JP2007072392A - Projection display apparatus - Google Patents

Projection display apparatus Download PDF

Info

Publication number
JP2007072392A
JP2007072392A JP2005262215A JP2005262215A JP2007072392A JP 2007072392 A JP2007072392 A JP 2007072392A JP 2005262215 A JP2005262215 A JP 2005262215A JP 2005262215 A JP2005262215 A JP 2005262215A JP 2007072392 A JP2007072392 A JP 2007072392A
Authority
JP
Japan
Prior art keywords
semiconductor light
light
lens
light sources
projection display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005262215A
Other languages
Japanese (ja)
Inventor
Masaru Imanishi
大 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2005262215A priority Critical patent/JP2007072392A/en
Publication of JP2007072392A publication Critical patent/JP2007072392A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Projection Apparatus (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact projection display apparatus wherein semiconductor light sources can be easily cooled, regarding the projection display apparatus including the R, G and B semiconductor light sources, and for modulating R, G and B light beams emitted from the semiconductor light sources in accordance with R, G and B image signals and projecting the modulated light beams on a screen. <P>SOLUTION: The LEDs 1R, 1G and 1B are arranged so as to separately emit R, G and B light beams downward, and radiation fins 12R, 12G and 12B as cooling units are attached on the rear sides of the LEDs 1R, 1G and 1B while facing in the same direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、R、G及びBの半導体光源の各色の光をそれぞれR、G及びBの画像信号に応じて変調してスクリーン上に投射する投射型表示装置に関する。   The present invention relates to a projection display device that modulates light of each color of R, G, and B semiconductor light sources in accordance with R, G, and B image signals and projects them onto a screen.

一般的に投射型表示装置の光源としては、発光効率が高く明るいランプが主流であり、このような投射型表示装置では、1つのランプの光をR(赤)、G(緑)、B(青)の3色に分光して各色をそれぞれR、G、Bの画像信号に応じて変調しているが、一方で発熱の問題の他に、寿命の問題などの欠点も持っている。一方、近年、LED(Light Emitting Diode:発光ダイオード)やOLED(Organic LED)、さらにはLD(Laser Diode)といった、従来のランプとは異なる半導体光源が著しく進歩している。特にLEDは青色発光が普及し、光の3原色が揃ったことや、蛍光体との組み合わせによる白色LEDの開発により、目覚ましい普及を遂げている。その市場は、従来のインジケータとしての使用などのみならず、一般照明や車のヘッドライトなどにも拡大しようとしている。一方、LDにおいては、SHG(二次高調波発生)を始めとした波長変換技術により、光の3原色を揃える試みが行われている。   In general, as a light source of a projection display device, a bright lamp with high luminous efficiency is mainstream. In such a projection display device, light from one lamp is R (red), G (green), B ( The color is divided into three colors (blue) and each color is modulated in accordance with the R, G, and B image signals. However, in addition to the problem of heat generation, it also has drawbacks such as a problem of life. On the other hand, in recent years, semiconductor light sources different from conventional lamps such as LEDs (Light Emitting Diodes), OLEDs (Organic LEDs), and LDs (Laser Diodes) have been remarkably advanced. In particular, LEDs emit blue light, and the three primary colors of light are aligned, and the development of white LEDs in combination with phosphors has made a remarkable spread. The market is expanding not only to use as a conventional indicator, but also to general lighting and car headlights. On the other hand, in LD, an attempt is made to align the three primary colors of light by wavelength conversion technology such as SHG (second harmonic generation).

