JP2007074646A - Mode converter and microwave device equipped with this - Google Patents

Mode converter and microwave device equipped with this Download PDF

Info

Publication number
JP2007074646A
JP2007074646A JP2005262097A JP2005262097A JP2007074646A JP 2007074646 A JP2007074646 A JP 2007074646A JP 2005262097 A JP2005262097 A JP 2005262097A JP 2005262097 A JP2005262097 A JP 2005262097A JP 2007074646 A JP2007074646 A JP 2007074646A
Authority
JP
Japan
Prior art keywords
cavity
dielectric
mode
mode converter
cavity part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005262097A
Other languages
Japanese (ja)
Other versions
JP4389857B2 (en
Inventor
Akio Seki
昭男 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2005262097A priority Critical patent/JP4389857B2/en
Publication of JP2007074646A publication Critical patent/JP2007074646A/en
Application granted granted Critical
Publication of JP4389857B2 publication Critical patent/JP4389857B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waveguide Aerials (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microwave device whose size is small and the mode converter whose reflection characteristic is wideband. <P>SOLUTION: The mode converter which performs a mode-conversion between a waveguide mode and a coaxial mode comprises: a first cavity part 1a which consists of a cavity having an inlet 1d of an electromagnetic wave; a slot 1e which is provided on a wall surface of the first cavity part 1a in a direction of intersecting with a high frequency current flowing on the wall surface of the first cavity part 1a by an electromagnetic wave fed from the inlet 1d; a second cavity part 1b on which the slot 1e is continuously formed; a third cavity part 5 which communicates with the second cavity part 1b and whose cross sectional shape is the same as the inlet 1d; and a probe 2a projected in the third cavity part 5. A dielectric 4 is set at an inlet of the third cavity part 5. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、衛星通信などで用いられるマイクロ波装置に係わり、より詳細には、入力した電磁波をプローブでピックアップするモード変換器の構造に関する。   The present invention relates to a microwave device used in satellite communication or the like, and more particularly to a structure of a mode converter that picks up an input electromagnetic wave with a probe.

従来、マイクロ波装置としては衛星通信用周波数ダウンコンバータなどがあり、このダウンコンバータには、入力した電磁波をプローブでピックアップするモード変換器(導波管−同軸変換器)が備えられている。このモード変換器は、例えば図7の分解斜視図に示すように、アルミダイキャストで形成された筐体93及び筐体91と、これらで上下面を挟持された誘電体基板82とで構成されている。なお、筐体91は受信信号が入力される導入口を備えた第一空洞部92を有している。   Conventionally, as a microwave device, there is a frequency down converter for satellite communication, and the down converter is provided with a mode converter (waveguide-coaxial converter) that picks up an input electromagnetic wave with a probe. For example, as shown in the exploded perspective view of FIG. 7, this mode converter is composed of a casing 93 and a casing 91 formed by aluminum die casting, and a dielectric substrate 82 sandwiched between the upper and lower surfaces thereof. ing. Note that the housing 91 has a first cavity 92 having an introduction port through which a received signal is input.

誘電体基板82は、第一空洞部92の導入口と対応する基板の上下面の銅箔を除去し、所定の長さの導体パターンからなるプローブ81aと、同プローブ81aに連なり、伝送線路として作用するマイクロストリップライン81cと、基板の上下面に設けられた接地側導体パターン81bとを備えている。また、筐体93は四方形の空間からなる第二空洞部94とマイクロストリップライン81cに対するシールドケースを構成する第三空洞部95とを有している。従って、電気的に見ると、第一空洞部92と、第二空洞部94と、第一空洞部92の導入口と対応する両面の銅箔を除去した誘電体基板82とで1つの導波管と見なすことができる。   The dielectric substrate 82 removes the copper foils on the upper and lower surfaces of the substrate corresponding to the introduction port of the first cavity 92, and is connected to the probe 81a made of a conductor pattern of a predetermined length and the probe 81a as a transmission line. A microstrip line 81c that acts and a ground-side conductor pattern 81b provided on the upper and lower surfaces of the substrate are provided. The casing 93 has a second cavity portion 94 made of a quadrangular space and a third cavity portion 95 that constitutes a shield case for the microstrip line 81c. Accordingly, when viewed electrically, one waveguide is formed by the first cavity 92, the second cavity 94, and the dielectric substrate 82 from which the copper foils on both sides corresponding to the inlets of the first cavity 92 are removed. Can be considered a tube.

