / absence of the analyte in the comparison color area, and can provide a qualitative analyte concentration determination and quantitative value. There wasn't.

また,従来の測定チップの分析方法においては,測定時の照明の違いなどによる反射強度の補正を測定チップ上の標準反射部分で行うが,面内の照明の違いは一様ではなく,さらにカラーイメージセンサは微小センサと微小色フィルタの集合体であり,個々に特性が異なるため,精度が高く再現性の高い定量分析を行うことが出来なかった。   In the conventional analysis method of the measurement chip, the correction of the reflection intensity due to the difference in illumination at the time of measurement is performed at the standard reflection part on the measurement chip. An image sensor is a collection of microsensors and microcolor filters, and the characteristics of each sensor are different, so quantitative analysis with high accuracy and high reproducibility could not be performed.

本発明は,従来の問題を解決するためになされたもので,目視による定性的な分析と,定量値を得ることのできる測定チップならびにその分析方法を提供することを目的とする。   The present invention has been made to solve the conventional problems, and an object of the present invention is to provide a measurement chip capable of obtaining a qualitative analysis by visual inspection and a quantitative value and an analysis method thereof.

本発明の測定チップは,基板上に試薬領域と,前記試薬領域の前記分析物濃度に応じた呈色と比較するための照合カラーチャートと,前記照合カラーチャートの内部または近傍に基準カラーが形成された構成を有している。   The measurement chip of the present invention has a reagent area on a substrate, a collation color chart for comparing with the color corresponding to the analyte concentration in the reagent area, and a reference color formed in or near the collation color chart. It has the structure which was made.

この構成により,使用者が目視による定性的な分析物濃度を認識でき,測定チップをカラー撮像素子で撮影した際に,照明の不均一に対する校正をした上で定量的な分析物濃度も認識できることとなる。   With this configuration, the user can recognize the qualitative analyte concentration by visual observation, and when the measurement chip is photographed with a color image sensor, it can also recognize the quantitative analyte concentration after correcting for non-uniform illumination. It becomes.

また,本発明の測定チップは,前記基板の裏面に,前記測定チップの特徴と関連付けられた記号が記された構成を有している。   The measurement chip of the present invention has a configuration in which symbols associated with the characteristics of the measurement chip are written on the back surface of the substrate.

この構成により,使用者が目視による定性的な分析物濃度を認識でき,測定チップをカラー撮像素子で撮影した際に,測定チップの全体パターン等の情報を与えた上で定量的な分析物濃度も認識できることとなる。   With this configuration, the user can recognize the qualitative analyte concentration by visual observation, and when the measurement chip is photographed with a color image sensor, information such as the overall pattern of the measurement chip is given and quantitative analyte concentration is given. Can also be recognized.

また,本発明の測定チップは,前記照合カラーチャートは,前記分析物濃度に対して連続的に表示された構成を有している。   The measuring chip of the present invention has a configuration in which the reference color chart is continuously displayed with respect to the analyte concentration.

この構成により,使用者が目視による定性的な分析物濃度をより高い精度で認識できることとなる。   With this configuration, the user can recognize the visually qualitative analyte concentration with higher accuracy.

また,本発明の測定チップは,基板と試料導入部と前記基板上に少なくとも底部と二つ以上の側壁部とを有する流路と,フィルタと試薬領域と基板カバーとを備え,前記試料導入部は前記基板の端面にあり,かつ前記試料導入部と前記流路と前記フィルタと前記試薬領域は前記流路を介し連結され,前記フィルタは前記試料導入部と前記試薬領域との間にあり,前記試薬領域は少なくとも基質と反応する酵素と前記酵素の反応物と反応する呈色試薬とを有し,前記基板の前記反応と関与しない部位は少なくとも一個以上の照合カラーチャートが形成された構成を有している。   The measurement chip of the present invention comprises a substrate, a sample introduction part, a flow path having at least a bottom part and two or more side walls on the substrate, a filter, a reagent region, and a substrate cover, and the sample introduction part. Is on the end face of the substrate, and the sample introduction part, the flow path, the filter and the reagent region are connected via the flow path, and the filter is between the sample introduction part and the reagent region, The reagent region has at least an enzyme that reacts with a substrate and a color reagent that reacts with a reaction product of the enzyme, and the portion of the substrate that does not participate in the reaction has a configuration in which at least one reference color chart is formed. Have.

この構成により,使用者が血液など試料に触れることなく測定チップを使用でき,感染などを防止することができることとなる。   With this configuration, the measurement chip can be used without the user touching a sample such as blood, and infection can be prevented.

また,本発明の測定チップの分析方法は,前記測定チップは,少なくとも基板上に試薬領域と,前記試薬領域の前記分析物濃度に応じた呈色と比較するための照合カラーチャートを含み,前記測定チップをカラー撮像素子で撮影し,取り込んだ画像からの前記照合カラーチャートの色判定から前記分析物濃度との検量線を作成し,前記試薬領域の色判定と比較して前記分析物濃度を得るようにした構成を有している。   In the measuring chip analysis method of the present invention, the measuring chip includes a reference color chart for comparing at least a reagent region on the substrate and a color corresponding to the analyte concentration of the reagent region, The measurement chip is photographed with a color imaging device, a calibration curve with the analyte concentration is created from the color determination of the collation color chart from the captured image, and the analyte concentration is compared with the color determination of the reagent region. It has the structure made to obtain.

この構成により,使用者が測定チップをカラー撮像素子で撮影した際に,定量的な分析物濃度が認識できることとなる。   With this configuration, the quantitative analyte concentration can be recognized when the user photographs the measurement chip with the color image sensor.

また,本発明の測定チップの分析方法は,前記測定チップは,少なくとも基板上に試薬領域と,前記試薬領域の前記分析物濃度に応じた呈色と比較するための照合カラーチャートと,前記照合カラーチャートの内部または近傍の基準カラーを含み,前記測定チップをカラー撮像素子で撮影し,取り込んだ画像からの前記基準カラーの色判定により補正した前記照合カラーチャートの色判定から前記分析物濃度との検量線を作成し,前記試薬領域の色判定と比較して前記分析物濃度を得るようにした構成を有している。   In the measuring chip analysis method of the present invention, the measuring chip includes at least a reagent region on a substrate, a collation color chart for comparing the color corresponding to the analyte concentration in the reagent region, and the collation. The color density of the reference color chart including the reference color inside or near the color chart, the measurement chip photographed with a color imaging device, and corrected by the color judgment of the reference color from the captured image, and the analyte concentration and The calibration curve is prepared, and the analyte concentration is obtained by comparison with the color determination of the reagent region.

この構成により,使用者が測定チップをカラー撮像素子で撮影した際に,照明の不均一に対する校正した上で定量的な分析物濃度が認識できることとなる。   With this configuration, when the user photographs the measurement chip with the color image sensor, the quantitative analyte concentration can be recognized after correcting for nonuniform illumination.

また,本発明の測定チップの分析方法は,前記カラー撮像素子は,カメラ付携帯電話であるようにした構成を有している。   In the measuring chip analyzing method according to the present invention, the color image pickup device is a mobile phone with a camera.

この構成により,通信機能を用いることで使用者が何らかの患者である場合,医師などと使用者の状態を自動的に共有することとなる。   With this configuration, when the user is a patient by using the communication function, the user's state is automatically shared with a doctor or the like.

本発明は,測定チップが少なくとも基板上に試薬領域と,前記試薬領域の前記分析物濃度に応じた呈色と比較するための照合カラーチャートを含み,前記測定チップをカラー撮像素子で撮影し,取り込んだ画像からの前記照合カラーチャートの色判定から前記分析物濃度との検量線を作成し,前記試薬領域の色判定と比較して前記分析物濃度を得るようにしたことにより,使用者が目視による定性的な分析物濃度を認識でき,測定チップをカラー撮像素子で撮影した際に,定量的な分析物濃度も認識できるという効果を有する測定チップとその分析方法を提供することができるものである。   The present invention includes a comparison color chart for comparing at least a reagent region on a substrate with a color corresponding to the concentration of the analyte in the reagent region, and photographing the measurement chip with a color imaging device. By creating a calibration curve with the analyte concentration from the color determination of the collation color chart from the captured image and obtaining the analyte concentration by comparing with the color determination of the reagent region, the user can A measuring chip capable of recognizing a qualitative analyte concentration by visual observation and having an effect of recognizing a quantitative analyte concentration when the measuring chip is photographed with a color imaging device, and an analysis method thereof. It is.

