JP2007051934A - Mass axis calibration method in time-of-flight secondary ion mass analysis method - Google Patents

Mass axis calibration method in time-of-flight secondary ion mass analysis method Download PDF

Info

Publication number
JP2007051934A
JP2007051934A JP2005237212A JP2005237212A JP2007051934A JP 2007051934 A JP2007051934 A JP 2007051934A JP 2005237212 A JP2005237212 A JP 2005237212A JP 2005237212 A JP2005237212 A JP 2005237212A JP 2007051934 A JP2007051934 A JP 2007051934A
Authority
JP
Japan
Prior art keywords
mass
axis calibration
sample
time
mass axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005237212A
Other languages
Japanese (ja)
Inventor
Takashi Fujii
崇 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2005237212A priority Critical patent/JP2007051934A/en
Publication of JP2007051934A publication Critical patent/JP2007051934A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately obtain precise mass, with respect to the peak originating from the surface of a sample exceeding 500 in its mass number, in a time-of-flight secondary ion mass analysis method for obtaining the mass spectra of the surfaces of the samples, using a time-of-flight mass analyzer by irradiating the surfaces of the samples with pulsed primary ions. <P>SOLUTION: In TOF-SIMS measurement, a mass axis calibrating substance is arranged on the surface of the sample, and the signal originating from the surface of the sample and the signal originating from the mass axis calibrating substance are detected, at the same time. The mass axis calibrating substance is arranged on the surface of the sample by using a nebulizer. By using an ionic substance as the mass axis calibrating substance for higher precision calculation of the precise mass, with respect to unknown peaks exceeding 500 in mass number. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は飛行時間型二次イオン質量分析法における質量軸校正法に関する、さらには、飛行時間型二次イオン質量分析法における精密質量測定技術に関する。   The present invention relates to a mass axis calibration method in time-of-flight secondary ion mass spectrometry, and further to an accurate mass measurement technique in time-of-flight secondary ion mass spectrometry.

二次イオン質量分析法は数百eVから20keVのエネルギーを有する細束イオンビームを試料表面に照射し、スパッタ現象に伴い二次的に放出される試料の構成元素による二次イオンを質量分析計にかけて、元素または化合物の同定および濃度の測定をおこなう分析法である。   Secondary ion mass spectrometry is a mass spectrometer that irradiates a sample surface with a narrow ion beam having an energy of several hundred eV to 20 keV, and secondary ions due to constituent elements of the sample that are secondarily released due to the sputtering phenomenon. Is an analytical method for identifying an element or compound and measuring its concentration.

二次イオン質量分析法には分析モードとしてダイナミックSIMS(Dynamic−SIMS、以下D−SIMSとする)とスタティックSIMS(Static−SIMS、以下S−SIMSとする)の2つが挙げられる。D−SIMSは高電流密度の一次イオンビームを用いて、表面から数10nmまでの深さ方向濃度分布の測定およびバルクの極微量分析に利用される。これに対し、S−SIMSは照射一次イオン電流密度を極端に低下させ、表面の損傷を可能な限り少なくして非破壊に近い状態で測定する方法である。   Secondary ion mass spectrometry includes two analysis modes: dynamic SIMS (Dynamic-SIMS, hereinafter referred to as D-SIMS) and static SIMS (Static-SIMS, hereinafter referred to as S-SIMS). D-SIMS is used for measurement of concentration distribution in the depth direction from the surface to several tens of nanometers using a primary ion beam having a high current density and for microanalysis of the bulk. On the other hand, S-SIMS is a method in which the irradiation primary ion current density is extremely reduced, and the surface damage is reduced as much as possible to perform measurement in a state close to non-destructive.

S−SIMSでは一次イオンのトータルドーズ量が1012から1013ions/cmで測定が終了する。このような条件下では、試料表面において1個の一次イオンによって損傷を受けた場所に、2個目のイオンが当たる確率は極めて低く、したがって、原子間結合が保たれたままの分子イオンやフラグメントイオンが試料表面から生成、放出され、検出される。したがって、S−SIMSでは表面の極めて浅い領域における分子や化学構造に関する情報が得られる。 In S-SIMS, the measurement is completed when the total dose of primary ions is 10 12 to 10 13 ions / cm 2 . Under such conditions, the probability of the second ion hitting the surface damaged by one primary ion on the sample surface is very low, and therefore molecular ions and fragments that maintain interatomic bonds. Ions are generated, released from the sample surface and detected. Therefore, S-SIMS can provide information on molecules and chemical structures in a very shallow surface area.

S−SIMSでは、高感度および高分解能に特徴のある飛行時間型質量分析計(TOF−MS)を備えたSIMS装置である飛行時間型二次イオン質量分析装置(TOF−SIMS)の開発により、S−SIMS分析モードによるバイオ関連、触媒、生体、環境物質など様々な分野への適用が提案されている(例えば、特許文献1)。   In S-SIMS, the development of a time-of-flight secondary ion mass spectrometer (TOF-SIMS), which is a SIMS device equipped with a time-of-flight mass spectrometer (TOF-MS) that is characterized by high sensitivity and high resolution, Application to various fields such as bio-related, catalyst, living body, environmental substance by S-SIMS analysis mode has been proposed (for example, Patent Document 1).