筐体91の第一空洞部92の導入口から入力された電磁波は、筐体93の第二空洞部94へ導かれる。第二空洞部94はプローブ81aから、入力された電磁波の波長のおよそ1/4波長に相当する深さの位置に反射面を有しているため、入力された電磁波は、プローブ81aで最も効率よくピックアップ、つまり、モード変換されるようになっている(例えば、特許文献1参照。)。   The electromagnetic wave input from the inlet of the first cavity 92 of the housing 91 is guided to the second cavity 94 of the housing 93. Since the second cavity portion 94 has a reflecting surface at a depth corresponding to about ¼ wavelength of the wavelength of the input electromagnetic wave from the probe 81a, the input electromagnetic wave is most efficient in the probe 81a. It is often picked up, that is, mode-converted (see, for example, Patent Document 1).

しかしながら、モード変換器は、各空洞部からなる導波管のサイズで決定される固有の反射特性(リターンロス)を備えており、導波管のサイズを固定したまま反射特性を広帯域化することや、モード変換器自体を小型化することが困難であった。   However, the mode converter has a unique reflection characteristic (return loss) determined by the size of the waveguide composed of each cavity, and the reflection characteristic is widened with the waveguide size being fixed. In addition, it is difficult to reduce the size of the mode converter itself.

特開2004−320460号公報(第4−5頁、図2)JP 2004-320460 A (page 4-5, FIG. 2)

本発明は以上述べた問題点を解決し、マイクロ波装置全体を小型化したり、また、モード変換器の反射特性を広帯域化することを目的とする。   An object of the present invention is to solve the above-described problems, to downsize the entire microwave device, and to widen the reflection characteristics of the mode converter.

本発明は上述の課題を解決するため、導波管モードと同軸モードとをモード変換するモード変換器において、電磁波の入出口を備えた空洞からなる第一空洞部と、前記第一空洞部の壁面に、前記入出口から導入または送出される電磁波と対応して前記第一空洞部の壁面を流れる高周波電流と交差する方向に設けたスロットと、同スロットが連続形成された第二空洞部と、同第二空洞部に連通し、前記入出口と同じ断面形状を有する第三空洞部と、同第三空洞部に突出させた変換プローブとを備え、前記第三空洞部の入口に誘電体を配置する。   In order to solve the above-mentioned problems, the present invention provides a mode converter for mode-converting a waveguide mode and a coaxial mode, and a first cavity portion including a cavity having an electromagnetic wave entrance / exit, and the first cavity portion A slot provided in a direction crossing a high-frequency current flowing through the wall surface of the first cavity corresponding to an electromagnetic wave introduced or sent out from the inlet / outlet on the wall surface, and a second cavity part in which the slot is continuously formed A third cavity having the same cross-sectional shape as the inlet / outlet, and a conversion probe projecting into the third cavity, and a dielectric at the inlet of the third cavity Place.

また、前記誘電体を断面突状の曲面に形成する。   The dielectric is formed into a curved surface having a protruding cross section.

一方、請求項1や請求項2の構造を備えたモード変換器を用いてマイクロ波装置を構成する。   On the other hand, a microwave device is configured using a mode converter having the structure of claim 1 or claim 2.

以上の手段を用いることにより、本発明によるモード変換器を備えたマイクロ波装置によれば、請求項1に係わる発明は、誘電体を用いない場合に比べて反射損失を広帯域に渡って大きくすることができる。さらに、導波管の空洞部内に誘電体が配置されるため、導波管内でのQ値(Quality factor)が低下し、結果的に反射特性を広帯域化することができる。従って、比誘電率が空気よりも高い誘電体を用いて、その断面形状やサイズを適宜選択して装着することにより、空洞部のサイズを小さくしてモード変換器を小型化したり、反射特性を広帯域化することができる。   By using the above means, according to the microwave device provided with the mode converter according to the present invention, the invention according to claim 1 increases the reflection loss over a wide band as compared with the case where no dielectric is used. be able to. Furthermore, since the dielectric is disposed in the cavity of the waveguide, the Q factor (Quality factor) in the waveguide is lowered, and as a result, the reflection characteristic can be widened. Therefore, by using a dielectric having a higher relative dielectric constant than air, and selecting and installing the cross-sectional shape and size as appropriate, the size of the cavity can be reduced, the mode converter can be downsized, and the reflection characteristics can be reduced. The bandwidth can be increased.

なお、このように反射特性を広帯域化することにより、従来行なっているように異なる周波数帯毎にモード変換器を用意し、複数台で広い周波数帯を分割してカバーすることなく、1台のモード変換器で対応できる。または、広帯域化のため、リッジ導波管のような複雑な形状にする必要もない。   In addition, by widening the reflection characteristics in this way, a mode converter is prepared for each different frequency band as in the past, and a single unit can be covered without dividing and covering a wide frequency band with a plurality of units. It can be handled with a mode converter. Or, it is not necessary to have a complicated shape like a ridge waveguide in order to increase the bandwidth.