以下,本発明の実施の形態の測定チップならびにその分析方法について,図面を用いて説明する。   Hereinafter, a measurement chip and an analysis method thereof according to an embodiment of the present invention will be described with reference to the drawings.

本発明の第1の実施の形態の測定チップを図1に示す.図1の(a)は上面図中一点鎖線(a)での断面図であり,以下同様に(b)は上面中一点鎖線(b)での断面図であり,(c)は上面中一点鎖線(c)での断面図である。   The measurement chip of the first embodiment of the present invention is shown in FIG. FIG. 1A is a cross-sectional view taken along the alternate long and short dash line (a) in the top view, and similarly, (b) is a cross-sectional view taken along the alternate long and short dash line (b) in the top view, and FIG. It is sectional drawing in a dashed line (c).

図1において,測定チップ1は,基板2の表面に形成された試薬領域3と,被分析液を試薬領域3に導くための試料導入部5と流路6と,流路6内のフィルタ7と,被分析液中の分析物濃度ステップに応じた複数の照合カラーチャート4と,流路6を確定し全体を覆う基板カバー8とを有する構成である.測定チップ1の大きさは,一辺が20mm以上の正方形または長方形が望ましく,さらに望ましい形態としては,短辺20mm長辺50mmの直方体である。   In FIG. 1, a measuring chip 1 includes a reagent region 3 formed on the surface of a substrate 2, a sample introduction unit 5 and a channel 6 for introducing an analyte to the reagent region 3, and a filter 7 in the channel 6. And a plurality of collation color charts 4 corresponding to the analyte concentration steps in the analyte liquid, and a substrate cover 8 that defines the flow path 6 and covers the whole. The size of the measuring chip 1 is preferably a square or rectangle having a side of 20 mm or more, and more preferably a rectangular parallelepiped having a short side of 20 mm and a long side of 50 mm.

基板2は,ポリスチレン,ポリエステル,ポリ塩化ビニル,ポリカーボネイト,ポリプロピレンなどの高分子プラスチック材料や合成樹脂等で形成され,容易に折り曲げることの出来ない硬度であり,平坦な板状である.厚さは数mm程度であり,望ましくは1から3mmである.基板カバー8も基板2と同様の材料であるが,可視光に対してほぼ透明である材料と厚さである.厚さは1mm以下であり,望ましくは0.02から0.2mmである。   The substrate 2 is made of a polymer plastic material such as polystyrene, polyester, polyvinyl chloride, polycarbonate, polypropylene, or a synthetic resin, and has a hardness that cannot be easily bent, and is a flat plate. The thickness is about several mm, preferably 1 to 3 mm. The substrate cover 8 is also made of the same material as that of the substrate 2, but has a material and thickness that are almost transparent to visible light. The thickness is 1 mm or less, preferably 0.02 to 0.2 mm.

流路6の溝は,基板2の押し出し成形や,基板2の切削加工あるいは熱加工等により形成される.流路6の幅は5mm以下程度であり,高さは0.1mmから1mm程度である.望ましくは,幅2mm高さ0.2mmである.長さの制限はないが,望ましくは10mm程度である。   The groove of the channel 6 is formed by extruding the substrate 2, cutting or thermal processing of the substrate 2, and the like. The width of the channel 6 is about 5 mm or less, and the height is about 0.1 mm to 1 mm. Desirably, the width is 2 mm and the height is 0.2 mm. The length is not limited, but is preferably about 10 mm.

照合カラーチャート4は,絵の具,インク,顔料,塗料等の,オフセット印刷,グラビア印刷,凸版印刷,スクリーン印刷,熱転写印刷,レーザー印刷,インクジェット印刷等によって形成される.照合カラーチャート4の大きさは,一辺が3mm以上の正方形または長方形であるのが望ましい。   The collation color chart 4 is formed by offset printing, gravure printing, letterpress printing, screen printing, thermal transfer printing, laser printing, ink jet printing, etc., such as paint, ink, pigment, and paint. The size of the collation color chart 4 is preferably a square or a rectangle with a side of 3 mm or more.

フィルタ7は,ガラス繊維や不繊布などの繊維質状の材料からなり,網目状に構成されている.繊維質間隔によってその間隔以上の大きさの被分析液中の成分を捕捉することができる.捕捉する成分は試薬領域3での被分析物と試薬の反応を妨害する成分や,被分析物以外で色を有する成分である.繊維質間隔は数μmから数10μm程度であり,望ましくは1から5μmである.流路6の流れ方向の長さは数mm程度であり,望ましくは1から5mmである。   The filter 7 is made of a fibrous material such as glass fiber or non-woven cloth, and is configured in a mesh shape. Depending on the fiber spacing, it is possible to capture components in the liquid to be analyzed that are larger than the spacing. The components to be captured are components that interfere with the reaction between the analyte and the reagent in the reagent region 3 and components that have a color other than the analyte. The fiber spacing is about several μm to several tens of μm, preferably 1 to 5 μm. The length of the flow path 6 in the flow direction is about several mm, preferably 1 to 5 mm.

以上のように構成された測定チップについて,以下に一例として,被分析液として血液を,分析物をグルコースとして,その動作を説明する。   The operation of the measurement chip configured as described above will be described below by taking blood as an analyte and glucose as an analyte as an example.

まず,図示しない使用者がこれも図示しないランセット等を用いて,指先などから被分析液である血液を体内から滲出させる.滲出した血液に対して測定チップ1の試料導入部5を接触させる.血液は試料導入部5から流路6を毛細管現象によって試薬領域3へと流れていく.途中,フィルタ7により血液中の血球成分が捕捉され,血漿成分のみが試薬領域3へと到達する。   First, a user (not shown) uses a lancet (not shown) to exude blood, which is the liquid to be analyzed, from the fingertip or the like. The sample introduction part 5 of the measuring chip 1 is brought into contact with the exuded blood. The blood flows from the sample introduction part 5 through the flow path 6 to the reagent region 3 by capillary action. On the way, the blood cell component in the blood is captured by the filter 7, and only the plasma component reaches the reagent region 3.

試薬領域3には当業者にとって公知である酵素比色法の酵素ならびに色原体が,基板2の上に塗布や貼着や印刷,あるいはろ紙やフィルムその他の担体に塗布や印刷,含浸,あるいは練り込み等により一体化した状態で基板2に設置されている.試薬領域3の大きさは,一辺が3mm以上の正方形または長方形であるのが望ましい.試薬領域3の下,基板2との間には,試薬領域の呈色を制御するための色が照合カラーチャート4と同様の方法で形成することも出来る.ただし,試薬領域3の試薬と反応しない材質から選ばれることが照合カラーチャート4の場合と異なる。   Enzyme colorimetric enzymes and chromogens known to those skilled in the art are applied to the reagent region 3 by coating, sticking or printing on the substrate 2, or coating, printing, impregnation on filter paper, film or other carrier, or It is installed on the substrate 2 in an integrated state by kneading. The size of the reagent region 3 is preferably a square or rectangle with a side of 3 mm or more. A color for controlling the coloration of the reagent region can be formed below the reagent region 3 and the substrate 2 by the same method as that for the collation color chart 4. However, the material selected from materials that do not react with the reagent in the reagent region 3 is different from that in the collation color chart 4.

試薬領域3に達した被分析液である血液は,分析物であるグルコースと試薬領域3内の酵素と,グルコース+酸素+水 −(グルコースオキシターゼ)→ グルコン酸+過酸化水素,の反応を行い,さらに反応生成物と色原体がもう一つの酵素と,過酸化水素+色原体 −(ペルオキシターゼ)→ 過酸化水素+キノン系色素,の反応を行う.この一連の反応により,試薬領域3は分析物であるグルコース濃度に応じた呈色を示す。   The blood, which is the liquid to be analyzed, that has reached the reagent region 3 reacts with glucose as the analyte and the enzyme in the reagent region 3 with glucose + oxygen + water- (glucose oxidase) → gluconic acid + hydrogen peroxide. Furthermore, the reaction product and chromogen react with another enzyme, hydrogen peroxide + chromogen-(peroxidase) → hydrogen peroxide + quinone dye. By this series of reactions, the reagent region 3 shows a color corresponding to the concentration of glucose as an analyte.

