JP2007090405A - Laminated optical element, and its manufacturing method - Google Patents

Laminated optical element, and its manufacturing method Download PDF

Info

Publication number
JP2007090405A
JP2007090405A JP2005285642A JP2005285642A JP2007090405A JP 2007090405 A JP2007090405 A JP 2007090405A JP 2005285642 A JP2005285642 A JP 2005285642A JP 2005285642 A JP2005285642 A JP 2005285642A JP 2007090405 A JP2007090405 A JP 2007090405A
Authority
JP
Japan
Prior art keywords
optical element
laminated
wafer
optical elements
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005285642A
Other languages
Japanese (ja)
Inventor
Hiroshi Okamoto
弘志 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2005285642A priority Critical patent/JP2007090405A/en
Publication of JP2007090405A publication Critical patent/JP2007090405A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated optical element which is formed such that when a plurality of large-area wafers in a state of being laminated and bonded are cut and separated into respective pieces by laser beam, in a process of cutting the plurality of wafers held in a temporarily joined state along cutting lines between the respective pieces, simultaneously only a joining surface peripheral part (non-valid optical area) is bonded; and to provide its manufacturing method. <P>SOLUTION: In the laminated optical elements 1 formed by integrally laminating the plurality of optical elements 2, 3 having similar shapes of the circumference contour, the peripheral edges of faced surfaces of the respective optical elements have a weld joint part 4 formed by welding the respective optical elements. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は複数の光学素子を積層して形成される積層光学素子、及びその製造方法に関し、特に格別の接着剤を用いずに複数の光学素子を接合一体化した積層光学素子、及びその製造方法に関する。   The present invention relates to a laminated optical element formed by laminating a plurality of optical elements, and a manufacturing method thereof, and more particularly, a laminated optical element in which a plurality of optical elements are joined and integrated without using a special adhesive, and a manufacturing method thereof. About.

近年の光ディスク記録再生装置としては、DVD(記録再生用の波長660nm)、CD(同波長785nm)に加えて、Blue-ray DiscやHD DVD等の青紫色レーザ(同波長405nm)に対応した光学記録媒体にも対応可能なコンバーチブルなタイプが提案、実施されている。
このように異なった波長による記録再生に対応可能な記録再生装置に使用する光学系には、使用波長が広帯域化された光学素子を使用する必要がある。例えば、1/4波長板には、405〜785nmの帯域において、位相差が90°となるものが要求されている。このような要請を満たすために、一般的には、1/2波長板と1/4波長板とを積層した積層波長板を使用している(特許文献1〜3)。
ところで、ミラー、波長板、プリズム等々の板状、或いは多面体状の光学素子を、大面積のシート状ガラス基板(ウェハ)を用いたバッチ処理により製造する場合、個々の個片領域に対して一括して所要の加工を加えて完成させてから、光学素子個片にダイシングすることにより製造される。従来、シート状のウェハを用いた工程により上記の如き積層光学素子を製造する場合には、二枚のウェハの対向面間を接着剤を用いて接合してから各光学素子の境界に沿って形成された切断線に沿ってダイシングブレードによって切断、分離していた。
しかしながら、二枚のウェハを貼り合わせるために有効光学領域を含む対向面に接着剤を塗布していたため、有効光学領域面にウェハを構成する材料とは異なる屈折率を有する接着剤が介在することとなり、波長板、その他の光学素子が本来有する光学特性に少なからず影響を与えてしまうという問題があった。
また、接着剤層の厚みのバラツキにより、光学素子の光学有効領域内において波面収差が悪化するという問題も起きる。
更に、ウェハを接着剤、或いは熱接着により接合する工程は煩雑な作業を伴うため、生産性を低下させる原因となっていた。
Optical disc recording / reproducing apparatuses in recent years include optical components compatible with blue-violet lasers (with the same wavelength of 405 nm) such as Blue-ray Disc and HD DVD in addition to DVD (with a wavelength of 660 nm for recording / reproducing) and CD (with the same wavelength of 785 nm). A convertible type compatible with recording media has been proposed and implemented.
In such an optical system used in a recording / reproducing apparatus that can cope with recording / reproducing with different wavelengths, it is necessary to use an optical element having a wider use wavelength. For example, a quarter wavelength plate is required to have a phase difference of 90 ° in the band of 405 to 785 nm. In order to satisfy such a demand, a laminated wave plate in which a half-wave plate and a quarter-wave plate are laminated is generally used (Patent Documents 1 to 3).
By the way, when manufacturing plate-like or polyhedral-like optical elements such as mirrors, wave plates, prisms, etc. by batch processing using a large-area sheet-like glass substrate (wafer), it is possible to collect each individual region at once. Then, it is manufactured by dicing into optical element pieces after completing the required processing. Conventionally, when a laminated optical element as described above is manufactured by a process using a sheet-like wafer, the opposing surfaces of two wafers are bonded together using an adhesive, and then along the boundary of each optical element. It was cut and separated by a dicing blade along the formed cutting line.
However, since the adhesive is applied to the opposite surface including the effective optical region in order to bond the two wafers, an adhesive having a refractive index different from that of the material constituting the wafer is interposed on the effective optical region surface. Thus, there has been a problem that the optical properties inherent to the wave plate and other optical elements are affected.
Further, there is a problem that the wavefront aberration is deteriorated in the optically effective area of the optical element due to the variation in the thickness of the adhesive layer.
Furthermore, since the process of bonding the wafer by an adhesive or heat bonding involves a complicated operation, it has been a cause of reducing productivity.