通常、半導体光源はその発光スペクトルが狭く、支配的な発光波長が決まる。そこで白色を得るためには、LEDにおいては青色LEDと蛍光体を組み合わせた擬似白色といった方法もあるが、光の3原色に基づき青緑赤の3種類の発光スペクトルを持つものを、各色1個以上を使用して色合成することで白色光とする。一般的に青緑赤3種類の半導体光源を用いた方が、擬似白色よりも高い色純度が得られる。そして、これら半導体光源は、投射型表示装置の光源としても、従来使用されているランプに比べて演色性が高く、鮮やかな色の画像を得ることができる。また半導体光源はこのような演色性の高さに加えて、寿命が長い、瞬時に点灯するなどの点で従来のランプに勝っており、投射型表示装置の光源に使用する試みが盛んに行われている。ただし半導体光源は、発光効率は高いが投入できる電力に制限があるため、半導体光源1個ではランプに比べて光量が不足することがある。このような場合、要求される光量によっては、1つの色当たり複数個の半導体光源を使用する必要がある。   Usually, a semiconductor light source has a narrow emission spectrum and a dominant emission wavelength is determined. Therefore, in order to obtain white, there is a method such as a pseudo white that combines a blue LED and a phosphor in LED, but each color has three emission spectra of blue, green and red based on the three primary colors of light. Using the above, color synthesis is performed to obtain white light. Generally, the use of three types of blue, green, and red semiconductor light sources provides higher color purity than pseudo white. These semiconductor light sources have high color rendering properties as a light source of a projection display device, and can obtain a vivid color image. In addition to such high color rendering properties, semiconductor light sources are superior to conventional lamps in that they have a long lifespan and are lit instantly. Many attempts have been made to use them as light sources for projection display devices. It has been broken. However, although the semiconductor light source has high luminous efficiency, there is a limit to the power that can be input, so the amount of light may be insufficient with one semiconductor light source compared to the lamp. In such a case, depending on the amount of light required, it is necessary to use a plurality of semiconductor light sources per color.

そして、このような3色の半導体光源を色合成して用いるような投射型表示装置においては、例えば光の波長によって反射・透過が制御されるようなプリズムなどの手段を用いて、投射光学系に光が入射している。従来の技術では、半導体光源の光をレンズを始めとする光学素子を用いて整形した後に、プリズムなどの手段で光学系へ光を入射させている。例えば下記の特許文献1、2に見られるように、半導体光源を用いた光源装置がダイクロイックプリズムの面に対して、3色の光源装置の光軸が別個に垂直となるように配置されている。   In such a projection display device that uses three color semiconductor light sources by color synthesis, for example, a projection optical system is used by using means such as a prism whose reflection and transmission are controlled by the wavelength of light. The light is incident on. In the prior art, light from a semiconductor light source is shaped using an optical element such as a lens, and then light is incident on the optical system by means such as a prism. For example, as can be seen in Patent Documents 1 and 2 below, a light source device using a semiconductor light source is arranged such that the optical axes of the three color light source devices are separately perpendicular to the surface of the dichroic prism. .

図7は特許文献2に記載されている従来の投射型装置の例を示す。ダイクロイックプリズム10は水平面において90°ずつの3方向からのR、G、Bの光を合成して投射レンズ11の方向に反射するように構成され、ダイクロイックプリズム10のR、G、Bの光の入射側にはそれぞれ、R、G、Bの赤色LED1R(以下単にLED1Rと示す)、緑色LED1G(以下単にLED1Gと示す)、青色LED1B(以下単にLED1Bと示す)、集光レンズ2、第1レンズアレイ3、第2レンズアレイ6、PBSプリズムアレイ14、重ね合わせレンズ7、コンデンサレンズ8、透過型液晶パネル9R、9G、9Bが直線上に配置されている。そして、LED1R、LED1G、LED1Bの背面にはそれぞれ、冷却器として放熱フィン12R、12G、12Bが取り付けられている。
特開2001−281600号公報(要約書) 特開2004−334082号公報(図5)
FIG. 7 shows an example of a conventional projection type apparatus described in Patent Document 2. The dichroic prism 10 is configured to synthesize R, G, and B light from three directions of 90 ° in the horizontal plane and reflect the light in the direction of the projection lens 11, and the R, G, and B light of the dichroic prism 10 is reflected. On the incident side, R, G, B red LED 1R (hereinafter simply referred to as LED 1R), green LED 1G (hereinafter simply referred to as LED 1G), blue LED 1B (hereinafter simply referred to as LED 1B), condenser lens 2, and first lens, respectively. The array 3, the second lens array 6, the PBS prism array 14, the overlapping lens 7, the condenser lens 8, and the transmissive liquid crystal panels 9R, 9G, and 9B are arranged on a straight line. And the radiation fins 12R, 12G, and 12B are attached to the back surface of LED1R, LED1G, and LED1B as a cooler, respectively.
JP 2001-281600 A (Abstract) Japanese Patent Laying-Open No. 2004-334082 (FIG. 5)