グルコースオキシターゼの代わりに,ピラノースオキシダーゼも使用できる.ペルオキシダーゼの代わりに,ヘモグロビン,チオシアン酸鉄,フェロシアン化鉄,ヨウ化カリウム及びモリブデン酸アンモニウムなども使用できる。   Instead of glucose oxidase, pyranose oxidase can also be used. Instead of peroxidase, hemoglobin, iron thiocyanate, iron ferrocyanide, potassium iodide, ammonium molybdate, and the like can be used.

色原体としては発色した場合可視部に吸収のあるものであればよく,o−アニシジン,ベンチジン,o−トリジン,テトラメチルベンチジン,ロイコ系色原体及び4−アミノアンチピリンとフェノール又はその誘導体やアニリン誘導体を組み合わせるトリンダー系試薬などが使用できる。   The chromogen may be any chromogen that absorbs in the visible region, and o-anisidine, benzidine, o-tolidine, tetramethylbenzidine, leuco chromogen, 4-aminoantipyrine and phenol or its derivatives Or a Trinder reagent combining aniline derivatives can be used.

この呈色を照合カラーチャート4と比較することにより,使用者はグルコース濃度の定性的な値を目視で判断できる.照合カラーチャートの詳細を図8に示す.図8において,41はカラーチャート部,43は対応分析物濃度である。   By comparing this coloration with the matching color chart 4, the user can visually determine the qualitative value of the glucose concentration. Figure 8 shows the details of the matching color chart. In FIG. 8, 41 is a color chart portion, and 43 is a corresponding analyte concentration.

ここで,照合カラーチャート4の対応分析物濃度43は,その後の処置が必要な,高血糖あるいは低血糖な状態を判定できるしきい値を境としたステップの,複数の照合カラーチャートとすることも出来る.これにより,使用者はグルコース濃度が,速やかなインシュリン摂取が必要な高血糖な状態,あるいは直ちに糖の摂取が必要な低血糖な状態であるかを目視で判断できる。   Here, the corresponding analyte concentration 43 of the collation color chart 4 is a plurality of collation color charts at a step with a threshold value that can be used to determine a hyperglycemic or hypoglycemic state that requires subsequent treatment. You can also. Thus, the user can visually determine whether the glucose concentration is in a hyperglycemic state where prompt insulin intake is necessary or a hypoglycemic state where immediate sugar intake is necessary.

次に,分析物濃度の定量的な分析方法について詳細に説明する.分析物濃度は,照合カラーチャート4から求めた検量線と,試薬領域3の呈色比較により行う。   Next, the quantitative analysis method of the analyte concentration is explained in detail. The analyte concentration is determined by comparing the calibration curve obtained from the matching color chart 4 with the coloration of the reagent region 3.

図6に測定チップの分析方法の構成図を示す.図6において,81は照明手段,82はカラー撮像素子,83は分析装置,84は表示・入力装置である.基板1からの入射光は,太陽光や室内照明光など何らかの照明手段81の試薬領域3と照合カラーチャート4を含む基板1からの反射光である。   Fig. 6 shows the configuration of the measurement chip analysis method. In FIG. 6, 81 is an illumination means, 82 is a color image sensor, 83 is an analyzer, and 84 is a display / input device. Incident light from the substrate 1 is reflected light from the substrate 1 including the reagent region 3 and the matching color chart 4 of some illumination means 81 such as sunlight or indoor illumination light.

被分析液が試薬領域3に到達し,分析物による反応が十分進行した状態で,測定チップ1を分析装置83との伝達手段を持つ,カラー撮像素子82で撮影を行う.カラー撮像素子82は,CCDやCMOSセンサ等の半導体デバイスが使用できる.撮影した画像には,試薬領域3ならびに照合カラーチャート4と,各々に付属した基準カラー部が写っている。   In a state where the liquid to be analyzed reaches the reagent region 3 and the reaction by the analyte has sufficiently progressed, the measurement chip 1 is photographed with a color imaging device 82 having a transmission means with the analyzer 83. The color image sensor 82 can be a semiconductor device such as a CCD or CMOS sensor. In the photographed image, the reagent region 3 and the collation color chart 4 and the reference color portion attached to each are shown.

以下にカラー撮像素子82としてCCDを用いた場合を例にとり,この画像の分析方法について記す。   In the following, an example of the case where a CCD is used as the color image sensor 82 will be described as an analysis method of this image.

カラーCCDは,複数のフォトダイオードがマトリックス状に配置されており,各々のフォトダイオード上には通常,赤・緑・青色のいずれかのカラーフィルターが配置されている.また一部には前記三原色と補色の関係である,黄色・マゼンタ・シアンを用いるものもある.カラーフィルターの配置は三原色の場合,主に縦3×横3の9つのフォトダイオードに,縦横方向に各々2つの赤と青のカラーフィルター,中央と四隅に5つの緑のカラーフィルターを組単位として使用されている.各フォトダイオードの電気信号出力は,入射光のカラーフィルター透過後の光強度に比例したものである。   A color CCD has a plurality of photodiodes arranged in a matrix, and a red, green, or blue color filter is usually placed on each photodiode. Some use yellow, magenta, and cyan, which are complementary colors. In the case of three primary colors, the color filters are arranged in groups of 9 photodiodes (3 x 3), 2 red and blue color filters in the vertical and horizontal directions, and 5 green color filters at the center and four corners. in use. The electrical signal output of each photodiode is proportional to the light intensity of the incident light after passing through the color filter.

分析装置83内での画像分析の第一段階は,測定チップ1ならびにこの中の,試薬領域3,複数の照合カラーチャート4の認識を行う.これは,各認識部と基板2とのエッジ検出で行う.事前に記憶された全体パターンとのマッチングを行い,撮影時の倍率を決定し,各認識部を各々判定し,各認識部と相関するカラーCCD上のフォトダイオードのアドレスを決定する。   The first stage of image analysis in the analyzer 83 is to recognize the measurement chip 1 and the reagent region 3 and the plurality of collation color charts 4 therein. This is performed by edge detection between each recognition unit and the substrate 2. Matching with the whole pattern stored in advance is performed, the magnification at the time of photographing is determined, each recognition unit is determined, and the photodiode address on the color CCD correlated with each recognition unit is determined.

ここで,測定チップ1の試薬領域3がある面とは反対面に,全体パターン識別番号を記載しておき,これを分析装置83と何らかの伝達手段がある表示・入力装置84に入力し分析すべき全体パターンを与えることが出来る.図9に測定チップ1の試薬領域3がある面とは反対面を示す.図9(a)において9は全体パターン認識番号である。   Here, the entire pattern identification number is written on the surface of the measuring chip 1 opposite to the surface where the reagent region 3 is located, and this is input to the display / input device 84 having the analyzing device 83 and some transmission means for analysis. An overall power pattern can be given. FIG. 9 shows the surface of the measuring chip 1 opposite to the surface where the reagent region 3 is present. In FIG. 9A, 9 is an overall pattern recognition number.

あるいは,全体識別番号を一次元または二次元バーコードとし,カラー撮像装置82で撮影し,これを認識することで分析すべき全体パターンを与えることも出来る.図9(b)において9は二次元バーコードの一例である.さらに,全体パターン識別以外の分析物種類や要求されている分析精度,使用者への分析結果の伝達方法等の情報を加えることも可能である。   Alternatively, the whole identification number can be a one-dimensional or two-dimensional bar code, photographed by the color imaging device 82, and recognized to give a whole pattern to be analyzed. In FIG. 9B, 9 is an example of a two-dimensional barcode. Furthermore, it is also possible to add information such as the type of analyte other than the overall pattern identification, the required analysis accuracy, and the method of transmitting the analysis result to the user.

第二段階は,各認識部の色の判定を行う.各認識部には,少なくとも各色について複数のフォトダイオードが対応しており,これら同色の電気信号出力の平均や度数分布の中央値を算出する.これによって,各色(赤=R,緑=G,青=B)の電気信号出力が得られる.これを一般にRGB出力値という.この操作を各認識部ごとに繰り返し行う。   In the second stage, the color of each recognition unit is judged. Each recognition unit corresponds to at least a plurality of photodiodes for each color, and calculates the average of the electrical signal outputs of the same color and the median of the frequency distribution. As a result, an electrical signal output of each color (red = R, green = G, blue = B) is obtained. This is generally called RGB output value. This operation is repeated for each recognition unit.