次に、近年ダイシング装置メーカでは、従来のダイシングブレードを用いたウェハの切断装置に代えて、エキシマレーザ等のレーザ光線をウェハの切断線に沿って照射してウェハを個片に分割して部品を製造することを提案している(特許文献4、5)。
レーザ光線を利用した切断は、ダイシングブレードによる切断に比して切断面のビリ、カケ(チッピング)を減少させることができる点が利点である。
しかし、この場合もダイシングに代えてレーザ光線を使用する以外の工程には変更がないため、接着剤、或いは熱接着等によるウェハ間の接着工程は依然として必要であり、接着工程がある分だけ生産性が低下し、更に接着剤が光学素子間に介在することによる不具合も依然として改善されていなかった。
特開平10−68816号公報 特開2001−101700公報 WO03/091768 特開2005−21940公報 特開2004−111428公報
Next, in recent years, dicing equipment manufacturers have replaced the wafer cutting device using a conventional dicing blade with a laser beam such as an excimer laser along the cutting line of the wafer to divide the wafer into individual pieces. (Patent Documents 4 and 5).
Cutting using a laser beam is advantageous in that the cutting surface can be reduced in burr and chipping (chipping) as compared to cutting with a dicing blade.
However, in this case as well, there is no change in the process other than using a laser beam instead of dicing, so a bonding process between wafers using an adhesive or thermal bonding is still necessary. In addition, the problems caused by the adhesive being interposed between the optical elements have not been improved.
Japanese Patent Laid-Open No. 10-68816 JP 2001-101700 A WO03 / 091768 JP 2005-21940 A JP 2004-111428 A

以上のように、従来は、異種、或いは同種の光学素子を積層して接合した構造の接合光学素子を量産する場合には、個々の光学素子の母材となる大面積のウェハを接着剤を用いて接合してから、各光学素子個片の境界に沿って形成した切断線に沿ってダイシングしていた。このため、積層光学素子間の接合面に接着剤が介在することとなり、光学特性に悪影響を及ぼしていた。更に、ウェハ同士を接着させる工程の分だけ生産性が低下するという問題があった。更に、レーザ光線によって接合したウェハを切断する場合にも、同様な特性上の不具合、作業工程上の不具合が残るという問題がある。
本発明は上記に鑑みてなされたものであり、積層光学素子を量産するために複数の大面積ウェハを積層、接着した状態でレーザ光線によって個片毎に切断、分離する際に、簡易な手順で実施可能な仮接着によって仮接合状態に保持された複数枚のウェハを、個片間の切断線に沿って切断する過程で同時に個片の接合面周縁部(非有効光学領域)のみを接着するようにした積層光学素子、及びその製造方法を提供するものである。
As described above, conventionally, when mass-producing bonded optical elements having a structure in which different or similar optical elements are laminated and bonded, a large-area wafer serving as a base material of each optical element is bonded with an adhesive. After being used and bonded, dicing was performed along a cutting line formed along the boundary of each optical element piece. For this reason, an adhesive agent intervenes on the joint surface between the laminated optical elements, which adversely affects the optical characteristics. Furthermore, there is a problem that productivity is lowered by the amount of the process of bonding the wafers together. Further, when cutting a wafer bonded by a laser beam, there is a problem in that similar characteristic defects and defects in work processes remain.
The present invention has been made in view of the above, and in order to mass-produce laminated optical elements, a plurality of large-area wafers are laminated and bonded in a state of being cut and separated into individual pieces with a laser beam in a bonded state. In the process of cutting a plurality of wafers held in a temporarily bonded state by temporary bonding that can be performed in the process of cutting along the cutting line between the individual pieces, only the bonding surface peripheral portion (ineffective optical region) of the individual pieces is bonded at the same time. The present invention provides a laminated optical element and a manufacturing method thereof.

