JP2007043011A - Heat dissipation structure of electronic apparatus - Google Patents

Heat dissipation structure of electronic apparatus Download PDF

Info

Publication number
JP2007043011A
JP2007043011A JP2005228177A JP2005228177A JP2007043011A JP 2007043011 A JP2007043011 A JP 2007043011A JP 2005228177 A JP2005228177 A JP 2005228177A JP 2005228177 A JP2005228177 A JP 2005228177A JP 2007043011 A JP2007043011 A JP 2007043011A
Authority
JP
Japan
Prior art keywords
circuit board
heat
housing
heat dissipation
semiconductor package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005228177A
Other languages
Japanese (ja)
Inventor
Akihiko Hirata
明彦 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005228177A priority Critical patent/JP2007043011A/en
Publication of JP2007043011A publication Critical patent/JP2007043011A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat dissipation structure of an electronic apparatus which hardly depends on specification, is hardly affected by ambient heat, and can emit heat generated by a semiconductor package effectively and fully by using an existing fan without enlarging a housing and lowering mounting property of a mounting component, thus improving reliability. <P>SOLUTION: The heat dissipation structure of an electronic apparatus has a PBGA package 10 which is formed by mounting an IC chip 12 on a plastic circuit board 11 and sealing it with sealing resin 14, a printed wiring board 19 wherein the PBGA package 10 is subjected to surface mounting, a carrier board 22 which is arranged almost parallel with the printed wiring board 19 at a prescribed interval, a housing 20 for storing the PBGA package 10, the printed wiring board 19 and the carrier board 22, an air inlet and air outlet 20a formed in a prescribed portion of the housing 20, a fan 21 arranged in a prescribed portion inside the housing 20, and a vent 25 formed in the carrier board 22. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数の回路基板を筐体内に収容した電子機器の放熱構造に関するものである。   The present invention relates to a heat dissipation structure for an electronic device in which a plurality of circuit boards are accommodated in a housing.

近年、半導体パッケージに対して高密度化、高速化、多ピン化、及び地球環境の問題から省電力化が求められており、その要求は益々強くなっている。それを満たすために、半導体パッケージの一つであるPBGA(Plastic Ball Grid Array)パッケージ等の需要が増している。PBGAパッケージは、プラスチック回路基板上にICチップを搭載して封止樹脂でモールドすると共に、パッケージの下面となるプラスチック回路基板の下面に接続電極としての多数の半田ボールを配列した表面実装型のパッケージである。このようなPBGAパッケージとしては、特許文献1に記載されたものがある。以下、特許文献1に記載されたPBGAパッケージについて、図11を用いて説明する。   In recent years, there has been a demand for power saving for semiconductor packages due to problems of high density, high speed, high pin count, and global environment, and the demand is becoming stronger. In order to satisfy this demand, demand for a PBGA (Plastic Ball Grid Array) package, which is one of semiconductor packages, is increasing. A PBGA package is a surface-mount package in which an IC chip is mounted on a plastic circuit board and molded with a sealing resin, and a large number of solder balls as connection electrodes are arranged on the lower surface of the plastic circuit board, which is the lower surface of the package. It is. An example of such a PBGA package is described in Patent Document 1. Hereinafter, the PBGA package described in Patent Document 1 will be described with reference to FIG.

図11はPBGAパッケージの断面図であり、図12は導体パターンの平面図である。   FIG. 11 is a cross-sectional view of a PBGA package, and FIG. 12 is a plan view of a conductor pattern.

図中、10はPBGAパッケージ、11はプラスチック回路基板、12はICチップ(半導体素子)、13はボンディングワイヤ、14は封止樹脂、15は半田ボール、16は導体パターン、17は絶縁部、18はICチップ搭載部、19はプリント配線基板である。   In the figure, 10 is a PBGA package, 11 is a plastic circuit board, 12 is an IC chip (semiconductor element), 13 is a bonding wire, 14 is a sealing resin, 15 is a solder ball, 16 is a conductor pattern, 17 is an insulating portion, 18 Is an IC chip mounting portion, and 19 is a printed wiring board.

プラスチック回路基板11は、例えばBT(ビスマレイド・トリアジン)エポキシ樹脂等の高耐熱性、誘電特性、絶縁特性、及び加工性に優れた樹脂を基材とする単層又は多層のプリント配線基板であり、その両面には図12に示すような導体パターン16やパッド(図示せず)が銅箔またはめっき等により形成される。プラスチック回路基板11の上面には、ICチップ12がAgペーストなどの接着剤によりダイボンディングされ、ICチップ12の電極とプラスチック回路基板11上面のパッドとの間が金線やアルミ線などのボンディングワイヤ13により電気的に接続されている。ICチップ12及びボンディングワイヤ13はエポキシ樹脂等の封止樹脂14をトランスファ成形して封止される。プラスチック回路基板11の下面には接続電極としての多数の半田ボール15が接続される。PBGAパッケージ10をプリント配線基板19に実装するにはリフロー半田付け法を用い、半田ボール15をプリント配線基板19のパッドに接合する。ICチップ12の発熱はプラスチック回路基板11を介してプリント配線基板19に熱伝達され、PBGAパッケージ10の放熱が行われる。   The plastic circuit board 11 is a single-layer or multi-layer printed wiring board based on a resin having high heat resistance, dielectric characteristics, insulating characteristics, and processability, such as BT (bismaleide triazine) epoxy resin, Conductive patterns 16 and pads (not shown) as shown in FIG. 12 are formed on both surfaces by copper foil or plating. An IC chip 12 is die-bonded on the upper surface of the plastic circuit board 11 with an adhesive such as Ag paste, and a bonding wire such as a gold wire or an aluminum wire is formed between the electrode of the IC chip 12 and the pad on the upper surface of the plastic circuit board 11. 13 is electrically connected. The IC chip 12 and the bonding wire 13 are sealed by transfer molding a sealing resin 14 such as an epoxy resin. A large number of solder balls 15 as connection electrodes are connected to the lower surface of the plastic circuit board 11. In order to mount the PBGA package 10 on the printed wiring board 19, a reflow soldering method is used, and the solder balls 15 are bonded to the pads of the printed wiring board 19. The heat generated by the IC chip 12 is transferred to the printed wiring board 19 through the plastic circuit board 11, and the PBGA package 10 is dissipated.

半導体パッケージにおける発熱は主としてICチップ12の発熱であるので、小型化やコストの面から、上述したようにICチップ12の発熱を半田ボール15及びプラスチック回路基板11を通してプリント配線基板19等の他の回路基板に放熱させることが望ましい。そこで、特許文献1においては、ICチップ12の放熱性向上のためにICチップ12を実装するプラスチック回路基板11自体の熱抵抗を下げる方法として以下の方法を用いている。すなわち、プラスチック回路基板11の両面に形成される導体パターン16を、隣接する導体パターン16間の絶縁部17が全て80μmの細線になるように形成し、ICチップ搭載部18は全面に導体部分を形成することにより、プラスチック回路基板11の面積に対する導体パターン16の面積の比率が60%以上になるようにしている。これにより、プラスチック回路基板11の両面の熱伝導性が向上し、ICチップ12の発熱は基板11の上面の導体パターン16を伝導し基板11の面方向に広がり易く、基板1
1の略全面を有効に使って基板11の両面間の熱伝達も効率よく行われる。
Since the heat generation in the semiconductor package is mainly the heat generation of the IC chip 12, from the viewpoint of miniaturization and cost, the heat generation of the IC chip 12 is transferred to the other components such as the printed wiring board 19 through the solder balls 15 and the plastic circuit board 11 as described above. It is desirable to dissipate heat to the circuit board. Therefore, in Patent Document 1, the following method is used as a method for reducing the thermal resistance of the plastic circuit board 11 itself on which the IC chip 12 is mounted in order to improve the heat dissipation of the IC chip 12. That is, the conductor pattern 16 formed on both surfaces of the plastic circuit board 11 is formed so that the insulating portions 17 between the adjacent conductor patterns 16 are all 80 μm fine lines, and the IC chip mounting portion 18 has a conductor portion on the entire surface. By forming, the ratio of the area of the conductor pattern 16 to the area of the plastic circuit board 11 is set to 60% or more. As a result, the thermal conductivity of both surfaces of the plastic circuit board 11 is improved, and the heat generated by the IC chip 12 is transmitted through the conductor pattern 16 on the upper surface of the board 11 and easily spreads in the surface direction of the board 11.
The heat transfer between both surfaces of the substrate 11 is also efficiently performed by using substantially the entire surface of 1.

また、特許文献1には、PBGAパッケージ10の上面に放熱板を配設し、この放熱板の放熱効果によってパッケージ10の温度上昇を抑制するようにすることも記載されている。
特開平11−186436号公報
Patent Document 1 also describes that a heat sink is provided on the upper surface of the PBGA package 10 and the temperature rise of the package 10 is suppressed by the heat dissipation effect of the heat sink.
Japanese Patent Laid-Open No. 11-186436

しかしながら上記の従来の放熱方法では、以下のような課題を有していた。   However, the conventional heat dissipation method described above has the following problems.

(1)プラスチック回路基板11と導体パターン16の面積比を60%以上にする方法では、プリント配線基板19との接続において半田ボール15の数やプリント配線基板19の大きさ、実装された部品との関係等により60%以上にできない場合があり、設計の自由度に欠けると共に既存の電子機器への適用性に欠けるという課題を有していた。   (1) In the method of setting the area ratio of the plastic circuit board 11 and the conductor pattern 16 to 60% or more, the number of solder balls 15 in connection with the printed wiring board 19, the size of the printed wiring board 19, and the mounted components In some cases, it may not be possible to achieve 60% or more due to the above-mentioned relationship and the like.

(2)プリント配線基板19の下面に部品実装する場合、又は、PBGAパッケージ10を制御するためにプリント配線基板19の下部にコネクタによる接続で制御回路等を有する別の基板を設ける場合、ファン等を用いて強制的に冷却する必要がある程ICチップ12の発熱量が大きい場合、PBGAパッケージ10の周囲に別の発熱部品がある場合等には、更なる放熱性の向上が要求されるが、放熱板を配設する方法や上記した面積比を60%以上にする方法では限界があるという課題を有していた。   (2) When components are mounted on the lower surface of the printed wiring board 19 or when another board having a control circuit or the like is provided at the lower part of the printed wiring board 19 by a connector to control the PBGA package 10, a fan or the like When the heat generation amount of the IC chip 12 is so large that it is necessary to forcibly cool it using the IC, or when there is another heat generating component around the PBGA package 10, further improvement in heat dissipation is required. However, there is a problem that there is a limit in the method of disposing the heat sink and the method of setting the above-described area ratio to 60% or more.

(3)PBGAパッケージ10をプリント配線基板19に半田ボール15で実装しているため、プリント配線基板19に振動等の外力が加わると、半田ボール15が外れて断線し易く、信頼性に欠けるという課題を有していた。   (3) Since the PBGA package 10 is mounted on the printed wiring board 19 with the solder balls 15, when an external force such as vibration is applied to the printed wiring board 19, the solder balls 15 are likely to be disconnected and disconnected, resulting in lack of reliability. Had problems.

本発明は上記従来の課題を解決するもので、半導体パッケージや回路基板の仕様に依存し難く、且つ周囲に発熱部品があっても熱の影響を受け難く、電子機器の筐体を大型化したり回路基板への実装部品の実装性を低下させたりすることなく、既設のファンを用いて半導体素子による半導体パッケージの発熱を効率良く且つ十分に放熱でき信頼性を向上できる電子機器の放熱構造を提供することを目的とする。   The present invention solves the above-described conventional problems, is less dependent on the specifications of a semiconductor package or a circuit board, and is less susceptible to heat even if there are heat-generating parts around it, and the housing of an electronic device is enlarged. Providing a heat dissipation structure for electronic equipment that can efficiently and sufficiently dissipate heat generated by a semiconductor element using an existing fan and improve reliability without deteriorating the mountability of components mounted on a circuit board The purpose is to do.

本発明は、第1の回路基板に半導体素子を搭載し封止樹脂で封止して形成された表面実装型の半導体パッケージと、半導体パッケージが表面実装された第2の回路基板と、第2の回路基板と所定間隔で略平行に配設された第3の回路基板と、半導体パッケージと第2の回路基板と第3の回路基板とを収容する筐体と、筐体の所定部に形成された空気導入口及び空気排出口と、筐体内の所定部に配設されたファンと、第3の回路基板に形成された通気孔と、を備えたことを主要な特徴とする。   The present invention includes a surface mount type semiconductor package formed by mounting a semiconductor element on a first circuit board and sealing with a sealing resin, a second circuit board on which the semiconductor package is surface mounted, A third circuit board disposed substantially parallel to the circuit board at a predetermined interval; a housing for housing the semiconductor package, the second circuit board, and the third circuit board; and a predetermined portion of the housing. The main features include an air inlet and an air outlet, a fan disposed at a predetermined portion in the housing, and a vent formed in the third circuit board.