第三段階は,第二段階の結果によるグルコース濃度との検量線の作成である.発明者による検討の結果,RGB出力のうちRとG出力とグルコース濃度に相関が認められ,この二つについて検量線を作成した.図11において(a)はR出力とグルコース濃度の関係であり,(b)はG出力とグルコース濃度の関係である。   The third step is to create a calibration curve with the glucose concentration based on the results of the second step. As a result of the examination by the inventor, among the RGB outputs, there was a correlation between the R and G outputs and the glucose concentration, and a calibration curve was created for these two. In FIG. 11, (a) shows the relationship between R output and glucose concentration, and (b) shows the relationship between G output and glucose concentration.

図11から分かるように,グルコース濃度が高くなるとR出力ならびにG出力が低下する傾向を示し,グルコース濃度は,
[グルコース濃度]=A×exp(−B×[R出力またはG出力])
の形式で検量線を作成できる。
As can be seen from FIG. 11, when the glucose concentration increases, the R output and the G output tend to decrease.
[Glucose concentration] = A × exp (−B × [R output or G output])
A calibration curve can be created in the form of

第四段階は,第三段階での照合カラーチャート4からの検量線と試薬領域3の呈色比較である.試薬領域3について照合カラーチャート4について行った第二段階と同様の色判定を行い,この結果をR出力ならびにG出力の検量線に代入して,血液中のグルコース濃度を決定することが出来る.分析物濃度は,分析装置83内の保存手段に後で撮影時刻や,使用者のイベント情報などと共に再表示可能な状態で保存され,分析装置83と何らかの伝送手段を持つ表示・入力装置84に表示され使用者に認識される。   The fourth stage is a color comparison between the calibration curve from the collation color chart 4 and the reagent area 3 in the third stage. The color determination similar to the second step performed for the collation color chart 4 is performed for the reagent region 3, and the result is substituted into the calibration curves for the R output and the G output to determine the glucose concentration in the blood. The analyte concentration is stored in a storage means in the analyzer 83 in a state that can be redisplayed later along with the shooting time, user event information, and the like, and is stored in the display / input device 84 having the analyzer 83 and some transmission means. Displayed and recognized by the user.

先の第三段階ならびに第四段階は,以下のように変更することも可能である。   The previous third and fourth stages can be modified as follows.

変更可能な第三段階は,RGB出力値の加工である.RGB出力値では三つの独立変数があり,各色の比率のみを表す.これを色空間への変換を行う.ここで言う色空間とは,明度,彩度,色相のことである.色空間の表示方法として様々な表現方法が提案されており,表色系と呼ばれる.表色系としては,XYZ(Yxy)表色系,L*a*b表色系,L*C*h表色系などがある。   The third stage that can be changed is the processing of RGB output values. There are three independent variables in the RGB output value, representing only the ratio of each color. This is converted to the color space. Color space here means lightness, saturation, and hue. Various expression methods have been proposed as a color space display method, which is called a color system. Examples of the color system include an XYZ (Yxy) color system, an L * a * b color system, and an L * C * h color system.

ここでは,L*C*h表色系を例にとって変換方法を示す.変換は,規格化したRGB出力値を一旦XYZ表色系に変換する.さらにXYZ表色系からL*a*b表色系へ変換し,最後にL*C*h表色系へと変換する.L*C*h表色系は,L*が明度を,C*が彩度を,hが色相角度を表す.図7にL*C*h表色系の表色図を示す。   Here, the conversion method is shown taking the L * C * h color system as an example. In conversion, the standardized RGB output values are once converted into the XYZ color system. Furthermore, the XYZ color system is converted to the L * a * b color system, and finally the L * C * h color system is converted. In the L * C * h color system, L * represents lightness, C * represents saturation, and h represents hue angle. FIG. 7 shows a color chart of the L * C * h color system.

変更可能な第四段階は,照合カラーチャート4からの検量線作成と試薬領域3の呈色比較である.各照合カラーチャートの変換後の色判定結果を表色系でマッピングする.マッピングは,図7に示した明度・彩度・色相角度からなる三次元空間上に配置される.さらに試薬領域3の変換後の色判定結果も同じく表色系で先のマッピング上に当てはめる.当てはめられたマッピング上の隣接する既知の濃度との比率配分で被分析液の分析物濃度を決定することが出来る。   The fourth step that can be changed is the creation of a calibration curve from the matching color chart 4 and the color comparison of the reagent region 3. The color judgment result after conversion of each collation color chart is mapped in the color system. The mapping is arranged in the three-dimensional space consisting of brightness, saturation and hue angle shown in Fig.7. Furthermore, the color determination result after conversion of reagent region 3 is also applied to the previous mapping in the color system. The analyte concentration of the analyte can be determined by a ratio distribution with adjacent known concentrations on the fitted mapping.

比率配分は,明度と彩度の二次元,あるいは明度と色相角度の二次元を使用することが出来,これらの一種類から,または二種類の平均を用いることが可能である.好ましくは,二種類の二次元のうち既知濃度の隣接間隔が最も大きい次元を使用する。   The ratio distribution can use two dimensions of lightness and saturation, or two dimensions of lightness and hue angle, and it is possible to use one of these or two averages. Preferably, of the two types of two dimensions, the dimension having the largest adjacent interval of known density is used.

また,カラー撮像装置82,分析装置83,表示・入力装置84は,これらが一体であるカメラ付携帯電話でもよい.カメラ付携帯電話を用いることで,前記動作の他に外部との通信機能が付加されているので,例えば使用者が糖尿病患者の場合,通信機能を通じて医師とのコミュニケーションが可能となり,あるいは自動的に分析結果を医師のデータベースに記録していくことも可能となる。   Further, the color imaging device 82, the analysis device 83, and the display / input device 84 may be a camera-equipped mobile phone in which these are integrated. By using a camera-equipped mobile phone, in addition to the above operations, an external communication function is added. For example, when the user is a diabetic patient, communication with a doctor is possible through the communication function, or automatically. It is also possible to record the analysis results in a doctor's database.

このような本発明の第1の実施の形態の測定チップならびに分析方法によれば,測定チップ上に照合カラーチャートを設け,またカラー撮像装置で測定チップを撮影し,パターンの認識と照合カラーチャートから分析物濃度との検量線を求め,試薬領域との呈色比較を行えるようにしたことにより,使用者による定性的な分析物濃度の目視による認識と,測定チップの撮影による定量的な分析物濃度を,一つの測定チップで行うことができる。   According to the measurement chip and the analysis method of the first embodiment of the present invention as described above, the collation color chart is provided on the measurement chip, the measurement chip is photographed by the color imaging device, and the pattern recognition and the collation color chart are performed. A calibration curve with the analyte concentration is obtained from the sample, and color comparison with the reagent area can be performed. This allows the user to visually recognize the qualitative analyte concentration and to perform quantitative analysis by photographing the measurement chip. Concentration can be measured with a single measuring chip.

さらには,測定チップに固有の番号やバーコードを付加し,これを分析装置に入力することで,測定チップの全体パターンやその他の測定チップ固有の情報を分析装置に自動的に与えることが出来る。   Furthermore, by adding a unique number or bar code to the measuring chip and inputting it to the analyzer, the entire pattern of the measuring chip and other information specific to the measuring chip can be automatically given to the analyzer. .

さらには,撮影をカメラ付携帯電話にすることで,撮影と分析,表示と保存を一つの装置で出来ることにとどまらず,通信機能を用いることで使用者が何らかの患者である場合,医師などと使用者の状態を自動的に共有することが可能となる。   Furthermore, by using a camera-equipped mobile phone for shooting, it is not only possible to perform shooting, analysis, display, and storage with a single device. If the user is a patient by using the communication function, doctors, etc. It becomes possible to automatically share the user status.

次に,本発明の第2の実施の形態の測定チップならびに分析方法について図面を用いて説明する.本発明の第2の実施の形態において,本発明の第1の実施の形態と異なる点についてのみ詳細に記す。   Next, a measurement chip and an analysis method according to the second embodiment of the present invention will be described with reference to the drawings. In the second embodiment of the present invention, only differences from the first embodiment of the present invention will be described in detail.