ここで、半導体光源の特徴として、温度に対する問題がある。一般に半導体光源は投入された電力の全てが光エネルギーに変わるのではなく、かなりの割合で熱エネルギーとなる。半導体光源はその物性上、温度が上昇すると発光量や発光波長が変わったり、寿命が短くなるといった問題があるため、実際に使用する上で放熱や冷却について考慮する必要がある。具体的には、ヒートシンクやペルチェ素子などを用いた冷却器が半導体光源に取り付けられることとなる。通常この冷却器は効率良く冷却するために、半導体光源の光出射方向と反対の面に取り付けられる。そしてこのような冷却器は、半導体光源から発生した余分な熱を雰囲気中に効率的に逃がすために一定の体積と表面積を必要とする。普通、冷却器の体積は大きければ大きいほど、表面積が大きければ大きいほど冷却効率は高くなる傾向にある。   Here, as a feature of the semiconductor light source, there is a problem with respect to temperature. In general, a semiconductor light source does not convert all of the input electric power into light energy, but rather becomes thermal energy at a considerable rate. Because of the physical properties of semiconductor light sources, when the temperature rises, there are problems that the amount of emitted light and the wavelength of emitted light change and the lifespan is shortened. Therefore, it is necessary to consider heat dissipation and cooling in actual use. Specifically, a cooler using a heat sink or a Peltier element is attached to the semiconductor light source. Usually, this cooler is attached to the surface opposite to the light emitting direction of the semiconductor light source in order to cool efficiently. Such a cooler requires a certain volume and surface area to efficiently release excess heat generated from the semiconductor light source into the atmosphere. Usually, the larger the volume of the cooler and the larger the surface area, the higher the cooling efficiency.

このような冷却器が半導体光源に取り付けられ、従来の形のようにクロスダイクロイックプリズム10に対して別々の方向からストレートに光を入射させると、光学部品の占める割合に比べて、図3に示すように光学系全体が大きなものとなる。さらに、放熱のための、例えば放熱フィン12R、12G、12Bが設けられていると、各色の冷却器である放熱フィン12R、12G、12Bが別々の方向となるため、放熱のための空気の流れを作りづらくなる。   When such a cooler is attached to a semiconductor light source and light is incident straight on the cross dichroic prism 10 from different directions as in a conventional shape, the ratio of optical components is shown in FIG. As a result, the entire optical system becomes large. Furthermore, if heat radiation fins 12R, 12G, and 12B are provided for heat radiation, for example, the heat radiation fins 12R, 12G, and 12B that are the coolers of the respective colors are in different directions. It becomes difficult to make.

そこで本発明は、小型で容易にR、G及びBの半導体光源を冷却することができる投射型表示装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a projection display device that is small and can easily cool R, G, and B semiconductor light sources.

本発明は上記目的を達成するために、R、G及びBの半導体光源と、前記半導体光源の各光をそれぞれR、G及びBの画像信号に応じて変調するR、G及びBの光変調素子と、前記光変調素子により変調されたR、G及びBの画像を合成してスクリーン上に投射する手段を備えた投射型表示装置において、
前記R、G及びBの半導体光源の熱をそれぞれ放熱するR、G及びBの放熱部が同方向に配置されることにより冷却のための空気の流れが同一方向に流れるよう構成されていることを特徴とする。
In order to achieve the above object, the present invention provides R, G and B semiconductor light sources and R, G and B light modulations for modulating each light of the semiconductor light sources in accordance with R, G and B image signals, respectively. In a projection type display device comprising a device and means for synthesizing the R, G and B images modulated by the light modulation device and projecting them on the screen,
The R, G and B heat radiating portions for radiating the heat of the R, G and B semiconductor light sources are arranged in the same direction, so that the air flow for cooling flows in the same direction. It is characterized by.

本発明によれば、R、G及びBの半導体光源の熱をそれぞれ放熱するR、G及びBの放熱部が同方向に配置されることにより冷却のための空気の流れが同一方向に流れるよう構成されているので、放熱のための空気の流れを作りやすくなり、このため、小型で容易に半導体光源を冷却することができる。   According to the present invention, the R, G, and B heat radiating portions for radiating the heat of the R, G, and B semiconductor light sources are arranged in the same direction so that the cooling air flows in the same direction. Since it is comprised, it becomes easy to make the flow of the air for heat dissipation, and, for this reason, it is small and can cool a semiconductor light source easily.