上記課題を解決するため、請求項1の発明は、同一の外周輪郭形状を有した複数個の光学素子を積層一体化した積層光学素子において、各光学素子の対向面の外周縁に各光学素子を溶着させた溶着接合部を備えることを特徴とする。
請求項2の発明は、請求項1において、前記各光学素子の対向面間に空気層を備えることを特徴とする。
請求項3の発明は、複数個の第1の光学素子をシート状に連結した第1のウェハと、前記第1の光学素子と同じ外周輪郭形状を有する第2の光学素子を複数個シート状に連結した第2のウェハとを整合状態で積層して仮接着することによりウェハ積層体を形成する仮接着工程と、前記ウェハ積層体を構成する第1及び第2のウェハ上の各光学素子間の境界に沿った切断線に沿ってレーザ光線を照射して第1及び第2の光学素子を積層状態のまま切断分離すると同時に、該レーザ光線の熱により第1の光学素子と第2の光学素子の対向面の外周縁のみを溶着により接合させる切断、溶着工程と、を備えたことを特徴とする。
請求項4の発明は、請求項3において、前記仮接着工程において、前記ウェハ積層体を形成する際に前記第1のウェハと前記第2のウェハ間に空気層が形成されるように両ウェハを積層、仮接着することを特徴とする。
In order to solve the above problems, the invention of claim 1 is a laminated optical element in which a plurality of optical elements having the same outer peripheral contour shape are laminated and integrated, and each optical element is arranged on the outer peripheral edge of the opposing surface of each optical element. It is characterized by comprising a welded joint portion on which is welded.
According to a second aspect of the present invention, in the first aspect, an air layer is provided between the opposing surfaces of the optical elements.
According to a third aspect of the present invention, a first wafer in which a plurality of first optical elements are connected in a sheet form, and a plurality of second optical elements having the same outer peripheral contour shape as the first optical element are formed in a sheet form. A temporary bonding step of forming a wafer laminated body by stacking and temporarily bonding the second wafer connected to each other in an aligned state, and each optical element on the first and second wafers constituting the wafer laminated body The first and second optical elements are cut and separated in the laminated state by irradiating a laser beam along a cutting line along the boundary between the first optical element and the second optical element by heat of the laser beam. A cutting and welding process for joining only the outer peripheral edge of the opposing surface of the optical element by welding.
According to a fourth aspect of the present invention, in the third aspect, in the temporary bonding step, both wafers are formed such that an air layer is formed between the first wafer and the second wafer when the wafer stack is formed. Are laminated and temporarily bonded.