照合カラーチャート4の詳細な構成を,図3に示す.図3において,照合カラーチャート4は先の目視での判定に用いたカラーチャート部41と基準カラー部42a,42b,42cからなる.基準カラー部42aは赤の基準色であり,42bは緑色の基準色,42cは青色の基準色である.基準カラー部42a,42b,42cの位置は,図3の配置に限らないが望ましくは目視に影響を与えない位置が好適である。   The detailed configuration of the collation color chart 4 is shown in FIG. In FIG. 3, the collation color chart 4 is composed of a color chart portion 41 and reference color portions 42a, 42b, and 42c used for the previous visual determination. The reference color portion 42a is a red reference color, 42b is a green reference color, and 42c is a blue reference color. The positions of the reference collar portions 42a, 42b, and 42c are not limited to the arrangement shown in FIG. 3, but are desirably positions that do not affect visual observation.

同じく,試薬領域3の詳細な構成を,図4に示す.図4において,試薬領域3の周囲に基準カラー部31a,31b,31cが配置されている.基準カラー部31aは赤の基準色であり,31bは緑色の基準色,31cは青色の基準色である.基準カラー部31a,31b,31cの位置は,図4の配置に限らないが望ましくは目視に影響を与えない位置が好適である。   Similarly, the detailed structure of the reagent region 3 is shown in FIG. In FIG. 4, reference collar portions 31a, 31b, 31c are arranged around the reagent region 3. The reference color portion 31a is a red reference color, 31b is a green reference color, and 31c is a blue reference color. The positions of the reference collar portions 31a, 31b, and 31c are not limited to the arrangement shown in FIG. 4, but are desirably positions that do not affect visual observation.

基準カラー部は,赤・緑・青色の三原色としたが,その他の原色や補色,色数の変更も可能である.あるいは基準明度・彩度・色相であってもよい。   The reference color part has three primary colors of red, green, and blue, but other primary colors, complementary colors, and the number of colors can be changed. Alternatively, the reference brightness, saturation, and hue may be used.

基板1からの入射光は,太陽光や室内照明光など何らかの照明手段81の試薬領域3と照合カラーチャート4を含む基板1からの反射光であり,照明手段81の状態や,照明手段81・基板1・カラー撮像素子82の位置・角度関係によって撮影毎で異なり,また基板1面内でも照明光は一様でなく条件が異なっている。   Incident light from the substrate 1 is reflected light from the substrate 1 including the reagent region 3 of some illumination means 81 and the collation color chart 4 such as sunlight and indoor illumination light, and the state of the illumination means 81 and the illumination means 81. Depending on the positional / angular relationship of the substrate 1 and the color image sensor 82, it differs for each photographing, and the illumination light is not uniform within the surface of the substrate 1, and the conditions are different.

このため,照合カラーチャート4および試薬領域3の色判定において,各々の色判定場所での照明光の違いにより,精度が下がる可能性がある.そこで,基準カラー部を用いて色判定の補正を行う.色判定の補正方法を一例として,基準カラー部を各々赤・緑・青色とした場合について説明する。   For this reason, in the color determination of the collation color chart 4 and the reagent region 3, there is a possibility that the accuracy is lowered due to a difference in illumination light at each color determination place. Therefore, the color judgment is corrected using the reference color part. A case where the reference color portions are red, green, and blue will be described as an example of the color determination correction method.

まず,照合カラーチャート部や試薬領域の場合と同様に,各々のカラー基準部に対して基準カラー部の認識と色の判定,各々のRGB出力値を算出する.本来,測定チップ全面での照明の状態が均一であれば各々の色判定場所でのカラー基準部のRGB出力値は同一となるはずである.しかしながら,照明の状態が不均一の場合,各々の色判定場所でのRGB出力値が異なることになる.図12(a)は,照明に不均一がある場合の補正前出力とグルコース濃度の例である.図12(a)において,グルコース濃度200mg/dlから傾きが変化している。   First, as in the case of the collation color chart part and reagent area, the reference color part is recognized and the color is determined for each color reference part, and each RGB output value is calculated. Originally, if the lighting conditions on the entire surface of the measuring chip are uniform, the RGB output values of the color reference portion at each color judgment location should be the same. However, if the lighting conditions are not uniform, the RGB output values at each color judgment location will be different. Fig. 12 (a) shows an example of the output before correction and the glucose concentration when the illumination is uneven. In FIG. 12A, the slope changes from the glucose concentration of 200 mg / dl.

そこで,各々の照合カラーチャート4について,基準カラー部31を用いて補正を行う.すなわち,基準カラー部31の各々の本来得られるべき各RGB出力値と実際に得られたRGB出力値を比較し,その減少あるいは増加比率で照合カラーチャート4のRGB出力を補正する.この補正を全照合カラーチャート部と試薬領域について行い,補正後の値を用いて照合カラーチャート4から検量線を作成し,試薬領域との呈色比較で血液のグルコース濃度を決定することが出来る。   Therefore, each reference color chart 4 is corrected using the reference color unit 31. That is, each RGB output value that should be originally obtained in each of the reference color sections 31 is compared with the RGB output value that is actually obtained, and the RGB output of the matching color chart 4 is corrected with the decrease or increase ratio. This correction is performed for all the matching color chart sections and reagent areas, and a calibration curve is created from the matching color chart 4 using the corrected values, and the blood glucose concentration can be determined by color comparison with the reagent areas. .

図12(b)は,補正後のグルコース濃度と出力値の関係の例である.図12(b)の下向き矢印で示したように,基準カラー部での色判定結果に基づき補正を行った結果,誤差を少なくした検量線の作成が可能となった。   FIG. 12B shows an example of the relationship between the corrected glucose concentration and the output value. As indicated by the downward arrow in FIG. 12B, a calibration curve with reduced errors can be created as a result of correction based on the color determination result in the reference color portion.

このような本発明の第2の実施の形態の測定チップならびに分析方法によれば,測定チップ上の照合カラーチャートと試薬領域の各々に基準カラー部を設けたことにより,測定チップをカラー撮像素子で撮影する際の照明光の不均一による,色判定の精度低下を補正することができる。   According to the measurement chip and the analysis method of the second embodiment of the present invention as described above, the reference chip is provided in each of the collation color chart and the reagent area on the measurement chip, so that the measurement chip is connected to the color imaging device. It is possible to correct a decrease in the accuracy of color determination due to non-uniform illumination light when shooting.

次に,本発明の第3の実施の形態の測定チップについて図2と7を用いて説明する.本発明の第3の実施の形態において,これまでの本発明の実施の形態と異なる点についてのみ詳細に記す。   Next, a measurement chip according to a third embodiment of the present invention will be described with reference to FIGS. In the third embodiment of the present invention, only differences from the previous embodiments of the present invention will be described in detail.

図2は本発明の第3の実施の形態の測定チップであり,図2の測定チップ1において,図1の測定チップと同一の記号は同一の構成を示す.図1と異なるのは,照合カラーチャート4であり,照合カラーチャート4の詳細を図5に示す.図5の照合カラーチャート4において,カラーチャート部41は連続的なチャートとなっており,基準カラー部42があるステップで配置されている.対応分析物濃度43もあるステップで配置されており,ステップ間の表示をステップ表示44で行う。   FIG. 2 shows a measurement chip according to the third embodiment of the present invention. In the measurement chip 1 of FIG. 2, the same symbols as those of the measurement chip of FIG. What is different from FIG. 1 is a collation color chart 4, and details of the collation color chart 4 are shown in FIG. In the collation color chart 4 of FIG. 5, the color chart part 41 is a continuous chart, and the reference color part 42 is arranged in a certain step. Corresponding analyte concentration 43 is also arranged in a certain step, and display between steps is performed by step display 44.

図5において基準カラー部42は,対応分析物濃度43と一致するように配置されているが,さらに多くても,あるいは少なくてもよい.また,基準カラー部42をカラーチャート41近傍の外部に設置してもよい。   In FIG. 5, the reference collar portion 42 is arranged so as to coincide with the corresponding analyte concentration 43, but it may be more or less. Further, the reference collar portion 42 may be installed outside the vicinity of the color chart 41.

図示しない試薬領域との目視による呈色の比較が,照合カラーチャート4と行われる.また,同じく図示しないカラー撮像素子による測定チップ1の撮影が行われ,同じく図示しない分析装置で色判定が行われる。   A comparison of visual coloration with a reagent region (not shown) is performed with the matching color chart 4. In addition, the measurement chip 1 is photographed by a color image sensor (not shown), and color determination is performed by an analyzer (not shown).