本発明は、第1の回路基板に半導体素子を搭載し封止樹脂で封止して形成された表面実装型の半導体パッケージと、半導体パッケージが表面実装された第2の回路基板と、第2の回路基板と所定間隔で略平行に配設された第3の回路基板と、半導体パッケージと第2の回路基板と第3の回路基板とを収容する筐体と、筐体の所定部に形成された空気導入口及び空気排出口と、筐体内の所定部に配設されたファンと、第2の回路基板と第3の回路基板に上下面で各々当接するように配設された第2の放熱部と、第2の放熱部の上面及び/又は下面の所定部に形成され第2の回路基板又は第3の回路基板の実装部品が挿入される1乃至複数の凹部と、を備えたことを主要な特徴とする。   The present invention includes a surface mount type semiconductor package formed by mounting a semiconductor element on a first circuit board and sealing with a sealing resin, a second circuit board on which the semiconductor package is surface mounted, A third circuit board disposed substantially parallel to the circuit board at a predetermined interval; a housing for housing the semiconductor package, the second circuit board, and the third circuit board; and a predetermined portion of the housing. The air inlet and the air outlet, the fan disposed at a predetermined portion in the housing, and the second circuit board and the second circuit board arranged to contact the second circuit board and the third circuit board respectively on the upper and lower surfaces. And one or more recesses formed in predetermined portions of the upper surface and / or the lower surface of the second heat dissipation portion and into which the mounting components of the second circuit board or the third circuit board are inserted. This is the main feature.

本発明は、第1の回路基板に半導体素子を搭載し封止樹脂で封止して形成された表面実装型の半導体パッケージと、半導体パッケージが表面実装された第2の回路基板と、第2の回路基板と所定間隔で略平行に配設された第3の回路基板と、半導体パッケージと第2の回路基板と第3の回路基板とを収容する筐体と、筐体の所定部に形成された空気導入口及び空気排出口と、筐体内の所定部に配設されたファンと、第2の回路基板と第3の回路基板に上下面で当接するように配設された枠状の第3の放熱部と、第2の回路基板と第3の回路基板と第3の放熱部により囲まれた空間の内壁に形成された内壁放射表面層と、を備えたことを主要な特徴とする。   The present invention includes a surface mount type semiconductor package formed by mounting a semiconductor element on a first circuit board and sealing with a sealing resin, a second circuit board on which the semiconductor package is surface mounted, A third circuit board disposed substantially parallel to the circuit board at a predetermined interval; a housing for housing the semiconductor package, the second circuit board, and the third circuit board; and a predetermined portion of the housing. A frame-shaped air inlet and air outlet, a fan disposed at a predetermined portion in the housing, and a frame-like shape disposed so as to contact the second circuit board and the third circuit board on the upper and lower surfaces. And a third heat radiating part, and an inner wall radiation surface layer formed on the inner wall of the space surrounded by the second circuit board, the third circuit board, and the third heat radiating part, To do.

本発明によれば、半導体パッケージの上部及び下部の両方から放熱することで効率良く且つ十分に放熱でき、またファンにより筐体内に空気の流れを形成し筐体内の空気に放散された熱を迅速に筐体外に排出することができ、特に、第2の回路基板と第3の回路基板の間に通気させることで半導体パッケージの発熱を効率良く放熱でき、電気機器の信頼性を向上できると共に、通気孔を設けているだけなので、半導体パッケージや回路基板の大きさや実装数、或いは接続電極の数や種類等を自由に設計でき、且つ周囲に発熱部品があっても十分放熱できるのでその発熱の影響を受け難く、電子機器の筐体の大型化も不要で、回路基板への実装部品の実装を妨げることもなく、設計の自由度に優れる電子機器の放熱構造を提供することができる。また、第2の回路基板が第3の回路基板とコネクタや第1の通気案内部又は第1の放熱部で保持されているため、振動に強く信頼性に優れる電子機器の放熱構造を提供することができる。   According to the present invention, heat can be efficiently and sufficiently radiated by dissipating heat from both the upper and lower parts of the semiconductor package, and the air flow is formed in the housing by the fan, so that the heat dissipated in the air in the housing can be quickly generated. In particular, it can be discharged to the outside of the housing, in particular, the heat generated in the semiconductor package can be efficiently radiated by ventilating between the second circuit board and the third circuit board, and the reliability of the electrical equipment can be improved. Since only vents are provided, the size and number of semiconductor packages and circuit boards, the number and types of connection electrodes, etc. can be freely designed, and even if there are heat generating parts around them, heat can be sufficiently dissipated, so that heat generation It is difficult to be affected, and it is not necessary to increase the size of the casing of the electronic device, and it is possible to provide a heat dissipation structure for an electronic device that has excellent design freedom without hindering mounting of mounting components on a circuit board.In addition, since the second circuit board is held by the third circuit board and the connector, the first ventilation guide portion, or the first heat dissipation portion, a heat dissipation structure for an electronic device that is strong against vibration and excellent in reliability is provided. be able to.

本発明によれば、第2の回路基板と第3の回路基板の間に第2の放熱部を設けているので、回路基板や実装部品を自由に設計でき、周囲の発熱の影響を受け難く、筐体の大型化も不要で、実装部品の実装を妨げることもなく、設計の自由度に優れると共に、回路基板の実装部品の位置に凹部を設けて実装部品を挿入することで、第2の放熱部が実装部品に接触することを防止でき、実装部品の実装を妨げることなく設計の自由度に優れる電子機器の放熱構造を提供することができる。また、第2の回路基板が第3の回路基板とコネクタや第2の放熱部で保持されているため、振動に強く信頼性に優れる電子機器の放熱構造を提供することができる。   According to the present invention, since the second heat radiating portion is provided between the second circuit board and the third circuit board, the circuit board and the mounting component can be freely designed and are not easily influenced by the surrounding heat generation. The size of the housing is not required, the mounting of the mounting component is not hindered, the degree of freedom in design is excellent, and the mounting component is inserted by providing a recess at the position of the mounting component on the circuit board. Therefore, it is possible to provide a heat dissipation structure for an electronic device that is excellent in design freedom without hindering mounting of the mounting component. In addition, since the second circuit board is held by the third circuit board, the connector, and the second heat radiating portion, it is possible to provide a heat radiating structure for an electronic device that is strong against vibration and excellent in reliability.

本発明によれば、第2の回路基板と第3の回路基板の間に第3の放熱部を設けているので、回路基板や実装部品を自由に設計でき、周囲の発熱の影響を受け難く、筐体の大型化も不要で、実装部品の実装を妨げることもなく、設計の自由度に優れると共に、第3の放熱部が枠状に形成されているので放射伝熱量を大きくでき、また第3の放熱部の内部空間の内壁に内壁放射表面層が形成されているので放射率を高めて放射伝熱量を大きくでき、効率良く放熱できる電子機器の放熱構造を提供することができる。また、第2の回路基板が第3の回路基板とコネクタや第3の放熱部で保持されているため、振動に強く信頼性に優れる電子機器の放熱構造を提供することができる。   According to the present invention, since the third heat radiating portion is provided between the second circuit board and the third circuit board, the circuit board and the mounting parts can be freely designed and are not easily influenced by the surrounding heat generation. No need to increase the size of the housing, without hindering the mounting of mounting parts, excellent design freedom, and the third heat dissipation part is formed in a frame shape, so that the amount of radiant heat transfer can be increased. Since the inner wall radiating surface layer is formed on the inner wall of the inner space of the third heat radiating portion, the emissivity can be increased to increase the amount of radiant heat transfer, and a heat radiating structure for electronic equipment that can efficiently radiate heat can be provided. In addition, since the second circuit board is held by the third circuit board and the connector or the third heat radiating portion, it is possible to provide a heat radiating structure for an electronic device that is strong against vibration and excellent in reliability.

本発明は、半導体パッケージや回路基板の仕様に依存し難く、且つ周囲に発熱部品があっても熱の影響を受け難く、電子機器の筐体を大型化したり回路基板への実装部品の実装性を低下させたりすることなく、既設のファンを用いて半導体素子による半導体パッケージの発熱を効率良く且つ十分に放熱でき信頼性を向上できる電子機器の放熱構造を提供するという目的を、第3の回路基板に形成された通気孔を備えることによって実現した。   The present invention is less dependent on the specifications of semiconductor packages and circuit boards, and is less susceptible to heat even if there are heat-generating parts around it. The third circuit aims to provide a heat dissipation structure for an electronic device that can efficiently and sufficiently dissipate heat generated by a semiconductor element by using an existing fan and improve reliability without lowering the reliability. This was realized by providing vent holes formed in the substrate.

本発明は、半導体パッケージや回路基板の仕様に依存し難く、且つ周囲に発熱部品があっても熱の影響を受け難く、電子機器の筐体を大型化したり回路基板への実装部品の実装性を低下させたりすることなく、既設のファンを用いて半導体素子による半導体パッケー
ジの発熱を効率良く且つ十分に放熱でき信頼性を向上できる電子機器の放熱構造を提供するという目的を、第2の回路基板と第3の回路基板に上下面で各々当接するように配設された第2の放熱部と、第2の放熱部の上面及び/又は下面の所定部に形成され第2の回路基板又は第3の回路基板の実装部品が挿入される1乃至複数の凹部と、を備えることによって実現した。
The present invention is less dependent on the specifications of semiconductor packages and circuit boards, and is less susceptible to heat even if there are heat-generating parts around it. An object of the present invention is to provide a heat dissipation structure for an electronic device that can efficiently and sufficiently dissipate heat generated by a semiconductor element by using an existing fan and improve reliability without lowering the reliability of the second circuit. A second heat dissipating portion disposed so as to contact the substrate and the third circuit substrate on the upper and lower surfaces, and a second circuit substrate formed on a predetermined portion of the upper surface and / or the lower surface of the second heat dissipating portion; This is realized by including one or a plurality of recesses into which mounting components of the third circuit board are inserted.

本発明は、半導体パッケージや回路基板の仕様に依存し難く且つ周囲に発熱部品があっても熱の影響を受け難く、電子機器の筐体を大型化することなく既設のファンを用いて半導体パッケージ内の半導体素子の発熱を十分に放熱でき、実装部品の実装性を低下させることなく電子機器の信頼性を向上できる電子機器の放熱構造を提供するという目的を、第2の回路基板と第3の回路基板に上下面で当接するように配設された枠状の第3の放熱部と、第2の回路基板と第3の回路基板と第3の放熱部により囲まれた空間の内壁に形成された内壁放射表面層と、を備えたことによって実現した。   The present invention is not dependent on the specifications of a semiconductor package or a circuit board, and is hardly affected by heat even if there are heat-generating parts around it. A semiconductor package using an existing fan without increasing the size of an electronic device casing An object of the present invention is to provide a heat dissipation structure for an electronic device that can sufficiently dissipate the heat generated in the semiconductor element and can improve the reliability of the electronic device without deteriorating the mountability of the mounted components. On the inner wall of the space surrounded by the third circuit board, the third circuit board, and the third heat radiating section disposed in contact with the upper and lower surfaces of the circuit board. And an inner wall radiation surface layer formed.

上記課題を解決するためになされた第1の発明は、第1の回路基板に半導体素子を搭載し封止樹脂で封止して形成された表面実装型の半導体パッケージと、半導体パッケージが表面実装された第2の回路基板と、第2の回路基板と所定間隔で略平行に配設された第3の回路基板と、半導体パッケージと第2の回路基板と第3の回路基板とを収容する筐体と、筐体の所定部に形成された空気導入口及び空気排出口と、筐体内の所定部に配設されたファンと、第3の回路基板に形成された通気孔と、を備えた構成を有している。   A first invention made to solve the above problems is a surface-mounting type semiconductor package formed by mounting a semiconductor element on a first circuit board and sealing with a sealing resin, and the semiconductor package is surface-mounted. The second circuit board formed, the third circuit board disposed substantially parallel to the second circuit board at a predetermined interval, the semiconductor package, the second circuit board, and the third circuit board are accommodated. A housing, an air inlet and an air outlet formed in a predetermined portion of the housing, a fan disposed in the predetermined portion of the housing, and a vent hole formed in the third circuit board. It has a configuration.

この構成により、以下の作用を有する。   This configuration has the following effects.