請求項2に係わる発明は、誘電体が電波レンズとして機能して電磁波を変換プローブに集中させることができる。従って、請求項1の構造を用いる場合に比べて、さらに反射損失を改善させることができる。   In the invention according to the second aspect, the dielectric functions as a radio wave lens, and the electromagnetic wave can be concentrated on the conversion probe. Therefore, the reflection loss can be further improved as compared with the case where the structure of claim 1 is used.

請求項3に係わる発明は、空洞部のサイズを小さくしてモード変換器を小型化したり、反射特性を広帯域化したモード変換器を用いるため、マイクロ波装置を小型化したり、広い周波数帯域のマイクロ波装置を1台で構成することができる。   In the invention according to claim 3, since the mode converter is downsized by reducing the size of the cavity, or the mode converter having a wide reflection characteristic is used, the microwave device can be downsized, or the micro frequency band can be reduced. One wave device can be configured.

以下、本発明の実施の形態を、添付図面に基づいた実施例として詳細に説明する。なお、本発明によるモード変換器が取り扱う周波数の波長をλと呼称する。例えば1/4波長の長さをλ/4と記載する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail as examples based on the attached drawings. The wavelength of the frequency handled by the mode converter according to the present invention is called λ. For example, the length of a quarter wavelength is described as λ / 4.

図1は本発明によるK帯(Kバンド:18〜26GHz)のモード変換器を備えたマイクロ波装置を示す透視状態での分解斜視図である。また、図2は図1のマイクロ波装置の断面図を示し、図2(A)は側面の断面図であり、図2(B)は正面の断面図である。以下、図1及び図2を用いて構造を説明する。   FIG. 1 is an exploded perspective view in a see-through state showing a microwave device provided with a mode converter of K band (K band: 18 to 26 GHz) according to the present invention. 2 is a cross-sectional view of the microwave device of FIG. 1, FIG. 2 (A) is a side cross-sectional view, and FIG. 2 (B) is a front cross-sectional view. Hereinafter, the structure will be described with reference to FIGS.

このマイクロ波装置は衛星通信用周波数ダウンコンバータであり、四方体のアルミダイキャストで形成された下部筐体1、及び上部筐体3と、先端開放の導体パターンからなるプローブ2aと、これに連なり、伝送線路として作用するマイクロストリップライン2eとを備えた誘電体基板2とで構成され、誘電体基板2は下部筐体1と上部筐体3とで挟持されている。   This microwave device is a frequency down-converter for satellite communications, and is connected to a lower housing 1 and an upper housing 3 formed by tetrahedral aluminum die casting, a probe 2a having a conductor pattern with an open tip, and the like. The dielectric substrate 2 is provided with a microstrip line 2e that functions as a transmission line. The dielectric substrate 2 is sandwiched between the lower housing 1 and the upper housing 3.

下部筐体1は、受信信号が入力される矩形の導入口1dを備えた第一空洞部1aと、同第一空洞部1aの終端上方に配置された第二空洞部1bと、同第二空洞部1bの上方に配置された第三空洞A部1cとを備えており、第一空洞部1aと第三空洞A部1cとは第二空洞部1bで空洞が連通している。なお、導入口1dはK帯で使用するため、4.32mm×10.67mmの寸法になっている。また、この説明ではマイクロ波装置が受信装置として説明しているため電磁波の入口を導入口と呼称しているが、本発明を送信機に応用した場合は電磁波の出力口となる。   The lower housing 1 includes a first cavity 1a having a rectangular inlet 1d through which a received signal is input, a second cavity 1b disposed above the terminal end of the first cavity 1a, and a second cavity 1b. And a third cavity A portion 1c disposed above the cavity portion 1b. The first cavity portion 1a and the third cavity A portion 1c communicate with each other through the second cavity portion 1b. In addition, since the introduction port 1d is used in the K band, it has a size of 4.32 mm × 10.67 mm. In this description, since the microwave device is described as a receiving device, the entrance of the electromagnetic wave is referred to as an introduction port. However, when the present invention is applied to a transmitter, it becomes an output port of the electromagnetic wave.

第一空洞部1aは導入口1dのみが開放された有底状の角筒形であり、第三空洞A部1cは上方が開放された角筒形であり、また、第二空洞部1bは上下端に、長手方向がλ/2の開放口である小判型のスロット1eを備えた断面が楕円の円筒形状である。なお、スロット1eはスロットアンテナとして機能し、導入口1dから入射した電磁波の進行方向を90度上方へ曲げている。   The first cavity portion 1a is a bottomed rectangular tube shape in which only the introduction port 1d is opened, the third cavity A portion 1c is a rectangular tube shape in which the upper portion is opened, and the second cavity portion 1b is The upper and lower ends have an oval cylindrical shape with an oval slot 1e having an opening having a longitudinal direction of λ / 2. The slot 1e functions as a slot antenna, and the traveling direction of the electromagnetic wave incident from the introduction port 1d is bent upward by 90 degrees.