照合カラーチャート4の色判定は,照合カラーチャート4の複数の場所で行われる.複数の場所は,望ましくは基準カラー部42の近傍で行われる.基準カラー部42の色判定による補正を行った上で照合カラーチャート4から検量線が作成され,同じく基準カラー部の色判定による補正を行った上での試薬領域3との呈色比較により血液のグルコース濃度が決定される。   The color determination of the matching color chart 4 is performed at a plurality of locations on the matching color chart 4. The multiple locations are preferably performed in the vicinity of the reference collar portion 42. A calibration curve is created from the collation color chart 4 after correction by color determination of the reference color portion 42, and blood is also obtained by color comparison with the reagent region 3 after correction by color determination of the reference color portion. Glucose concentration is determined.

このような本発明の第3の実施の形態の測定チップならびに分析方法によれば,測定チップ上の照合カラーチャートを連続的なチャートとすることで,試薬領域の各々に基準カラー部を設けたことにより,使用者による定性的な分析物濃度の目視による認識の判定精度を高めることが出来る。   According to the measurement chip and the analysis method of the third embodiment of the present invention, the reference color portion is provided in each of the reagent regions by making the collation color chart on the measurement chip a continuous chart. As a result, the accuracy of visual recognition of the qualitative analyte concentration by the user can be increased.

以上のように,本発明にかかる測定チップならびに分析方法は,使用者による分析物濃度の目視による定性的な認識と,測定チップの撮影による定量的な認識を一つの測定チップにて行えるという効果を有し,血液など体液中の成分分析に用いる,測定チップならびにその分析方法等として有用である。   As described above, the measurement chip and the analysis method according to the present invention have the effect that the user can perform qualitative recognition of the analyte concentration by visual observation and quantitative recognition by photographing the measurement chip with one measurement chip. It is useful as a measurement chip and its analysis method used for analyzing components in body fluids such as blood.

本発明の第1の実施の形態における測定チップを示す構成図The block diagram which shows the measurement chip | tip in the 1st Embodiment of this invention 本発明の第3の実施の形態における測定チップを示す構成図The block diagram which shows the measuring chip in the 3rd Embodiment of this invention 本発明の第2の実施の形態における照合カラーチャートの詳細図Detailed view of collation color chart in the second embodiment of the present invention 本発明の第2の実施の形態における試薬領域の詳細図Detailed view of reagent region in the second embodiment of the present invention 本発明の第3の実施の形態における照合カラーチャートの詳細図Detailed view of collation color chart in the third embodiment of the present invention 本発明の第1の実施の形態における測定チップの分析方法を示す構成図The block diagram which shows the analysis method of the measuring chip in the 1st Embodiment of this invention 本発明の第1の実施の形態におけるL*C*h表色系の表色図Color chart of L * C * h color system in the first embodiment of the present invention 本発明の第1の実施の形態における照合カラーチャートの詳細図Detailed view of collation color chart in the first embodiment of the present invention 本発明の第1の実施の形態における測定チップの裏面図The back view of the measurement chip in the 1st embodiment of the present invention 従来の測定チップを示す構成図Configuration diagram showing a conventional measuring chip 出力とグルコース濃度との関係を示すグラフGraph showing the relationship between output and glucose concentration 補正前後の出力とグルコース濃度との関係を示すグラフGraph showing the relationship between output before and after correction and glucose concentration

符号の説明Explanation of symbols

1 測定チップ
2 基板
3 試薬領域
4 照合カラーチャート
5 試料導入部
6 流路
7 フィルタ
8 基板カバー
9 全体パターン認識番号あるいは二次元バーコード
31 基準カラー部
41 カラーチャート部
42 基準カラー部
43 対応分析物濃度
44 ステップ表示
81 照明手段
82 カラー撮像素子
83 分析装置
84 表示・入力装置
100 基板
101 比較用カラー領域
102 試薬領域
DESCRIPTION OF SYMBOLS 1 Measurement chip 2 Substrate 3 Reagent area 4 Collation color chart 5 Sample introduction part 6 Flow path 7 Filter 8 Substrate cover 9 Whole pattern recognition number or two-dimensional barcode 31 Reference color part 41 Color chart part 42 Reference color part 43 Corresponding analyte Concentration 44 Step display 81 Illumination means 82 Color imaging device 83 Analytical device 84 Display / input device 100 Substrate 101 Comparison color region 102 Reagent region

Claims (8)

基板上に試薬領域と,前記試薬領域の前記分析物濃度に応じた呈色と比較するための照合カラーチャートと,前記照合カラーチャートの内部または近傍に基準カラーが形成されたことを特徴とする測定チップ。 A reference color is formed on or in a reagent area, a matching color chart for comparing with a color corresponding to the analyte concentration in the reagent area, and a reference color in or near the matching color chart. Measuring chip. 前記試薬領域に前記被分析液を導くための流路を具備したことを特徴とする,請求項1記載の測定チップ。 The measuring chip according to claim 1, further comprising a flow path for guiding the analyte to the reagent region. 前記基板の裏面に,前記測定チップの特徴と関連付けられた記号が記されていることを特徴とする,請求項1または2記載の測定チップ。 3. The measuring chip according to claim 1, wherein a symbol associated with the characteristics of the measuring chip is marked on the back surface of the substrate. 前記照合カラーチャートは,前記分析物濃度に対して連続的に表示されていることを特徴とする,請求項1から3記載の測定チップ。 4. The measuring chip according to claim 1, wherein the collation color chart is continuously displayed with respect to the analyte concentration. 基板と試料導入部と前記基板上に少なくとも底部と二つ以上の側壁部とを有する流路と,フィルタと試薬領域と基板カバーとを備え,前記試料導入部は前記基板の端面にあり,かつ前記試料導入部と前記流路と前記フィルタと前記試薬領域は前記流路を介し連結され,前記フィルタは前記試料導入部と前記試薬領域との間にあり,前記試薬領域は少なくとも基質と反応する酵素と前記酵素の反応物と反応する呈色試薬とを有し,前記基板の前記反応と関与しない部位は少なくとも一個以上の照合カラーチャートを有することを特徴とする測定チップ。 A substrate, a sample introduction part, a flow path having at least a bottom part and two or more side walls on the substrate, a filter, a reagent region, and a substrate cover, the sample introduction part being on an end surface of the substrate; The sample introduction part, the channel, the filter, and the reagent region are connected via the channel, the filter is between the sample introduction unit and the reagent region, and the reagent region reacts with at least a substrate. A measuring chip comprising an enzyme and a color reagent that reacts with a reaction product of the enzyme, and a portion of the substrate that does not participate in the reaction has at least one color matching chart. 前記測定チップは,少なくとも基板上に試薬領域と,前記試薬領域の前記分析物濃度に応じた呈色と比較するための照合カラーチャートを含み,前記測定チップをカラー撮像素子で撮影し,取り込んだ画像からの前記照合カラーチャートの色判定から前記分析物濃度との検量線を作成し,前記試薬領域の色判定と比較して前記分析物濃度を得ることを特徴とする,測定チップの分析方法。 The measurement chip includes at least a reagent region on a substrate and a matching color chart for comparing the color corresponding to the analyte concentration of the reagent region, and the measurement chip is photographed and captured by a color imaging device. A method for analyzing a measuring chip, wherein a calibration curve with the analyte concentration is created from color determination of the collation color chart from an image, and the analyte concentration is obtained by comparison with color determination of the reagent region . 前記測定チップは,少なくとも基板上に試薬領域と,前記試薬領域の前記分析物濃度に応じた呈色と比較するための照合カラーチャートと,前記照合カラーチャートの内部または近傍の基準カラーを含み,前記測定チップをカラー撮像素子で撮影し,取り込んだ画像からの前記基準カラーの色判定により補正した前記照合カラーチャートの色判定から前記分析物濃度との検量線を作成し,前記試薬領域の色判定と比較して前記分析物濃度を得ることを特徴とする,測定チップの分析方法。 The measurement chip includes at least a reagent area on a substrate, a collation color chart for comparing with a color corresponding to the analyte concentration in the reagent area, and a reference color in or near the collation color chart, The measurement chip is photographed with a color imaging device, a calibration curve with the analyte concentration is created from the color determination of the reference color chart corrected by color determination of the reference color from the captured image, and the color of the reagent region A method for analyzing a measuring chip, wherein the analyte concentration is obtained in comparison with a determination. 前記カラー撮像素子は,カメラ付携帯電話であることを特徴とする,請求項6または7記載の測定チップの分析方法。 8. The method for analyzing a measuring chip according to claim 6, wherein the color imaging device is a camera-equipped mobile phone.
JP2005294812A 2005-10-07 2005-10-07 Measuring tip and analytical method therefor Pending JP2007101482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005294812A JP2007101482A (en) 2005-10-07 2005-10-07 Measuring tip and analytical method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005294812A JP2007101482A (en) 2005-10-07 2005-10-07 Measuring tip and analytical method therefor