(1)ファンを駆動して空気導入口から筐体内に外気を導入し空気排気口から排気することにより、半導体パッケージの上部に通気させ、半導体素子による半導体パッケージの発熱を直接放熱できると共に、第3の回路基板に設けた通気孔を介して第2の回路基板と第3の回路基板の間に通気させることで第2の回路基板を介して間接的に放熱できる。   (1) By driving the fan and introducing outside air into the housing from the air inlet and exhausting it from the air outlet, the air can be vented to the upper part of the semiconductor package, and the heat generated in the semiconductor package by the semiconductor element can be directly radiated. Heat can be indirectly radiated through the second circuit board by ventilating between the second circuit board and the third circuit board through the vent holes provided in the third circuit board.

(2)半導体パッケージの上部及び下部の両方から放熱することで効率良く且つ十分に放熱でき、電子機器の信頼性を向上できる。   (2) By dissipating heat from both the upper and lower parts of the semiconductor package, heat can be efficiently and sufficiently dissipated, and the reliability of the electronic device can be improved.

(3)ファンにより筐体内に空気の流れを形成し筐体内の空気に放散された熱を迅速に筐体外に排出することができ、特に、第2の回路基板と第3の回路基板の間に通気させることで半導体パッケージの発熱を効率良く放熱できる。   (3) An air flow is formed in the housing by the fan, and the heat dissipated in the air in the housing can be quickly discharged out of the housing, particularly between the second circuit board and the third circuit board. The heat generated in the semiconductor package can be efficiently radiated by ventilating the air.

(4)通気孔を設けているだけなので、半導体パッケージや回路基板の大きさや実装数、或いは接続電極の数や種類等を自由に設計でき、且つ周囲に発熱部品があっても十分放熱できるのでその発熱の影響を受け難く、電子機器の筐体の大型化も不要で、回路基板への実装部品の実装を妨げることもなく、設計の自由度に優れる。   (4) Since only vents are provided, the size and number of semiconductor packages and circuit boards, the number and types of connection electrodes, etc. can be designed freely, and even if there are heat-generating components in the surroundings, heat can be dissipated sufficiently. It is not easily affected by the heat generation, does not require an increase in the size of the casing of the electronic device, does not hinder the mounting of the mounting component on the circuit board, and has excellent design flexibility.

(5)第2の回路基板が第3の回路基板とコネクタで保持されているため、振動に強く信頼性に優れる。   (5) Since the second circuit board is held by the third circuit board and the connector, the second circuit board is strong against vibration and excellent in reliability.

ここで、通気孔は矩形状等の多角形状や円形状、楕円形状等の種々の形状に形成することができるが、第3の回路基板上に設けられた実装部品や配線等を避けつつ、半導体パッケージの放熱を行うのに十分な通気量を確保できる大きさ及び形状に形成される。なお、通気孔は半導体パッケージの実装位置に対応する位置に形成することが好ましい。これにより、通気孔を通過した空気が半導体パッケージの直下の第2の回路基板の下面に直接当たるので、効率良く放熱できる。   Here, the air holes can be formed in various shapes such as a polygonal shape such as a rectangular shape, a circular shape, an elliptical shape, etc., while avoiding mounting parts and wiring provided on the third circuit board, The semiconductor package is formed in a size and shape that can secure a sufficient air flow rate to dissipate heat. The vent hole is preferably formed at a position corresponding to the mounting position of the semiconductor package. As a result, the air that has passed through the vent hole directly hits the lower surface of the second circuit board directly under the semiconductor package, so that heat can be radiated efficiently.

上記課題を解決するためになされた第2の発明は、第1の発明において、第2の回路基板と第3の回路基板との間の通気孔の周囲に配設された第1の通気案内部を備えた構成を有している。   According to a second aspect of the present invention, there is provided a first ventilation guide disposed around a ventilation hole between the second circuit board and the third circuit board in the first invention. It has the structure provided with the part.

この構成により、第1の発明の作用に加え、以下の作用を有する。   With this configuration, in addition to the operation of the first invention, the following operation is provided.

(1)第1の通気案内部により第2の回路基板と第3の回路基板の間の所定部(例えば半導体パッケージに対応する部分)に空気の流れを集中させ十分な通気量を得ることができ効率良く放熱できる。   (1) The air flow can be concentrated on a predetermined portion (for example, a portion corresponding to the semiconductor package) between the second circuit board and the third circuit board by the first ventilation guide portion to obtain a sufficient ventilation amount. Can be efficiently dissipated.

(2)第2の回路基板が第3の回路基板とコネクタ及び第1の通気案内部で保持されているため、振動に強く信頼性に優れる。   (2) Since the second circuit board is held by the third circuit board, the connector, and the first ventilation guide portion, the second circuit board is strong against vibration and excellent in reliability.

ここで、第1の通気案内部は、通気孔の両側部に通気方向に沿って形成する、又は、通気孔の周囲において通気方向の下流側のみが開放された略コ字状等に形成する。少なくとも通気孔の両側部に通気方向に沿って形成された一対の通気案内部を設けることが好ましい。   Here, the first ventilation guide portion is formed along the ventilation direction on both sides of the ventilation hole, or is formed in a substantially U-shape or the like in which only the downstream side in the ventilation direction is opened around the ventilation hole. . It is preferable to provide a pair of ventilation guides formed along the ventilation direction at least on both sides of the ventilation hole.

上記課題を解決するためになされた第3の発明は、第1又は第2の発明において、第2の回路基板と第3の回路基板との間に少なくとも第2の回路基板に当接するように配設された第1の放熱部を備え、第1の放熱部は通気孔の下流に配設された構成を有している。   According to a third invention for solving the above-mentioned problems, in the first or second invention, the second circuit board is in contact with at least the second circuit board between the second circuit board and the third circuit board. A first heat dissipating part is provided, and the first heat dissipating part is arranged downstream of the vent hole.

この構成により、第1又は第2の発明の作用に加え、以下の作用を有する。   With this configuration, in addition to the functions of the first or second invention, the following functions are provided.

(1)半導体パッケージの発熱を第2の回路基板を介して第1の放熱部に伝熱させ、第1の放熱部において放熱することで、放熱面の面積を増加させ効率良く放熱できる。   (1) The heat of the semiconductor package is transferred to the first heat radiating portion via the second circuit board and radiated in the first heat radiating portion, so that the area of the heat radiating surface can be increased and heat can be radiated efficiently.

(2)第2の回路基板が第3の回路基板とコネクタ及び第1の放熱部で保持されているため、振動に強く信頼性に優れる。   (2) Since the second circuit board is held by the third circuit board, the connector, and the first heat radiating portion, the second circuit board is strong against vibration and excellent in reliability.

上記課題を解決するためになされた第4の発明は、第1の回路基板に半導体素子を搭載し封止樹脂で封止して形成された表面実装型の半導体パッケージと、半導体パッケージが表面実装された第2の回路基板と、第2の回路基板と所定間隔で略平行に配設された第3の回路基板と、半導体パッケージと第2の回路基板と第3の回路基板とを収容する筐体と、筐体の所定部に形成された空気導入口及び空気排出口と、筐体内の所定部に配設されたファンと、第2の回路基板と第3の回路基板に上下面で各々当接するように配設された第2の放熱部と、第2の放熱部の上面及び/又は下面の所定部に形成され第2の回路基板又は第3の回路基板の実装部品が挿入される1乃至複数の凹部と、を備えた構成を有している。   A fourth invention made to solve the above problems is a surface-mounted semiconductor package formed by mounting a semiconductor element on a first circuit board and sealing with a sealing resin, and the semiconductor package is surface-mounted. The second circuit board formed, the third circuit board disposed substantially parallel to the second circuit board at a predetermined interval, the semiconductor package, the second circuit board, and the third circuit board are accommodated. A casing, an air inlet and an air outlet formed in a predetermined portion of the casing, a fan disposed in a predetermined portion of the casing, and the second circuit board and the third circuit board on the upper and lower surfaces. A second heat dissipating part disposed so as to be in contact with each other and a mounting part of the second circuit board or the third circuit board formed on a predetermined part of the upper surface and / or the lower surface of the second heat dissipating part are inserted. 1 to a plurality of recesses.

この構成により、以下の作用を有する。   This configuration has the following effects.

(1)ファンを駆動して空気導入口から筐体内に外気を導入し空気排気口から排気することにより、半導体パッケージの上部に通気させ、半導体素子による半導体パッケージの発熱を直接放熱できると共に、該発熱を第2の回路基板及び第2の放熱部を介して第3の回路基板に伝熱させ、第3の回路基板の下部を通過する空気に間接的に放熱できる。   (1) By driving the fan and introducing outside air into the housing from the air inlet and exhausting it from the air outlet, the air can be vented to the upper part of the semiconductor package, and the heat generated by the semiconductor package by the semiconductor element can be directly radiated, Heat can be transferred to the third circuit board via the second circuit board and the second heat radiating section, and indirectly radiated to the air passing through the lower portion of the third circuit board.

(2)半導体パッケージの上部及び下部の両方から放熱することで効率良く且つ十分に放熱でき、電子機器の信頼性を向上できる。   (2) By dissipating heat from both the upper and lower parts of the semiconductor package, heat can be efficiently and sufficiently dissipated, and the reliability of the electronic device can be improved.

(3)ファンにより筐体内に空気の流れを形成し筐体内の空気に放散された熱を迅速に筐体外に排出することができ、半導体パッケージの発熱を効率良く放熱できる。   (3) An air flow is formed in the housing by the fan, and the heat dissipated in the air in the housing can be quickly discharged out of the housing, and the heat generated in the semiconductor package can be efficiently radiated.

(4)第2の回路基板と第3の回路基板の間に第2の放熱部を設けているので、半導体パッケージや回路基板の大きさや実装数、或いは接続電極の数や種類等を自由に設計でき、且つ周囲に発熱部品があっても十分放熱できるのでその発熱の影響を受け難く、電子機器の筐体の大型化も不要で、回路基板への実装部品の実装を妨げることもなく、設計の自由度に優れる。   (4) Since the second heat dissipating part is provided between the second circuit board and the third circuit board, the size and number of mounting of the semiconductor package and the circuit board, or the number and type of connection electrodes can be freely set. Even if there is a heat generating component in the design, it can be dissipated sufficiently, so it is not easily affected by the heat generation, it is not necessary to enlarge the housing of the electronic device, and it does not hinder the mounting of the mounted component on the circuit board, Excellent design freedom.

(5)第2の回路基板や第3の回路基板の第2の放熱部に対応する位置に実装部品が実装されている場合は、その位置に凹部を設けて実装部品を挿入することで、第2の放熱部が実装部品に接触することを防止できるので、実装部品の実装を妨げることなく設計の自由度に優れる。   (5) When the mounting component is mounted at a position corresponding to the second heat radiation part of the second circuit board or the third circuit board, by providing a recess at that position and inserting the mounting component, Since it can prevent that a 2nd thermal radiation part contacts mounting components, it is excellent in the freedom degree of design, without preventing mounting of mounting components.

(6)第2の回路基板が第3の回路基板とコネクタや第2の放熱部で保持されているため、振動に強く信頼性に優れる。   (6) Since the second circuit board is held by the third circuit board and the connector or the second heat radiating portion, the second circuit board is strong against vibration and excellent in reliability.

ここで、第2の放熱部は、アルミニウムや銅等の熱伝導性の高い材質により形成されると共に、少なくとも上面と下面の凹部以外の面は各々第2、第3の回路基板に密着するような平滑面を有するブロック状や柱状等に形成される。   Here, the second heat radiating portion is formed of a material having high thermal conductivity such as aluminum or copper, and at least surfaces other than the concave portions of the upper surface and the lower surface are in close contact with the second and third circuit boards, respectively. It is formed in a block shape or a column shape having a smooth surface.

上記課題を解決するためになされた第5の発明は、第4の発明において、実装部品の表面及び/又は凹部の内壁面に形成された絶縁層を備えた構成を有している。   A fifth invention made in order to solve the above-mentioned problems has a configuration provided with an insulating layer formed on the surface of the mounting component and / or the inner wall surface of the recess in the fourth invention.

この構成により、第4の発明の作用に加え、以下の作用を有する。   With this configuration, the following function is provided in addition to the function of the fourth invention.

(1)凹部の内壁に実装部品が接触しても絶縁層により電気的な短絡を防止できる。   (1) Even if a mounting component contacts the inner wall of the recess, an electrical short circuit can be prevented by the insulating layer.

ここで、絶縁層としては、プリント基板上の配線を保護するため、乾燥状態で一般に1013Ω・cm程度の高い絶縁性を有する絶縁皮膜を有機系樹脂(例えばエポキシ樹脂等)を塗布する等して形成する。 Here, as the insulating layer, in order to protect the wiring on the printed circuit board, an organic resin (for example, an epoxy resin) is applied to an insulating film having a high insulating property of generally about 10 13 Ω · cm in a dry state. To form.

上記課題を解決するためになされた第6の発明は、第1の回路基板に半導体素子を搭載し封止樹脂で封止して形成された表面実装型の半導体パッケージと、半導体パッケージが表面実装された第2の回路基板と、第2の回路基板と所定間隔で略平行に配設された第3の回路基板と、半導体パッケージと第2の回路基板と第3の回路基板とを収容する筐体と、筐体の所定部に形成された空気導入口及び空気排出口と、筐体内の所定部に配設されたファンと、第2の回路基板と第3の回路基板に上下面で当接するように配設された枠状の第3の放熱部と、第2の回路基板と第3の回路基板と第3の放熱部により囲まれた空間の内壁に形成された内壁放射表面層と、を備えた構成を有している。   A sixth invention made to solve the above problems includes a surface-mount type semiconductor package formed by mounting a semiconductor element on a first circuit board and sealing with a sealing resin, and the semiconductor package is surface-mounted. The second circuit board formed, the third circuit board disposed substantially parallel to the second circuit board at a predetermined interval, the semiconductor package, the second circuit board, and the third circuit board are accommodated. A casing, an air inlet and an air outlet formed in a predetermined portion of the casing, a fan disposed in a predetermined portion of the casing, and the second circuit board and the third circuit board on the upper and lower surfaces. A frame-shaped third heat radiating portion disposed so as to abut, and an inner wall radiation surface layer formed on an inner wall of a space surrounded by the second circuit board, the third circuit board, and the third heat radiating portion And a configuration provided with.

この構成により、以下の作用を有する。   This configuration has the following effects.

(1)ファンを駆動して空気導入口から筐体内に外気を導入し空気排気口から排気することにより、半導体パッケージの上部に通気させ、半導体素子による半導体パッケージの発熱を直接放熱できると共に、該発熱を第2の回路基板から第3の放熱部において熱放射により第3の回路基板に伝熱させ、第3の回路基板の下部を通過する空気に間接的に放熱できる。   (1) By driving the fan and introducing outside air into the housing from the air inlet and exhausting it from the air outlet, the air can be vented to the upper part of the semiconductor package, and the heat generated by the semiconductor package by the semiconductor element can be directly radiated, Heat can be transferred from the second circuit board to the third circuit board by heat radiation in the third heat radiating section, and indirectly radiated to the air passing through the lower part of the third circuit board.

(2)半導体パッケージの上部及び下部の両方から放熱することで効率良く且つ十分に
放熱でき、電子機器の信頼性を向上できる。
(2) By dissipating heat from both the upper and lower parts of the semiconductor package, heat can be efficiently and sufficiently dissipated, and the reliability of the electronic device can be improved.

(3)ファンにより筐体内に空気の流れを形成し筐体内の空気に放散された熱を迅速に筐体外に排出することができ、半導体パッケージの発熱を効率良く放熱できる。   (3) An air flow is formed in the housing by the fan, and the heat dissipated in the air in the housing can be quickly discharged out of the housing, and the heat generated in the semiconductor package can be efficiently radiated.

(4)第2の回路基板と第3の回路基板の間に第3の放熱部を設けているので、半導体パッケージや回路基板の大きさや実装数、或いは接続電極の数や種類等を自由に設計でき、且つ周囲に発熱部品があっても十分放熱できるのでその発熱の影響を受け難く、電子機器の筐体の大型化も不要で、回路基板への実装部品の実装を妨げることもなく、設計の自由度に優れる。   (4) Since the third heat radiating portion is provided between the second circuit board and the third circuit board, the size and number of mounting of the semiconductor package and the circuit board, or the number and type of connection electrodes can be freely set. Even if there is a heat generating component in the design, it can be dissipated sufficiently, so it is not easily affected by the heat generation, it is not necessary to enlarge the housing of the electronic device, and it does not hinder the mounting of the mounted component on the circuit board, Excellent design freedom.

(5)第3の放熱部が枠状に形成されているので、第2の回路基板の下面と第3の回路基板の上面との間の形態係数を1にすることができ、放射伝熱量を大きくでき、効率良く放熱できる。   (5) Since the third heat radiating portion is formed in a frame shape, the form factor between the lower surface of the second circuit board and the upper surface of the third circuit board can be made 1, and the amount of radiant heat transfer Can be increased and heat can be dissipated efficiently.

(6)第3の放熱部の内部空間の内壁に内壁放射表面層が形成されているので、放射率を高めて放射伝熱量を大きくでき、効率良く放熱できる。   (6) Since the inner wall radiating surface layer is formed on the inner wall of the internal space of the third heat radiating section, the emissivity can be increased to increase the amount of radiant heat transfer, and heat can be radiated efficiently.

(7)第2の回路基板が第3の回路基板とコネクタや第3の放熱部で保持されているため、振動に強く信頼性に優れる。   (7) Since the second circuit board is held by the third circuit board and the connector or the third heat radiating portion, the second circuit board is strong against vibration and excellent in reliability.

ここで、内壁放射表面層としては、回路基板に形成された酸化防止被膜や第3の放熱部の内周壁を黒色アルマイト処理等の表面処理を施したもの等、放射率が1に近いもの、例えば0.9〜0.95の材質が用いられる。   Here, the inner wall radiation surface layer has an emissivity close to 1, such as an antioxidant coating formed on the circuit board or a surface treatment such as a black anodizing treatment on the inner peripheral wall of the third heat dissipation part, For example, a material of 0.9 to 0.95 is used.

上記課題を解決するためになされた第7の発明は、第6の発明において、第3の回路基板の第3の放熱部の反対面に配設された第2の通気案内部又は第4の放熱部を備えた構成を有している。   A seventh invention made to solve the above-described problem is the sixth invention, in which the second ventilation guide portion or the fourth passage disposed on the opposite surface of the third heat dissipation portion of the third circuit board is the sixth invention. It has the structure provided with the thermal radiation part.

この構成により、第6の発明の作用に加え、以下の作用を有する。   With this configuration, in addition to the operation of the sixth invention, the following operation is provided.

(1)第2の通気案内部により所定部に空気の流れを集中させ十分な通気量を得ることで、又は、第4の放熱部により放熱面の面積を大きくすることで、第3の回路基板の熱を効率良く放熱してその温度を低下させ、第2の回路基板の温度を第3の回路基板の温度より高くし且つその温度差を大きくでき、第2の回路基板から第3の回路基板への放射伝熱量を増加させ、効率良く放熱できる。   (1) The third circuit can be obtained by concentrating the air flow on the predetermined part by the second ventilation guide part to obtain a sufficient amount of ventilation, or by increasing the area of the heat radiation surface by the fourth heat radiation part. The heat of the board can be efficiently radiated to lower the temperature, the temperature of the second circuit board can be made higher than the temperature of the third circuit board, and the temperature difference can be increased. The amount of radiant heat transfer to the circuit board can be increased to efficiently radiate heat.

以下、本発明の一実施の形態について、各図に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は本発明の実施の形態1における電子装置の放熱構造を示す断面図であり、図2は図1のA−A線の矢視断面図であり、図3はPBGAパッケージの上面にヒートシンクを配設した状態を示す要部拡大側面図である。
(Embodiment 1)
1 is a cross-sectional view showing a heat dissipation structure of an electronic device according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is a heat sink on the upper surface of the PBGA package. It is a principal part expanded side view which shows the state which has arrange | positioned.

図中、10はPBGAパッケージ(半導体パッケージ)、11はプラスチック回路基板(第1の回路基板)、12はICチップ(半導体素子)、13はボンディングワイヤ、14は封止樹脂、15は半田ボール、19はプリント配線基板(第2の回路基板)であり、背景技術として図11を用いて説明したものと同様のものである。20は所定部に空気排出口20aと空気導入口20b,20b′とが形成された筐体、21は空気排出口20aに配設され筐体20内部に外気を通気させ強制冷却を行うためのファン、22はプリント
配線基板19の下部に所定間隔を有して略並行に配設されコネクタ23を介してプリント配線基板19を保持すると共に電気的に接続されPBGAパッケージ10の制御等を行う制御部(図示せず)を有したキャリア基板(第3の回路基板)であり、筐体20内部にスペーサ(図示せず)により保持固定されている。25はキャリア基板22に形成された通気孔であり、PBGAパッケージ10と略同形で略同じ大きさを有し、PGBAパッケージ10の実装位置に対応してその直下に形成されている。26はプリント配線基板19とキャリア基板22の間に各基板に当接するように立設され通気孔25の周囲に配設された第1の通気案内部であり、通気孔25の周囲において通気方向の下流側のみが開放された平面視略コ字状に形成されている。27はPBGAパッケージ10の上部に配設されたヒートシンクである。
In the figure, 10 is a PBGA package (semiconductor package), 11 is a plastic circuit board (first circuit board), 12 is an IC chip (semiconductor element), 13 is a bonding wire, 14 is a sealing resin, 15 is a solder ball, Reference numeral 19 denotes a printed wiring board (second circuit board), which is the same as the background art described with reference to FIG. Reference numeral 20 denotes a housing in which an air discharge port 20a and air introduction ports 20b and 20b 'are formed in a predetermined portion, and 21 is disposed in the air discharge port 20a to ventilate the outside air inside the housing 20 and perform forced cooling. The fans 22 are arranged substantially in parallel at a lower portion of the printed wiring board 19 with a predetermined interval, hold the printed wiring board 19 via the connector 23, and are electrically connected to control the PBGA package 10. This is a carrier substrate (third circuit board) having a portion (not shown), and is held and fixed inside the housing 20 by a spacer (not shown). Reference numeral 25 denotes a vent hole formed in the carrier substrate 22, which has substantially the same shape and the same size as the PBGA package 10, and is formed immediately below it corresponding to the mounting position of the PGBA package 10. Reference numeral 26 denotes a first ventilation guide portion which is provided between the printed wiring board 19 and the carrier board 22 so as to be in contact with each board and is arranged around the ventilation hole 25. Is formed in a substantially U-shape in a plan view with only the downstream side thereof open. Reference numeral 27 denotes a heat sink disposed on the PBGA package 10.

ここで、空気導入口20b,20b′は、ファン21が設けられた空気排出口20aから最も遠い位置(空気導入口20b)や、通気孔25の下方(空気導入口20b′)等のいずれか又は両方に形成される。なお、ファン21は本実施の形態1では空気排出口20aに設けたが、必要に応じて筐体20内部等に各々複数設けてもよい。また、プリント配線基板19を保持するために、プリント配線基板19とキャリア基板22の間にコネクタ23と共にスペーサ(図示せず)を設けてもよい。   Here, the air inlets 20b and 20b 'are either one of the position farthest from the air outlet 20a provided with the fan 21 (air inlet 20b), the lower part of the air vent 25 (air inlet 20b'), and the like. Or both. Although the fan 21 is provided at the air outlet 20a in the first embodiment, a plurality of fans 21 may be provided inside the housing 20 or the like as necessary. In order to hold the printed wiring board 19, a spacer (not shown) may be provided between the printed wiring board 19 and the carrier board 22 together with the connector 23.

以上のように構成された本実施の形態1における電子機器の放熱構造について、以下その放熱動作を説明する。   Regarding the heat dissipation structure of the electronic device according to the first embodiment configured as described above, the heat dissipation operation will be described below.

ファン21を駆動して空気導入口20b,20b′から筐体20内に外気を導入し、空気排気口20aから排気することにより、PBGAパッケージ10の上部側に図1の点線Bに示す空気の流れを形成しPBGAパッケージ10を上部側から冷却することができる。ここで、さらに放熱効果を高めるために、PBGAパッケージ10の実装位置に対応するプリント配線基板19の下面19aに空気を当てて冷却することが望ましいが、従来はコネクタ23等が円滑な空気の流れを妨げ、十分に冷却することができなかった。そこで、本実施の形態1においては、キャリア基板22に設けた通気孔25及び第1の通気案内部26を介してプリント配線基板19とキャリア基板22の間に図1の点線Cに示す空気の流れを形成し、プリント配線基板19の下面19aに空気を当てることでプリント配線基板19を介してPBGAパッケージ10の下部側を冷却することができる。   The fan 21 is driven to introduce the outside air into the housing 20 through the air inlets 20b and 20b 'and exhaust the air from the air outlet 20a, so that the air indicated by the dotted line B in FIG. A flow can be formed to cool the PBGA package 10 from the top side. Here, in order to further enhance the heat dissipation effect, it is desirable to cool the lower surface 19a of the printed wiring board 19 corresponding to the mounting position of the PBGA package 10 by applying air, but conventionally, the connector 23 and the like have a smooth air flow. Could not be cooled sufficiently. Therefore, in the first embodiment, the air flow indicated by the dotted line C in FIG. 1 is interposed between the printed wiring board 19 and the carrier board 22 through the ventilation hole 25 and the first ventilation guide portion 26 provided in the carrier board 22. By forming a flow and applying air to the lower surface 19 a of the printed wiring board 19, the lower side of the PBGA package 10 can be cooled via the printed wiring board 19.

また、第1の通気案内部26を熱伝導性の高い材質で形成し、PBGAパッケージ10の発熱をプリント配線基板19及び第1の通気案内部26を介してキャリア基板22に伝熱させ、キャリア基板22で放熱させることにより放熱効果を高めることができる。   In addition, the first ventilation guide portion 26 is formed of a material having high thermal conductivity, and heat generated in the PBGA package 10 is transferred to the carrier substrate 22 via the printed wiring board 19 and the first ventilation guide portion 26, so that the carrier The heat dissipation effect can be enhanced by radiating heat from the substrate 22.

なお、十分な放熱を行うためには、点線Cでの空気の流れが十分な流量で円滑に流れることが必要である。このため、通気穴25の面積と、プリント配線基板19とキャリア基板22との間の隙間面積の関係は(数1)を満たすように設定される。   In addition, in order to perform sufficient heat dissipation, it is necessary for the air flow along the dotted line C to flow smoothly at a sufficient flow rate. For this reason, the relationship between the area of the vent hole 25 and the gap area between the printed wiring board 19 and the carrier board 22 is set to satisfy (Equation 1).

Figure 2007043011
Figure 2007043011

なお、隙間面積とは、プリント配線基板19の周囲長さ(例えば、縦辺の長さ×2+横辺の長さ×2)にプリント配線基板19とキャリア基板22との間隔を乗じた値である。例えば、PBGAパッケージ10の大きさが30mm×30mmであり、通気穴25の大きさが30mm×30mmであり、プリント配線基板19の大きさが60mm×100mmであるとすると、通気孔25の面積は30mm×30mm=900mm2であり、これ
をプリント配線基板19の周囲長さ、60mm×2+100mm×2=320mmで割ると、必要なプリント配線基板19とキャリア基板22との間隔の下限が算出され、これは約2.8mmである。なお、放熱効果を低下させないためにも、PBGAパッケージ10の大きさを大きくする場合は、それに伴ってプリント配線基板19とキャリア基板22との間隔を広げることが望ましい。
The gap area is a value obtained by multiplying the peripheral length of the printed wiring board 19 (for example, the length of the vertical side × 2 + the length of the horizontal side × 2) by the interval between the printed wiring board 19 and the carrier board 22. is there. For example, if the size of the PBGA package 10 is 30 mm × 30 mm, the size of the vent hole 25 is 30 mm × 30 mm, and the size of the printed wiring board 19 is 60 mm × 100 mm, the area of the vent hole 25 is 30 mm × 30 mm = 900 mm 2 , and when this is divided by the peripheral length of the printed wiring board 19, 60 mm × 2 + 100 mm × 2 = 320 mm, the lower limit of the required distance between the printed wiring board 19 and the carrier board 22 is calculated, This is about 2.8 mm. In order not to reduce the heat dissipation effect, when the size of the PBGA package 10 is increased, it is desirable to increase the interval between the printed wiring board 19 and the carrier board 22 accordingly.

なお、図3に示すように、PBGAパッケージ10の上面にヒートシンク27を設けてもよい。これにより、ファン21により生じた点線Bに示す空気の流れによるPBGAパッケージ10の放熱効果を高めることができる。   As shown in FIG. 3, a heat sink 27 may be provided on the upper surface of the PBGA package 10. Thereby, the heat dissipation effect of the PBGA package 10 by the air flow indicated by the dotted line B generated by the fan 21 can be enhanced.

以上のように本実施の形態1における電子機器の放熱構造は構成されているので、以下のような作用を有する。   As described above, the heat dissipation structure for the electronic device according to the first embodiment is configured, and thus has the following effects.

(1)PBGAパッケージ10の上部及び下部の両方から放熱することで効率良く且つ十分に放熱でき、電子機器の信頼性を向上できる。   (1) By dissipating heat from both the upper and lower parts of the PBGA package 10, heat can be efficiently and sufficiently dissipated, and the reliability of the electronic device can be improved.

(2)ファン21により筐体20内に点線B,Cに示す空気の流れを形成し筐体20内の空気に放散された熱を迅速に筐体20外に排出することができ、特に、プリント配線基板19とキャリア基板22の間に通気させることでPBGAパッケージ10の発熱を効率良く放熱できる。   (2) The fan 21 can form the air flow indicated by the dotted lines B and C in the housing 20 and quickly dissipate the heat dissipated in the air in the housing 20 to the outside of the housing 20, The air generated between the printed wiring board 19 and the carrier board 22 can efficiently radiate the heat generated by the PBGA package 10.

(3)通気孔25を設けているだけなので、PBGAパッケージ10や回路基板19,22の大きさやその実装部品等の実装数、或いはPBGAパッケージ10の半田ボール15の数や種類等を自由に設計でき、且つ周囲に発熱部品があっても十分放熱できるのでその発熱の影響を受け難く、筐体20の大型化も不要で、第2,第3の回路基板19,22への実装部品の実装を妨げることもなく、設計の自由度に優れる。   (3) Since only the vent hole 25 is provided, the size of the PBGA package 10 and the circuit boards 19 and 22, the number of mounting parts thereof, the number and types of solder balls 15 of the PBGA package 10, etc. can be freely designed. Even if there are heat generating components in the surroundings, the heat can be sufficiently dissipated, so that it is not easily affected by the heat generation, and it is not necessary to increase the size of the housing 20, and mounting the mounting components on the second and third circuit boards 19 and 22 is possible. The design freedom is excellent.

(4)第1の通気案内部26によりプリント配線基板19とキャリア基板22の間において下面19aのPBGAパッケージ10に対応する部分に点線Cに示すように空気の流れを集中させ十分な通気量を得ることができ効率良く放熱できる。   (4) The air flow is concentrated between the printed wiring board 19 and the carrier board 22 in the portion corresponding to the PBGA package 10 between the printed wiring board 19 and the carrier board 22 as shown by the dotted line C in the first ventilation guide 26 to provide a sufficient ventilation amount. Can be obtained and heat can be efficiently dissipated.

(5)プリント配線基板19がキャリア基板22とコネクタ23や第1の通気案内部26で保持されているため、振動に強く信頼性に優れる。   (5) Since the printed wiring board 19 is held by the carrier board 22, the connector 23, and the first ventilation guide portion 26, the printed wiring board 19 is strong against vibration and excellent in reliability.

(実施の形態2)
図4は本発明の実施の形態2における電子機器の放熱構造を示す断面図であり、図5は図4のD−D線の矢視断面図であり、図6(a)はプリント配線基板と第1の放熱部の要部拡大側面図であり、図6(b)は柱状放熱部材の側面図であり、図6(c)は柱状放熱部材の別の例を示す要部側面図である。なお、図4乃至図6において、実施の形態1で説明したものと同様のものは同一の符号を付けて説明を省略する。
(Embodiment 2)
4 is a cross-sectional view showing a heat dissipation structure for an electronic device according to Embodiment 2 of the present invention, FIG. 5 is a cross-sectional view taken along line DD in FIG. 4, and FIG. 6 (a) is a printed wiring board. And FIG. 6B is a side view of the columnar heat dissipation member, and FIG. 6C is a side view of the main portion showing another example of the columnar heat dissipation member. is there. 4 to 6, the same components as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

図中、25′は通気孔、28は通気孔25′の下流に配設されたヒートシンク(第1の放熱部)であり、ベース(板状放熱部材)29とベース29上に立設された複数のフィン(柱状放熱部材)30で形成され、熱伝導性の高い材質、例えばアルミニウムや銅等で形成されている。30aは圧縮コイルバネ等のバネ部材、31はベース29に形成された複数の雌螺子部、32はプリント配線基板19の下面19aに実装された実装部品、33はフィン30の下端部に形成された雄螺子部である。   In the figure, 25 'is a vent hole, and 28 is a heat sink (first heat radiating part) disposed downstream of the vent hole 25', and is erected on a base (plate-like heat radiating member) 29 and the base 29. It is formed of a plurality of fins (columnar heat dissipation members) 30 and is formed of a material having high thermal conductivity, such as aluminum or copper. Reference numeral 30 a denotes a spring member such as a compression coil spring, 31 denotes a plurality of female screw portions formed on the base 29, 32 denotes a mounting component mounted on the lower surface 19 a of the printed wiring board 19, and 33 denotes a lower end portion of the fin 30. It is a male screw part.

以上のように構成された本実施の形態2における電子機器の放熱構造について、以下その放熱動作を説明する。   The heat dissipation operation of the electronic device heat dissipation structure according to the second embodiment configured as described above will be described below.

図4の点線Bに示す空気の流れを形成しPBGAパッケージ10を上部側から冷却する点は上述した実施の形態1と同様である。さらに放熱効果を高めるために、キャリア基板22に設けた通気孔25′及びヒートシンク28を介してプリント配線基板19とキャリア基板22の間に図4の点線Eに示す空気の流れを形成する。フィン30の先端がプリント配線基板19の下面19aに接触することで、PBGAパッケージ10の発熱をフィン30に伝熱させ、フィン30を点線Eの空気の流れで冷却することで放熱することができる。また、ヒートシンク28からさらにキャリア基板22に伝熱させ、キャリア基板22で放熱させることにより放熱効果を高めることができる。キャリア基板22においては背景技術で説明した図12に示す導体パターン16と同様な導体パターンにヒートシンク28を接触させ該導体パターンから放熱してもよい(図示せず)。   The point which forms the air flow shown by the dotted line B in FIG. 4 and cools the PBGA package 10 from the upper side is the same as that of the first embodiment described above. In order to further enhance the heat dissipation effect, an air flow indicated by a dotted line E in FIG. 4 is formed between the printed wiring board 19 and the carrier board 22 through the air holes 25 ′ and the heat sink 28 provided in the carrier board 22. When the tips of the fins 30 are in contact with the lower surface 19a of the printed wiring board 19, the heat generated in the PBGA package 10 is transferred to the fins 30, and the fins 30 can be dissipated by cooling with the air flow indicated by the dotted line E. . Further, the heat dissipation effect can be enhanced by transferring heat from the heat sink 28 to the carrier substrate 22 and dissipating heat from the carrier substrate 22. In the carrier substrate 22, the heat sink 28 may be brought into contact with a conductor pattern similar to the conductor pattern 16 shown in FIG. 12 described in the background art to radiate heat from the conductor pattern (not shown).

ここで、図6(a)に示すように、プリント配線基板19の下面19aに一部のフィン30に接触するような実装部品32が実装されている場合、或いは設計変更等で部品位置が変わり、同様に一部のフィン30に接触するようになる場合は、接触する位置のフィン30をベース29から取り外せば実装部品32への接触を防止できる。フィン30は雄螺子部33がベース29の雌螺子部31に螺着されているので、容易に取り外すことができる。   Here, as shown in FIG. 6A, when a mounting component 32 that contacts a part of the fins 30 is mounted on the lower surface 19a of the printed wiring board 19, or the component position changes due to a design change or the like. Similarly, when it comes into contact with some of the fins 30, contact with the mounting component 32 can be prevented by removing the fins 30 in contact with the base 29. Since the male screw portion 33 is screwed to the female screw portion 31 of the base 29, the fin 30 can be easily removed.

また、図6(c)に示すように、フィン30の先端部にバネ部材30aを設けてフィン30の先端部とプリント配線基板19の下面19aとの密着性を向上させることができる。これにより、プリント配線基板19からヒートシンク28への熱伝導性を高めることができさらに効率良く放熱できる。   In addition, as shown in FIG. 6C, a spring member 30 a can be provided at the tip of the fin 30 to improve the adhesion between the tip of the fin 30 and the lower surface 19 a of the printed wiring board 19. Thereby, the thermal conductivity from the printed wiring board 19 to the heat sink 28 can be enhanced, and heat can be radiated more efficiently.

以上のように本実施の形態2における電子機器の放熱構造は構成されているので、実施の形態1の作用に加え、以下のような作用を有する。   As described above, since the heat dissipation structure for an electronic device according to the second embodiment is configured, in addition to the operation of the first embodiment, the following operation is provided.

(1)PBGAパッケージ10の発熱をプリント配線基板19を介してヒートシンク28に伝熱させ、ヒートシンク28において放熱することで、放熱面の面積を増加させ効率良く放熱できる。   (1) The heat generated in the PBGA package 10 is transferred to the heat sink 28 via the printed wiring board 19 and radiated by the heat sink 28, so that the area of the heat radiation surface can be increased and the heat can be radiated efficiently.

(2)ヒートシンク28がPBGAパッケージ10の実装位置に対応する位置に配設されているので、PBGAパッケージ10の発熱はその直下のフィン30に円滑に伝熱し、効率良く放熱できる。   (2) Since the heat sink 28 is disposed at a position corresponding to the mounting position of the PBGA package 10, the heat generated by the PBGA package 10 is smoothly transferred to the fins 30 immediately below the heat sink 28 and can be efficiently radiated.

(3)プリント配線基板19の下面のヒートシンク28に対応する位置に実装部品32が実装されている場合は、その位置のフィン30をベース29から取り外して用いることで、フィン30が実装部品32に接触することを防止できるので、実装部品32の実装を妨げることなく設計の自由度に優れる。   (3) When the mounting component 32 is mounted at a position corresponding to the heat sink 28 on the lower surface of the printed wiring board 19, the fin 30 is attached to the mounting component 32 by removing the fin 30 at that position from the base 29. Since the contact can be prevented, the degree of freedom in design is excellent without hindering the mounting of the mounting component 32.

(4)プリント配線基板19がキャリア基板22とコネクタ23やヒートシンク28で保持されているため、振動に強く信頼性に優れる。   (4) Since the printed wiring board 19 is held by the carrier board 22, the connector 23, and the heat sink 28, it is strong against vibration and excellent in reliability.

(実施の形態3)
図7は本発明の実施の形態3における電子機器の放熱構造を示す断面図である。なお、図7において、実施の形態1又は2で説明したものと同様のものは同一の符号を付けて説明を省略する。
(Embodiment 3)
FIG. 7 is a cross-sectional view showing a heat dissipation structure for an electronic device according to Embodiment 3 of the present invention. In FIG. 7, the same components as those described in the first or second embodiment are denoted by the same reference numerals, and the description thereof is omitted.

図中、34はプリント配線基板19とキャリア基板22に上下面で各々当接するように配設されたブロック(第2の放熱部)であり、熱伝導性の高い材質、例えばアルミニウム
や銅等で形成されている。35はブロック34の上面に形成された凹部、36は凹部の内壁表面に貼設されたシート状絶縁体(絶縁層)である。
In the figure, reference numeral 34 denotes a block (second heat radiating portion) arranged so as to be in contact with the printed wiring board 19 and the carrier board 22 on the upper and lower surfaces, and is made of a material having high thermal conductivity, such as aluminum or copper. Is formed. 35 is a recess formed on the upper surface of the block 34, and 36 is a sheet-like insulator (insulating layer) stuck on the inner wall surface of the recess.

以上のように構成された本実施の形態3における電子機器の放熱構造について、以下その放熱動作を説明する。   Regarding the heat dissipation structure of the electronic device according to the third embodiment configured as described above, the heat dissipation operation will be described below.

図7の点線Bに示す空気の流れを形成しPBGAパッケージ10を上部側から冷却する点は上述した実施の形態1及び2と同様である。なお、実施の形態1及び2では、プリント配線基板19とキャリア基板22間の距離が比較的大きく、キャリア基板22に通気孔25の形成が可能な場合であるが、本実施の形態3は、各基板間の距離が比較的小さく、またキャリア基板22上に実装部品が密集して実装される等して通気孔25が必要な箇所に形成できない場合であり、各基板間に十分な空気の流れを形成できずファン21による放熱効果が少ない場合である。そこで、ブロック34を設け、その下面をキャリア基板22上の導体パターン(例えば図12の導体パターン16)に接触させると共に、その上面をプリント配線基板19の下面19aに密着させることで、PBGAパッケージ10の発熱をプリント配線基板19からブロック34を介してキャリア基板22に伝熱させ、キャリア基板22において放熱することができる。プリント配線基板19の下面19aに実装部品32が実装されている場合は、ブロック34上に凹部35を形成し、実装部品32がブロック34に接触しないようにすると共に、凹部35の内壁面又は実装部品32を含む下面19aのいずれか或いは両方にシート状絶縁体36を貼設する。シート状絶縁体36に替えて絶縁材をスプレー等で塗布することにより絶縁層を形成してもよい。これにより、ブロック34の上面とプリント配線基板19の下面19aとの接触面積を確保しながら実装部品32の電気的な短絡による破壊を防止することができる。   The point which forms the air flow shown by the dotted line B in FIG. 7 and cools the PBGA package 10 from the upper side is the same as in the first and second embodiments. In the first and second embodiments, the distance between the printed wiring board 19 and the carrier board 22 is relatively large, and the air holes 25 can be formed in the carrier board 22. However, the third embodiment This is a case where the distance between the boards is relatively small and the mounting holes are densely mounted on the carrier board 22 so that the air holes 25 cannot be formed at the necessary places. This is a case where a flow cannot be formed and the heat dissipation effect by the fan 21 is small. Therefore, the PBGA package 10 is provided by providing the block 34 and bringing its lower surface into contact with a conductor pattern (for example, the conductor pattern 16 in FIG. 12) on the carrier substrate 22 and bringing its upper surface into close contact with the lower surface 19a of the printed wiring board 19. Can be transferred from the printed wiring board 19 to the carrier board 22 via the block 34 and can be dissipated in the carrier board 22. When the mounting component 32 is mounted on the lower surface 19 a of the printed wiring board 19, the recess 35 is formed on the block 34 so that the mounting component 32 does not contact the block 34, and the inner wall surface or mounting of the recess 35. A sheet-like insulator 36 is attached to either or both of the lower surface 19a including the component 32. Instead of the sheet-like insulator 36, an insulating layer may be formed by applying an insulating material by spraying or the like. Thereby, it is possible to prevent the mounting component 32 from being damaged due to an electrical short circuit while ensuring a contact area between the upper surface of the block 34 and the lower surface 19a of the printed wiring board 19.

以上のように本実施の形態3における電子機器の放熱構造は構成されているので、実施の形態1又は2の作用に加え、以下のような作用を有する。   As described above, since the heat dissipation structure for an electronic device according to the third embodiment is configured, in addition to the operation of the first or second embodiment, the following operation is provided.

(1)PBGAパッケージ10の発熱をプリント配線基板19及びブロック34を介してキャリア基板22に伝熱させ、キャリア基板22の下部を通過する空気に間接的に放熱でき、ファン21による通気によりPBGAパッケージ10の上部及び下部の両方から放熱することで効率良く且つ十分に放熱でき、電子機器の信頼性を向上できる。   (1) Heat generated by the PBGA package 10 is transferred to the carrier substrate 22 via the printed wiring board 19 and the block 34, and can be indirectly radiated to the air passing through the lower portion of the carrier substrate 22. By radiating heat from both the upper part and the lower part of 10, the heat can be efficiently and sufficiently radiated, and the reliability of the electronic device can be improved.

(2)プリント配線基板19とキャリア基板22の間にブロック34を設けているので、回路基板19,22や実装部品32を自由に設計でき、周囲の発熱の影響を受け難く、筐体20の大型化も不要で、実装部品32の実装を妨げることもなく、設計の自由度に優れる。   (2) Since the block 34 is provided between the printed wiring board 19 and the carrier board 22, the circuit boards 19 and 22 and the mounting component 32 can be freely designed and are not easily affected by the surrounding heat generation. There is no need for an increase in size, the mounting of the mounting component 32 is not hindered, and the design freedom is excellent.

(3)プリント配線基板19の下面19aのブロック34に対応する位置に実装部品32が実装されている場合は、その位置に凹部35を設けて実装部品32を挿入することで、ブロック34が実装部品32に接触することを防止できるので、実装部品32の実装を妨げることなく設計の自由度に優れる。   (3) When the mounting component 32 is mounted at a position corresponding to the block 34 on the lower surface 19a of the printed wiring board 19, the block 34 is mounted by inserting the mounting component 32 by providing the recess 35 at that position. Since contact with the component 32 can be prevented, the degree of freedom in design is excellent without hindering the mounting of the mounting component 32.

(4)凹部35の内壁に実装部品32が接触してもシート状絶縁体36により電気的な短絡を防止できる。   (4) Even if the mounting component 32 comes into contact with the inner wall of the recess 35, an electrical short circuit can be prevented by the sheet-like insulator 36.

(5)プリント配線基板19がキャリア基板22とコネクタ23やブロック34で保持されているため、振動に強く信頼性に優れる。   (5) Since the printed wiring board 19 is held by the carrier board 22, the connector 23, and the block 34, it is strong against vibration and excellent in reliability.

(実施の形態4)
図8は本発明の実施の形態4における電子機器の放熱構造を示す断面図であり、図9は
図8のF−F線の矢視断面図であり、図10はヒートシンクを示す要部拡大断面図である。なお、図8乃至図10において、実施の形態1乃至3で説明したものと同様のものは同一の符号を付けて説明を省略する。
(Embodiment 4)
8 is a cross-sectional view showing a heat dissipation structure for an electronic device according to Embodiment 4 of the present invention, FIG. 9 is a cross-sectional view taken along line FF in FIG. 8, and FIG. It is sectional drawing. 8 to 10, the same components as those described in Embodiments 1 to 3 are denoted by the same reference numerals, and the description thereof is omitted.

図中、37はプリント配線基板19とキャリア基板22に上下面で当接するように配設された枠体(第3の放熱部)、38aは枠体37の内壁面に形成された内壁放射表面層、38bはプリント配線基板19の下面19aの枠体37で囲まれた部分に形成された内壁放射表面層、38cはキャリア基板22の上面22aの枠体37で囲まれた部分に形成された内壁放射表面層、39はキャリア基板22の枠体37の反対面に配設された第2の通気案内部、40は第2の通気案内部39に替えて又はキャリア基板22の枠体37の反対面に配設されたヒートシンク(第4の放熱部)である。   In the figure, reference numeral 37 denotes a frame (third heat radiating portion) disposed so as to contact the printed wiring board 19 and the carrier board 22 on the upper and lower surfaces, and 38a denotes an inner wall radiation surface formed on the inner wall surface of the frame 37. The layer 38b is an inner wall radiation surface layer formed in the portion surrounded by the frame 37 on the lower surface 19a of the printed wiring board 19, and 38c is formed in the portion surrounded by the frame 37 on the upper surface 22a of the carrier substrate 22. The inner wall radiation surface layer 39 is a second ventilation guide portion disposed on the opposite surface of the frame 37 of the carrier substrate 22, and 40 is replaced with the second ventilation guide portion 39 or of the frame 37 of the carrier substrate 22. It is a heat sink (4th thermal radiation part) arrange | positioned on the opposite surface.

以上のように構成された本実施の形態4における電子機器の放熱構造について、以下その放熱動作を説明する。   Regarding the heat dissipation structure of the electronic device according to the fourth embodiment configured as described above, the heat dissipation operation will be described below.

まず、熱放射について説明する。熱の移動については、主として実施の形態1乃至3で説明した熱伝導、対流、そして本実施の形態4で説明する熱放射の3つの形態がある。熱放射は、熱伝導や対流と異なり、電磁波による熱エネルギの放出で、絶対零度以外のものは必ず物体の表面から行っているものである。熱放射量は(数2)に示すように絶対温度の4乗で計算されるため、熱の移動量は大きい。温度差のある2つの固体面(以下、面1、面2という)間の熱のやり取り、すなわち放射伝熱量は(数3)のように表され、熱は温度の高い方から低い方に移動する。なお、(数3)の係数1は(数4)で算出される。   First, thermal radiation will be described. Regarding heat transfer, there are mainly three forms of heat conduction, convection described in the first to third embodiments, and heat radiation described in the fourth embodiment. Unlike heat conduction and convection, thermal radiation is the release of thermal energy by electromagnetic waves, and anything other than absolute zero is always performed from the surface of the object. Since the amount of heat radiation is calculated as the fourth power of the absolute temperature as shown in (Equation 2), the amount of heat transfer is large. The heat exchange between two solid surfaces (hereinafter referred to as “surface 1” and “surface 2”) having a temperature difference is expressed as (Equation 3), and the heat moves from the higher temperature to the lower temperature. To do. The coefficient 1 in (Equation 3) is calculated by (Equation 4).

Figure 2007043011
Figure 2007043011

Figure 2007043011
Figure 2007043011

Figure 2007043011
Figure 2007043011

ここで、(数2)及び(数4)中の放射率は、熱が放射される物体の表面の状態によって決定される0から1の値を取る。例えば、表面を黒色アルマイト処理等すると放射率は0.95となり、また同じアルミニウムでも表面を研磨すると0.05と小さくなる。形態係数は、面1と面2の形状や相対位置等で決まるものである。   Here, the emissivity in (Equation 2) and (Equation 4) takes a value from 0 to 1 determined by the state of the surface of the object from which heat is radiated. For example, when the surface is treated with black alumite or the like, the emissivity becomes 0.95, and even when the same aluminum is polished, the surface becomes as small as 0.05. The form factor is determined by the shapes and relative positions of the surfaces 1 and 2.

次に、放熱動作について説明する。本実施の形態4において、図8の点線Bに示す空気の流れを形成しPBGAパッケージ10を上部側から冷却する点は上述した実施の形態1乃至3と同様である。なお、本実施の形態4は、実施の形態3と同様の理由で通気孔25が必要な箇所に形成できない場合であり、各基板間に十分な空気の流れを形成できずファ
ン21による放熱効果が少ない。そこで、枠体37を設け、プリント回路基板19とキャリア基板22と枠体37により囲まれる空間を各基板間に形成すると共に、該空間の内壁に内壁放射表面層38a〜38cを形成する。これにより、PBGAパッケージ10の発熱をプリント配線基板19から枠体37の内部空間を介して熱放射によりキャリア基板22に伝熱させ、キャリア基板22において放熱することができる。
Next, the heat dissipation operation will be described. In the fourth embodiment, the air flow shown by the dotted line B in FIG. 8 is formed and the PBGA package 10 is cooled from the upper side as in the first to third embodiments. The fourth embodiment is a case where the vent hole 25 cannot be formed in a necessary place for the same reason as the third embodiment, and a sufficient air flow cannot be formed between the substrates, and the heat dissipation effect by the fan 21 is achieved. Less is. Therefore, a frame body 37 is provided, and spaces surrounded by the printed circuit board 19, the carrier substrate 22, and the frame body 37 are formed between the substrates, and inner wall radiation surface layers 38a to 38c are formed on the inner walls of the spaces. As a result, the heat generated in the PBGA package 10 can be transferred from the printed wiring board 19 to the carrier board 22 through the internal space of the frame body 37 by heat radiation, and can be dissipated in the carrier board 22.

ここで、放熱効果を高めるためにプリント配線基板19の下面19aの温度がキャリア基板22の上面22aの温度より高くし且つその温度差が大きくなるようにする。これは、(数3)に示すように、面1(下面19a)の絶対温度が面2(上面22a)の絶対温度より高く、その温度差が大きくなるにつれ、放射伝熱量が大きくなることから明らかである。このようにするためには、キャリア基板22の上面22a上の発熱する実装部品を少なくするか、或いは図8に示すようにキャリア基板22の枠体37の反対面(下面)に第2の通気案内部39、又は図10に示すヒートシンク40を設け、キャリア基板22を点線Gに示す空気の流れで冷却する。なお、第2の通気案内部39は点線Gに示す通気方向に沿ってキャリア基板22の下面に立設された一対の板体からなり、空気を該板体間に通過させてその流れを円滑にし効率良く冷却する。また、ヒートシンク40を設けても同様に効率良く冷却できる。さらに放熱効果を高めるために、キャリア基板22に複数の孔を形成し、該孔に熱伝導性の高い材質で形成された筒状部材や柱状部材(図示せず)を配設し、キャリア基板22の上面22aから下面へその筒状部材や柱状部材を介して積極的に熱伝導させることもできる。   Here, in order to enhance the heat dissipation effect, the temperature of the lower surface 19a of the printed wiring board 19 is set higher than the temperature of the upper surface 22a of the carrier substrate 22 and the temperature difference is increased. This is because, as shown in (Equation 3), the absolute temperature of surface 1 (lower surface 19a) is higher than the absolute temperature of surface 2 (upper surface 22a), and the amount of radiant heat transfer increases as the temperature difference increases. it is obvious. In order to do this, the number of mounting components that generate heat on the upper surface 22a of the carrier substrate 22 is reduced, or the second ventilation is formed on the opposite surface (lower surface) of the frame 37 of the carrier substrate 22 as shown in FIG. The guide part 39 or the heat sink 40 shown in FIG. 10 is provided, and the carrier substrate 22 is cooled by the air flow indicated by the dotted line G. The second ventilation guide portion 39 is composed of a pair of plates standing on the lower surface of the carrier substrate 22 along the ventilation direction indicated by the dotted line G, and allows air to pass between the plates so that the flow is smooth. Cool efficiently. Further, even if the heat sink 40 is provided, it can be cooled efficiently as well. In order to further enhance the heat dissipation effect, a plurality of holes are formed in the carrier substrate 22, and a cylindrical member or a columnar member (not shown) formed of a material having high thermal conductivity is disposed in the hole, and the carrier substrate It is also possible to actively conduct heat from the upper surface 22a of the 22 to the lower surface via the cylindrical member or columnar member.

また、(数4)で算出される係数1の値が大きい方が、(数3)で算出される放射伝熱量が大きくなる。一例として、面1、面2の放射率を0.05、0.95とした場合と、0.95、0.95とした場合とで係数1を計算すると、前者の場合は、約0.05となり、後者の場合は0.9となる。すなわち、放射率が高い(1に近い)場合の方が、放射伝熱量の値が大きくなる。よって、プリント配線基板19の下面10a及びキャリア基板22の上面22aに放射率が高い酸化防止皮膜等の内壁放射表面層38b,38cを形成することにより、放射伝熱量の値を大きくでき、放熱効率を高めることができる。また、内壁放射表面層38b,38cに加え、枠体37の内壁に黒色アルマイト処理等等の表面処理を行い、放射率を高めることで、さらに放熱効率を高めることができる。   Further, the larger the value of the coefficient 1 calculated in (Equation 4), the greater the amount of radiant heat transfer calculated in (Equation 3). As an example, when the coefficient 1 is calculated when the emissivity of the surfaces 1 and 2 is 0.05 and 0.95 and when the emissivity is 0.95 and 0.95, in the former case, about 0. 05, and 0.9 in the latter case. That is, when the emissivity is higher (close to 1), the value of the amount of radiant heat transfer becomes larger. Therefore, by forming the inner wall radiation surface layers 38b, 38c such as an anti-oxidation film having a high emissivity on the lower surface 10a of the printed wiring board 19 and the upper surface 22a of the carrier substrate 22, the value of the radiant heat transfer can be increased, and the heat radiation efficiency Can be increased. In addition to the inner wall radiating surface layers 38b and 38c, the inner wall of the frame body 37 is subjected to surface treatment such as black alumite treatment to increase the emissivity, thereby further improving the heat radiation efficiency.

なお、本実施の形態4においては、キャリア基板22の下面に第2の通気案内部39やヒートシンク40を設けたが、キャリア基板22に対向する筐体20の内壁及び外壁が利用可能な場合は、キャリア基板22の枠体37の反対面に放射率の高い基板放射表面層を形成し、それに対向する筐体20の内壁に放射率の高い筐体放射表面層を形成し、筐体20の外壁の筐体放射表面層の反対面にヒートシンク等の放熱部を設けることができる。これにより、熱放射によりキャリア基板22から筐体20へ伝熱させ、筐体20から放熱部を介して外気へ効率良く放熱できる。基板放射表面層や筐体放射表面層としては、上述の内壁放射表面層38a〜38cと同様のものを用いることができる。   In the fourth embodiment, the second ventilation guide 39 and the heat sink 40 are provided on the lower surface of the carrier substrate 22. However, when the inner wall and the outer wall of the housing 20 facing the carrier substrate 22 are available. Then, a substrate radiation surface layer having a high emissivity is formed on the opposite surface of the frame 37 of the carrier substrate 22, and a case radiation surface layer having a high emissivity is formed on the inner wall of the housing 20 facing it. A heat dissipating part such as a heat sink can be provided on the opposite surface of the outer wall of the casing radiation surface layer. Thereby, heat can be transferred from the carrier substrate 22 to the housing 20 by heat radiation, and the heat can be efficiently radiated from the housing 20 to the outside air via the heat radiating portion. As a board | substrate radiation | emission surface layer and a housing | casing radiation | emission surface layer, the thing similar to the above-mentioned inner wall radiation | emission surface layer 38a-38c can be used.

以上のように本実施の形態4における電子機器の放熱構造は構成されているので、以下のような作用を有する。   As described above, the heat dissipation structure for an electronic device according to the fourth embodiment is configured, and thus has the following effects.

(1)PBGAパッケージ10の発熱をプリント配線基板19から枠体37において熱放射によりキャリア基板22に伝熱させ、キャリア基板22の下部を通過する空気に間接的に放熱でき、ファン21による通気によりPBGAパッケージ10の上部及び下部の両方から放熱することで効率良く且つ十分に放熱でき、電子機器の信頼性を向上できる。   (1) The heat generated in the PBGA package 10 is transferred from the printed wiring board 19 to the carrier board 22 by heat radiation in the frame 37, and can be indirectly radiated to the air passing through the lower part of the carrier board 22, and the ventilation by the fan 21 By dissipating heat from both the upper and lower parts of the PBGA package 10, heat can be efficiently and sufficiently dissipated, and the reliability of the electronic device can be improved.

(2)プリント配線基板19とキャリア基板22の間に枠体37を設けているので、回路基板19,22や実装部品を自由に設計でき、周囲の発熱の影響を受け難く、筐体20
の大型化も不要で、実装部品の実装を妨げることもなく、設計の自由度に優れる。
(2) Since the frame body 37 is provided between the printed wiring board 19 and the carrier board 22, the circuit boards 19 and 22 and mounting parts can be freely designed, and are not easily affected by the surrounding heat generation.
Therefore, it is not necessary to increase the size of the device, and the mounting of mounting components is not hindered.

(3)枠体37を設けているので、プリント配線基板19の下面19aとキャリア基板22の上面22aとの間の形態係数を1にすることができ、放射伝熱量を大きくでき、また、枠体37の内部空間の内壁に内壁放射表面層38a〜38cが形成されているので、放射率を高めて放射伝熱量を大きくでき、効率良く放熱できる。   (3) Since the frame body 37 is provided, the shape factor between the lower surface 19a of the printed wiring board 19 and the upper surface 22a of the carrier substrate 22 can be set to 1, the amount of radiant heat transfer can be increased, and the frame Since the inner wall radiation surface layers 38a to 38c are formed on the inner wall of the internal space of the body 37, the emissivity can be increased to increase the amount of radiant heat transfer, and heat can be radiated efficiently.

(4)第2の通気案内部により所定部に空気の流れを集中させ十分な通気量を得ることで、又は、ヒートシンク40により放熱面の面積を大きくすることで、キャリア基板22の熱を効率良く放熱してその温度を低下させ、プリント配線基板19の温度をキャリア基板の温度より高くし且つその温度差を大きくでき、プリント配線基板19からキャリア基板22への放射伝熱量を増加させ、効率良く放熱できる。   (4) The heat of the carrier substrate 22 is efficiently obtained by concentrating the air flow on the predetermined portion by the second ventilation guide portion to obtain a sufficient ventilation amount or by increasing the area of the heat radiation surface by the heat sink 40. The heat can be radiated and the temperature lowered, the temperature of the printed wiring board 19 can be made higher than the temperature of the carrier board and the temperature difference can be increased, the amount of radiant heat transfer from the printed wiring board 19 to the carrier board 22 can be increased, and the efficiency It can dissipate well.

(5)プリント配線基板19がキャリア基板22とコネクタ23や枠体37で保持されているため、振動に強く信頼性に優れる。   (5) Since the printed wiring board 19 is held by the carrier board 22, the connector 23, and the frame body 37, it is strong against vibration and excellent in reliability.

本発明は、複数の回路基板を筐体内に収容した電子機器の放熱構造に関し、特に本発明によれば、半導体パッケージや回路基板の仕様に依存し難く、且つ周囲に発熱部品があっても熱の影響を受け難く、電子機器の筐体を大型化したり回路基板への実装部品の実装性を低下させたりすることなく、既設のファンを用いて半導体素子による半導体パッケージの発熱を効率良く且つ十分に放熱でき信頼性を向上できる電子機器の放熱構造を提供することができる。   The present invention relates to a heat dissipation structure for an electronic device in which a plurality of circuit boards are housed in a housing, and in particular, according to the present invention, it is difficult to depend on the specifications of a semiconductor package or a circuit board, and heat is generated even if there is a heat generating component around. The existing fan can be used to efficiently and sufficiently generate heat from the semiconductor package without increasing the size of the electronic device casing or reducing the mountability of the mounted components on the circuit board. It is possible to provide a heat dissipation structure for an electronic device that can dissipate heat and improve reliability.

実施の形態1における電子装置の放熱構造を示す断面図Sectional drawing which shows the thermal radiation structure of the electronic device in Embodiment 1 図1のA−A線の矢視断面図1 is a cross-sectional view taken along line AA in FIG. PBGAパッケージの上面にヒートシンクを配設した状態を示す要部拡大側面図The principal part enlarged side view which shows the state which has arrange | positioned the heat sink on the upper surface of a PBGA package 実施の形態2における電子機器の放熱構造を示す断面図Sectional drawing which shows the thermal radiation structure of the electronic device in Embodiment 2 図4のD−D線の矢視断面図4 is a cross-sectional view taken along line DD in FIG. (a)プリント配線基板と第1の放熱部の要部拡大側面図、(b)柱状放熱部材の側面図、(c)柱状放熱部材の別の例を示す要部側面図(A) The principal part enlarged side view of a printed wiring board and a 1st heat radiating part, (b) The side view of a columnar heat radiating member, (c) The principal part side view which shows another example of a columnar radiating member. 実施の形態3における電子機器の放熱構造を示す断面図Sectional drawing which shows the thermal radiation structure of the electronic device in Embodiment 3 実施の形態4における電子機器の放熱構造を示す断面図Sectional drawing which shows the thermal radiation structure of the electronic device in Embodiment 4 図8のF−F線の矢視断面図Cross-sectional view taken along line FF in FIG. ヒートシンクを示す要部拡大断面図Expanded sectional view of the main part showing the heat sink PBGAパッケージの断面図Cross section of PBGA package 導体パターンの平面図Plan view of conductor pattern

符号の説明Explanation of symbols

10 PBGAパッケージ(半導体パッケージ)
11 プラスチック回路基板(第1の回路基板)
12 ICチップ(半導体素子)
13 ボンディングワイヤ
14 封止樹脂
15 半田ボール
16 導体パターン
17 絶縁部
18 ICチップ搭載部
19 プリント配線基板(第2の回路基板)
19a 下面
20 筐体
20a 空気排出口
20b,20b′ 空気導入口
21 ファン
22 キャリア基板(第3の回路基板)
22a 上面
23 コネクタ
25,25′ 通気孔
26 第1の通気案内部
27 ヒートシンク
28 ヒートシンク(第1の放熱部)
29 ベース(板状放熱部材)
30 フィン(柱状放熱部材)
30a バネ部材
31 雌螺子部
32 実装部品
33 雄螺子部
34 ブロック(第2の放熱部)
35 凹部
36 シート状絶縁体(絶縁層)
37 枠体(第3の放熱部)
38a,38b,38c 内壁放射表面層
39 第2の通気案内部
40 ヒートシンク(第4の放熱部)
10 PBGA package (semiconductor package)
11 Plastic circuit board (first circuit board)
12 IC chip (semiconductor element)
13 Bonding Wire 14 Sealing Resin 15 Solder Ball 16 Conductor Pattern 17 Insulating Portion 18 IC Chip Mounting Portion 19 Printed Wiring Board (Second Circuit Board)
19a Lower surface 20 Housing 20a Air outlet 20b, 20b 'Air inlet 21 Fan 22 Carrier board (third circuit board)
22a upper surface 23 connector 25, 25 'vent 26 first ventilation guide 27 heat sink 28 heat sink (first heat radiating section)
29 Base (Plate-shaped heat dissipation member)
30 Fin (columnar heat dissipation member)
30a Spring member 31 Female screw part 32 Mounted component 33 Male screw part 34 Block (second heat radiating part)
35 Recess 36 Sheet-like insulator (insulating layer)
37 Frame (third heat radiation part)
38a, 38b, 38c Inner wall radiation surface layer 39 Second ventilation guide portion 40 Heat sink (fourth heat radiation portion)

Claims (7)

第1の回路基板に半導体素子を搭載し封止樹脂で封止して形成された表面実装型の半導体パッケージと、
前記半導体パッケージが表面実装された第2の回路基板と、
前記第2の回路基板と所定間隔で略平行に配設された第3の回路基板と、
前記半導体パッケージと前記第2の回路基板と前記第3の回路基板とを収容する筐体と、前記筐体の所定部に形成された空気導入口及び空気排出口と、
前記筐体内の所定部に配設されたファンと、
前記第3の回路基板に形成された通気孔と、
を備えたことを特徴とする電子機器の放熱構造。
A surface-mount type semiconductor package formed by mounting a semiconductor element on a first circuit board and sealing with a sealing resin;
A second circuit board on which the semiconductor package is surface-mounted;
A third circuit board disposed substantially parallel to the second circuit board at a predetermined interval;
A housing that houses the semiconductor package, the second circuit board, and the third circuit board; an air inlet and an air outlet formed in a predetermined portion of the housing;
A fan disposed in a predetermined portion in the housing;
A vent formed in the third circuit board;
An electronic device heat dissipation structure characterized by comprising:
前記第2の回路基板と前記第3の回路基板との間の前記通気孔の周囲に配設された第1の通気案内部を備えたことを特徴とする請求項1に記載の電子機器の放熱構造。 2. The electronic device according to claim 1, further comprising a first ventilation guide portion disposed around the ventilation hole between the second circuit board and the third circuit board. Heat dissipation structure. 前記第2の回路基板と前記第3の回路基板との間に少なくとも前記第2の回路基板に当接するように配設された第1の放熱部を備え、前記第1の放熱部は前記通気孔の下流に配設されていることを特徴とする請求項1又は2に記載の電子機器の放熱構造。 A first heat dissipating part disposed between the second circuit board and the third circuit board so as to contact at least the second circuit board; and The heat dissipation structure for an electronic device according to claim 1, wherein the heat dissipation structure is disposed downstream of the pores. 第1の回路基板に半導体素子を搭載し封止樹脂で封止して形成された表面実装型の半導体パッケージと、
前記半導体パッケージが表面実装された第2の回路基板と、
前記第2の回路基板と所定間隔で略平行に配設された第3の回路基板と、
前記半導体パッケージと前記第2の回路基板と前記第3の回路基板とを収容する筐体と、前記筐体の所定部に形成された空気導入口及び空気排出口と、
前記筐体内の所定部に配設されたファンと、
前記第2の回路基板と前記第3の回路基板に上下面で各々当接するように配設された第2の放熱部と、
前記第2の放熱部の上面及び/又は下面の所定部に形成され前記第2の回路基板又は前記第3の回路基板の実装部品が挿入される1乃至複数の凹部と、
を備えたことを特徴とする電子機器の放熱構造。
A surface-mount type semiconductor package formed by mounting a semiconductor element on a first circuit board and sealing with a sealing resin;
A second circuit board on which the semiconductor package is surface-mounted;
A third circuit board disposed substantially parallel to the second circuit board at a predetermined interval;
A housing that houses the semiconductor package, the second circuit board, and the third circuit board; an air inlet and an air outlet formed in a predetermined portion of the housing;
A fan disposed in a predetermined portion in the housing;
A second heat dissipating portion disposed so as to abut on the second circuit board and the third circuit board on the upper and lower surfaces respectively;
One or a plurality of recesses formed in predetermined portions of the upper surface and / or the lower surface of the second heat radiating portion and into which mounting components of the second circuit board or the third circuit board are inserted;
An electronic device heat dissipation structure characterized by comprising:
前記実装部品の表面及び/又は前記凹部の内壁面に形成された絶縁層を備えたことを特徴とする請求項4に記載の電子機器の放熱構造。 The heat dissipation structure for an electronic device according to claim 4, further comprising an insulating layer formed on a surface of the mounting component and / or an inner wall surface of the recess. 第1の回路基板に半導体素子を搭載し封止樹脂で封止して形成された表面実装型の半導体パッケージと、
前記半導体パッケージが表面実装された第2の回路基板と、
前記第2の回路基板と所定間隔で略平行に配設された第3の回路基板と、
前記半導体パッケージと前記第2の回路基板と前記第3の回路基板とを収容する筐体と、前記筐体の所定部に形成された空気導入口及び空気排出口と、
前記筐体内の所定部に配設されたファンと、
前記第2の回路基板と前記第3の回路基板に上下面で当接するように配設された枠状の第3の放熱部と、
前記第2の回路基板と前記第3の回路基板と前記第3の放熱部により囲まれた空間の内壁に形成された内壁放射表面層と、
を備えたことを特徴とする電子機器の放熱構造。
A surface-mount type semiconductor package formed by mounting a semiconductor element on a first circuit board and sealing with a sealing resin;
A second circuit board on which the semiconductor package is surface-mounted;
A third circuit board disposed substantially parallel to the second circuit board at a predetermined interval;
A housing that houses the semiconductor package, the second circuit board, and the third circuit board; an air inlet and an air outlet formed in a predetermined portion of the housing;
A fan disposed in a predetermined portion in the housing;
A frame-shaped third heat dissipating part disposed so as to contact the second circuit board and the third circuit board on the upper and lower surfaces;
An inner wall radiation surface layer formed on an inner wall of a space surrounded by the second circuit board, the third circuit board, and the third heat radiation portion;
An electronic device heat dissipation structure characterized by comprising:
前記第3の回路基板の前記第3の放熱部の反対面に配設された第2の通気案内部又は第4の放熱部を備えていることを特徴とする請求項6に記載の電子機器の放熱構造。 The electronic device according to claim 6, further comprising a second ventilation guide portion or a fourth heat dissipation portion disposed on an opposite surface of the third circuit board to the third heat dissipation portion. Heat dissipation structure.
JP2005228177A 2005-08-05 2005-08-05 Heat dissipation structure of electronic apparatus Pending JP2007043011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005228177A JP2007043011A (en) 2005-08-05 2005-08-05 Heat dissipation structure of electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005228177A JP2007043011A (en) 2005-08-05 2005-08-05 Heat dissipation structure of electronic apparatus

Publications (1)

Publication Number Publication Date
JP2007043011A true JP2007043011A (en) 2007-02-15

Family

ID=37800688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005228177A Pending JP2007043011A (en) 2005-08-05 2005-08-05 Heat dissipation structure of electronic apparatus

Country Status (1)

Country Link
JP (1) JP2007043011A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111755A1 (en) * 2017-12-07 2019-06-13 三菱電機株式会社 Semiconductor device
CN114715835A (en) * 2022-04-08 2022-07-08 盐城芯丰微电子有限公司 Semiconductor MEMS packaging structure and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111755A1 (en) * 2017-12-07 2019-06-13 三菱電機株式会社 Semiconductor device
JPWO2019111755A1 (en) * 2017-12-07 2020-04-09 三菱電機株式会社 Semiconductor device
CN114715835A (en) * 2022-04-08 2022-07-08 盐城芯丰微电子有限公司 Semiconductor MEMS packaging structure and method
CN114715835B (en) * 2022-04-08 2022-11-15 盐城芯丰微电子有限公司 Semiconductor MEMS packaging structure and method

Similar Documents

Publication Publication Date Title
KR101918261B1 (en) Semiconductor packages for a mobile device
US20080278917A1 (en) Heat dissipation module and method for fabricating the same
US20040037044A1 (en) Heat sink for surface mounted power devices
JP2008091714A (en) Semiconductor device
US20070069369A1 (en) Heat dissipation device and method for making the same
US20120125588A1 (en) Heat dissipation plate for projection-type ic package
JP2009117612A (en) Circuit module and method of manufacturing the same
JP2008060172A (en) Semiconductor device
JPH06291225A (en) Semiconductor device
JP2011108924A (en) Heat conducting substrate and method for mounting electronic component on the same
JP5446302B2 (en) Heat sink and module
CN212517170U (en) Chip packaging structure and electronic equipment
JP4987231B2 (en) Thermally conductive substrate package
WO2021256021A1 (en) Electronic control device
US7310224B2 (en) Electronic apparatus with thermal module
JP4975584B2 (en) Semiconductor device and manufacturing method of semiconductor device.
JP2004079949A (en) Heat sink of heat generating semiconductor device in memory module
WO2007057952A1 (en) Electronic element, package having same, and electronic device
JP2007043011A (en) Heat dissipation structure of electronic apparatus
JP2011171656A (en) Semiconductor package and method for manufacturing the same
KR20150076816A (en) Electronic device module
JP2008171963A (en) Semiconductor chip cooling structure
JP2008235321A (en) Heat conductive substrate and manufacturing method, and circuit module using the same
JP2009253206A (en) Resin sealed semiconductor device and its mounting structure
JP2006135202A (en) Heat radiating structure for electronic appliance