ここで、スロット1eは、導入口1dから入力された受信信号により、第一空洞部1aの壁面に流れる高周波電流と交差する方向に設ける。図5は矩形導波管の基本モードであるTE10モードの電磁界分布である。この図5において、電界Eは実線、磁界Hは点線、壁面を流れる高周波電流Iの分布は一点鎖線でそれぞれ表されている。   Here, the slot 1e is provided in a direction intersecting with the high-frequency current flowing in the wall surface of the first cavity 1a by the reception signal input from the introduction port 1d. FIG. 5 shows the electromagnetic field distribution of the TE10 mode, which is the fundamental mode of the rectangular waveguide. In FIG. 5, the electric field E is represented by a solid line, the magnetic field H is represented by a dotted line, and the distribution of the high-frequency current I flowing through the wall surface is represented by a one-dot chain line.

図6はこのような矩形導波管の壁面にスロットを設けた例であり、図5で示した高周波電流の流れる向きと平行なスロット(a)以外の、同高周波電流と交差する方向に設けたスロットから電波が放射される。なお、αは導波管に対する傾き角度を、dはセンター位置からのズレを示す距離を、lはスロットの長さを、wはスロットの幅をそれぞれ表している。また、本実施例に相当するスロットは図6の(f)である。   FIG. 6 shows an example in which a slot is provided on the wall surface of such a rectangular waveguide. The slot is provided in a direction intersecting with the high-frequency current other than the slot (a) parallel to the flow direction of the high-frequency current shown in FIG. Radio waves are emitted from the slot. Α represents an inclination angle with respect to the waveguide, d represents a distance indicating a deviation from the center position, l represents a length of the slot, and w represents a width of the slot. The slot corresponding to this embodiment is (f) in FIG.

また、スロット2eのアンテナとしての放射効率は、同スロットの長さがλ/2のときが最も良いが、本実施例ではこれに限るものではなく、第二空洞部1b、または第三空洞部5の機械的寸法や、モード変換器としての反射特性、伝送特性などの電気的特性などを考慮して最適な特性が得られるように所要の長さとすることができる。   Further, the radiation efficiency of the slot 2e as an antenna is best when the length of the slot is λ / 2. However, the present embodiment is not limited to this, and the second cavity portion 1b or the third cavity portion is not limited thereto. The required length can be set so that optimum characteristics can be obtained in consideration of the mechanical dimensions of 5 and electrical characteristics such as reflection characteristics and transmission characteristics as a mode converter.

上部筐体3は、第三空洞A部1cの開放口と対応する開放口を有し、プローブ2aからλ/4の深さを有する角筒形の第三空洞B部3aと、誘電体基板2のプローブ2aをシールドするL字型の第四空洞部3bと、誘電体基板2の上に配置されたコンバータ回路2dをシールドする角筒形の第五空洞部3cとを備えている。なお、第三空洞B部3aと第四空洞部3bと第五空洞部3cとはそれぞれ上部筐体3の一部で連通している。   The upper housing 3 has an opening corresponding to the opening of the third cavity A portion 1c, and has a rectangular hollow third cavity B portion 3a having a depth of λ / 4 from the probe 2a, and a dielectric substrate. And an L-shaped fourth cavity 3b that shields the two probes 2a, and a square cylindrical fifth cavity 3c that shields the converter circuit 2d disposed on the dielectric substrate 2. The third cavity B part 3a, the fourth cavity part 3b, and the fifth cavity part 3c communicate with each other in a part of the upper housing 3.

一方、誘電体基板2はプローブ2aと、基板の上下面に備えられた接地側導体パターン2bと、コンバータ回路2dの配線パターンなどからなる銅箔パターン(基板の上下面)を備えている。なお、第三空洞A部1cと第三空洞B部3aとの開放口に対応する位置の上下面の接地側導体パターン2bの銅箔は切り取られ、矩形の第三空洞C部2cを形成している。また、第三空洞A部1cと第三空洞B部3aと第三空洞C部2cとの断面は、4.32mm×10.67mmで同じ大きさに形成され、さらに、第一空洞部1aの断面と同じ大きさである。つまり、第一空洞部1aが第二空洞部1bを介して90度上方に折曲され、第三空洞A部1cと第三空洞C部2cと第三空洞B部3aとが順次連結された第三空洞部5へ連通した構成になっている。   On the other hand, the dielectric substrate 2 includes a probe 2a, a ground conductor pattern 2b provided on the upper and lower surfaces of the substrate, and a copper foil pattern (upper and lower surfaces) of the wiring pattern of the converter circuit 2d. The copper foil of the ground-side conductor pattern 2b on the upper and lower surfaces at the position corresponding to the opening of the third cavity A part 1c and the third cavity B part 3a is cut off to form a rectangular third cavity C part 2c. ing. The cross sections of the third cavity A portion 1c, the third cavity B portion 3a, and the third cavity C portion 2c are 4.32 mm × 10.67 mm and are formed in the same size. It is the same size as the cross section. That is, the first cavity 1a is bent 90 degrees upward via the second cavity 1b, and the third cavity A 1c, the third cavity C 2c, and the third cavity B 3a are sequentially connected. The configuration communicates with the third cavity 5.