Publications (1)

Publication Number Publication Date
JP2007101482A true JP2007101482A (en) 2007-04-19

Family

ID=38028558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005294812A Pending JP2007101482A (en) 2005-10-07 2005-10-07 Measuring tip and analytical method therefor

Country Status (1)

Country Link
JP (1) JP2007101482A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116234A (en) * 2006-11-01 2008-05-22 Nippon Telegr & Teleph Corp <Ntt> Environment sensing device using image and environment sensing method
JP2010249727A (en) * 2009-04-17 2010-11-04 Disco Abrasive Syst Ltd Method of measuring strength of laser light and cellular phone with camera
JP2011501187A (en) * 2007-10-23 2011-01-06 スカネックス・アーエス Immunoassay analysis method
JP2011117911A (en) * 2009-12-07 2011-06-16 Nipro Corp Blood glucose concentration measuring device
JP2012088232A (en) * 2010-10-21 2012-05-10 Sutakku System:Kk Water quality inspection test paper measurement apparatus
JP2012093277A (en) * 2010-10-28 2012-05-17 Nippon Telegr & Teleph Corp <Ntt> Measuring apparatus and measuring method
JP2012150096A (en) * 2011-01-20 2012-08-09 Middleland Sensing Technology Inc Method and system for automatically determining test paper
JP2013230438A (en) * 2012-04-27 2013-11-14 Kikoh Corporation Filtration apparatus using nanofiber nonwoven fabric
KR101441953B1 (en) 2012-10-09 2014-09-24 주식회사 수젠텍 Method and System for Measurement of Analytes in Samples
JP2015501929A (en) * 2011-11-23 2015-01-19 カルマルク スウェーデン エービー Test system configuration and test method
JP2015510118A (en) * 2012-02-06 2015-04-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアThe Regents Of The University Of California Portable rapid diagnostic test reader
JP2015514987A (en) * 2012-04-19 2015-05-21 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト Method and apparatus for measuring analyte concentration in blood
JP2015536465A (en) * 2013-01-07 2015-12-21 アイセンサー・インコーポレイテッドiXensor Inc. Test paper and test paper reading method
US9228953B2 (en) 2011-11-23 2016-01-05 Calmark Sweden Ab Testing system and method for testing
JP2016035390A (en) * 2014-08-01 2016-03-17 パナソニックヘルスケアホールディングス株式会社 Ph determination device, ph determination method, and ph determination program
JPWO2014058064A1 (en) * 2012-10-12 2016-09-05 学校法人日本大学 Inspection system and inspection method
JP2017067605A (en) * 2015-09-30 2017-04-06 高電工業株式会社 Specimen measurement device and specimen measurement method
JP2017515106A (en) * 2014-04-15 2017-06-08 ガウス サージカル, インコーポレイテッドGauss Surgical, Inc. Method for estimating the amount of blood components in a liquid canister
US9778200B2 (en) 2012-12-18 2017-10-03 Ixensor Co., Ltd. Method and apparatus for analyte measurement
KR101903526B1 (en) * 2015-08-19 2018-10-05 한국전자통신연구원 Disease forecast device based on concentration information of biomaterial and forecasting method thereof
US10424060B2 (en) 2012-07-09 2019-09-24 Gauss Surgical, Inc. Method for estimating blood component quantities in surgical textiles
US10528782B2 (en) 2011-07-09 2020-01-07 Gauss Surgical, Inc. System and method for estimating extracorporeal blood volume in a physical sample
KR20200025687A (en) * 2018-08-31 2020-03-10 계명대학교 산학협력단 System and method for measuring environmental pollutants or disease tracers using smart device
JP2020038073A (en) * 2018-09-03 2020-03-12 株式会社日立製作所 Color evaluation device, color evaluation method, and display object used in color evaluation method
US10706541B2 (en) 2012-05-14 2020-07-07 Gauss Surgical, Inc. System and method for estimating a quantity of a blood component in a fluid canister
JP2020535491A (en) * 2018-08-29 2020-12-03 フィットペット カンパニー リミテッド Computer programs and terminals that provide urinalysis using colorimetric tables
US10863933B2 (en) 2012-05-14 2020-12-15 Gauss Surgical, Inc. System and methods for managing blood loss of a patient
US10957179B2 (en) 2011-07-09 2021-03-23 Gauss Surgical, Inc. Method for estimating a quantity of a blood component in a fluid receiver and corresponding error
JP2021515203A (en) * 2018-02-26 2021-06-17 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Methods and systems for calibrating and using cameras to detect analytes in a sample
JP2021183970A (en) * 2014-04-15 2021-12-02 ガウス サージカル, インコーポレイテッドGauss Surgical, Inc. Method for estimating quantity of blood component in fluid canister
US11229368B2 (en) 2017-01-13 2022-01-25 Gauss Surgical, Inc. Fluid loss estimation based on weight of medical items
US11976964B2 (en) 2020-01-13 2024-05-07 Intellego Technologies Ab System for quantifying a colour change

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264327A (en) * 2000-02-23 2001-09-26 Bayer Corp Colorimetric strip generating visual effect
JP2002098690A (en) * 2000-09-27 2002-04-05 Toto Ltd Excrement measuring instrument and excrement sampling device
JP2003139769A (en) * 2001-11-06 2003-05-14 Asahi Tekuneion Kk Device for automatically determining chemical
JP2004301629A (en) * 2003-03-31 2004-10-28 Denka Seiken Co Ltd Method for measuring coloring material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264327A (en) * 2000-02-23 2001-09-26 Bayer Corp Colorimetric strip generating visual effect
JP2002098690A (en) * 2000-09-27 2002-04-05 Toto Ltd Excrement measuring instrument and excrement sampling device
JP2003139769A (en) * 2001-11-06 2003-05-14 Asahi Tekuneion Kk Device for automatically determining chemical
JP2004301629A (en) * 2003-03-31 2004-10-28 Denka Seiken Co Ltd Method for measuring coloring material