飛行時間型二次イオン質量分析法(以下、TOF−SIMSとする)に固有の特徴として、まずは、原理的に一次イオンの照射が時間的なパルスビームで与えられるために、トータルのドーズ量の微調整が可能で、容易に且つ正確にスタティックの条件が設定できるということが挙げられる。この他にも、一次イオンパルスによって生じた全ての二次イオンをロスなく検出できるということ、また、一次イオンのパルス幅を1ns以下と短くすることで、質量分解能が非常に高く、フラグメントの帰属を正確におこなうことができるということ、また、Gaイオン等のサブミクロンの収束ビームを一次イオンとして用いることにより、イメージング測定や微小部の分析が可能であるということが挙げられる。 As a characteristic characteristic of time-of-flight secondary ion mass spectrometry (hereinafter referred to as TOF-SIMS), first, since the irradiation of primary ions is given by a temporal pulse beam in principle, the total dose amount is Fine adjustment is possible, and static conditions can be set easily and accurately. In addition to this, all secondary ions generated by the primary ion pulse can be detected without loss, and the primary ion pulse width is shortened to 1 ns or less, so that the mass resolution is very high, and the fragment assignment. In addition, it is possible to perform imaging measurement and analysis of a minute part by using a sub-micron focused beam such as Ga + ions as primary ions.

TOF−SIMS測定により得られた質量スペクトルについては質量軸校正がおこなわれる。質量軸校正の方法としてはスペクトル中にある既知物質の複数の基準ピークをもとに、校正直線を求め、校正をおこなう方法が一般的である。基準ピークとしては、例えばガラス上のSiピークといった試料由来のピークを用いることが可能であるが、多くの場合、表面コンタミといわれる試料表面の低分子汚染物質由来のピーク、例えば、CH (質量数14)、C (質量数27)、C (質量数41)、CH(質量数13)、OH(質量数17)、C(質量数25)が用いられる。 Mass axis calibration is performed on the mass spectrum obtained by the TOF-SIMS measurement. As a mass axis calibration method, a calibration method is generally performed by obtaining a calibration line based on a plurality of reference peaks of known substances in a spectrum. The reference peak, it is possible to use a peak from a sample, such as Si + peak on glass, often, low molecular contaminants from the peak of the sample surface is said to surface contamination, for example, CH 2 + (Mass number 14), C 2 H 3 + (mass number 27), C 3 H 5 + (mass number 41), CH (mass number 13), OH (mass number 17), C 2 H (mass) Equation 25) is used.

また、非特許文献1においては、低分子有機化合物を添加したフィルムを作製し、添加した低分子有機化合物を質量軸校正物質として質量軸校正を行い、フィルム構成分子の精密質量測定を行う方法が提案されている。   In Non-Patent Document 1, there is a method in which a film to which a low molecular organic compound is added is prepared, mass axis calibration is performed using the added low molecular organic compound as a mass axis calibration substance, and accurate mass measurement of film constituent molecules is performed. Proposed.

特開2004−37123号公報JP 2004-37123 A “ToF−SIMS Surface analysis by mass spectrometry” p465,2001年発行 IM Publications and Surface Spectra Limited.“ToF-SIMS Surface analysis by mass spectrometry”, p465, published in 2001 IM Publications and Surface Spectra Limited.

しかしながら、TOF−SIMS測定において、基準ピークとして試料表面の低分子汚染物質由来のピークを用いた場合、これら汚染物質由来のピークが十分な強度で検出されるのは質量数100未満であり、それ以上の質量数を有する低分子汚染物質由来のピークを質量軸校正のための基準ピークとして用いることは困難であった。したがって、低分子汚染物質由来のピークを基準とした質量軸校正方法では、質量数が大きくなるにつれ質量軸のズレが大きくなってしまい、例えば質量数が500を超えるような試料表面由来の未知ピークについてその精密質量を正確に求めることは困難であった。   However, in the TOF-SIMS measurement, when a peak derived from a low molecular contaminant on the sample surface is used as a reference peak, the peak derived from the contaminant is detected with sufficient intensity, and the mass number is less than 100. It has been difficult to use a peak derived from a low molecular contaminant having the above mass number as a reference peak for mass axis calibration. Therefore, in the mass axis calibration method based on the peak derived from the low molecular contaminant, the deviation of the mass axis increases as the mass number increases. For example, an unknown peak derived from the sample surface whose mass number exceeds 500 It has been difficult to accurately determine the exact mass.

そこで、本発明では、TOF−SIMS測定において500を超えるような試料表面由来のピークについてその精密質量を正確に求めることを目的とする。   Therefore, an object of the present invention is to accurately obtain the accurate mass of a peak derived from the sample surface exceeding 500 in TOF-SIMS measurement.

上記課題を解決するために、請求項1に係る発明としては 試料表面にパルス状の一次イオンを照射し、飛行時間型の質量分析計を用いて前記試料表面の質量スペクトルを得る飛行時間型二次イオン質量分析法において、質量軸校正物質を試料表面に配し、測定時に試料表面由来の信号と質量軸校正物質の由来の信号を同時に検出し、質量軸校正物質を用いて得られた質量スペクトルの質量軸の校正をおこなうことを特徴とする飛行時間型二次イオン質量分析法の質量軸校正方法とした。   In order to solve the above-mentioned problems, the invention according to claim 1 is directed to a time-of-flight type 2 in which a sample surface is irradiated with pulsed primary ions and a mass spectrum of the sample surface is obtained using a time-of-flight mass spectrometer. In secondary ion mass spectrometry, a mass axis calibration substance is placed on the sample surface, and the signal derived from the sample surface and the mass axis calibration substance are simultaneously detected during measurement, and the mass obtained using the mass axis calibration substance A mass axis calibration method for time-of-flight secondary ion mass spectrometry, characterized in that the mass axis of the spectrum is calibrated.