本発明によれば、同一の外周輪郭形状を有した複数個の光学素子を積層一体化した積層光学素子において、各光学素子の対向面の外周縁に各光学素子を溶着させた溶着接合部を備えるようにしたので、有効光学領域に接着剤が介在することがなくなり、光学特性の劣化を防止できる。
また、本発明方法によれば、積層光学素子を量産するために複数の大面積ウェハを積層、接着した状態でレーザ光線によって個片毎に切断、分離する際に、簡易な手順で実施可能であり、且つ有効光学領域に悪影響を与えない仮接着によって仮接合状態に保持された複数枚のウェハを、個片間の切断線に沿って切断する過程で同時に個片の接合面周縁部(非有効光学領域)のみを接着することができる。
According to the present invention, in a laminated optical element in which a plurality of optical elements having the same outer peripheral contour shape are laminated and integrated, the welded joint portion in which each optical element is welded to the outer peripheral edge of the opposing surface of each optical element is provided. Since it is provided, no adhesive is present in the effective optical region, and deterioration of optical characteristics can be prevented.
In addition, according to the method of the present invention, a plurality of large area wafers can be laminated and bonded to each other with a laser beam in order to mass-produce laminated optical elements. In the process of cutting a plurality of wafers held in a temporary bonded state by temporary bonding that does not adversely affect the effective optical area and cut along the cutting line between the individual pieces, the peripheral edge portion of the bonding surface (non- Only the effective optical area) can be glued.

以下、本発明を図面に示した実施の形態により詳細に説明する。
図1(a)及び(b)は本発明の一実施形態に係る積層光学素子の構成を示す斜視図、及びA−A断面図である。
この積層光学素子1は、例えば波長板であり、同一の外周輪郭形状を有した第1の光学素子としての第1波長板(1/2波長板)2と、第2の光学素子としての第2波長板(1/4波長板)3とを接合一体化した構成を備えている。
この積層光学素子1は、図1(b)に示すように第1波長板2と第2波長板3の各対向面2a、3aを密着させた状態で、各波長板2、3の対向面の外周縁部(溶着接合部)4のみを全周に亘って溶着により接合した構成を備えている。
図1(c)は、第1波長板2と第2波長板3を、各対向面間に空気層Sからなるギャップを介して対向配置すると共に、外周縁部4のみを全周に亘って溶着により接合した構成を備えている。第1及び第2波長板2、3の接合面間が密着せずに空気層Sが存在する場合であっても、空気の屈折率が積層光学素子の特性に影響を与えることはない。
なお、積層光学素子1としては、2枚の波長板を接合した積層波長板以外にも、波長板と回折格子(グレーティング)を接合した積層光学素子、樹脂フィルム波長板とガラス基板間に挟んだ積層光学素子(特許第3458895号)、2枚の複屈折板の間に1/4波長板を配置した構成の光学ローパスフィルタ(特開2004−70340)等、同種、或いは異種の光学素子を2枚以上積層したものを広く含むものである。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
1A and 1B are a perspective view and a cross-sectional view taken along line AA, showing a configuration of a laminated optical element according to an embodiment of the present invention.
The laminated optical element 1 is, for example, a wave plate, and includes a first wave plate (1/2 wave plate) 2 as a first optical element having the same outer peripheral contour shape, and a first wave element as a second optical element. A structure in which a two-wave plate (quarter-wave plate) 3 is joined and integrated is provided.
As shown in FIG. 1B, the laminated optical element 1 is configured so that the opposing surfaces 2a and 3a of the first wave plate 2 and the second wave plate 3 are in close contact with each other. Only the outer peripheral edge portion (welding joint portion) 4 is joined by welding over the entire circumference.
In FIG. 1C, the first wave plate 2 and the second wave plate 3 are arranged to face each other through a gap made of an air layer S between the respective facing surfaces, and only the outer peripheral edge 4 is extended over the entire circumference. The structure joined by welding is provided. Even if the air layer S exists without the bonding surfaces of the first and second wave plates 2 and 3 being in close contact with each other, the refractive index of air does not affect the characteristics of the laminated optical element.
In addition to the laminated wave plate in which two wave plates are joined, the laminated optical element 1 is sandwiched between a laminated optical element in which a wave plate and a diffraction grating (grating) are joined, a resin film wave plate and a glass substrate. Laminated optical element (Japanese Patent No. 3458895) Two or more optical elements of the same kind or different kinds, such as an optical low-pass filter (Japanese Patent Laid-Open No. 2004-70340) in which a quarter-wave plate is disposed between two birefringent plates Widely includes laminated ones.

次に、図2(a)乃至(d)は図1に示した積層光学素子1としての積層波長板を2枚のシート状ウェハを用いて量産する場合の製造工程を示す図である。
図2(a)は、第1の光学素子としての第1波長板2を複数個シート状に連結した第1のウェハ11と、第1波長板2と同じ外周輪郭形状を有する第2の光学素子としての第2波長板3を複数個シート状に連結した第2のウェハ12を示している。各ウェハ11、12は、大面積のシート状ガラス基板、或いは水晶基板上の個々の個片領域に対して一括して所要の加工(研磨等)を加えることにより製造される。
第1のウェハ11を構成する個々の第1波長板2の形状、配列と、第2のウェハ12を構成する個々の第2波長板3の形状、配列は、一致するように予め構成される。即ち、両ウェハ11、12上に形成される個片間の切断線(境界線)Cのレイアウトも互いに一致(整合)するように形成される。従来のダイシングブレードにより切断されるウェハの場合には、ブレードの肉厚を考慮して切断線Cの幅寸法を所定値に設定していたが、本実施形態ではレーザ光線Lを用いて個片に分断するため、レーザ光線のスポット径よりも所定幅だけ大きめに切断線Cの幅寸法を設定する。
図2(b)は、第1及び第2のウェハ11、12を整合状態で積層して仮接着することによりウェハ積層体13を形成する仮接着工程を示している。仮接着は、有効光学領域外、例えばウェハの外周縁に沿った端縁部同士を接着剤により接合することにより行う。なお、ここで整合状態とは、各ウェハ11、12上の各切断線Cが合致した状態を意味する。
この際、両ウェハの対向面間は密着していることが理想であるが、両者が密着せずに空気層Sが介在していてもよい。
Next, FIGS. 2A to 2D are views showing a manufacturing process in the case where the laminated wave plate as the laminated optical element 1 shown in FIG. 1 is mass-produced using two sheet-like wafers.
FIG. 2A shows a first wafer 11 in which a plurality of first wave plates 2 as first optical elements are connected in a sheet form, and a second optical having the same outer peripheral contour shape as the first wave plate 2. A second wafer 12 in which a plurality of second wave plates 3 as elements are connected in a sheet form is shown. Each of the wafers 11 and 12 is manufactured by performing a necessary process (polishing or the like) at once on a large-area sheet-like glass substrate or an individual piece region on a quartz substrate.
The shape and arrangement of the individual first wave plates 2 constituting the first wafer 11 and the shape and arrangement of the individual second wave plates 3 constituting the second wafer 12 are configured in advance so as to coincide with each other. . That is, the layout of the cutting lines (boundary lines) C between the individual pieces formed on both the wafers 11 and 12 is also formed to match (align). In the case of a wafer cut by a conventional dicing blade, the width dimension of the cutting line C is set to a predetermined value in consideration of the thickness of the blade, but in this embodiment, an individual piece using a laser beam L Therefore, the width dimension of the cutting line C is set to be larger than the spot diameter of the laser beam by a predetermined width.
FIG. 2B shows a temporary bonding step of forming the wafer laminate 13 by stacking the first and second wafers 11 and 12 in alignment and temporarily bonding them. Temporary bonding is performed by bonding edge portions along the outer peripheral edge of the wafer outside the effective optical region with an adhesive. Here, the alignment state means a state in which the cutting lines C on the wafers 11 and 12 are matched.
At this time, it is ideal that the opposing surfaces of the two wafers are in close contact with each other, but the air layer S may be interposed without the two being in close contact.