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008116234A (en) * 2006-11-01 2008-05-22 Nippon Telegr & Teleph Corp <Ntt> Environment sensing device using image and environment sensing method
US8824800B2 (en) 2007-10-23 2014-09-02 Skannex As Immunoassay analysis method
JP2011501187A (en) * 2007-10-23 2011-01-06 スカネックス・アーエス Immunoassay analysis method
JP2010249727A (en) * 2009-04-17 2010-11-04 Disco Abrasive Syst Ltd Method of measuring strength of laser light and cellular phone with camera
JP2011117911A (en) * 2009-12-07 2011-06-16 Nipro Corp Blood glucose concentration measuring device
JP2012088232A (en) * 2010-10-21 2012-05-10 Sutakku System:Kk Water quality inspection test paper measurement apparatus
JP2012093277A (en) * 2010-10-28 2012-05-17 Nippon Telegr & Teleph Corp <Ntt> Measuring apparatus and measuring method
JP2012150096A (en) * 2011-01-20 2012-08-09 Middleland Sensing Technology Inc Method and system for automatically determining test paper
US11222189B2 (en) 2011-07-09 2022-01-11 Gauss Surgical, Inc. System and method for estimating extracorporeal blood volume in a physical sample
US10528782B2 (en) 2011-07-09 2020-01-07 Gauss Surgical, Inc. System and method for estimating extracorporeal blood volume in a physical sample
US11670143B2 (en) 2011-07-09 2023-06-06 Gauss Surgical, Inc. Method for estimating a quantity of a blood component in a fluid receiver and corresponding error
US10957179B2 (en) 2011-07-09 2021-03-23 Gauss Surgical, Inc. Method for estimating a quantity of a blood component in a fluid receiver and corresponding error
US11783503B2 (en) 2011-07-09 2023-10-10 Gauss Surgical Inc. Systems and method for estimating extracorporeal blood volume in a physical sample
JP2015501929A (en) * 2011-11-23 2015-01-19 カルマルク スウェーデン エービー Test system configuration and test method
US9228953B2 (en) 2011-11-23 2016-01-05 Calmark Sweden Ab Testing system and method for testing
JP2015510118A (en) * 2012-02-06 2015-04-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアThe Regents Of The University Of California Portable rapid diagnostic test reader
KR101728597B1 (en) 2012-04-19 2017-04-19 에프. 호프만-라 로슈 아게 Method and device for determining an analyte concentration in blood
US9599552B2 (en) 2012-04-19 2017-03-21 Roche Diabetes Care, Inc. Devices and methods of determining disturbance variable-corrected analyte concentrations
JP2015514987A (en) * 2012-04-19 2015-05-21 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト Method and apparatus for measuring analyte concentration in blood
JP2013230438A (en) * 2012-04-27 2013-11-14 Kikoh Corporation Filtration apparatus using nanofiber nonwoven fabric
US11712183B2 (en) 2012-05-14 2023-08-01 Gauss Surgical Inc. System and methods for managing blood loss of a patient
US11836915B2 (en) 2012-05-14 2023-12-05 Gauss Surgical Inc. System and method for estimating a quantity of a blood component in a fluid canister
US10706541B2 (en) 2012-05-14 2020-07-07 Gauss Surgical, Inc. System and method for estimating a quantity of a blood component in a fluid canister
US10863933B2 (en) 2012-05-14 2020-12-15 Gauss Surgical, Inc. System and methods for managing blood loss of a patient
US10424060B2 (en) 2012-07-09 2019-09-24 Gauss Surgical, Inc. Method for estimating blood component quantities in surgical textiles
KR101441953B1 (en) 2012-10-09 2014-09-24 주식회사 수젠텍 Method and System for Measurement of Analytes in Samples
JPWO2014058064A1 (en) * 2012-10-12 2016-09-05 学校法人日本大学 Inspection system and inspection method
US9778200B2 (en) 2012-12-18 2017-10-03 Ixensor Co., Ltd. Method and apparatus for analyte measurement
US10921259B2 (en) 2012-12-18 2021-02-16 Ixensor Co., Ltd. Method and apparatus for analyte measurement
JP2019219415A (en) * 2013-01-07 2019-12-26 アイセンサー・カンパニー・リミテッドIxensor Co., Ltd. Test strip and method of reading test strip
JP2021177181A (en) * 2013-01-07 2021-11-11 アイセンサー・カンパニー・リミテッドIxensor Co., Ltd. Test strips and method for reading test strips
JP2015536465A (en) * 2013-01-07 2015-12-21 アイセンサー・インコーポレイテッドiXensor Inc. Test paper and test paper reading method
JP7271611B2 (en) 2013-01-07 2023-05-11 アイセンサー・カンパニー・リミテッド Test strips and test strip reading methods
EP3578959A3 (en) * 2013-01-07 2020-02-26 Ixensor Co., Ltd. Method for reading test strips
JP2017201315A (en) * 2013-01-07 2017-11-09 アイセンサー・カンパニー・リミテッドIxensor Co., Ltd. Test strips and method for reading test strips
JP2017515106A (en) * 2014-04-15 2017-06-08 ガウス サージカル, インコーポレイテッドGauss Surgical, Inc. Method for estimating the amount of blood components in a liquid canister
JP2021183970A (en) * 2014-04-15 2021-12-02 ガウス サージカル, インコーポレイテッドGauss Surgical, Inc. Method for estimating quantity of blood component in fluid canister
JP2016035390A (en) * 2014-08-01 2016-03-17 パナソニックヘルスケアホールディングス株式会社 Ph determination device, ph determination method, and ph determination program
KR101903526B1 (en) * 2015-08-19 2018-10-05 한국전자통신연구원 Disease forecast device based on concentration information of biomaterial and forecasting method thereof
JP2017067605A (en) * 2015-09-30 2017-04-06 高電工業株式会社 Specimen measurement device and specimen measurement method
US11790637B2 (en) 2015-12-23 2023-10-17 Gauss Surgical Inc. Method for estimating blood component quantities in surgical textiles
US11176663B2 (en) 2015-12-23 2021-11-16 Gauss Surgical, Inc. Method for estimating blood component quantities in surgical textiles
US11282194B2 (en) 2015-12-23 2022-03-22 Gauss Surgical, Inc. Method for estimating blood component quantities in surgical textiles
US11229368B2 (en) 2017-01-13 2022-01-25 Gauss Surgical, Inc. Fluid loss estimation based on weight of medical items
US11781973B2 (en) 2018-02-26 2023-10-10 Roche Diabetes Care, Inc. Methods and systems for calibrating and using a camera for detecting an analyte in a sample
JP7185701B2 (en) 2018-02-26 2022-12-07 エフ.ホフマン-ラ ロシュ アーゲー Methods and systems for calibrating and using cameras to detect analytes in samples
JP2021515203A (en) * 2018-02-26 2021-06-17 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Methods and systems for calibrating and using cameras to detect analytes in a sample
JP2020535491A (en) * 2018-08-29 2020-12-03 フィットペット カンパニー リミテッド Computer programs and terminals that provide urinalysis using colorimetric tables
KR20200025687A (en) * 2018-08-31 2020-03-10 계명대학교 산학협력단 System and method for measuring environmental pollutants or disease tracers using smart device
KR102094277B1 (en) 2018-08-31 2020-03-27 계명대학교 산학협력단 System and method for measuring environmental pollutants or disease tracers using smart device
JP7132041B2 (en) 2018-09-03 2022-09-06 株式会社日立製作所 Color evaluation device and color evaluation method
US11398055B2 (en) 2018-09-03 2022-07-26 Hitachi, Ltd. Color evaluation device, color evaluation method, and indication object used in color evaluation method
JP2020038073A (en) * 2018-09-03 2020-03-12 株式会社日立製作所 Color evaluation device, color evaluation method, and display object used in color evaluation method
WO2020049779A1 (en) * 2018-09-03 2020-03-12 株式会社日立製作所 Color evaluation device, color evaluation method, and indication object used in color evaluation method
US11976964B2 (en) 2020-01-13 2024-05-07 Intellego Technologies Ab System for quantifying a colour change

Similar Documents

Publication Publication Date Title
JP2007101482A (en) Measuring tip and analytical method therefor
US9506855B2 (en) Method and system for analyzing a colorimetric assay
US9686540B2 (en) Robust colorimetric processing method for paper based sensors
KR100874158B1 (en) Electrochemical Biosensors and Measuring Instruments
KR101013184B1 (en) Biosensor measuring apparatus and a method thereof
EP2201373A1 (en) Two dimensional imaging of reacted areas on a reagent
KR20080080841A (en) Electrochemical biosensor
CN112334759A (en) Detection method for detecting analyte in sample
US20140244199A1 (en) Method Of Determining Information Of A Test Sensor
JP2014044049A (en) Analyzer
KR102340166B1 (en) Methods and systems for calibrating and using a camera to detect an analyte in a sample
KR20230020993A (en) Methods, mobile devices, kits, computer programs and computer readable storage media for determining the concentration of an analyte in a sample of bodily fluid
US20230095831A1 (en) Device for performing an enzyme-based diagnostic test and methods for use thereof
KR101149818B1 (en) Electrochemical biosensor and measuring instrument thereof
EP3647774B1 (en) Devices and method for measuring an analyte concentration in a sample of bodily fluid
JP2004144672A (en) Component analyzing method and component analyzer based on color development information
EP3954990B1 (en) Test strip fixation device for optical measurements of an analyte
RU2797009C9 (en) Devices and method for measuring analyte concentration in physiological fluid sample
Seetasang et al. 10 Analytical Devices
KR20210041558A (en) Apparatus and method for measuring analyte concentration in bodily fluid samples
Thomas et al. Development of Blood Glucose Monitoring System using Image Processing and Machine Learning Techniques
TW201031920A (en) Test specimen and test device having identifiability

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081007

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A131 Notification of reasons for refusal

Effective date: 20110215

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705