JP2007099245A - Road surface condition presumption device and road surface condition presumption method - Google Patents

Road surface condition presumption device and road surface condition presumption method Download PDF

Info

Publication number
JP2007099245A
JP2007099245A JP2005295708A JP2005295708A JP2007099245A JP 2007099245 A JP2007099245 A JP 2007099245A JP 2005295708 A JP2005295708 A JP 2005295708A JP 2005295708 A JP2005295708 A JP 2005295708A JP 2007099245 A JP2007099245 A JP 2007099245A
Authority
JP
Japan
Prior art keywords
road surface
friction coefficient
wheel
tire
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005295708A
Other languages
Japanese (ja)
Inventor
Hideki Kusunoki
秀樹 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005295708A priority Critical patent/JP2007099245A/en
Publication of JP2007099245A publication Critical patent/JP2007099245A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately provide a road surface friction coefficient based on wheel information even if a tire constituting a wheel is worn. <P>SOLUTION: The road surface condition presumption devices for presuming the road surface condition of a traveling road of the vehicle 10 are provided on the respective wheels 14 and are provided with an acceleration sensor 21g for detecting vibration of the corresponding wheel 14; a frequency analysis part 32 for obtaining a vibration level in a predetermined frequency band area by frequency-analyzing the detection result of the acceleration sensor 21g; a memory device 31 for storing a plurality of maps for specifying correlation of the vibration level and a road surface friction coefficient μ according to the wearing degree of the tire constituting the wheel 14; and a friction coefficient obtaining part 34 for obtaining the road surface friction coefficient μ on the traveling road of the vehicle 10 by selecting the map used for presumption of the road surface friction coefficient μ based on the wearing degree of the tire defined from a usage time of the tire and using the selected map and the vibration level obtained by the frequency analysis part 32. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車両に設けられた複数の車輪に関連する車輪情報に基づいて、車両の走行路の路面状態を推定する路面状態推定装置および路面状態推定方法に関する。   The present invention relates to a road surface state estimation device and a road surface state estimation method for estimating a road surface state of a traveling road of a vehicle based on wheel information related to a plurality of wheels provided in the vehicle.

従来から、車両に設けられた複数の車輪に関連する車輪情報に基づいて車両の走行路の路面状態を推定する装置が知られている(例えば、特許文献1参照。)。この装置では、ホイールのホイールリムに取り付けられた加速度センサにより検出されるホイールの振動情報信号が周波数解析され、所定周波数帯域における振動レベルが検出される。そして、路面摩擦係数と振動レベルとの関係を示すテーブルを用いて、検出された振動レベルから路面摩擦係数が推定される。また、この種の装置としては、圧力センサにより検出される走行中の車両のタイヤの空気圧情報に基づいて路面摩擦係数を推定するものも知られている(例えば、特許文献2参照。)。この装置では、圧力センサからの圧力信号の時間軸上における微小振動成分(AC成分)を周波数解析して得られる圧力変動スペクトルの圧力変動レベルが検出され、検出された圧力変動レベルと、路面状態およびタイヤの走行状態との関係を示すテーブルを用いて、路面摩擦係数μ等が推定される。   2. Description of the Related Art Conventionally, an apparatus that estimates a road surface state of a traveling path of a vehicle based on wheel information related to a plurality of wheels provided in the vehicle is known (see, for example, Patent Document 1). In this apparatus, the vibration information signal of the wheel detected by the acceleration sensor attached to the wheel rim of the wheel is subjected to frequency analysis, and the vibration level in a predetermined frequency band is detected. Then, the road surface friction coefficient is estimated from the detected vibration level using a table indicating the relationship between the road surface friction coefficient and the vibration level. Also, as this type of device, there is known a device that estimates a road surface friction coefficient based on tire air pressure information of a running vehicle detected by a pressure sensor (see, for example, Patent Document 2). In this apparatus, the pressure fluctuation level of the pressure fluctuation spectrum obtained by frequency analysis of the minute vibration component (AC component) on the time axis of the pressure signal from the pressure sensor is detected, and the detected pressure fluctuation level and the road surface condition are detected. Further, the road surface friction coefficient μ and the like are estimated using a table showing the relationship with the running state of the tire.

なお、タイヤ接地面の摩耗をモニタするためのシステムとして、タイヤの径方向および横方向の加速度の少なくとも一方を検知すると共に、これらの加速度の少なくとも一方について少なくとも1つの共振周波数を決定し、決定された少なくとも1つの共振周波数を少なくとも1つの記憶された周波数と比較することで、タイヤ接地面の摩耗を決定するシステムも知られている(例えば、特許文献3参照。)。
特開2003−182476号公報 特開2003−182475号公報 特開2001−215175号公報
As a system for monitoring the wear of the tire contact surface, at least one of the radial and lateral accelerations of the tire is detected, and at least one resonance frequency is determined for at least one of these accelerations. Also known is a system for determining the wear of a tire contact surface by comparing at least one resonance frequency with at least one stored frequency (see, for example, Patent Document 3).
JP 2003-182476 A JP 2003-182475 A JP 2001-215175 A

ここで、車輪を構成するタイヤは、時間の経過と共に摩耗するものであり、タイヤの摩耗が進行すると、トレッド部のゴムが減ってトレッド部のブロック剛性が変化し、それにより振動レベルも変化する。このため、上述のようにホイールの振動情報に基づいて路面摩擦係数を推定しても、タイヤの摩耗により振動レベルが変化することから、路面摩擦係数を精度よく推定することが困難となる。   Here, the tires constituting the wheels are worn with the passage of time, and when the wear of the tires progresses, the rubber of the tread portion decreases and the block rigidity of the tread portion changes, and the vibration level also changes accordingly. . For this reason, even if the road surface friction coefficient is estimated based on the vibration information of the wheel as described above, it is difficult to accurately estimate the road surface friction coefficient because the vibration level changes due to tire wear.

そこで、本発明は、車輪を構成するタイヤが摩耗しても、車輪情報に基づいて路面摩擦係数を精度よく取得可能とする路面状態推定装置および路面状態推定方法の提供を目的とする。   Therefore, an object of the present invention is to provide a road surface state estimation device and a road surface state estimation method that can accurately acquire a road surface friction coefficient based on wheel information even when a tire constituting a wheel is worn.

本発明による路面状態推定装置は、車両に設けられた複数の車輪に関連する車輪情報に基づいて、車両の走行路の路面状態を推定する路面状態推定装置において、各車輪ごとに設けられており、対応する車輪の振動を検出する振動検出手段と、振動検出手段の検出結果を周波数解析することにより、所定周波数帯域における振動レベルを取得する振動レベル取得手段と、車輪を構成するタイヤの摩耗度合に応じて振動レベルと路面摩擦係数との相関を規定するマップを複数記憶する記憶手段と、タイヤの使用時間から定まる当該タイヤの摩耗度合に基づいて路面摩擦係数の推定に用いられるマップを選択すると共に、選択したマップと振動レベル取得手段により取得された振動レベルとを用いて車両の走行路における路面摩擦係数を取得する摩擦係数取得手段とを備えることを特徴とする。   A road surface state estimation device according to the present invention is provided for each wheel in a road surface state estimation device that estimates a road surface state of a traveling road of a vehicle based on wheel information related to a plurality of wheels provided in the vehicle. Vibration detection means for detecting the vibration of the corresponding wheel, vibration level acquisition means for acquiring the vibration level in a predetermined frequency band by frequency analysis of the detection result of the vibration detection means, and the degree of wear of the tires constituting the wheel And a storage means for storing a plurality of maps defining the correlation between the vibration level and the road surface friction coefficient, and a map used for estimating the road surface friction coefficient based on the degree of wear of the tire determined from the tire usage time. At the same time, the road surface friction coefficient in the traveling road of the vehicle is acquired using the selected map and the vibration level acquired by the vibration level acquisition means. Characterized in that it comprises a friction coefficient obtaining means.