また、請求項2に係る発明としては、前記質量軸校正物質を試料表面に配する方法が、質量軸校正物質を溶液化し、ネブライザーを用いて試料表面に噴霧することを特徴とする請求項1記載の飛行時間型二次イオン質量分析法の質量軸校正方法とした。   According to a second aspect of the present invention, in the method of disposing the mass axis calibration substance on the sample surface, the mass axis calibration substance is made into a solution and sprayed on the sample surface using a nebulizer. The mass axis calibration method of the described time-of-flight secondary ion mass spectrometry was used.

また、請求項3に係る発明としては、前記質量軸校正物質がイオン性物質であることを特徴とする請求項1または2記載の飛行時間型二次イオン質量分析法の質量軸校正方法とした。   The invention according to claim 3 is the mass axis calibration method for time-of-flight secondary ion mass spectrometry according to claim 1 or 2, wherein the mass axis calibration substance is an ionic substance. .

TOF−SIMS測定において試料表面に質量軸校正物質を表面に配し、測定時に試料表面由来の信号と質量軸校正物質由来の信号を同時に検出することにより、精密質量測定をおこなうことが可能になった。   In TOF-SIMS measurement, a mass axis calibration substance is placed on the surface of the sample, and at the time of measurement, a signal derived from the sample surface and a signal derived from the mass axis calibration substance are detected at the same time, thereby enabling accurate mass measurement. It was.

また、質量軸校正物質を溶液化し、ネブライザーを用いて試料表面に噴霧することにより、質量軸校正物質を極めて簡便に試料表面に配することが可能となった。   In addition, the mass axis calibration substance is made into a solution and sprayed onto the sample surface using a nebulizer, so that the mass axis calibration substance can be arranged on the sample surface very easily.

また、質量軸校正物質としてイオン性有機化合物を用いることによって、TOF−SIMS測定において感度良く質量軸校正物質由来のピークを高強度で検出することが可能となった。   In addition, by using an ionic organic compound as the mass axis calibration substance, it has become possible to detect the peak derived from the mass axis calibration substance with high intensity in TOF-SIMS measurement with high sensitivity.

本発明によって試料表面構造を維持したまま質量数500を超える未知ピークについて、その精密質量をより精度良く求めることができるようになった。   According to the present invention, the accurate mass of an unknown peak having a mass number exceeding 500 with the sample surface structure maintained can be obtained more accurately.

以下に本発明を具体的に説明する。
本発明では試料表面に質量軸校正物質を配する。試料表面に対して質量軸校正物質を添加する際には、TOF−SIMS測定における検出深さが数nmであることから、質量軸校正物質を非常に薄く均一に塗布する必要がある。もし、質量軸校正物質を過剰に配した場合には、質量軸校正物質由来の信号強度が非常に大きくなってしまい、本来得たい試料表面由来の信号が非常に弱くなってしまう、または、試料表面由来の信号が検出されなくなってしまうといった問題が発生する。
The present invention will be specifically described below.
In the present invention, a mass axis calibration substance is disposed on the sample surface. When the mass axis calibration substance is added to the sample surface, the detection depth in the TOF-SIMS measurement is several nm. Therefore, it is necessary to apply the mass axis calibration substance very thinly and uniformly. If the mass calibration material is placed excessively, the signal intensity derived from the mass calibration material becomes very large, and the signal derived from the sample surface that is originally desired becomes very weak, or the sample There arises a problem that the signal derived from the surface is not detected.

試料表面に質量軸校正物質を配する方法としては、蒸着法、スパッタリング法といったドライプロセスが挙げられる。ドライプロセスを用いた場合、質量軸校正物質を数nmのオーダーの厚みで薄く、均一に配することは可能であるが、成膜を真空中でおこなう必要があり、真空引き等に時間を要する。ドライプロセス以外の方法として質量軸校正物質を溶媒に溶解させることにより溶液化し、溶液化した質量軸校正物質を塗布するといったウエットプロセスによる方法が挙げられる。しかし、通常の塗布方法では質量軸校正物質を数nmのオーダーの厚みで薄く、均一に配することは困難である。そこで、液体クロマトグラフ/質量分析装置や誘導結合プラズマ−質量分析装置などに使用されるネブライザーを用いて、試料表面に対して質量軸校正物質を噴霧する方法が挙げられる。ネブライザーを用いることにより、質量軸校正物質を極めて簡便に試料表面に配することが可能となった。   Examples of the method for arranging the mass axis calibration substance on the sample surface include dry processes such as vapor deposition and sputtering. When using a dry process, it is possible to distribute the mass axis calibration substance with a thickness of the order of a few nanometers and evenly, but it is necessary to perform film formation in a vacuum, and it takes time to evacuate. . As a method other than the dry process, there is a wet process method in which a mass axis calibration substance is dissolved in a solvent to form a solution and a solution of the mass axis calibration substance is applied. However, it is difficult to dispose the mass axis calibration substance uniformly with a thickness of the order of several nanometers by a normal coating method. Therefore, there is a method of spraying a mass axis calibration substance on the sample surface using a nebulizer used in a liquid chromatograph / mass spectrometer, an inductively coupled plasma-mass spectrometer, or the like. By using a nebulizer, the mass axis calibration substance can be arranged on the sample surface very easily.