以下、図面を参照して本発明の実施の形態について説明する。
<第1の実施の形態>
図1は本発明に係る投射型表示装置の第1の実施の形態を示す平面図、図2は図1における緑色LED1Gの主光軸13に沿った側面図である。図1、図2において、ダイクロイックプリズム10は水平面において90°ずつの3方向からのR、G、Bの光を合成して投射レンズ11の方向に反射するように構成されている。LED1R、LED1G、LED1BはそれぞれR、G、Bの光を下方に発光するように配置され、LED1R、LED1G、LED1Bの背面側すなわち上側にはそれぞれ冷却器として放熱フィン12R、12G、12Bが取り付けられている。LED1R、LED1G、LED1Bの上下方向の各光軸にはそれぞれ、集光レンズ2、第1レンズアレイ3、PBS(偏向ビームスプリッタ)プリズム4、平行平板ガラス5が配置され、R、G、Bの光はPBSプリズム4と平行平板ガラス5により水平方向に反射される。そして、その反射方向の各光軸にはそれぞれ、第2レンズアレイ6、重ね合わせレンズ7、コンデンサレンズ8、透過型液晶パネル9R、9G、9B、さらにダイクロイックプリズム10が直線上に配置されている。
Embodiments of the present invention will be described below with reference to the drawings.
<First Embodiment>
FIG. 1 is a plan view showing a first embodiment of a projection display device according to the present invention, and FIG. 2 is a side view along the main optical axis 13 of the green LED 1G in FIG. 1 and 2, the dichroic prism 10 is configured to synthesize R, G, and B light from three directions of 90 ° on a horizontal plane and reflect it in the direction of the projection lens 11. LED1R, LED1G, and LED1B are arranged so as to emit light of R, G, and B downward, respectively, and heat radiation fins 12R, 12G, and 12B are attached as coolers to the back side, that is, the upper side of LED1R, LED1G, and LED1B, respectively. ing. A condensing lens 2, a first lens array 3, a PBS (deflection beam splitter) prism 4, and a parallel plate glass 5 are arranged on each optical axis in the vertical direction of the LED 1 R, LED 1 G, and LED 1 B, respectively. The light is reflected horizontally by the PBS prism 4 and the parallel flat glass 5. A second lens array 6, an overlay lens 7, a condenser lens 8, transmissive liquid crystal panels 9R, 9G, and 9B, and a dichroic prism 10 are arranged on a straight line on each optical axis in the reflection direction. .

上記構成において、LED1R、LED1G、LED1Bより発したR、G、Bの光は、集光レンズ2で光の広がり角が整形され、第1レンズアレイ3、PBSプリズム4、平行平板ガラス5、1/2波長板が貼り合わされた第2レンズアレイ6、重ね合わせレンズ7、コンデンサレンズ8からなる偏光変換インテグレータを通過し、透過型液晶パネル9R、9G、9Bに偏光が入射する。入射した偏光は、それぞれの色における透過型液晶パネル9R、9G、9Bにより、R、G、Bの各映像信号に応じた変調を受け、その後ダイクロイックプリズム10により3色合成された後、投射レンズ11を通り、映像が不図示のスクリーン上に投射される。   In the above configuration, the light of R, G, B emitted from the LED 1R, LED 1G, LED 1B is shaped by the converging lens 2, and the light spreading angle is shaped. The first lens array 3, the PBS prism 4, the parallel flat glass 5, 1 The polarized light is incident on the transmissive liquid crystal panels 9R, 9G, and 9B after passing through the polarization conversion integrator including the second lens array 6, the overlapping lens 7, and the condenser lens 8 to which the / 2 wavelength plate is bonded. The incident polarized light is modulated according to the R, G, and B video signals by the transmissive liquid crystal panels 9R, 9G, and 9B in the respective colors, and thereafter, the three colors are synthesized by the dichroic prism 10, and then the projection lens. 11, the image is projected on a screen (not shown).

このような形で光学系を配置すると、R、G、Bの主光路が90°曲げられることで、放熱フィン12R、12G、12Bは同じ方向を向くこととなる。高さ方向に関しては従来の光学系より大きくなるが、通常、投射型表示装置は直方体を基本とした形状にまとめられるため、余剰の空間が減り、全体として小型化を図ることができる。加えて放熱フィン12R、12G、12Bが同じ方向を向いていることにより、放熱のための空気の流れが基本的に一方向だけ流せば良くなるため、空気の通り道を作る上でも小型化ができる。   When the optical system is arranged in such a manner, the main optical paths of R, G, and B are bent by 90 °, so that the radiation fins 12R, 12G, and 12B face the same direction. Although the height direction is larger than that of the conventional optical system, the projection type display device is usually combined into a shape based on a rectangular parallelepiped, so that an extra space is reduced and the overall size can be reduced. In addition, since the heat radiating fins 12R, 12G, and 12B face in the same direction, the air flow for heat radiation basically needs to flow only in one direction. .

<第2の実施の形態>
図3は本発明に係る投射型表示装置の第2の実施の形態を示す平面図、図4は図3における緑色LD15Gの主光軸13に沿った側面図である。第2の実施の形態の構成は、半導体光源としてLDを用いた点が第1の実施の形態と異なる。また、LDの冷却器12は一体で構成されている。図3、図4において、R、G、Bの赤色LD15R(以下単にLD15Rと示す)、緑色LD15G(以下単にLD15Gと示す)、青色LD15B(以下単にLD15Bと示す)は直線偏光で光を下方向に発し、LD15R、LD15G、LD15Bより発した光は第1レンズ16で光が広げられ、全反射ミラー19で光軸が90°曲げられ、次いで第2レンズ17で平行光とされ、次いで透過型液晶パネル9R、9G、9Bに偏光が入射する。入射した偏光は、それぞれの色における透過型液晶パネル9R、9G、9Bにより、R、G、Bの各映像信号に応じた変調を受け、その後ダイクロイックプリズム10により3色合成された後、投射レンズ11を通り、映像が不図示のスクリーン上に投射される。
<Second Embodiment>
FIG. 3 is a plan view showing a second embodiment of the projection display apparatus according to the present invention, and FIG. 4 is a side view along the main optical axis 13 of the green LD 15G in FIG. The configuration of the second embodiment is different from the first embodiment in that an LD is used as a semiconductor light source. The LD cooler 12 is integrally formed. 3 and 4, R, G, and B red LD15R (hereinafter simply referred to as LD15R), green LD15G (hereinafter simply referred to as LD15G), and blue LD15B (hereinafter simply referred to as LD15B) are linearly polarized light and light is directed downward. The light emitted from LD15R, LD15G, and LD15B is spread by the first lens 16, the optical axis is bent by 90 ° by the total reflection mirror 19, and then converted into parallel light by the second lens 17, and then transmitted. Polarized light enters the liquid crystal panels 9R, 9G, and 9B. The incident polarized light is modulated according to the R, G, and B video signals by the transmissive liquid crystal panels 9R, 9G, and 9B in the respective colors, and thereafter, the three colors are synthesized by the dichroic prism 10, and then the projection lens. 11, the image is projected on a screen (not shown).

上記構成では、光学系の配置が一通り終わった後に、LD15R、LD15G、LD15Bに対して1つの共通の冷却器12を取り付ける。結果として冷却器12は、各色のLD15R、LD15G、LD15Bにおいて同じ方向を向くこととなる。高さ方向に関しては従来の光学系より大きくなるが、通常、投射型表示装置は直方体を基本とした形状にまとめられるため、余剰の空間が減り、全体として小型化を図ることができる。加えて冷却器12が同じ方向を向いていることにより、放熱のための空気の流れが基本的に一方向だけ流せば良くなるため、空気の通り道を作る上でも小型化ができる。加えてサイズの大きな冷却器を取り付けても投射型表示装置のシステム全体のサイズにはあまり影響を与えないため、冷却効率も向上する。また冷却器12が十分に大きければ、使用中に光学系に付着する埃に対するカバーにもなる。   In the above configuration, after the arrangement of the optical system is completed, one common cooler 12 is attached to the LD 15R, LD 15G, and LD 15B. As a result, the cooler 12 faces the same direction in the LD 15R, LD 15G, and LD 15B of each color. Although the height direction is larger than that of the conventional optical system, the projection type display device is usually combined into a shape based on a rectangular parallelepiped, so that an extra space is reduced and the overall size can be reduced. In addition, since the cooler 12 is directed in the same direction, the flow of air for heat radiation basically needs to flow only in one direction, so that the size of the air passage can be reduced. In addition, even if a large-sized cooler is installed, the overall size of the projection display device is not significantly affected, so that the cooling efficiency is improved. If the cooler 12 is sufficiently large, it also serves as a cover for dust that adheres to the optical system during use.

<第3の実施の形態>
図5は本発明に係る投射型表示装置の第3の実施の形態を示す平面図、図6は図5における緑色LD15Gの主光軸13に沿った側面図である。第3の実施の形態の構成は、RGBの各光学系は水平方向に配置され、冷却器18R、18G、18Bのみが上を向くように配置されている。このとき、ヒートパイプを用いて、冷却器18R、18G、18Bの放熱部分の向きがLD15R、LD15G、LD15Bの発熱面に対して90°になるように取り付ける。LD15R、LD15G、LD15Bは直線偏光で光を水平方向に発し、LD15R、LD15G、LD15Bより発した光は第1レンズ16で光が広げられ、次いで第2レンズ17で平行光とされて透過型液晶パネル9R、9G、9Bに偏光が入射する。入射した偏光は、それぞれの色における透過型液晶パネル9R、9G、9BによりR、G、Bの各映像信号に応じた変調を受け、その後ダイクロイックプリズム10により3色合成された後、投射レンズ11を通り、映像が不図示のスクリーン上に投射される。
<Third Embodiment>
FIG. 5 is a plan view showing a third embodiment of the projection display device according to the present invention, and FIG. 6 is a side view along the main optical axis 13 of the green LD 15G in FIG. In the configuration of the third embodiment, the RGB optical systems are arranged in the horizontal direction, and only the coolers 18R, 18G, and 18B are arranged to face upward. At this time, using heat pipes, the heat dissipating portions of the coolers 18R, 18G, and 18B are attached so that the directions of the heat dissipating portions of the coolers 18R, 18G, and 18B are 90 ° with respect to the heat generating surfaces of the LD 15R, LD 15G, and LD 15B. LD15R, LD15G, and LD15B emit light in the horizontal direction with linearly polarized light. Light emitted from the LD15R, LD15G, and LD15B is spread by the first lens 16, and then converted into parallel light by the second lens 17, thereby transmitting liquid crystal. Polarized light enters the panels 9R, 9G, and 9B. The incident polarized light is modulated by the transmissive liquid crystal panels 9R, 9G, and 9B in the respective colors according to the R, G, and B video signals, and then synthesized by the dichroic prism 10, and then the projection lens 11 The image is projected on a screen (not shown).

結果として冷却器18R、18G、18Bの放熱部分は、各色LDモジュールにおいて同じ方向を向くこととなる。高さ方向に関しては従来の光学系より大きくなるが、通常投射型表示装置は直方体を基本とした形状にまとめられるため、余剰の空間が減り、全体として小型化を図ることができる。加えて冷却器18R、18G、18Bが同じ方向を向いていることにより、放熱のための空気の流れが基本的に一方向だけ流せば良くなるため、空気の通り道を作る上でも小型化ができる。   As a result, the heat radiating portions of the coolers 18R, 18G, and 18B are directed in the same direction in each color LD module. Although the height direction is larger than that of the conventional optical system, the projection type display device is usually combined into a shape based on a rectangular parallelepiped, so that the extra space is reduced and the overall size can be reduced. In addition, since the coolers 18R, 18G, and 18B are directed in the same direction, the air flow for heat radiation basically needs to flow only in one direction, so that the size of the air passage can be reduced. .

本実施の形態では、R、G及びBを光変調する素子として透過型液晶パネル9R、9G、9Bを用いた例で説明を行ったが、本発明はこれに限るものではなく、透過型液晶パネル9R、9G、9B以外にも、反射型液晶パネルやデジタルミラー方式のパネルやOLEDを用いた自発光パネルなど、他の投射型表示デバイスにおいても有効である。また冷却器の放熱部の向きは、厳密に同じである必要はなく、大体の向きがあっていればよい。   In the present embodiment, an example in which the transmissive liquid crystal panels 9R, 9G, and 9B are used as elements for optically modulating R, G, and B has been described. However, the present invention is not limited to this, and transmissive liquid crystal panels are used. In addition to the panels 9R, 9G, and 9B, the present invention is effective in other projection display devices such as a reflective liquid crystal panel, a digital mirror type panel, and a self-luminous panel using an OLED. Moreover, the direction of the heat radiating portion of the cooler does not have to be exactly the same, and it is sufficient that the direction is roughly the same.

本発明に係る投射型表示装置の第1の実施の形態を示す平面図である。It is a top view which shows 1st Embodiment of the projection type display apparatus which concerns on this invention. 図1における緑色LEDの主光軸に沿った側面図である。It is a side view along the main optical axis of the green LED in FIG. 本発明に係る投射型表示装置の第2の実施の形態を示す平面図である。It is a top view which shows 2nd Embodiment of the projection type display apparatus which concerns on this invention. 図3における緑色LDの主光軸に沿った側面図である。It is a side view along the main optical axis of green LD in FIG. 本発明に係る投射型表示装置の第3の実施の形態を示す平面図である。It is a top view which shows 3rd Embodiment of the projection type display apparatus which concerns on this invention. 図5における緑色LDの主光軸に沿った側面図である。It is a side view along the main optical axis of green LD in FIG. 従来の投射型表示装置を示す平面図である。It is a top view which shows the conventional projection type display apparatus.

符号の説明Explanation of symbols

1B 青色LED
1G 緑色LED
1R 赤色LED
2 集光レンズ
3 第1レンズアレイ
4 PBS(偏向ビームスプリッタ)プリズム
5 平行平板ガラス
6 第2レンズアレイ
7 重ね合わせレンズ
8 コンデンサレンズ
9R、9G、9B 透過型液晶パネル
10 ダイクロイックプリズム
11 投射レンズ
12、18R、18G、18B 冷却器
12R、12G、12B 放熱フィン
13 主光軸
14 PBSプリズムアレイ
15B 青色LD
15G 緑色LD
15R 赤色LD
16 第1レンズ
17 第2レンズ
19 全反射ミラー
1B Blue LED
1G green LED
1R red LED
DESCRIPTION OF SYMBOLS 2 Condensing lens 3 1st lens array 4 PBS (deflection beam splitter) prism 5 Parallel plate glass 6 2nd lens array 7 Superposition lens 8 Condenser lens 9R, 9G, 9B Transmission-type liquid crystal panel 10 Dichroic prism 11 Projection lens 12, 18R, 18G, 18B Cooler 12R, 12G, 12B Radiation fin 13 Main optical axis 14 PBS prism array 15B Blue LD
15G green LD
15R red LD
16 First lens 17 Second lens 19 Total reflection mirror

Claims (1)

R、G及びBの半導体光源と、前記半導体光源の各光をそれぞれR、G及びBの画像信号に応じて変調するR、G及びBの光変調素子と、前記光変調素子により変調されたR、G及びBの画像を合成してスクリーン上に投射する手段を備えた投射型表示装置において、
前記R、G及びBの半導体光源の熱をそれぞれ放熱するR、G及びBの放熱部が同方向に配置されることにより冷却のための空気の流れが同一方向に流れるよう構成されていることを特徴とする投射型表示装置。
R, G, and B semiconductor light sources, R, G, and B light modulation elements that modulate each light of the semiconductor light source in accordance with R, G, and B image signals, respectively, and the light modulation elements In a projection type display device comprising means for synthesizing R, G and B images and projecting them on a screen,
The R, G and B heat radiating portions for radiating the heat of the R, G and B semiconductor light sources are arranged in the same direction, so that the air flow for cooling flows in the same direction. Projection type display device characterized by the above.
JP2005262215A 2005-09-09 2005-09-09 Projection display apparatus Withdrawn JP2007072392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005262215A JP2007072392A (en) 2005-09-09 2005-09-09 Projection display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005262215A JP2007072392A (en) 2005-09-09 2005-09-09 Projection display apparatus

Publications (1)

Publication Number Publication Date
JP2007072392A true JP2007072392A (en) 2007-03-22

Family

ID=37933856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005262215A Withdrawn JP2007072392A (en) 2005-09-09 2005-09-09 Projection display apparatus

Country Status (1)

Country Link
JP (1) JP2007072392A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514685A (en) * 2011-03-08 2014-06-19 ノバダック テクノロジーズ インコーポレイテッド Full spectrum LED illuminator
WO2014171151A1 (en) * 2013-04-18 2014-10-23 パナソニック株式会社 Projection-type image display device
WO2016047195A1 (en) * 2014-09-26 2016-03-31 富士フイルム株式会社 Projection display device and heat dissipation method
US9348208B2 (en) 2008-01-22 2016-05-24 Nikon Corporation Projector having a light-emitting element, image forming unit and reflecting member
US9642532B2 (en) 2008-03-18 2017-05-09 Novadaq Technologies Inc. Imaging system for combined full-color reflectance and near-infrared imaging
US10694152B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging systems and methods for displaying fluorescence and visible images
US10869645B2 (en) 2016-06-14 2020-12-22 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
US11930278B2 (en) 2015-11-13 2024-03-12 Stryker Corporation Systems and methods for illumination and imaging of a target

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11025867B2 (en) 2006-12-22 2021-06-01 Stryker European Operations Limited Imaging systems and methods for displaying fluorescence and visible images
US11770503B2 (en) 2006-12-22 2023-09-26 Stryker European Operations Limited Imaging systems and methods for displaying fluorescence and visible images
US10694152B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging systems and methods for displaying fluorescence and visible images
US10694151B2 (en) 2006-12-22 2020-06-23 Novadaq Technologies ULC Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy
US9348208B2 (en) 2008-01-22 2016-05-24 Nikon Corporation Projector having a light-emitting element, image forming unit and reflecting member
US10779734B2 (en) 2008-03-18 2020-09-22 Stryker European Operations Limited Imaging system for combine full-color reflectance and near-infrared imaging
US9642532B2 (en) 2008-03-18 2017-05-09 Novadaq Technologies Inc. Imaging system for combined full-color reflectance and near-infrared imaging
US9435496B2 (en) 2011-03-08 2016-09-06 Novadaq Technologies Inc. Full spectrum LED illuminator
US9814378B2 (en) * 2011-03-08 2017-11-14 Novadaq Technologies Inc. Full spectrum LED illuminator having a mechanical enclosure and heatsink
JP2014514685A (en) * 2011-03-08 2014-06-19 ノバダック テクノロジーズ インコーポレイテッド Full spectrum LED illuminator
US9664986B2 (en) 2013-04-18 2017-05-30 Panasonic Intellectual Property Management Co., Ltd. Projection-type image display device with single fan
JP5838356B2 (en) * 2013-04-18 2016-01-06 パナソニックIpマネジメント株式会社 Projection display device
WO2014171151A1 (en) * 2013-04-18 2014-10-23 パナソニック株式会社 Projection-type image display device
JPWO2016047195A1 (en) * 2014-09-26 2017-07-06 富士フイルム株式会社 Projection display device and heat dissipation method
US10168604B2 (en) 2014-09-26 2019-01-01 Fujifilm Corporation Projection-type display device and heat dissipation method
WO2016047195A1 (en) * 2014-09-26 2016-03-31 富士フイルム株式会社 Projection display device and heat dissipation method
US11930278B2 (en) 2015-11-13 2024-03-12 Stryker Corporation Systems and methods for illumination and imaging of a target
US10980420B2 (en) 2016-01-26 2021-04-20 Stryker European Operations Limited Configurable platform
US11298024B2 (en) 2016-01-26 2022-04-12 Stryker European Operations Limited Configurable platform
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
US10869645B2 (en) 2016-06-14 2020-12-22 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
US11756674B2 (en) 2016-06-14 2023-09-12 Stryker European Operations Limited Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
US10992848B2 (en) 2017-02-10 2021-04-27 Novadaq Technologies ULC Open-field handheld fluorescence imaging systems and methods
US11140305B2 (en) 2017-02-10 2021-10-05 Stryker European Operations Limited Open-field handheld fluorescence imaging systems and methods

Similar Documents

Publication Publication Date Title
JP2007072392A (en) Projection display apparatus
JP5527058B2 (en) Light source device and projector
JP5874058B2 (en) Light source device and projection display device
JP5914878B2 (en) Light source device and projection display device
US11163226B2 (en) Light source system and projection display apparatus
JP2011165760A (en) Laser light-source apparatus and projector apparatus
JP6888381B2 (en) Light source device and projector
US10698307B2 (en) Wavelength conversion device, light source device, lighting apparatus, and projection image display apparatus
US10890835B2 (en) Light conversion device, light source apparatus, and projection display apparatus with improved cooling efficiency
US20150181179A1 (en) Projector having light source including laser diodes
WO2016167110A1 (en) Illumination device and projection-type display apparatus
JPWO2016185850A1 (en) Light conversion device, light source device, and projector
WO2015155917A1 (en) Light source device and image display device
US11190740B2 (en) Projection display apparatus
US9817303B2 (en) Light source device, illumination device and projector
JP7052475B2 (en) Wavelength converters, light source devices and projectors
JP2008181776A (en) Light source device and projector
JP2009086273A (en) Light source element for projection type video display device and projection type video display device equipped with light source unit constituted of light source element
JP2009042703A (en) Projection type image display device
JP6186877B2 (en) Light source device and projector
WO2018061897A1 (en) Wavelength conversion device, light source device, and projector
JP6052345B2 (en) projector
JP2005121705A (en) Optical engine
JP3685799B2 (en) Projection type color liquid crystal display
US20230236487A1 (en) Light source apparatus and projector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202