なお、ここでは説明の都合上、第三空洞A部1cと第三空洞C部2cと第三空洞B部3aとを個別に説明しているが、電気的に見るとこれらは1つの第三空洞部5からなる導波管と見なすことができる。   Here, for convenience of explanation, the third cavity A portion 1c, the third cavity C portion 2c, and the third cavity B portion 3a are individually described. It can be regarded as a waveguide composed of the cavity 5.

下部筐体1の第三空洞A部1cの底部には、スロット1eを覆うように断面曲線状の誘電体4が配置されている。従って、例えば20GHz(ギガヘルツ)の電磁波が導入口1dから入力されると、第一空洞部1aの奥の反射面で反射され、第二空洞部1bを経由して第三空洞A部1cへ導かれる。   A dielectric 4 having a curved cross-section is disposed at the bottom of the third cavity A portion 1c of the lower housing 1 so as to cover the slot 1e. Therefore, for example, when an electromagnetic wave of 20 GHz (gigahertz) is input from the introduction port 1d, it is reflected by the reflection surface at the back of the first cavity 1a and is guided to the third cavity A 1c via the second cavity 1b. It is burned.

この時、誘電体4が無い状態であれば、入力された電磁波は第三空洞A部1c内を上方へ抜け、第三空洞B部3aで反射されてプローブ2aへ到達する。ただし、この場合、第二空洞部1b、第三空洞A部1cへ放射される電磁波はすべての波面がプローブ2aと平行でないため、プローブ2aの中心付近の電磁波のみがピックアップされることになる。つまり、それ以外の電磁波は反射波として導入口1dへ戻り、結果的にリターンロスが小さく(反射特性が悪く)なる。   At this time, if the dielectric 4 is not present, the input electromagnetic wave passes upward through the third cavity A portion 1c, is reflected by the third cavity B portion 3a, and reaches the probe 2a. However, in this case, since all wavefronts of the electromagnetic waves radiated to the second cavity portion 1b and the third cavity A portion 1c are not parallel to the probe 2a, only the electromagnetic waves near the center of the probe 2a are picked up. That is, other electromagnetic waves return to the introduction port 1d as reflected waves, resulting in a small return loss (poor reflection characteristics).

本実施例では前述のように断面曲線状の誘電体4を第三空洞A部1cの底部に備えているため、第二空洞部1b内で上方に直進してきた電磁波は誘電体4が電波レンズとして機能することにより、波面がプローブ2aと平行となるように規制される。従って、誘電体4の形状、及び誘電率を所要の値に決定すれば、第二空洞部1b内を上方に直進してきた電磁波をプローブ2aで効率的にピックアップすることができる。   In the present embodiment, as described above, the dielectric 4 having a curved cross section is provided at the bottom of the third cavity A portion 1c. Therefore, the dielectric 4 is a radio wave lens for electromagnetic waves that have traveled straight upward in the second cavity 1b. As a result, the wavefront is regulated to be parallel to the probe 2a. Accordingly, if the shape of the dielectric 4 and the dielectric constant are determined to be required values, the electromagnetic wave that has traveled straight upward in the second cavity 1b can be efficiently picked up by the probe 2a.

なお、誘電体レンズを用いた装置としては、特開平10−126109や特開2002−9542を、また、誘電体レンズについては、「Richard C. Johnson ,”ANTENNA ENGINEERING HANDBOOK THIRD EDITION” p16-2〜p16-11,1993 」などの文献をそれぞれ参照されたい。   In addition, as an apparatus using a dielectric lens, JP-A-10-126109 and JP-A-2002-9542, and as for a dielectric lens, “Richard C. Johnson,” ANTENNA ENGINEERING HANDBOOK THIRD EDITION ”p16-2˜ Refer to documents such as “p16-11,1993”.