この路面状態推定装置は、車輪の振動を検出する振動検出手段の検出結果を周波数解析することにより、所定周波数帯域における振動レベルを取得し、取得した振動レベルに基づいて走行路における路面摩擦係数、すなわち車輪のタイヤと走行路面との間の路面摩擦係数を取得するものである。この路面状態推定装置の記憶手段には、振動レベルと路面摩擦係数との相関を規定するマップがタイヤの摩耗度合に応じて複数記憶されている。そして、これらのマップの中から、タイヤの使用時間から定まるタイヤの摩耗度合に基づいて路面摩擦係数の推定に用いられるマップが選択され、選択されたマップと振動レベルとを用いて車両の走行路における路面摩擦係数が取得される。このように、この路面状態推定装置では、車輪を構成するタイヤの摩耗度合を考慮した路面状態の推定が行われるので、車輪のタイヤと走行路面との間の路面摩擦係数を精度よく取得することが可能となる。   This road surface state estimation device obtains a vibration level in a predetermined frequency band by performing frequency analysis on the detection result of the vibration detection means for detecting the vibration of the wheel, and based on the acquired vibration level, a road surface friction coefficient on the traveling road, That is, the road surface friction coefficient between the wheel tire and the traveling road surface is acquired. In the storage means of this road surface state estimation device, a plurality of maps that define the correlation between the vibration level and the road surface friction coefficient are stored in accordance with the degree of tire wear. From these maps, a map used for estimating the road surface friction coefficient is selected based on the degree of tire wear determined from the tire usage time, and the vehicle travel path is selected using the selected map and vibration level. The road surface friction coefficient at is acquired. As described above, in this road surface state estimation device, since the road surface state is estimated in consideration of the degree of wear of the tires constituting the wheels, the road surface friction coefficient between the tires of the wheels and the traveling road surface is accurately obtained. Is possible.

また、本発明による路面状態推定装置は、走行路における路面摩擦係数が概ね一定であるか否か判定する判定手段を更に備えるとよく、摩擦係数取得手段は、判定手段により走行路における路面摩擦係数が概ね一定であると判断された場合に、タイヤの使用時間から定まるタイヤの摩耗度合に応じたマップを選択すると好ましい。   The road surface state estimating device according to the present invention may further include a determination unit that determines whether or not the road surface friction coefficient on the traveling road is substantially constant, and the friction coefficient acquisition unit is configured to determine the road surface friction coefficient on the traveling road by the determination unit. Is determined to be substantially constant, it is preferable to select a map corresponding to the degree of tire wear determined from the tire usage time.

このように、車両が走行している走行路における路面摩擦係数が概ね一定である場合にタイヤの使用時間から定まるタイヤの摩耗度合に応じたマップを路面摩擦係数の推定に用いれば、走行路における路面摩擦係数を精度よく取得することが可能となる。   In this way, when the road friction coefficient on the road on which the vehicle is traveling is approximately constant, a map corresponding to the tire wear degree determined from the tire usage time is used for estimating the road friction coefficient. It becomes possible to acquire the road surface friction coefficient with high accuracy.

更に、摩擦係数取得手段は、判定手段により走行路における路面摩擦係数が概ね一定ではないと判断された場合に、タイヤの使用時間から定まる摩耗度合よりも一段階低い摩耗度合に応じたマップを選択するとよい。   Further, the friction coefficient acquisition means selects a map corresponding to the degree of wear that is one step lower than the degree of wear determined from the tire usage time when the judgment means determines that the road surface friction coefficient on the road is not substantially constant. Good.

このように、走行路における路面摩擦係数が概ね一定ではない場合には、タイヤの摩耗が進行していないとみなした上で、タイヤの使用時間から定まる摩耗度合よりも一段階低い摩耗度合に応じたマップを路面摩擦係数の推定に用いるとよい。   As described above, when the road surface friction coefficient on the road is not substantially constant, it is considered that the wear of the tire has not progressed, and the wear degree is one step lower than the wear degree determined from the use time of the tire. The map should be used to estimate the road surface friction coefficient.

また、判定手段は、車両の周囲における外気温と、天候情報との少なくとも何れかに基づいて走行路における路面摩擦係数が概ね一定であるか否か判定すると好ましい。   Further, the determination means preferably determines whether or not the road surface friction coefficient on the traveling road is substantially constant based on at least one of an outside air temperature around the vehicle and weather information.

一般に、車両周囲の外気温がある程度高い場合や、雨天時や降雪時以外には、車両の走行路における路面摩擦係数は、比較的高い値で概ね一定となることが多い。従って、このように、外気温と天候情報との少なくとも何れかに基づくことにより、車両の走行路における路面摩擦係数が概ね一定であるか否か精度よく判定することが可能となる。   In general, when the outside air temperature around the vehicle is high to some extent, or when it is not raining or snowing, the road surface friction coefficient on the traveling road of the vehicle is often a relatively high value and generally constant. Therefore, based on at least one of the outside air temperature and the weather information as described above, it is possible to accurately determine whether or not the road surface friction coefficient on the traveling road of the vehicle is substantially constant.

そして、振動検出手段は各車輪に設けられると共に、各車輪には、振動検出手段の検出結果を車体側に送信するための車輪側通信手段が設けられ、振動レベル取得手段、記憶手段、および摩擦係数取得手段は車両の車体に設けられると共に、車体には、車輪側通信手段から送信された信号を受信するための車体側通信手段が設けられると好ましい。   The vibration detection means is provided on each wheel, and each wheel is provided with wheel-side communication means for transmitting the detection result of the vibration detection means to the vehicle body side, and the vibration level acquisition means, storage means, and friction The coefficient acquisition means is preferably provided in the vehicle body, and the vehicle body is preferably provided with vehicle body side communication means for receiving a signal transmitted from the wheel side communication means.

本発明による路面状態推定方法は、車両に設けられた複数の車輪に関連する車輪情報に基づいて、車両の走行路の路面状態を推定する路面状態推定方法において、
(a)車輪の振動を検出するステップと、
(b)ステップ(a)で検出された車輪の振動を周波数解析することにより、所定周波数帯域における振動レベルを取得するステップと、
(c)車輪を構成するタイヤの摩耗度合に応じて振動レベルと路面摩擦係数との相関を規定するように予め複数作成されたマップの中から、タイヤの使用時間から定まる当該タイヤの摩耗度合に基づいて路面摩擦係数の推定に用いるマップを選択するステップと、
(d)ステップ(b)で取得された振動レベルと、ステップ(c)で選択されたマップとを用いて車両の走行路における路面摩擦係数を取得するステップとを含むものである。
A road surface state estimation method according to the present invention is a road surface state estimation method for estimating a road surface state of a traveling path of a vehicle based on wheel information related to a plurality of wheels provided in the vehicle.
(A) detecting the vibration of the wheel;
(B) obtaining a vibration level in a predetermined frequency band by performing frequency analysis on the vibration of the wheel detected in step (a);
(C) From the maps prepared in advance so as to define the correlation between the vibration level and the road surface friction coefficient according to the degree of wear of the tire constituting the wheel, the degree of wear of the tire determined from the tire usage time Selecting a map to be used for estimating the road surface friction coefficient based on;
(D) including a step of acquiring a road surface friction coefficient on the traveling road of the vehicle using the vibration level acquired in step (b) and the map selected in step (c).