図2(c)(d)はレーザ光線によりウェハ積層体13を切断線Cに沿って切断、分離すると同時に、第1及び第2の波長板同士を接合する工程を示している。レーザ光線Lがウェハ面に照射される際のスポット径は、切断線Cの幅wよりも小さく、しかも図示しないレーザ装置から出射されるレーザ光の軌道が切断線Cの幅寸法wの中心線に沿って移動するように装置を制御する。このため、アブレーション(蒸発)効果により中心線に沿った部分を線状に切断すると同時に、積層状態にある各波長板2、3の対向面の外周縁部(溶着接合部)4のみを全周に亘って溶着により接合した状態とすることができる。即ち、レーザ光線のスポット径は切断線Cの幅wよりも十分に小さいため、レーザ光線のパワーを所定に設定することにより、切断線Cの幅寸法の中心線に沿ってレーザ光線が移動する際に、切断線Cの幅寸法の中心線に沿ったウェハ材料は完全に蒸発するため中心線に沿って分断ラインが形成される一方で、この中心線よりも両外側の材料15は蒸発直前の溶融状態に留まる。つまり、レーザ光線Lの照射中において、第1波長板2と第2波長板3の外周面は構成材料が溶融した状態にあるため、各波長板2、3の対向面の外周縁部(溶着接合部)4のみを全周に亘って溶着し、冷却によって接合状態に移行させることができる。   2C and 2D show a process of joining the first and second wave plates at the same time as cutting and separating the wafer laminate 13 along the cutting line C with a laser beam. The spot diameter when the laser beam L is irradiated onto the wafer surface is smaller than the width w of the cutting line C, and the orbit of the laser beam emitted from a laser device (not shown) is the center line of the width dimension w of the cutting line C. Control the device to move along. For this reason, the portion along the center line is cut into a linear shape by the ablation (evaporation) effect, and at the same time, only the outer peripheral edge portion (welded joint portion) 4 of the opposed surfaces of the wave plates 2 and 3 in the laminated state It can be set as the state joined by welding over. That is, since the spot diameter of the laser beam is sufficiently smaller than the width w of the cutting line C, the laser beam moves along the center line of the width dimension of the cutting line C by setting the power of the laser beam to a predetermined value. At this time, since the wafer material along the center line of the width dimension of the cutting line C is completely evaporated, a dividing line is formed along the center line. It remains in the molten state. In other words, during the irradiation of the laser beam L, the outer peripheral surfaces of the first wave plate 2 and the second wave plate 3 are in a state where the constituent materials are melted. Only the joint part) 4 can be welded over the entire circumference, and can be shifted to the joined state by cooling.

このように本発明においては、接着剤を用いないレーザ光線による切断、溶着方法を使用して光学素子外周面のみを溶着させて各波長板2、3の対向面の外周縁を接合しているので、切断分離された積層光学素子1は、光学有効領域上に接着剤が存在しない状態となっており、波面収差等の光学特性の劣化が発生しない。第1及び第2波長板2、3の接合面間が密着せずに空気層Sが存在する場合であっても、空気の屈折率が積層光学素子の特性に大きな影響を与えることはない。但し、各波長板2、3の対向面での光の乱反射を防止するために、両対向面にARコート(反射防止膜)を形成することにより、透過性を高めるようにしてもよい。
また、接着剤を用いたり、熱接着方法を用いた格別の本接着工程を必要とせず、レーザ光線による切断工程と同時に接着工程が実施されるのでリードタイムを短縮できる。
なお、本発明の製造方法は上記以外の光学部品にも広く適用することができる。
As described above, in the present invention, only the outer peripheral surface of the optical element is welded by using a laser beam cutting and welding method without using an adhesive, and the outer peripheral edges of the opposing surfaces of the wave plates 2 and 3 are joined. Thus, the cut and separated laminated optical element 1 is in a state where no adhesive is present on the optically effective area, and optical characteristics such as wavefront aberration are not deteriorated. Even in the case where the air layer S exists without the bonding surfaces of the first and second wave plates 2 and 3 being in close contact with each other, the refractive index of air does not significantly affect the characteristics of the laminated optical element. However, in order to prevent irregular reflection of light on the facing surfaces of the wave plates 2 and 3, an AR coat (antireflection film) may be formed on both facing surfaces to increase the transparency.
In addition, no special bonding process using an adhesive or a thermal bonding method is required, and the bonding process is performed simultaneously with the cutting process using a laser beam, so that the lead time can be shortened.
The manufacturing method of the present invention can be widely applied to optical components other than those described above.

(a)乃至(c)は本発明の一実施形態に係る積層光学素子の構成を示す斜視図、及びA−A断面図。(A) thru | or (c) is a perspective view which shows the structure of the laminated optical element which concerns on one Embodiment of this invention, and AA sectional drawing. (a)乃至(d)は図1に示した積層光学素子としての積層波長板を2枚のシート状ウェハを用いて量産する場合の製造工程を示す図。(A) thru | or (d) is a figure which shows the manufacturing process in the case of mass-producing the laminated wavelength plate as a laminated optical element shown in FIG. 1 using two sheet-like wafers.

符号の説明Explanation of symbols

1…積層光学素子、2、3…波長板(光学素子)、2a、3a…対向面、4…外周縁部、11、12…ウェハ、13…ウェハ積層体、15…材料。   DESCRIPTION OF SYMBOLS 1 ... Laminated optical element, 2, 3 ... Wave plate (optical element), 2a, 3a ... Opposite surface, 4 ... Outer peripheral edge part, 11, 12 ... Wafer, 13 ... Wafer laminated body, 15 ... Material.

Claims (4)

同一の外周輪郭形状を有した複数個の光学素子を積層一体化した積層光学素子において、
各光学素子の対向面の外周縁に各光学素子を溶着させた溶着接合部を備えることを特徴とする積層光学素子。
In a laminated optical element in which a plurality of optical elements having the same outer peripheral contour shape are laminated and integrated,
A laminated optical element comprising a welded joint in which each optical element is welded to the outer peripheral edge of the opposing surface of each optical element.
前記各光学素子の対向面間に空気層を備えることを特徴とする請求項1に記載の積層光学素子。   The laminated optical element according to claim 1, further comprising an air layer between opposing surfaces of the optical elements. 複数個の第1の光学素子をシート状に連結した第1のウェハと、前記第1の光学素子と同じ外周輪郭形状を有する第2の光学素子を複数個シート状に連結した第2のウェハとを整合状態で積層して仮接着することによりウェハ積層体を形成する仮接着工程と、
前記ウェハ積層体を構成する第1及び第2のウェハ上の各光学素子間の境界に沿った切断線に沿ってレーザ光線を照射して第1及び第2の光学素子を積層状態のまま切断分離すると同時に、該レーザ光線の熱により第1の光学素子と第2の光学素子の対向面の外周縁を溶着により接合させる切断、溶着工程と、
を備えたことを特徴とする積層光学素子の製造方法。
A first wafer in which a plurality of first optical elements are connected in a sheet shape, and a second wafer in which a plurality of second optical elements having the same outer peripheral contour shape as the first optical elements are connected in a sheet shape And a temporary adhesion step of forming a wafer laminate by laminating and temporarily adhering in an aligned state,
The first and second optical elements are cut in a laminated state by irradiating a laser beam along a cutting line along the boundary between the optical elements on the first and second wafers constituting the wafer laminate. At the same time as the separation, a cutting and welding step in which the outer peripheral edges of the opposing surfaces of the first optical element and the second optical element are joined by welding with the heat of the laser beam;
A method for producing a laminated optical element, comprising:
前記仮接着工程において、前記ウェハ積層体を形成する際に前記第1のウェハと前記第2のウェハ間に空気層が形成されるように両ウェハを積層、仮接着することを特徴とする請求項3に記載の積層光学素子の製造方法。   In the temporary bonding step, both wafers are stacked and temporarily bonded so that an air layer is formed between the first wafer and the second wafer when the wafer stack is formed. Item 4. A method for producing a laminated optical element according to Item 3.
JP2005285642A 2005-09-29 2005-09-29 Laminated optical element, and its manufacturing method Pending JP2007090405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005285642A JP2007090405A (en) 2005-09-29 2005-09-29 Laminated optical element, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005285642A JP2007090405A (en) 2005-09-29 2005-09-29 Laminated optical element, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007090405A true JP2007090405A (en) 2007-04-12

Family

ID=37976681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005285642A Pending JP2007090405A (en) 2005-09-29 2005-09-29 Laminated optical element, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007090405A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058819A1 (en) * 2009-11-12 2011-05-19 浜松ホトニクス株式会社 Glass welding method
JP2012039805A (en) * 2010-08-10 2012-02-23 Shicoh Engineering Co Ltd Method for manufacturing coreless armature
US9016091B2 (en) 2009-11-25 2015-04-28 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9021836B2 (en) 2009-11-25 2015-05-05 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9045365B2 (en) 2008-06-23 2015-06-02 Hamamatsu Photonics K.K. Fusion-bonding process for glass
US9181126B2 (en) 2008-05-26 2015-11-10 Hamamatsu Photonics K.K. Glass fusion method
US9227871B2 (en) 2009-11-25 2016-01-05 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9233872B2 (en) 2009-11-25 2016-01-12 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9236213B2 (en) 2009-11-25 2016-01-12 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9701582B2 (en) 2009-11-25 2017-07-11 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9887059B2 (en) 2009-11-25 2018-02-06 Hamamatsu Photonics K.K. Glass welding method
US9922790B2 (en) 2009-11-25 2018-03-20 Hamamatsu Photonics K.K. Glass welding method
JP2018133371A (en) * 2017-02-13 2018-08-23 株式会社ディスコ Wafer processing method
JP2018133370A (en) * 2017-02-13 2018-08-23 株式会社ディスコ Wafer processing method
US10322469B2 (en) 2008-06-11 2019-06-18 Hamamatsu Photonics K.K. Fusion bonding process for glass

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181126B2 (en) 2008-05-26 2015-11-10 Hamamatsu Photonics K.K. Glass fusion method
US10322469B2 (en) 2008-06-11 2019-06-18 Hamamatsu Photonics K.K. Fusion bonding process for glass
US9045365B2 (en) 2008-06-23 2015-06-02 Hamamatsu Photonics K.K. Fusion-bonding process for glass
US9073778B2 (en) 2009-11-12 2015-07-07 Hamamatsu Photonics K.K. Glass welding method
WO2011058819A1 (en) * 2009-11-12 2011-05-19 浜松ホトニクス株式会社 Glass welding method
US9233872B2 (en) 2009-11-25 2016-01-12 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9021836B2 (en) 2009-11-25 2015-05-05 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9227871B2 (en) 2009-11-25 2016-01-05 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9016091B2 (en) 2009-11-25 2015-04-28 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9236213B2 (en) 2009-11-25 2016-01-12 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9701582B2 (en) 2009-11-25 2017-07-11 Hamamatsu Photonics K.K. Glass welding method and glass layer fixing method
US9887059B2 (en) 2009-11-25 2018-02-06 Hamamatsu Photonics K.K. Glass welding method
US9922790B2 (en) 2009-11-25 2018-03-20 Hamamatsu Photonics K.K. Glass welding method
JP2012039805A (en) * 2010-08-10 2012-02-23 Shicoh Engineering Co Ltd Method for manufacturing coreless armature
JP2018133371A (en) * 2017-02-13 2018-08-23 株式会社ディスコ Wafer processing method
JP2018133370A (en) * 2017-02-13 2018-08-23 株式会社ディスコ Wafer processing method

Similar Documents

Publication Publication Date Title
JP2007090405A (en) Laminated optical element, and its manufacturing method
US7517423B2 (en) Method of cutting laminate, apparatus for manufacturing laminate, method of manufacturing laminate, and laminate
JP2010170606A (en) Method of manufacturing prism assembly
CN1967815B (en) Wafer product and processing method therefor
CN102377105A (en) Semiconductor laser apparatus and optical apparatus
JP2011178636A (en) Method for dividing brittle material substrate, and brittle material member
US7491288B2 (en) Method of cutting laminate with laser and laminate
JP5308997B2 (en) Laser welding structure of optical component and method of manufacturing optical pickup
JP4885577B2 (en) Manufacturing method of multi-layer liquid crystal cell
JP2001242308A (en) Composite lens and method of manufacturing the same
JP5073690B2 (en) Manufacturing method of prism assembly
JP4532482B2 (en) Double liquid crystal aberration correction element and manufacturing method thereof
JP2007207350A (en) Method for manufacturing optical pickup device
JP2007101866A (en) Optical component and method for manufacturing optical component
JP2020072254A (en) Sub-mount and method for manufacturing the same
JP2008116777A (en) Manufacturing method of optical element and joint fixture
JP2000241610A (en) Manufacture of optical prism
JP2001034996A (en) Optical pickup
JP4245426B2 (en) Liquid crystal optical element and manufacturing method thereof
KR101020990B1 (en) Optical head device with film wavelength plate incorporated therein
JP7100641B2 (en) Submount, semiconductor laser device and heat assisted hard disk device
JP4776907B2 (en) Manufacturing method of optical filter
US20050213210A1 (en) Phase difference plate and optical head device
JP2010003394A (en) Coupling structure of optical part, and optical pickup system
JP4034130B2 (en) Manufacturing method of light control device