このように本発明によれば、モード変換器の反射特性を向上させ、導波管モード−同軸モード間の変換効率を改善することができる。なお、この効果は誘電体4の形状で特性が異なるが、誘電体4の挿入だけでも効果がある。以下に誘電体4の形状の違いによる効果を説明する。   Thus, according to the present invention, the reflection characteristics of the mode converter can be improved, and the conversion efficiency between the waveguide mode and the coaxial mode can be improved. Although this effect has different characteristics depending on the shape of the dielectric 4, the effect can be obtained only by inserting the dielectric 4. Below, the effect by the difference in the shape of the dielectric 4 is demonstrated.

図3は誘電体4の異なる3つの形状を示す斜視図である。図3(A)は棒状、(B)は板状、(C)は断面曲線状の形態をしている。これらを交換しながら本発明によるモード変換器の反射特性を測定した結果を図4に示す。図4のグラフにおいて、縦軸は反射損失(dB)を示し、横軸はモード変換器に入力されるRF周波数(GHz)を示す。なお、装着される誘電体の比誘電率はすべて2.3のフッ素樹脂( 4フッ化エチレン樹脂) である。   FIG. 3 is a perspective view showing three different shapes of the dielectric 4. 3A shows a bar shape, FIG. 3B shows a plate shape, and FIG. 3C shows a cross-sectional curved shape. FIG. 4 shows the result of measuring the reflection characteristics of the mode converter according to the present invention while exchanging them. In the graph of FIG. 4, the vertical axis represents reflection loss (dB), and the horizontal axis represents the RF frequency (GHz) input to the mode converter. The relative dielectric constant of the mounted dielectric is 2.3 fluororesin (tetrafluoroethylene resin).

図4において、誘電体がない場合は、測定周波数帯域における反射損失が−10dB〜−13dB程度となるが、棒状の誘電体を配置するだけで2〜5dB損失を改善できる。さらに、板状の誘電体の場合は誘電体がない場合に比較し、8〜15dB程度改善できる。さらに、断面が曲線状の誘電体を用いると誘電体がない場合に比較し、9dB〜18dB改善できることが読み取れる。   In FIG. 4, when there is no dielectric, the reflection loss in the measurement frequency band is about −10 dB to −13 dB, but the loss can be improved by 2 to 5 dB just by arranging the rod-shaped dielectric. Furthermore, in the case of a plate-like dielectric material, it can be improved by about 8 to 15 dB compared with the case where there is no dielectric material. Furthermore, it can be read that the use of a dielectric having a curved cross section can improve 9 dB to 18 dB compared to the case where there is no dielectric.

本発明の効果はこの様な反射特性の改善が、簡単な形状の誘電体を付加するだけで特定の狭い周波数帯域でなく、図4のように広い周波数帯域で可能としたことにある。このため、従来行なっているように異なる周波数帯毎にモード変換器を用意し、複数台で広い周波数帯を分割してカバーすることなく、1台のモード変換器で対応できる。   The effect of the present invention lies in that such reflection characteristics can be improved not only in a specific narrow frequency band but also in a wide frequency band as shown in FIG. 4 simply by adding a dielectric having a simple shape. For this reason, a mode converter is prepared for each different frequency band as in the past, and a single mode converter can be used without dividing and covering a wide frequency band with a plurality of units.

また、従来のように広帯域化のために、リッジ導波管のような複雑な形状の導波管を用いたり、導波管中に導体棒を突出させて整合状態を調整したりすることによる構造の複雑化や製造コストの上昇、または前記導体棒により発生するおそれのある信号の損失などの特性劣化を引き起こすことがなく、安価で簡単な構成により広帯域で反射特性の改善を実現することができる。   In addition, in order to increase the bandwidth as in the past, a waveguide having a complicated shape such as a ridge waveguide is used, or a matching state is adjusted by projecting a conductive rod into the waveguide. Improves reflection characteristics over a wide band with an inexpensive and simple configuration without causing structural deterioration, increased manufacturing costs, or loss of characteristics such as signal loss that may occur due to the conductor rod. it can.

また、第三空洞A部1c内の空気(誘電率1.0)に代替して誘電体(誘電率2.3)が配置されるため、導波管内でのQ値(Quality factor)が低下し、結果的に反射特性を広帯域化することができる。従って、比誘電率が空気よりも高い誘電体を用いて、その断面形状やサイズを適宜選択して装着することにより、空洞部のサイズを小さくしてモード変換器を小型化したり、反射特性を広帯域化することができる。   In addition, since the dielectric (dielectric constant 2.3) is disposed instead of the air (dielectric constant 1.0) in the third cavity A portion 1c, the Q value (Quality factor) in the waveguide is lowered. As a result, the reflection characteristic can be widened. Therefore, by using a dielectric having a higher relative dielectric constant than air, and selecting and installing the cross-sectional shape and size as appropriate, the size of the cavity can be reduced, the mode converter can be downsized, and the reflection characteristics can be reduced. The bandwidth can be increased.