本発明によれば、車輪を構成するタイヤが摩耗しても、車輪情報に基づいて路面摩擦係数を精度よく取得することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, even if the tire which comprises a wheel wears, it becomes possible to acquire a road surface friction coefficient accurately based on wheel information.

以下、図面を参照しながら、本発明を実施するための最良の形態について詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1は、本発明による車輪情報処理装置を備えた車両を示す概略構成図である。同図に示される車両10は、車体12に設けられた4体の走行車輪14および1体のスペア輪15と、走行車輪14のうちの操舵輪を操舵する図示されない操舵装置や、これら走行車輪14のうちの駆動輪を駆動する図示されない走行駆動源としての内燃機関、モータあるいはハイブリッド動力装置等を備えるものである。また、各車輪14,15は、それぞれホイールとタイヤとを含むものである。   FIG. 1 is a schematic configuration diagram showing a vehicle including a wheel information processing apparatus according to the present invention. A vehicle 10 shown in the figure includes four traveling wheels 14 and one spare wheel 15 provided on a vehicle body 12, a steering device (not shown) for steering a steering wheel of the traveling wheels 14, and these traveling wheels. 14 is provided with an internal combustion engine, a motor, a hybrid power unit or the like as a travel drive source (not shown) for driving the drive wheels. Each wheel 14 and 15 includes a wheel and a tire, respectively.

上述の各車輪14,15には、タイヤの空気圧調整用バルブとして機能するTPMSバルブ20が装着されている。各TPMSバルブ20は、ホイールのホイールリムに設けられた取付孔に弾性ゴムからなるグロメット、ワッシャおよびボルト等を介して取り付けられる。TPMSバルブ20の図示されないバルブキャップは、ホイールリムの外側に突出しており、このバルブキャップを取り外して、図示されない弁口に空気供給装置のホースを接続すれば、タイヤの内部空間に空気を供給可能となる。   Each of the wheels 14 and 15 is provided with a TPMS valve 20 that functions as a tire pressure adjusting valve. Each TPMS valve 20 is attached to an attachment hole provided in a wheel rim of the wheel via a grommet made of elastic rubber, a washer, a bolt, and the like. A valve cap (not shown) of the TPMS valve 20 protrudes to the outside of the wheel rim. By removing this valve cap and connecting a hose of an air supply device to a valve port (not shown), air can be supplied to the internal space of the tire. It becomes.

各TPMSバルブ20は、図示されないハウジングを有している。そして、このハウジング内には、図2に示されるように、空気圧センサ21a、加速度センサ21g、車輪側通信機22、制御回路23およびバッテリ24が収容されている。これにより、各TPMSバルブ20は、それぞれ車輪情報としてのタイヤ空気圧や車輪加速度(車輪振動)を取得すると共に取得した車輪情報を定期的に送信可能な手段としても機能する。   Each TPMS valve 20 has a housing (not shown). In this housing, as shown in FIG. 2, an air pressure sensor 21a, an acceleration sensor 21g, a wheel side communicator 22, a control circuit 23, and a battery 24 are accommodated. Thereby, each TPMS valve | bulb 20 functions also as a means which can transmit the wheel information acquired regularly while acquiring the tire pressure and wheel acceleration (wheel vibration) as wheel information, respectively.

空気圧センサ21aは、例えば半導体センサであってタイヤ内部空間内の空気圧を検出し、加速度センサ21gは、対応する走行車輪14の幅方向あるいは径方向(上下方向)における加速度を車輪振動として検出する。車輪側通信機22は、空気圧センサ21aの検出値や加速度センサ21gの検出値を示す信号を所定周期で定期的に無線送信可能なものである。制御回路23は、ICチップ等に実装されており、空気圧センサ21a、加速度センサ21gおよび車輪側通信機22を制御する。バッテリ24は、空気圧センサ21a、加速度センサ21g、車輪側通信機22および制御回路23に電力を供給する。なお、TPMSバルブ20は、タイヤ内部空間内の温度を検出する温度センサや、接地圧センサ等を更に備えるものであってもよい。   The air pressure sensor 21a is a semiconductor sensor, for example, and detects the air pressure in the tire internal space, and the acceleration sensor 21g detects the acceleration in the width direction or radial direction (vertical direction) of the corresponding traveling wheel 14 as wheel vibration. The wheel side communicator 22 can wirelessly transmit a signal indicating the detection value of the air pressure sensor 21a and the detection value of the acceleration sensor 21g periodically at a predetermined cycle. The control circuit 23 is mounted on an IC chip or the like, and controls the air pressure sensor 21a, the acceleration sensor 21g, and the wheel side communication device 22. The battery 24 supplies power to the air pressure sensor 21a, the acceleration sensor 21g, the wheel side communicator 22 and the control circuit 23. The TPMS valve 20 may further include a temperature sensor that detects the temperature in the tire internal space, a ground pressure sensor, and the like.

また、本実施形態の車両10では、各車輪14のTPMSバルブ20に含まれる車輪側通信機22に対して、それぞれ固有のIDコードが付与されている。本実施形態では、例えば、右前方の車輪14に装着されるTPMSバルブ20の車輪側通信機22にIDコード=1が付与され、左前方の車輪14に装着されるTPMSバルブ20の車輪側通信機22にIDコード=2が付与され、右後方の車輪14に装着されるTPMSバルブ20の車輪側通信機22にIDコード=3が付与され、左後方の車輪14に装着されるTPMSバルブ20の車輪側通信機22にIDコード=4が付与され、スペア輪15に装着されるTPMSバルブ20の車輪側通信機22にIDコード=5が付与されている。そして、各車輪側通信機22から定期送信される信号には、空気圧センサ21aや加速度センサ21gによる検出値と共に、送信元の車輪側通信機22を示すIDコードが含まれる。すなわち、各車輪側通信機22は、空気圧センサ21aおよび加速度センサ21gによる検出値と自己のIDコードとを情報として含む信号を所定周期で定期的に送信する。   Further, in the vehicle 10 of the present embodiment, a unique ID code is assigned to each wheel side communication device 22 included in the TPMS valve 20 of each wheel 14. In the present embodiment, for example, the wheel side communication device 22 of the TPMS valve 20 mounted on the right front wheel 14 is assigned ID code = 1, and the wheel side communication of the TPMS valve 20 mounted on the left front wheel 14 is performed. ID code = 2 is assigned to the machine 22 and ID code = 3 is assigned to the wheel side communication machine 22 of the TPMS valve 20 attached to the right rear wheel 14 and the TPMS valve 20 attached to the left rear wheel 14. ID code = 4 is assigned to the wheel side communicator 22, and ID code = 5 is assigned to the wheel side communicator 22 of the TPMS valve 20 attached to the spare wheel 15. The signal periodically transmitted from each wheel-side communication device 22 includes an ID code indicating the transmission-side wheel-side communication device 22 together with the detection values by the air pressure sensor 21a and the acceleration sensor 21g. That is, each wheel side communicator 22 periodically transmits a signal including information detected by the air pressure sensor 21a and the acceleration sensor 21g and its own ID code as information.

一方、車両10の車体12には、図1および図2に示されるように、TPMSバルブ20の車輪側通信機22から送信される情報を用いて各種制御を実行する処理手段としての電子制御ユニット(以下「ECU」という)30が搭載されている。ECU30は、各種演算処理を実行するCPU、各種制御プログラムを格納するROM、データ格納やプログラム実行のためのワークエリアとして利用されるRAM、入出力インターフェース、記憶装置31等を備えるものである。そして、当該ECU30には、図1に示されるように、車体側通信機25、センサ、スイッチおよび警報装置27が接続されている。更に、ECU30は、車両10のイグニッションスイッチ28を介して車載バッテリ29と接続されている。イグニッションスイッチ28がONされると、車載バッテリ29から車体側通信機25、センサ群、警報装置27およびECU30等に電力が供給される。   On the other hand, as shown in FIGS. 1 and 2, the vehicle body 12 of the vehicle 10 has an electronic control unit as processing means for performing various controls using information transmitted from the wheel side communication device 22 of the TPMS valve 20. (Hereinafter referred to as “ECU”) 30 is mounted. The ECU 30 includes a CPU that executes various arithmetic processes, a ROM that stores various control programs, a RAM that is used as a work area for data storage and program execution, an input / output interface, a storage device 31, and the like. As shown in FIG. 1, the vehicle body side communication device 25, a sensor, a switch, and an alarm device 27 are connected to the ECU 30. Further, the ECU 30 is connected to the in-vehicle battery 29 via the ignition switch 28 of the vehicle 10. When the ignition switch 28 is turned ON, electric power is supplied from the in-vehicle battery 29 to the vehicle body side communication device 25, the sensor group, the alarm device 27, the ECU 30, and the like.

車体側通信機25は、各車輪14のTPMSバルブ20に含まれる車輪側通信機22との間で信号の送受信を行うものであり、車輪側通信機22から無線送信された信号を受信してECU30に与える。ECU30に接続されるセンサには、車両10の周囲における外気温を検出する外気温センサ26や、車輪14ごとに設けられて対応する車輪14の速度を検出する図示されない車輪速センサ等が含まれる。警報装置27は、ECU30の制御のもと、所定条件下でドライバーに警報を発するものであり、例えば、車両10のインストルメンツパネルに設けられている警告表示装置等が含まれる。また、図1および図2に示されるように、ECU30には、車両10の走行距離を計測(積算)する走行距離計40や、図示されないワイパーの作動を制御するためのワイパースイッチ41、更には、ナビゲーションシステム42等が接続されている。   The vehicle body side communication device 25 performs signal transmission / reception with the wheel side communication device 22 included in the TPMS valve 20 of each wheel 14, and receives a signal wirelessly transmitted from the wheel side communication device 22. It gives to ECU30. Sensors connected to the ECU 30 include an outside air temperature sensor 26 that detects outside air temperature around the vehicle 10, a wheel speed sensor (not shown) that is provided for each wheel 14 and detects the speed of the corresponding wheel 14, and the like. . The warning device 27 issues a warning to the driver under a predetermined condition under the control of the ECU 30, and includes, for example, a warning display device provided on the instrument panel of the vehicle 10. As shown in FIGS. 1 and 2, the ECU 30 includes a odometer 40 that measures (integrates) the mileage of the vehicle 10, a wiper switch 41 that controls the operation of a wiper (not shown), and A navigation system 42 and the like are connected.

上述のように構成される車両10の走行時には、各TPMSバルブ20の空気圧センサ21aにより車輪14(15)の空気圧が検出されると共に、加速度センサ21gにより車輪振動が検出され、各車輪側通信機22から、空気圧センサ21aの検出値と加速度センサ21gの検出値と自己のIDとを示す信号が車体側通信機25に定期的に無線送信される。そして、車体側通信機25により車輪側通信機22からの信号が受信されると、ECU30は、車体側通信機25により受信された信号に含まれるIDがその記憶装置に記憶(登録)されているIDのうちの1つと一致したときに、受信された信号を用いた所定の処理を実行する。   When the vehicle 10 configured as described above travels, the air pressure sensor 21a of each TPMS valve 20 detects the air pressure of the wheel 14 (15), and the acceleration sensor 21g detects wheel vibration. 22, a signal indicating the detected value of the air pressure sensor 21a, the detected value of the acceleration sensor 21g, and its own ID is periodically wirelessly transmitted to the vehicle body side communication device 25. When the vehicle body side communication device 25 receives a signal from the wheel side communication device 22, the ECU 30 stores (registers) the ID included in the signal received by the vehicle body side communication device 25 in the storage device. When the ID matches one of the IDs, a predetermined process using the received signal is executed.

本実施形態では、各車輪14からの車輪情報のうち、加速度センサ21gにより検出される車輪振動情報が車両10の走行路の路面摩擦係数μを推定するために用いられる。すなわち、各TPMSバルブ20の加速度センサ21gやECU30等により本発明による路面情報推定装置が構成され、このため、車両10のECU30には、周波数解析部32、タイヤ摩耗度合取得部33および摩擦係数取得部34が構築されている。周波数解析部32は、車体側通信機25により受信された各車輪14(TPMSバルブ20)からの車輪振動情報を周波数解析し、車輪振動の周波数スペクトルのうち、振動レベルが特徴的に変化する周波数帯域における振動レベルを車輪14ごとに検出し、検出した振動レベルを示す信号を摩擦係数取得部34に与える。なお、振動レベルが特徴的に変化する周波数帯域は、例えば10〜10000Hzの範囲に含まれる。   In the present embodiment, the wheel vibration information detected by the acceleration sensor 21g among the wheel information from each wheel 14 is used for estimating the road surface friction coefficient μ of the traveling path of the vehicle 10. That is, the road surface information estimation device according to the present invention is configured by the acceleration sensor 21g of each TPMS valve 20, the ECU 30, and the like. For this reason, the ECU 30 of the vehicle 10 includes the frequency analysis unit 32, the tire wear degree acquisition unit 33, and the friction coefficient acquisition. Part 34 is constructed. The frequency analysis unit 32 analyzes the frequency of the wheel vibration information from each wheel 14 (TPMS valve 20) received by the vehicle body side communication device 25, and the frequency at which the vibration level changes characteristically in the frequency spectrum of the wheel vibration. The vibration level in the band is detected for each wheel 14 and a signal indicating the detected vibration level is given to the friction coefficient acquisition unit 34. In addition, the frequency band in which a vibration level changes characteristically is contained in the range of 10-10000 Hz, for example.

また、タイヤ摩耗度合取得部33は、例えば予め定められた関数式等を用いて、走行距離計40により計測される車両10の積算走行距離に基づいて各車輪14のタイヤの使用時間を推定した上で、推定したタイヤの使用時間に応じた摩耗度合を求める。そして、タイヤ摩耗度合取得部33は、求めた摩耗度合を示す信号を摩擦係数取得部34に与える。本実施形態では、新品時からタイヤ交換がなされるまでの推定使用時間(許容使用時間)が複数の使用時間帯に区分けされ、各使用時間帯に対してそれぞれに応じた摩耗度合W,W,W・・・,Wが割り当てられている。なお、本実施形態では、タイヤ交換により車輪14のホイールに新たなタイヤが装着されると、該当する車輪14が所定量だけ回転するまでの間、タイヤが新品である旨を示す信号が車輪側通信機22から車体側通信機25に送信される。従って、タイヤ交換がなされた場合、タイヤ摩耗度合取得部33は、車輪14からタイヤが新品である旨を示す信号を受け取った時点からの車両10の走行距離に基づいて、当該車輪14についてのタイヤ使用時間を推定する。 In addition, the tire wear degree acquisition unit 33 estimates the tire usage time of each wheel 14 based on the accumulated travel distance of the vehicle 10 measured by the odometer 40 using, for example, a predetermined function equation or the like. Above, the degree of wear according to the estimated usage time of the tire is obtained. Then, the tire wear degree acquisition unit 33 gives a signal indicating the obtained wear degree to the friction coefficient acquisition unit 34. In the present embodiment, the estimated usage time (allowable usage time) from when the tire is new to when the tire is changed is divided into a plurality of usage time zones, and the wear degrees W 0 , W corresponding to the respective usage time zones. 1 , W 2 ..., W n are assigned. In this embodiment, when a new tire is mounted on the wheel 14 by exchanging the tire, a signal indicating that the tire is new is displayed on the wheel side until the corresponding wheel 14 rotates by a predetermined amount. It is transmitted from the communication device 22 to the vehicle body side communication device 25. Therefore, when the tire is replaced, the tire wear degree acquisition unit 33 determines the tire for the wheel 14 based on the travel distance of the vehicle 10 from the time when the signal indicating that the tire is new is received from the wheel 14. Estimate usage time.

更に、ECU30の記憶装置31には、上記所定の周波数帯域における振動レベルと各車輪14のタイヤと走行路との間の路面摩擦係数(動摩擦係数)μとの相関を規定するマップが記憶されている。ここで、図3に示されるように、路面摩擦係数μが低くなると、タイヤのトレッド部の滑りによって振動レベルは上昇する。また、タイヤが摩耗すると、トレッド部のゴムが減ってトレッド部のブロック剛性が変化するので、タイヤの摩耗が進行するにつれて、同じ路面摩擦係数μのもとでの振動レベルが低下する。このため、本実施形態では、新品時からタイヤ交換時までの複数の使用時間帯に割り当てられた摩耗度合W〜Wごとに、振動レベルと路面摩擦係数μとの相関規定するマップが予め作成されている。なお、摩耗度合W〜Wに応じた複数のマップは、加速度センサを含む車輪が装着された試験車両を所定速度で路面摩擦係数μの異なる路面にて走行させながら車輪の振動を実測し、これを摩耗状態の異なる複数のタイヤについて行うことにより作成される。 Further, the storage device 31 of the ECU 30 stores a map that defines the correlation between the vibration level in the predetermined frequency band and the road surface friction coefficient (dynamic friction coefficient) μ between the tire of each wheel 14 and the traveling road. Yes. Here, as shown in FIG. 3, when the road surface friction coefficient μ decreases, the vibration level increases due to slippage of the tread portion of the tire. Further, when the tire is worn, the rubber in the tread portion is decreased and the block rigidity of the tread portion is changed. Therefore, as the tire wear proceeds, the vibration level under the same road surface friction coefficient μ is lowered. For this reason, in the present embodiment, a map that prescribes the correlation between the vibration level and the road surface friction coefficient μ is previously provided for each of the wear degrees W 0 to W n assigned to a plurality of use time zones from a new article to a tire change. Has been created. A plurality of maps corresponding to the degree of wear W 0 to W n are obtained by actually measuring the vibration of the wheel while running a test vehicle equipped with a wheel including an acceleration sensor on a road surface having a different road surface friction coefficient μ at a predetermined speed. It is created by performing this for a plurality of tires having different wear states.

摩擦係数取得部34は、タイヤ摩耗度合取得部33からの信号に基づいて、記憶装置31から路面摩擦係数μの推定に用いられるマップを選択し、選択したマップを用いながら周波数解析部32により取得された振動レベルに基づいて車両10の走行路における路面摩擦係数μを求める。   The friction coefficient acquisition unit 34 selects a map used for estimating the road surface friction coefficient μ from the storage device 31 based on the signal from the tire wear degree acquisition unit 33, and is acquired by the frequency analysis unit 32 while using the selected map. A road surface friction coefficient μ on the traveling road of the vehicle 10 is obtained based on the vibration level thus determined.

次に、図4を参照しながら、上述の車両10の走行路における路面摩擦係数μの推定手順について説明する。   Next, an estimation procedure of the road surface friction coefficient μ on the traveling road of the vehicle 10 will be described with reference to FIG.

図4に示されるルーチンは、車両10の走行中に走行車輪14ごとに所定時間おきに繰り返し実行されるものである。ある走行車輪14について図4のルーチンの実行タイミングになると、ECU30の摩擦係数取得部34は、外気温センサ26から車両10の周囲における外気温を取得すると共に、ワイパースイッチ41の操作状態を天候情報として取得する(S10)。更に、摩擦係数取得部34は、S10にて周波数解析部32から送られる振動レベルを取得する。また、ECU30のタイヤ摩耗度合取得部33は、走行距離計40により計測される車両10の積算走行距離に基づいて各車輪14のタイヤの使用時間を推定した上で、推定したタイヤの使用時間に応じた摩耗度合を求め、求めた摩耗度合を示す信号を摩擦係数取得部34に与える(S12)。   The routine shown in FIG. 4 is repeatedly executed every predetermined time for each traveling wheel 14 while the vehicle 10 is traveling. At the execution timing of the routine of FIG. 4 for a traveling wheel 14, the friction coefficient acquisition unit 34 of the ECU 30 acquires the outside air temperature around the vehicle 10 from the outside air temperature sensor 26, and displays the operation state of the wiper switch 41 as weather information. (S10). Further, the friction coefficient acquisition unit 34 acquires the vibration level sent from the frequency analysis unit 32 in S10. Further, the tire wear degree acquisition unit 33 of the ECU 30 estimates the tire usage time of each wheel 14 based on the accumulated travel distance of the vehicle 10 measured by the odometer 40 and then calculates the estimated tire usage time. A corresponding wear degree is obtained, and a signal indicating the obtained wear degree is given to the friction coefficient obtaining unit 34 (S12).

摩擦係数取得部34は、タイヤ摩耗度合取得部33からタイヤの摩耗度合を示す信号を受け取ると、次に、その時点における車両10の走行路の路面摩擦係数μが概ね一定であるか否かを判定する(S14)。本実施形態において、摩擦係数取得部34は、S10にて取得された外気温が所定温度以上であり、かつ、ワイパースイッチ41がONされていない場合に、車両10の走行路の路面摩擦係数μが概ね一定であると判断する(S14におけるYes)。また、摩擦係数取得部34は、S10にて取得された外気温が所定温度を下回っているか、あるいは、ワイパースイッチ41がONされている場合に、車両10の走行路の路面摩擦係数μが概ね一定ではないと判断する(S14におけるNo)。   When the friction coefficient acquisition unit 34 receives a signal indicating the tire wear degree from the tire wear degree acquisition unit 33, the friction coefficient acquisition unit 34 next determines whether or not the road surface friction coefficient μ of the traveling path of the vehicle 10 at that time is substantially constant. Determine (S14). In the present embodiment, the friction coefficient acquisition unit 34, when the outside air temperature acquired in S10 is equal to or higher than a predetermined temperature and the wiper switch 41 is not turned on, the road surface friction coefficient μ of the traveling path of the vehicle 10. Is substantially constant (Yes in S14). In addition, the friction coefficient acquisition unit 34 is configured so that the road surface friction coefficient μ of the traveling path of the vehicle 10 is approximately when the outside air temperature acquired in S10 is below a predetermined temperature or when the wiper switch 41 is ON. It is determined that it is not constant (No in S14).

すなわち、車両10の走行路としては、アスファルト路が最も多いと想定されることから、車両10の周囲における外気温がある程度高く、かつ、雨天時や降雪時以外には、車両10の走行路における路面摩擦係数μは、比較的高い値で概ね一定となると考えられる。従って、本実施形態のように、外気温と天候情報としてのワイパーの作動状態とに基づいた判定処理を行うことにより、車両10の走行路における路面摩擦係数μが概ね一定であるか否か精度よく判定することが可能となる。なお、S14にて車両10の走行路における路面摩擦係数μが概ね一定であるか否か判定するに際しては、外気温および天候情報(ワイパーの作動状態)の何れか一方のみが判定基準とされてもよく、更に、ナビゲーションシステム42からの車両10の走行環境に関する情報や、加減速時におけるスリップ率等が考慮されてもよい。   That is, as the traveling road of the vehicle 10, it is assumed that the asphalt road is the most frequent. Therefore, the outside temperature around the vehicle 10 is high to some extent, and the driving road of the vehicle 10 is not used during rainy weather or snowfall. The road surface friction coefficient μ is considered to be substantially constant at a relatively high value. Therefore, the accuracy of whether or not the road surface friction coefficient μ on the traveling road of the vehicle 10 is substantially constant by performing the determination process based on the outside air temperature and the operating state of the wiper as weather information as in the present embodiment. It is possible to judge well. In S14, when determining whether or not the road surface friction coefficient μ on the traveling road of the vehicle 10 is substantially constant, only one of the outside air temperature and the weather information (operating state of the wiper) is set as the determination criterion. In addition, information on the traveling environment of the vehicle 10 from the navigation system 42, the slip ratio during acceleration / deceleration, and the like may be taken into consideration.

摩擦係数取得部34は、外気温が所定温度以上であり、かつワイパースイッチ41がONされていないことにより、車両10の走行路の路面摩擦係数μが概ね一定であると判断した場合(S14におけるYes)、記憶装置31に記憶されている複数のマップより、タイヤの使用時間から定まるタイヤの摩耗度合に応じたマップを選択する(S16)。そして、摩擦係数取得部34は、S16にて選択したマップから、S10にて取得した振動レベルに応じた路面摩擦係数μを読み出し、その値を対象となる車輪14のタイヤと走行路面との間における路面摩擦係数μとして所定の記憶領域に記憶させる(S18)。   The friction coefficient acquisition unit 34 determines that the road surface friction coefficient μ of the traveling path of the vehicle 10 is substantially constant because the outside air temperature is equal to or higher than the predetermined temperature and the wiper switch 41 is not turned on (in S14). Yes), a map corresponding to the degree of tire wear determined from the tire usage time is selected from a plurality of maps stored in the storage device 31 (S16). Then, the friction coefficient acquisition unit 34 reads the road surface friction coefficient μ corresponding to the vibration level acquired in S10 from the map selected in S16, and the value is obtained between the tire of the target wheel 14 and the traveling road surface. Is stored in a predetermined storage area as the road surface friction coefficient μ (S18).

このように、車両10では、車輪14の振動を検出する加速度センサ21gの検出結果を周波数解析することにより、所定周波数帯域における振動レベルを取得し、取得した振動レベルに基づいて走行路における路面摩擦係数μが取得されるが、この際に、車輪14を構成するタイヤの摩耗度合を考慮した路面状態の推定が行われる。すなわち、ECU30の記憶装置31には、振動レベルと路面摩擦係数μとの相関を規定するマップがタイヤの摩耗度合に応じて複数記憶されている。そして、これらのマップの中から、タイヤの使用時間から定まるタイヤの摩耗度合に基づいて路面摩擦係数μの推定に用いられるマップが選択され(S16)、選択されたマップと振動レベルとを用いて車両10の走行路における路面摩擦係数μが取得される。この結果、車両10では、車輪14のタイヤと走行路面との間の路面摩擦係数μを精度よく取得することが可能となる。また、車両10が走行している走行路における路面摩擦係数μが概ね一定である場合と判断される場合に、タイヤの使用時間から定まるタイヤの摩耗度合に応じたマップを路面摩擦係数μの推定に用いれば、路面摩擦係数μを精度よく取得することが可能となる。   As described above, in the vehicle 10, by analyzing the frequency of the detection result of the acceleration sensor 21g that detects the vibration of the wheel 14, the vibration level in the predetermined frequency band is acquired, and the road surface friction on the traveling road based on the acquired vibration level. The coefficient μ is acquired. At this time, the road surface state is estimated in consideration of the degree of wear of the tires constituting the wheels 14. That is, a plurality of maps that define the correlation between the vibration level and the road surface friction coefficient μ are stored in the storage device 31 of the ECU 30 according to the degree of tire wear. Then, a map used for estimating the road surface friction coefficient μ is selected from these maps based on the tire wear degree determined from the tire usage time (S16), and the selected map and vibration level are used. A road surface friction coefficient μ on the travel path of the vehicle 10 is acquired. As a result, in the vehicle 10, the road surface friction coefficient μ between the tire of the wheel 14 and the traveling road surface can be obtained with high accuracy. Further, when it is determined that the road surface friction coefficient μ on the traveling road on which the vehicle 10 is traveling is approximately constant, a map corresponding to the degree of tire wear determined from the tire usage time is used to estimate the road surface friction coefficient μ. If it is used for, it becomes possible to acquire the road surface friction coefficient μ with high accuracy.

一方、摩擦係数取得部34は、外気温が所定温度を下回っているか、あるいは、ワイパースイッチ41がONされており、車両10の走行路の路面摩擦係数μが概ね一定ではないと判断した場合(S14におけるNo)、記憶装置31に記憶されている複数のマップより、タイヤの使用時間から定まるタイヤの摩耗度合よりも一段階低い摩耗度合に応じたマップを選択する(S20)。例えば、S12にて求められた対象となる車輪14のタイヤの摩耗度合がWである場合に、S14にて否定判断がなされると、S20では、タイヤ摩耗度合Wに応じたマップが選択されることになる。ただし、S12にて求められた対象となる車輪14のタイヤの摩耗度合が最も低いレベルのWである場合に、S14にて否定判断がなされても、S20では、摩耗度合Wに応じたマップが選択される。 On the other hand, the friction coefficient acquisition unit 34 determines that the outside air temperature is lower than the predetermined temperature or the wiper switch 41 is ON and the road surface friction coefficient μ of the traveling path of the vehicle 10 is not substantially constant ( No) in S14, a map corresponding to the degree of wear that is one step lower than the degree of tire wear determined from the tire usage time is selected from a plurality of maps stored in the storage device 31 (S20). For example, if the wear degree of the tire of the wheel 14 to be obtained at S12 is W 1, a negative determination in S14 is made, in S20, the map is selected corresponding to the tire wear degree W 0 Will be. However, when the wear degree of the tire of the wheel 14 to be obtained at S12 is the lowest level of W 0, negative determination at S14 is also made, in S20, corresponding to the wear degree W 0 A map is selected.

そして、摩擦係数取得部34は、S20にて選択したマップから、S10に取得した振動レベルに応じた路面摩擦係数μを読み出し、その値を対象となる車輪14のタイヤと走行路面との間における路面摩擦係数μとして所定の記憶領域に記憶させる(S18)。このように、車両10の走行路における路面摩擦係数μが概ね一定ではないと判断される場合には、タイヤの摩耗が進行していないとみなした上で、タイヤの使用時間から定まる摩耗度合よりも一段階低い摩耗度合に応じたマップを路面摩擦係数μの推定に用いるとよい。   Then, the friction coefficient acquisition unit 34 reads the road surface friction coefficient μ corresponding to the vibration level acquired in S10 from the map selected in S20, and the value between the tire of the target wheel 14 and the traveling road surface. The road surface friction coefficient μ is stored in a predetermined storage area (S18). As described above, when it is determined that the road surface friction coefficient μ on the traveling road of the vehicle 10 is not substantially constant, it is determined that the wear of the tire has not progressed, and the wear degree determined from the tire use time is determined. However, a map corresponding to the degree of wear that is one step lower may be used to estimate the road surface friction coefficient μ.

なお、上述の実施形態は、各車輪14のホイールに装着されるTPMSバルブ20に対して車輪振動を検出する加速度センサ21gが設けられるものとして説明されたが、これに限られるものではない。すなわち、車輪振動を検出するための加速度センサは、走行車輪ごとに設けられればよく、ホイールおよびタイヤの何れか一方に直接設けられてもよい。加速度センサをタイヤに設ける場合には、タイヤのトレッド部の内面に複数の加速度センサを周方向に配置するとよい。また、加速度センサは、各車輪の近傍に位置するサスペンションの構成部材に設けられてもよく、この場合、加速度センサは、サスペンションの構成部材に伝播される車輪の振動を検出することになる。   In the above-described embodiment, the acceleration sensor 21g that detects the wheel vibration is provided for the TPMS valve 20 mounted on the wheel of each wheel 14, but is not limited thereto. That is, an acceleration sensor for detecting wheel vibrations may be provided for each traveling wheel, and may be provided directly on either the wheel or the tire. When the acceleration sensor is provided on the tire, a plurality of acceleration sensors may be arranged in the circumferential direction on the inner surface of the tread portion of the tire. Further, the acceleration sensor may be provided in a component member of the suspension located in the vicinity of each wheel. In this case, the acceleration sensor detects vibration of the wheel transmitted to the component member of the suspension.

本発明による路面状態推定装置を備えた車両を示す概略構成図である。It is a schematic block diagram which shows the vehicle provided with the road surface state estimation apparatus by this invention. 本発明による路面状態推定装置の制御ブロック図である。It is a control block diagram of the road surface state estimation apparatus by this invention. タイヤの摩耗度合が変化した場合における振動レベルと路面摩擦係数との相関を説明するためのグラフである。It is a graph for demonstrating the correlation with the vibration level and road surface friction coefficient in case the abrasion degree of a tire changes. 図1の車両における路面摩擦係数の推定手順を説明するためのフローチャートである。2 is a flowchart for explaining a procedure for estimating a road surface friction coefficient in the vehicle of FIG. 1.

符号の説明Explanation of symbols

10 車両、12 車体、14、走行車輪、15 スペア輪、20 TPMSバルブ、21a 空気圧センサ、21g 加速度センサ、22 車輪側通信機、23 制御回路、24 バッテリ、25 車体側通信機、26 外気温センサ、27 警報装置、28 イグニッションスイッチ、29 車載バッテリ、30 ECU、31 記憶装置、32 周波数解析部、33 タイヤ摩耗度合取得部、34 摩擦係数取得部、40 走行距離計、41 ワイパースイッチ、42 ナビゲーションシステム。   DESCRIPTION OF SYMBOLS 10 Vehicle, 12 Car body, 14, Running wheel, 15 Spare wheel, 20 TPMS valve, 21a Air pressure sensor, 21g Acceleration sensor, 22 Wheel side communication machine, 23 Control circuit, 24 Battery, 25 Car body side communication machine, 26 Outside temperature sensor , 27 Alarm device, 28 Ignition switch, 29 On-board battery, 30 ECU, 31 Storage device, 32 Frequency analysis unit, 33 Tire wear degree acquisition unit, 34 Friction coefficient acquisition unit, 40 Odometer, 41 Wiper switch, 42 Navigation system .

Claims (6)

車両に設けられた複数の車輪に関連する車輪情報に基づいて、前記車両の走行路の路面状態を推定する路面状態推定装置において、
前記各車輪ごとに設けられており、対応する車輪の振動を検出する振動検出手段と、
前記振動検出手段の検出結果を周波数解析することにより、所定周波数帯域における振動レベルを取得する振動レベル取得手段と、
前記車輪を構成するタイヤの摩耗度合に応じて振動レベルと路面摩擦係数との相関を規定するマップを複数記憶する記憶手段と、
前記タイヤの使用時間から定まる当該タイヤの摩耗度合に基づいて路面摩擦係数の推定に用いられるマップを選択すると共に、選択したマップと前記振動レベル取得手段により取得された振動レベルとを用いて前記車両の走行路における路面摩擦係数を取得する摩擦係数取得手段とを備えることを特徴とする路面状態推定装置。
In a road surface state estimating device for estimating a road surface state of a traveling road of the vehicle based on wheel information related to a plurality of wheels provided in the vehicle,
Vibration detecting means provided for each wheel, and detecting vibration of the corresponding wheel;
Vibration level acquisition means for acquiring a vibration level in a predetermined frequency band by frequency analysis of the detection result of the vibration detection means;
Storage means for storing a plurality of maps defining the correlation between the vibration level and the road surface friction coefficient according to the degree of wear of the tires constituting the wheels;
The vehicle is selected based on the degree of wear of the tire determined from the tire usage time, and the vehicle is selected using the selected map and the vibration level acquired by the vibration level acquisition means. A road surface state estimating device comprising: friction coefficient acquisition means for acquiring a road surface friction coefficient on the traveling road.
前記走行路における路面摩擦係数が概ね一定であるか否か判定する判定手段を更に備え、前記摩擦係数取得手段は、前記判定手段により前記走行路における路面摩擦係数が概ね一定であると判断された場合に、前記タイヤの使用時間から定まる前記タイヤの摩耗度合に応じたマップを選択することを特徴とする請求項1に記載の路面状態推定装置。   It further comprises determination means for determining whether or not the road surface friction coefficient on the travel road is substantially constant, and the friction coefficient acquisition means is determined by the determination means to be substantially constant on the road surface friction coefficient. The road surface state estimating device according to claim 1, wherein a map corresponding to a degree of wear of the tire determined from a usage time of the tire is selected. 前記摩擦係数取得手段は、前記判定手段により前記走行路における路面摩擦係数が概ね一定ではないと判断された場合に、前記タイヤの使用時間から定まる前記摩耗度合よりも一段階低い摩耗度合に応じたマップを選択することを特徴とする請求項2に記載の路面状態推定装置。   The friction coefficient obtaining means responds to a degree of wear that is one step lower than the degree of wear determined from the use time of the tire when the judgment means determines that the road surface friction coefficient on the travel road is not substantially constant. The road surface state estimating apparatus according to claim 2, wherein a map is selected. 前記判定手段は、前記車両の周囲における外気温と、天候情報との少なくとも何れかに基づいて前記走行路における路面摩擦係数が概ね一定であるか否か判定することを特徴とする請求項2または3に記載の路面状態推定装置。   3. The determination unit according to claim 2, wherein the determination unit determines whether or not a road surface friction coefficient on the traveling road is substantially constant based on at least one of an outside air temperature around the vehicle and weather information. 4. The road surface state estimating device according to 3. 前記振動検出手段は前記各車輪に設けられると共に、前記各車輪には、前記振動検出手段の検出結果を車体側に送信するための車輪側通信手段が設けられ、前記振動レベル取得手段、前記記憶手段、および前記摩擦係数取得手段は前記車両の車体に設けられると共に、前記車体には、前記車輪側通信手段から送信された信号を受信するための車体側通信手段が設けられていることを特徴とする請求項1から4の何れかに記載の路面状態推定装置。   The vibration detection means is provided on each wheel, and each wheel is provided with wheel side communication means for transmitting the detection result of the vibration detection means to the vehicle body side, the vibration level acquisition means, and the storage And the friction coefficient acquisition means are provided in a vehicle body of the vehicle, and the vehicle body is provided with vehicle body side communication means for receiving a signal transmitted from the wheel side communication means. The road surface state estimating device according to any one of claims 1 to 4. 車両に設けられた複数の車輪に関連する車輪情報に基づいて、前記車両の走行路の路面状態を推定する路面状態推定方法において、
(a)前記車輪の振動を検出するステップと、
(b)ステップ(a)で検出された前記車輪の振動を周波数解析することにより、所定周波数帯域における振動レベルを取得するステップと、
(c)前記車輪を構成するタイヤの摩耗度合に応じて振動レベルと路面摩擦係数との相関を規定するように予め複数作成されたマップの中から、前記タイヤの使用時間から定まる当該タイヤの摩耗度合に基づいて路面摩擦係数の推定に用いるマップを選択するステップと、
(d)ステップ(b)で取得された振動レベルと、ステップ(c)で選択されたマップとを用いて前記車両の走行路における路面摩擦係数を取得するステップとを含む路面状態推定方法。
In the road surface state estimation method for estimating the road surface state of the traveling road of the vehicle based on wheel information related to a plurality of wheels provided in the vehicle,
(A) detecting vibration of the wheel;
(B) obtaining a vibration level in a predetermined frequency band by frequency-analyzing the vibration of the wheel detected in step (a);
(C) Wear of the tire determined from the use time of the tire from a plurality of maps prepared in advance so as to define the correlation between the vibration level and the road surface friction coefficient according to the degree of wear of the tire constituting the wheel. Selecting a map to be used for estimating the road friction coefficient based on the degree;
(D) A road surface state estimation method including the step of acquiring a road surface friction coefficient on the traveling road of the vehicle using the vibration level acquired in step (b) and the map selected in step (c).
JP2005295708A 2005-10-07 2005-10-07 Road surface condition presumption device and road surface condition presumption method Pending JP2007099245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005295708A JP2007099245A (en) 2005-10-07 2005-10-07 Road surface condition presumption device and road surface condition presumption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005295708A JP2007099245A (en) 2005-10-07 2005-10-07 Road surface condition presumption device and road surface condition presumption method

Publications (1)

Publication Number Publication Date
JP2007099245A true JP2007099245A (en) 2007-04-19

Family

ID=38026580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005295708A Pending JP2007099245A (en) 2005-10-07 2005-10-07 Road surface condition presumption device and road surface condition presumption method

Country Status (1)

Country Link
JP (1) JP2007099245A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141200A1 (en) * 2014-03-18 2015-09-24 株式会社デンソー Road surface condition estimation device
JP2015229433A (en) * 2014-06-05 2015-12-21 太平洋工業株式会社 Road surface condition detection device and road surface condition detection system
KR101696821B1 (en) * 2015-11-30 2017-02-01 주식회사 대신전자기술 Apparatus and method for detecting slip condition of road surface using characteristics of moving vehicle
US10525777B2 (en) 2014-12-05 2020-01-07 Bridgestone Corporation Method for determining road surface condition
WO2020122188A1 (en) * 2018-12-14 2020-06-18 株式会社デンソー Tire wear detection device
CN111999241A (en) * 2019-05-27 2020-11-27 株式会社捷太格特 Road surface friction coefficient prediction system
JP2021135640A (en) * 2020-02-26 2021-09-13 三菱重工機械システム株式会社 Axle number detection device, toll collection system, axle number detection method, and program
CN114594045A (en) * 2022-03-10 2022-06-07 重庆交通大学 Continuous detector for road surface friction performance
JP7388000B2 (en) 2019-05-27 2023-11-29 株式会社ジェイテクト Road surface friction coefficient prediction system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141200A1 (en) * 2014-03-18 2015-09-24 株式会社デンソー Road surface condition estimation device
JP2015174638A (en) * 2014-03-18 2015-10-05 株式会社日本自動車部品総合研究所 Road surface condition estimation device
US10086842B2 (en) 2014-03-18 2018-10-02 Denso Corporation Road surface condition estimation device
JP2015229433A (en) * 2014-06-05 2015-12-21 太平洋工業株式会社 Road surface condition detection device and road surface condition detection system
US10525777B2 (en) 2014-12-05 2020-01-07 Bridgestone Corporation Method for determining road surface condition
KR101696821B1 (en) * 2015-11-30 2017-02-01 주식회사 대신전자기술 Apparatus and method for detecting slip condition of road surface using characteristics of moving vehicle
WO2020122188A1 (en) * 2018-12-14 2020-06-18 株式会社デンソー Tire wear detection device
JP2020093748A (en) * 2018-12-14 2020-06-18 株式会社Soken Tire wear sensor
JP7180354B2 (en) 2018-12-14 2022-11-30 株式会社Soken Tire wear detector
CN111999241A (en) * 2019-05-27 2020-11-27 株式会社捷太格特 Road surface friction coefficient prediction system
JP7388000B2 (en) 2019-05-27 2023-11-29 株式会社ジェイテクト Road surface friction coefficient prediction system
JP2021135640A (en) * 2020-02-26 2021-09-13 三菱重工機械システム株式会社 Axle number detection device, toll collection system, axle number detection method, and program
CN114594045A (en) * 2022-03-10 2022-06-07 重庆交通大学 Continuous detector for road surface friction performance

Similar Documents

Publication Publication Date Title
JP2007099245A (en) Road surface condition presumption device and road surface condition presumption method
JP3661670B2 (en) Tire pressure monitoring system, tire pressure monitoring device, and tire pressure monitoring program
US10406866B2 (en) Tire sensor for a tire monitoring system
US9566834B2 (en) System and method for determining the mileage and wear of a tire
US20130179113A1 (en) Method of sampling acceleration measurements of a motor vehicle wheel
JP2007153034A (en) Tire abrasion state judging device
US20210245554A1 (en) Tread wear monitoring system and method
JPWO2005016670A1 (en) Sensor built-in tire and tire condition estimation method
KR101475578B1 (en) Tire state determination device
CN110446619B (en) Method and device for determining wheel load on a wheel of a vehicle
CN110431026A (en) For determining method, control device and the system of the pattern depth of tyre tread
US6980925B2 (en) Real-time signal processing for vehicle tire load monitoring
WO2017061397A1 (en) Tire-mounted sensor and sensor device used for same
JP2009513945A (en) Method for detecting the internal pressure of a vehicle tire
CN102896984A (en) Method and device for positioning tire pressure transmitter
US11536579B2 (en) Methods and systems for determining a vehicle route based on an estimation of the weight of the vehicle
JP2007106243A (en) Tire information acquisition device and tire information acquisition method
JP2008149967A (en) Wheel information obtaining device and vehicle control device
KR20090055014A (en) Method and device for identifying wheels mounted on a motor vehicle
JP4747956B2 (en) Wheel condition monitoring device
JP2008080897A (en) Wheel information transmitting device, wheel condition monitoring system and wheel condition monitoring method
CN115715257A (en) Enhanced tracking of tire tread wear
KR101571109B1 (en) Position Distiction Method Using TPMS And Position Distiction Device Thereof
JP2007106324A (en) Wheel information processor and wheel information processing method
JP2006264439A (en) Device and method for acquiring wheel state