図1に、質量軸校正物質を溶媒に溶解し、溶液化した質量軸校正物質をネブライザーを用いて試料表面に噴霧する工程を説明する。ポンプ11から供給された質量軸校正物質はチューブ12を通り、二重構造となった金属配管14の内側に供給される。ガス13は金属配管14の外側に供給されており、金属配管先端15からガスと共に質量軸校正物質が液滴16として噴霧される。噴霧された校正物質を含む有機溶媒は、大気中で徐々に乾燥し微細な液滴となる。液滴が小さくなるにつれ質量軸校正物質は自らの電荷によって反発し更に微細な液滴が生成する。試料17表面とネプライザーの金属配管先端15の距離を溶媒が完全に乾燥する距離とし、その距離を保持したまま、試料17を金属配管先端の下に一定時間暴露することで、質量軸校正物質を試料17表面に薄く均一に配することができる。   FIG. 1 illustrates a process of dissolving a mass axis calibration substance in a solvent and spraying the solution mass axis calibration substance on the sample surface using a nebulizer. The mass axis calibration substance supplied from the pump 11 passes through the tube 12 and is supplied to the inside of the metal pipe 14 having a double structure. The gas 13 is supplied to the outside of the metal pipe 14, and the mass axis calibration substance is sprayed as droplets 16 from the metal pipe tip 15 together with the gas. The sprayed organic solvent containing the calibration substance is gradually dried in the air to form fine droplets. As the droplets become smaller, the mass axis calibration material repels itself due to its own charge, and finer droplets are generated. The distance between the surface of the sample 17 and the metal pipe tip 15 of the nepriser is the distance at which the solvent is completely dried, and the sample 17 is exposed to the bottom of the metal pipe for a certain period of time while maintaining the distance. It can be thinly and uniformly arranged on the surface of the sample 17.

質量軸校正物質は、TOF−SIMS測定において感度良く検出される物質、すなわちイオン化されやすい物質であるイオン性物質であることが好ましい。具体的には、正イオンマススペクトル測定では、質量軸校正物質としてアルキルアミンオキシド、アルキルベタイン、アルキルアミノ酸、銅フタロシアニン系化合物が挙げられる。負イオンマススペクトルではアルキルスルホン酸塩、アルキルアミノ酸、アルキルベタイン、アルキルアミンオキシドが挙げられる。イオン性物質を溶媒に溶解または安定して分散させる溶媒はそれぞれの質量軸校正物質に対して適宜選択される。これらの質量軸校正物質は複数を表面に配しても良い。質量軸校正物質としては、目的とする未知ピークの質量数と重ならないようにし、また、未知ピークと質量数を近づくことができるような物質を適宜選択する必要がある。   The mass axis calibration material is preferably a material that is detected with high sensitivity in TOF-SIMS measurement, that is, an ionic material that is easily ionized. Specifically, in the positive ion mass spectrum measurement, alkylamine oxide, alkylbetaine, alkylamino acid, and copper phthalocyanine compound are mentioned as mass axis calibration substances. Negative ion mass spectra include alkyl sulfonates, alkyl amino acids, alkyl betaines, and alkyl amine oxides. The solvent in which the ionic substance is dissolved or stably dispersed in the solvent is appropriately selected for each mass axis calibration substance. A plurality of these mass axis calibration substances may be arranged on the surface. As the mass axis calibration substance, it is necessary to appropriately select a substance that does not overlap with the mass number of the target unknown peak and that can approximate the mass number of the unknown peak.

次に飛行時間型二次イオン質量分析装置による測定工程について説明する。質量軸校正物質を配した前述の試料基板を飛行時間型二次イオン質量分析装置で測定を行う。校正物質と試料分子イオンが同一測定範囲に高感度に検出されるように、一時イオン種を選択し、また、試料測定サイズや加速電圧を調整する。   Next, a measurement process using a time-of-flight secondary ion mass spectrometer will be described. The above-described sample substrate on which the mass axis calibration material is arranged is measured with a time-of-flight secondary ion mass spectrometer. Temporary ion species are selected and the sample measurement size and acceleration voltage are adjusted so that the calibration substance and sample molecule ions are detected with high sensitivity in the same measurement range.

次に前述の測定によって得られたマススペクトルの解析工程について説明する。マススペクトル解析時に試料表面に配した質量軸校正物質の分子イオンと、表面コンタミといわれる炭化水素由来のピークや試料由来の既知ピークを基準ピークとし、基準ピークの質量数の理論値と測定値から、例えば最小二乗法により求めた校正直線を用いて質量軸校正をおこなう。このような質量軸校正方法を用いることにより、未知のピークに対して、より精度の高い質量数を求めることができる。   Next, the analysis process of the mass spectrum obtained by the above measurement will be described. From the theoretical value and the measured value of the mass number of the reference peak, using the molecular ion of the mass axis calibration material placed on the sample surface during mass spectrum analysis and the peak derived from hydrocarbons and known peaks derived from the sample as surface contamination. For example, mass axis calibration is performed using a calibration straight line obtained by the method of least squares. By using such a mass axis calibration method, a more accurate mass number can be obtained for an unknown peak.

試料表面と質量軸校正物質を別々に測定した場合、試料フォルダ内での測定箇所の違い等による装置起因の補正を考慮する必要がある。しかし、本発明では試料表面と質量軸校正物質を同時に測定することにより、得られたスペクトル中に試料由来のピークと質量軸校正物質由来のピークが存在するため、TOF−SIMS測定装置起因による質量軸のズレを考慮する必要が無く、精密な質量数を求めることができる。   When the sample surface and the mass axis calibration substance are measured separately, it is necessary to consider corrections caused by the apparatus due to differences in measurement locations within the sample folder. However, in the present invention, since the sample surface and the mass axis calibration substance are measured simultaneously, the peak derived from the sample and the peak derived from the mass axis calibration substance exist in the obtained spectrum. A precise mass number can be obtained without the need to consider shaft misalignment.

以下に、正イオンマススペクトル測定の実施例を示す。なお、正イオンマススペクトル測定における一次イオンはGaイオン、加速電圧は12kV、測定面積は25μm角である。 Examples of positive ion mass spectrum measurement are shown below. In the positive ion mass spectrum measurement, the primary ions are Ga + ions, the acceleration voltage is 12 kV, and the measurement area is 25 μm square.

組成式C6491、分子量理論値1199.6478で表されるような成分をシリコンウエハ基板表面に滴下・乾燥させたものを試料とする。この試料を飛行時間型二次イオン質量分析装置で測定したところ、この試料由来のピークは正イオンマススペクトルにおいて、質量数1201で高強度で検出されること、また、そのマッピング像から約10μmの円形状に基板上に点在していることが分かった。なお、試料由来の質量数1201のピークの理論値は試料組成により1200.6556である。 A sample in which a component represented by a composition formula C 64 H 91 N 7 F 6 S 2 O 4 and a theoretical molecular weight of 11999.6478 is dropped and dried on a silicon wafer substrate surface is used as a sample. When this sample was measured with a time-of-flight secondary ion mass spectrometer, the peak derived from this sample was detected with high intensity at a mass number of 1201 in the positive ion mass spectrum, and from the mapping image, it was about 10 μm. It was found that the circle was scattered on the substrate. Note that the theoretical value of the peak of mass number 1201 derived from the sample is 1200.6556 depending on the sample composition.

この試料表面に、アセトニトリルに溶解したイオン性化合物(C70108Clを図1に示すようなネブライザーを用いて質量軸校正物質として噴霧した。このとき、試料はネブライザー先端から5cm離れた位置に固定することで有機溶媒が完全に乾燥することと、この位置で5秒間噴霧することで飛行時間型二次イオン質量分析装置で試料由来のピークと質量軸校正物質由来のピークが同時に感度よく検出されることがわかった。なお、質量軸校正物質由来のピークは質量数1033において高強度で検出された。この質量数1033の質量軸校正物質由来のピークの理論値は、組成により1032.8635である。 An ionic compound (C 70 H 108 N 6 ) + Cl dissolved in acetonitrile was sprayed on the sample surface as a mass axis calibration substance using a nebulizer as shown in FIG. At this time, the sample is fixed at a position 5 cm away from the tip of the nebulizer, and the organic solvent is completely dried. By spraying at this position for 5 seconds, a peak derived from the sample is obtained with a time-of-flight secondary ion mass spectrometer. And the peak derived from the mass axis calibration material were detected simultaneously with high sensitivity. The peak derived from the mass axis calibration substance was detected at a mass number of 1033 with high intensity. The theoretical value of the peak derived from the mass axis calibration substance having a mass number of 1033 is 1032.8635 depending on the composition.

次に、質量軸校正物質を配した試料を飛行時間型二次イオン質量分析装置で正イオン測定をおこなった。正イオンマススペクトル測定から得られた質量スペクトルを低分子汚染物質CH (質量数14)、C (質量数27)、C (質量数41)で質量軸校正した場合と、低分子汚染物質CH 、C 、C と試料表面に配した質量軸校正物質由来のピーク(質量数1033)で質量軸校正した場合の質量数1201の試料由来のピークの校正した測定値と理論値とのズレを比較した表を表1に示す。 Next, positive ions were measured with a time-of-flight secondary ion mass spectrometer for the sample on which the mass axis calibration substance was arranged. The mass spectrum obtained from the positive ion mass spectrum measurement is calibrated with the low molecular contaminants CH 2 + (mass number 14), C 2 H 3 + (mass number 27), and C 3 H 5 + (mass number 41). And the mass number in the case of mass axis calibration with the low molecular contaminants CH 2 + , C 2 H 3 + , C 3 H 5 + and the peak (mass number 1033) derived from the mass axis calibration substance arranged on the sample surface Table 1 shows a table comparing the deviation between the measured value of the peak derived from the sample 1201 and the theoretical value.

Figure 2007051934
Figure 2007051934

表1より、本発明による質量軸校正を行うことで、通常の校正方法を用いるより約20倍程度精度が向上していることが確認された。また、校正物質を塗布しても約10μmの円形状に点在している未知試料の表面構造を破壊することはなかった。   From Table 1, it was confirmed that by performing mass axis calibration according to the present invention, the accuracy was improved by about 20 times compared to using the normal calibration method. Further, even when the calibration substance was applied, the surface structure of the unknown sample scattered in a circular shape of about 10 μm was not destroyed.

次に、負イオンマススペクトル測定の実施例を以下に示す。なお、正イオンマススペクトル測定における一次イオンはGaイオン、加速電圧は18kV、測定面積は25μm角である。 Next, examples of negative ion mass spectrum measurement are shown below. In the positive ion mass spectrum measurement, the primary ions are Ga + ions, the acceleration voltage is 18 kV, and the measurement area is 25 μm square.

組成式C76145SNa、分子量理論値1161.0812で表されるような成分をシリコーンウエハ基板表面に滴下・乾燥させたものを試料とする。この試料を飛行時間型二次イオン質量分析装置で測定したところ、この試料由来のピークは負イオンマススペクトルにおいて、質量数1138で高強度で検出されること、約20μmの円形状に基板上に点在していることが分かった。なお、試料由来の質量数1138のピークの理論値は組成により1138.0914である。 A sample obtained by dropping and drying a component represented by the composition formula C 76 H 145 O 3 SNa, theoretical molecular weight 1161.0812 on the surface of the silicon wafer substrate is used. When this sample was measured with a time-of-flight secondary ion mass spectrometer, a peak derived from this sample was detected with high intensity at a mass number of 1138 in a negative ion mass spectrum, and a circular shape of about 20 μm was formed on the substrate. I found that it was scattered. Note that the theoretical value of the peak having a mass number of 1138 derived from the sample is 1138.0914 depending on the composition.

この試料表面に、溶媒としてアセトニトリルに溶解したイオン性化合物(C56105S)Naを図1に示すようなネブライザーを用いて噴霧した。このとき、試料はネブライザー先端から5cm離れた位置に固定することで有機溶媒が完全に乾燥することと、この位置で7秒間塗布することで飛行時間型二次イオン質量分析装置で試料由来のピークと質量軸校正物質由来のピークが同時に感度よく検出されることがわかった。なお、質量軸校正物質由来のピークは質量数858において高強度で検出された。この質量数858の質量軸校正物質由来のピークの理論値は、組成により857.7784である。 The surface of the sample, the ionic compound dissolved in acetonitrile as solvent (C 56 H 105 O 3 S ) - was sprayed using a nebulizer shown a Na + in FIG. At this time, the sample is fixed at a position 5 cm away from the tip of the nebulizer so that the organic solvent is completely dried, and the peak derived from the sample by the time-of-flight secondary ion mass spectrometer is applied at this position for 7 seconds. And the peak derived from the mass axis calibration material were detected simultaneously with high sensitivity. The peak derived from the mass axis calibration substance was detected at a high intensity at a mass number of 858. The theoretical value of the peak derived from the mass axis calibration substance having a mass number of 858 is 857.7784 depending on the composition.

前述の試料基板を飛行時間型二次イオン質量分析装置でネガ測定を行う。ネガ測定から得られたマススペクトルを通常の低分子汚染物質CH(質量数13)、OH(質量数17)、C(質量数25)で質量軸校正した場合と、低分子汚染物質CH、OH、Cと試料表面に配した校正物質由来のピーク(質量数858)で質量軸校正した場合の質量数1138の試料由来のピークの校正した測定値と理論値とのズレを比較した表を表2に示す。 The above sample substrate is subjected to negative measurement with a time-of-flight secondary ion mass spectrometer. When the mass spectrum obtained from the negative measurement is calibrated with the normal low molecular contaminants CH (mass number 13), OH (mass number 17), C 2 H (mass number 25), Measured values and theory of calibration of the peak derived from the sample of mass 1138 when the mass axis is calibrated with the contaminants CH , OH , C 2 H and the peak derived from the calibration material (mass number 858) arranged on the sample surface. A table comparing the deviations from the values is shown in Table 2.

Figure 2007051934
Figure 2007051934

表2より、本発明による質量軸校正を行うことで、通常の校正方法を用いるより約20倍程度精度が向上していることが確認された。また、校正物質を塗布しても約20μmの円形状に点在している未知試料の表面構造を破壊することはなかった。   From Table 2, it was confirmed that by performing mass axis calibration according to the present invention, the accuracy was improved by about 20 times compared with the case of using a normal calibration method. Moreover, even when the calibration substance was applied, the surface structure of the unknown sample scattered in a circular shape of about 20 μm was not destroyed.

本発明に用いたネブライザーの概略図Schematic of the nebulizer used in the present invention

符号の説明Explanation of symbols

11:ポンプ
12:チューブ
13:ガス
14:金属配管
15:金属配管先端
16:噴霧された液滴
17:試料
11: Pump
12: Tube 13: Gas 14: Metal pipe 15: Metal pipe tip 16: Sprayed droplet 17: Sample

Claims (3)

試料表面にパルス状の一次イオンを照射し、飛行時間型の質量分析計を用いて前記試料表面の質量スペクトルを得る飛行時間型二次イオン質量分析法において、
質量軸校正物質を試料表面に配し、測定時に試料表面由来の信号と質量軸校正物質の由来の信号を同時に検出し、質量軸校正物質を用いて得られた質量スペクトルの質量軸の校正をおこなうことを特徴とする飛行時間型二次イオン質量分析法の質量軸校正方法。
In the time-of-flight secondary ion mass spectrometry method in which the sample surface is irradiated with pulsed primary ions and the mass spectrum of the sample surface is obtained using a time-of-flight mass spectrometer.
The mass axis calibration substance is placed on the sample surface, the signal from the sample surface and the signal from the mass axis calibration substance are detected simultaneously during measurement, and the mass axis of the mass spectrum obtained using the mass axis calibration substance is calibrated. A mass axis calibration method for time-of-flight secondary ion mass spectrometry.
前記質量軸校正物質を試料表面に配する方法が、質量軸校正物質を溶液化し、ネブライザーを用いて試料表面に噴霧することを特徴とする請求項1記載の飛行時間型二次イオン質量分析法の質量軸校正方法。   2. The time-of-flight secondary ion mass spectrometry method according to claim 1, wherein the mass axis calibration substance is arranged on the sample surface by liquefying the mass axis calibration substance and spraying it on the sample surface using a nebulizer. Mass axis calibration method. 前記質量軸校正物質がイオン性有機化合物であることを特徴とする請求項1または2記載の飛行時間型二次イオン質量分析法の質量軸校正方法。   The mass axis calibration method for time-of-flight secondary ion mass spectrometry according to claim 1 or 2, wherein the mass axis calibration substance is an ionic organic compound.
JP2005237212A 2005-08-18 2005-08-18 Mass axis calibration method in time-of-flight secondary ion mass analysis method Pending JP2007051934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005237212A JP2007051934A (en) 2005-08-18 2005-08-18 Mass axis calibration method in time-of-flight secondary ion mass analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005237212A JP2007051934A (en) 2005-08-18 2005-08-18 Mass axis calibration method in time-of-flight secondary ion mass analysis method

Publications (1)

Publication Number Publication Date
JP2007051934A true JP2007051934A (en) 2007-03-01

Family

ID=37916477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005237212A Pending JP2007051934A (en) 2005-08-18 2005-08-18 Mass axis calibration method in time-of-flight secondary ion mass analysis method

Country Status (1)

Country Link
JP (1) JP2007051934A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111852A1 (en) * 2010-03-11 2011-09-15 Canon Kabushiki Kaisha Image processing method
CN107635477A (en) * 2015-03-06 2018-01-26 英国质谱公司 For being coupled to rapid evaporation MALDI-MS(“REIMS”)The entrance instrument of the ion analyser of device
US10777397B2 (en) 2015-03-06 2020-09-15 Micromass Uk Limited Inlet instrumentation for ion analyser coupled to rapid evaporative ionisation mass spectrometry (“REIMS”) device
US10777398B2 (en) 2015-03-06 2020-09-15 Micromass Uk Limited Spectrometric analysis
US10916415B2 (en) 2015-03-06 2021-02-09 Micromass Uk Limited Liquid trap or separator for electrosurgical applications
US10978284B2 (en) 2015-03-06 2021-04-13 Micromass Uk Limited Imaging guided ambient ionisation mass spectrometry
US11031223B2 (en) 2015-09-29 2021-06-08 Micromass Uk Limited Capacitively coupled REIMS technique and optically transparent counter electrode
US11031222B2 (en) 2015-03-06 2021-06-08 Micromass Uk Limited Chemically guided ambient ionisation mass spectrometry
US11037774B2 (en) 2015-03-06 2021-06-15 Micromass Uk Limited Physically guided rapid evaporative ionisation mass spectrometry (“REIMS”)
US11139156B2 (en) 2015-03-06 2021-10-05 Micromass Uk Limited In vivo endoscopic tissue identification tool
US11239066B2 (en) 2015-03-06 2022-02-01 Micromass Uk Limited Cell population analysis
US11264223B2 (en) 2015-03-06 2022-03-01 Micromass Uk Limited Rapid evaporative ionisation mass spectrometry (“REIMS”) and desorption electrospray ionisation mass spectrometry (“DESI-MS”) analysis of swabs and biopsy samples
US11270876B2 (en) 2015-03-06 2022-03-08 Micromass Uk Limited Ionisation of gaseous samples
US11282688B2 (en) 2015-03-06 2022-03-22 Micromass Uk Limited Spectrometric analysis of microbes
US11289320B2 (en) 2015-03-06 2022-03-29 Micromass Uk Limited Tissue analysis by mass spectrometry or ion mobility spectrometry
US11342170B2 (en) 2015-03-06 2022-05-24 Micromass Uk Limited Collision surface for improved ionisation
US11367605B2 (en) 2015-03-06 2022-06-21 Micromass Uk Limited Ambient ionization mass spectrometry imaging platform for direct mapping from bulk tissue
US11454611B2 (en) 2016-04-14 2022-09-27 Micromass Uk Limited Spectrometric analysis of plants

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111852A1 (en) * 2010-03-11 2011-09-15 Canon Kabushiki Kaisha Image processing method
US8644637B2 (en) 2010-03-11 2014-02-04 Canon Kabushiki Kaisha Image processing method
US11282688B2 (en) 2015-03-06 2022-03-22 Micromass Uk Limited Spectrometric analysis of microbes
CN107635477A (en) * 2015-03-06 2018-01-26 英国质谱公司 For being coupled to rapid evaporation MALDI-MS(“REIMS”)The entrance instrument of the ion analyser of device
US10777398B2 (en) 2015-03-06 2020-09-15 Micromass Uk Limited Spectrometric analysis
US10916415B2 (en) 2015-03-06 2021-02-09 Micromass Uk Limited Liquid trap or separator for electrosurgical applications
US10978284B2 (en) 2015-03-06 2021-04-13 Micromass Uk Limited Imaging guided ambient ionisation mass spectrometry
US11367605B2 (en) 2015-03-06 2022-06-21 Micromass Uk Limited Ambient ionization mass spectrometry imaging platform for direct mapping from bulk tissue
US11031222B2 (en) 2015-03-06 2021-06-08 Micromass Uk Limited Chemically guided ambient ionisation mass spectrometry
US11037774B2 (en) 2015-03-06 2021-06-15 Micromass Uk Limited Physically guided rapid evaporative ionisation mass spectrometry (“REIMS”)
US11367606B2 (en) 2015-03-06 2022-06-21 Micromass Uk Limited Rapid evaporative ionisation mass spectrometry (“REIMS”) and desorption electrospray ionisation mass spectrometry (“DESI-MS”) analysis of swabs and biopsy samples
US11139156B2 (en) 2015-03-06 2021-10-05 Micromass Uk Limited In vivo endoscopic tissue identification tool
US11239066B2 (en) 2015-03-06 2022-02-01 Micromass Uk Limited Cell population analysis
US11264223B2 (en) 2015-03-06 2022-03-01 Micromass Uk Limited Rapid evaporative ionisation mass spectrometry (“REIMS”) and desorption electrospray ionisation mass spectrometry (“DESI-MS”) analysis of swabs and biopsy samples
US11270876B2 (en) 2015-03-06 2022-03-08 Micromass Uk Limited Ionisation of gaseous samples
US10777397B2 (en) 2015-03-06 2020-09-15 Micromass Uk Limited Inlet instrumentation for ion analyser coupled to rapid evaporative ionisation mass spectrometry (“REIMS”) device
US11289320B2 (en) 2015-03-06 2022-03-29 Micromass Uk Limited Tissue analysis by mass spectrometry or ion mobility spectrometry
US11342170B2 (en) 2015-03-06 2022-05-24 Micromass Uk Limited Collision surface for improved ionisation
US11133164B2 (en) 2015-09-29 2021-09-28 Micromass Uk Limited Capacitively coupled REIMS technique and optically transparent counter electrode
US11031223B2 (en) 2015-09-29 2021-06-08 Micromass Uk Limited Capacitively coupled REIMS technique and optically transparent counter electrode
US11454611B2 (en) 2016-04-14 2022-09-27 Micromass Uk Limited Spectrometric analysis of plants

Similar Documents

Publication Publication Date Title
JP2007051934A (en) Mass axis calibration method in time-of-flight secondary ion mass analysis method
Green et al. The effect of electrospray solvent composition on desorption electrospray ionisation (DESI) efficiency and spatial resolution
JP7335389B2 (en) Systems and methods for semiconductor measurement and surface analysis using secondary ion mass spectrometry
KR101752656B1 (en) Sample plate using MALDI-TOF mass spectrometer and manufacturing method of the sample plate
WO2016116012A1 (en) Mass correction kit and correction method for low-mass area of high-resolution mass spectrometer in negative ion mode
JP5030166B2 (en) Test method of sample support substrate used for laser desorption ionization mass spectrometry
Thieleke et al. A calibration strategy for LA-ICP-MS using isotope dilution for solid reference materials
JP2009243902A (en) Mass analyzing device, mass analyzer using it ,and mass analyzing method
Matsuyama et al. High-accuracy determination of trace elements by total reflection X-ray fluorescence spectrometry using freeze-dried specimens
JP2004361405A (en) Sample holder for laser desorption/ionization mass spectrometry and manufacturing method therefor
JP2002116184A (en) Instrument and system for analyzing foreign matter in semiconductor device
KR101689254B1 (en) Method for obtaining mass spectrum of ions generated at constant temperature by measuring total ion count, and use of matrix for quantitative analysis using maldi mass spectrometry
JP5149635B2 (en) Photoelectron spectroscopy analysis method
JP2007225568A (en) Sample preparation method and sample
Hercules et al. Applications of laser microprobe mass spectrometry in organic analysis
JP2005005151A (en) Charged particle beam device
JP4576609B2 (en) Laser ionization mass spectrometry method and laser ionization mass spectrometer
JP7247907B2 (en) Method for evaluating organic matter adhering to the surface of a semiconductor substrate
JP5045310B2 (en) High-precision depth direction analysis method and analyzer using secondary ion mass spectrometry technology
KR100485389B1 (en) Secondary ion mass spectroscopy and method of measuring secondary ion yield using the same
JP2006153751A (en) Ion beam analyzer
WO2013057824A1 (en) Laser ionization mass analysis device
JP2016011840A (en) Light-element analyzer and light-element analysis method
JP2004347566A (en) Advanced encryption standard analytical method and analyzing apparatus
JP2008215995A (en) Mass spectroscope and analysis method