なお、本実施例では誘電体4の突方向をプローブ2aに向かう方向に配置しているが、これに限るものでなく、誘電体4の突方向をスロット1eに向かう方向に配置しても同様の効果を得ることができる。   In this embodiment, the protruding direction of the dielectric 4 is arranged in the direction toward the probe 2a. However, the present invention is not limited to this, and the same is true even if the protruding direction of the dielectric 4 is arranged in the direction toward the slot 1e. The effect of can be obtained.

また、本実施例では矩形導波管を用いて説明しているが、本願はこれに限るものでなく、円形導波管を用いても同様の効果を得ることが出来る。さらに、本実施例では受信装置である周波数ダウンコンバータとして説明しているが、これに限るものでなく、衛星通信用の送信機に用いても同様の効果を得ることができる。   In this embodiment, a rectangular waveguide is used for explanation. However, the present application is not limited to this, and a similar effect can be obtained by using a circular waveguide. Furthermore, although the present embodiment has been described as a frequency downconverter that is a receiving device, the present invention is not limited to this, and the same effect can be obtained even when used in a transmitter for satellite communication.

本実施例では誘電体の材料としてフッ素樹脂(四フッ化エチレン樹脂)を用いているが、これに限るものではなく、使用する周波数帯で低損失であるなど高周波特性の良い材料を適宜選択することができる。
また、本実施例ではプローブを誘電体基板上に導体パターンで形成したが、これに限るものではなく、導体棒を誘電体基板上の導体パターンに接続し、第三空洞部に突出させてもよい。
また、反射特性の測定は、ネットワークアナライザなどの通常の反射特性を測定するための測定器を用いて、測定することができる。
In this embodiment, fluororesin (tetrafluoroethylene resin) is used as the dielectric material. However, the present invention is not limited to this, and a material having good high frequency characteristics such as low loss in the frequency band to be used is appropriately selected. be able to.
In this embodiment, the probe is formed in a conductor pattern on the dielectric substrate. However, the present invention is not limited to this. The conductor rod may be connected to the conductor pattern on the dielectric substrate and protruded into the third cavity. Good.
The reflection characteristic can be measured using a measuring instrument for measuring normal reflection characteristics such as a network analyzer.

本発明によるモード変換器を備えたマイクロ波装置の実施例を示す透視状態での分解斜視図である。It is a disassembled perspective view in the see-through state which shows the Example of the microwave apparatus provided with the mode converter by this invention. 本発明によるモード変換器を備えたマイクロ波装置の実施例を示す、(A)は側面の断面図であり、(B)は正面の断面図である。The Example of the microwave apparatus provided with the mode converter by this invention is shown, (A) is sectional drawing of a side surface, (B) is sectional drawing of a front. 誘電体の形状例を示す斜視図であり、(A)は棒状、(B)は板状、(C)は断面曲線状である。It is a perspective view which shows the example of a shape of a dielectric material, (A) is rod shape, (B) is plate shape, (C) is a cross-sectional curve shape. 異なる誘電体の形状による反射特性のグラフである。It is a graph of the reflection characteristic by the shape of a different dielectric material. 矩形導波管の基本モードで電磁界分布図である。It is an electromagnetic field distribution map in the fundamental mode of a rectangular waveguide. 導波管のスロット例を示す斜視図である。It is a perspective view which shows the example of a slot of a waveguide. 従来のモード変換器を示す分解斜視図である。It is a disassembled perspective view which shows the conventional mode converter.

符号の説明Explanation of symbols

1 下部筐体
1a 第一空洞部
1b 第二空洞部
1c 第三空洞A部
1d 導入口
1e スロット
2 誘電体基板
2a プローブ
2b 接地側導体パターン
2c 第三空洞C部
2d コンバータ回路
3 上部筐体
3a 第三空洞B部
3b 第四空洞部
3c 第五空洞部
4 誘電体
5 第三空洞部
DESCRIPTION OF SYMBOLS 1 Lower housing | casing 1a 1st cavity part 1b 2nd cavity part 1c 3rd cavity A part 1d Inlet 1e Slot 2 Dielectric board 2a Probe 2b Ground side conductor pattern 2c 3rd cavity C part 2d Converter circuit 3 Upper housing 3a Third cavity part B 3b Fourth cavity part 3c Fifth cavity part 4 Dielectric 5 Third cavity part

Claims (3)

導波管モードと同軸モードとをモード変換するモード変換器において、
電磁波の入出口を備えた空洞からなる第一空洞部と、前記第一空洞部の壁面に、前記入出口から導入または送出される電磁波と対応して前記第一空洞部の壁面を流れる高周波電流と交差する方向に設けたスロットと、同スロットが連続形成された第二空洞部と、同第二空洞部に連通し、前記入出口と同じ断面形状を有する第三空洞部と、同第三空洞部に突出させた変換プローブとを備え、
前記第三空洞部の入口に誘電体を配置してなることを特徴とするモード変換器。
In a mode converter for mode conversion between a waveguide mode and a coaxial mode,
A high-frequency current flowing through the wall surface of the first cavity portion corresponding to the electromagnetic wave introduced or sent out from the entrance / exit to the wall surface of the first cavity portion, the first cavity portion comprising a cavity having an electromagnetic wave entrance / exit A slot provided in a direction intersecting with the second cavity, a second cavity formed continuously with the slot, a third cavity communicating with the second cavity and having the same cross-sectional shape as the inlet / outlet, and the third cavity A conversion probe protruding into the cavity,
A mode converter comprising a dielectric disposed at the entrance of the third cavity.
前記誘電体を断面突状の曲面に形成してなることを特徴とする請求項1記載のモード変換器。   2. The mode converter according to claim 1, wherein the dielectric is formed into a curved surface having a projecting cross section. 請求項1または請求項2に記載のモード変換器を備えたことを特徴とするマイクロ波装置。   A microwave device comprising the mode converter according to claim 1.
JP2005262097A 2005-09-09 2005-09-09 Mode converter and microwave device provided with the same Expired - Fee Related JP4389857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005262097A JP4389857B2 (en) 2005-09-09 2005-09-09 Mode converter and microwave device provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005262097A JP4389857B2 (en) 2005-09-09 2005-09-09 Mode converter and microwave device provided with the same

Publications (2)

Publication Number Publication Date
JP2007074646A true JP2007074646A (en) 2007-03-22
JP4389857B2 JP4389857B2 (en) 2009-12-24

Family

ID=37935660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005262097A Expired - Fee Related JP4389857B2 (en) 2005-09-09 2005-09-09 Mode converter and microwave device provided with the same

Country Status (1)

Country Link
JP (1) JP4389857B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2166613A1 (en) * 2007-07-05 2010-03-24 Mitsubishi Electric Corporation Transmission line converter
JP2010098609A (en) * 2008-10-17 2010-04-30 Nec Corp Waveguide-microstrip line converter and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2166613A1 (en) * 2007-07-05 2010-03-24 Mitsubishi Electric Corporation Transmission line converter
EP2166613A4 (en) * 2007-07-05 2010-10-06 Mitsubishi Electric Corp Transmission line converter
US8169274B2 (en) 2007-07-05 2012-05-01 Mitsubishi Electric Corporation Transmission line converter using oblique coupling slots disposed in the narrow wall of a rectangular waveguide
JP2010098609A (en) * 2008-10-17 2010-04-30 Nec Corp Waveguide-microstrip line converter and method of manufacturing the same

Also Published As

Publication number Publication date
JP4389857B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
US9793611B2 (en) Antenna
EP1652270B1 (en) Slotted cylinder antenna
JP4822262B2 (en) Circular waveguide antenna and circular waveguide array antenna
CA2176656C (en) Broadband circularly polarized dielectric resonator antenna
CN105470651B (en) A kind of ultra-wideband compact feed based on coated by dielectric
US7193576B2 (en) Ultra wideband bow-tie slot antenna
US5319378A (en) Multi-band microstrip antenna
US7173566B2 (en) Low-sidelobe dual-band and broadband flat endfire antenna
EP2953207B1 (en) Circularly-polarized patch antenna
US20200388899A1 (en) Microstrip-to-waveguide transition and radio assembly
Soothar et al. A broadband high gain tapered slot antenna for underwater communication in microwave band
JPH10242745A (en) Antenna device
JP2013066003A (en) Dielectric waveguide slot antenna, and array antenna using the same
US7030826B2 (en) Microwave transition plate for antennas with a radiating slot face
JP4389857B2 (en) Mode converter and microwave device provided with the same
US10333226B2 (en) Waveguide antenna with cavity
JP2006081160A (en) Transmission path converter
CN113471680A (en) Broadband line source based on multilayer parallel plate waveguide
EP1024549B1 (en) Leaky wave antenna with grounding device
JP2006005846A (en) Waveguide microstrip line transformer
JP2020115619A (en) Waveguide/transmission line converter, waveguide slot antenna and waveguide slot array antenna
RU2488925C1 (en) Ultra-wideband antenna
Lazaro et al. A 150-GHz CPW-fed tapered-slot antenna
US11011817B2 (en) Waveguide-excited terahertz microstrip antenna
JP2010118857A (en) Transmission line using integrated waveguide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees