JP2007026781A - Plasma treatment device - Google Patents

Plasma treatment device Download PDF

Info

Publication number
JP2007026781A
JP2007026781A JP2005204781A JP2005204781A JP2007026781A JP 2007026781 A JP2007026781 A JP 2007026781A JP 2005204781 A JP2005204781 A JP 2005204781A JP 2005204781 A JP2005204781 A JP 2005204781A JP 2007026781 A JP2007026781 A JP 2007026781A
Authority
JP
Japan
Prior art keywords
electrode
phase
transmission circuit
application electrode
alternating voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005204781A
Other languages
Japanese (ja)
Inventor
Yusuke Ehata
裕介 江畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005204781A priority Critical patent/JP2007026781A/en
Publication of JP2007026781A publication Critical patent/JP2007026781A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma treatment device capable of exerting a high treatment speed without causing damages to the surface of a sample. <P>SOLUTION: In the plasma treatment device 1, an alternating voltage of a phase θ1 is impressed onto a first impressing electrode 4 from a first power supply 2, the alternating voltage of the phase θ2 is impressed onto a second impressing electrode 5 from a second power supply 3, and a phase delaying means 8 measures the phase θ1 and the phase θ2, and based on the measurement result, controls movement of the first and the second power supplies 2, 3 so that a phase difference Δθ of the phase θ1 and the phase θ2 will become π(2k+1) [k is integer]. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プラズマ処理装置に関する。   The present invention relates to a plasma processing apparatus.

半導体または液晶表示装置などの各種デバイスの多層構造作製におけるエッチング、成膜、アッシング、表面親水化などの表面処理を行う装置としてはプラズマを用いた処理装置が広く使用されている。近年、プラズマを用いた処理装置の中でも処理の高速化、装置の低価格化、装置占有面積の低減などを目的として大気圧近傍の圧力でプラズマを発生させ、試料の処理を行なう大気圧プラズマ処理装置が開発されている。   A processing apparatus using plasma is widely used as an apparatus for performing surface treatments such as etching, film formation, ashing, and surface hydrophilization in manufacturing a multilayer structure of various devices such as semiconductors and liquid crystal display devices. In recent years, among plasma processing equipment, atmospheric pressure plasma processing is used to generate samples at a pressure near atmospheric pressure for the purpose of speeding up processing, reducing the cost of the equipment, and reducing the area occupied by the equipment. Equipment has been developed.

大気圧プラズマ処理装置の1つとして、電源と、該電源から出力される電圧が印加される印加電極と、印加電極に対して絶縁体を挟んで対向しかつ接地するように設けられる接地電極とを備え、印加電極と絶縁体と接地電極とをまとめて電極ユニットとし、電極ユニットを試料に対向させ、電極ユニットと試料との間に大気圧を含む高圧力の反応ガス領域を形成し、印加電極と接地電極間とのうち試料に近接した領域のみで反応ガスに基づく高圧プラズマを発生させ、高圧プラズマ中で生じた活性種により試料の処理を行なう装置が提案されている(たとえば、特許文献1参照)。   As one of the atmospheric pressure plasma processing apparatuses, a power source, an application electrode to which a voltage output from the power source is applied, and a ground electrode provided so as to face and ground the application electrode with an insulator interposed therebetween The application electrode, insulator and ground electrode are combined into an electrode unit, the electrode unit is opposed to the sample, and a high-pressure reaction gas region including atmospheric pressure is formed between the electrode unit and the sample. An apparatus has been proposed in which high-pressure plasma based on a reaction gas is generated only in a region close to the sample between the electrode and the ground electrode, and the sample is processed by active species generated in the high-pressure plasma (for example, Patent Documents). 1).

図8は、従来の高圧プラズマ処理装置100の構成を示す概略図である。以下図8を参照し、従来の高圧プラズマ装置100について説明する。高圧プラズマ装置100は、印加電極である内側電極101と、接地電極である外側電極102と、内側電極101と外側電極102とを絶縁する絶縁体103と、内側電極101に電圧を印加する不図示の電源と、反応ガスを供給するガス供給手段と、被処理物である試料104が載置される試料台105とを含んで構成される。   FIG. 8 is a schematic diagram showing a configuration of a conventional high-pressure plasma processing apparatus 100. Hereinafter, a conventional high-pressure plasma apparatus 100 will be described with reference to FIG. The high-pressure plasma apparatus 100 includes an inner electrode 101 that is an application electrode, an outer electrode 102 that is a ground electrode, an insulator 103 that insulates the inner electrode 101 and the outer electrode 102, and a voltage that is applied to the inner electrode 101 (not shown). Power source, a gas supply means for supplying a reaction gas, and a sample stage 105 on which a sample 104 as an object to be processed is placed.

なお、内側電極101と外側電極102と絶縁体103とで、電極浮上型高圧浮上電極106を構成し、この電極浮上型高圧浮上電極106と、試料台105に載置される試料104とが、所定の気体雰囲気内で対向するように配置される。内側電極101と外側電極102と絶縁体103とは、図8の紙面に垂直な方向、すなわち紙面の手前から奥に向ってそれぞれ細長く延びる形状を有し、一体化して電極浮上型高圧浮上電極106を構成する。   The inner electrode 101, the outer electrode 102, and the insulator 103 constitute an electrode floating type high voltage floating electrode 106. The electrode floating type high voltage floating electrode 106 and the sample 104 placed on the sample stage 105 are: It arrange | positions so that it may oppose in a predetermined gas atmosphere. The inner electrode 101, the outer electrode 102, and the insulator 103 each have a shape extending elongated in the direction perpendicular to the paper surface of FIG. Configure.

電極浮上型高圧浮上電極106には、反応ガス供給手段から供給される高圧反応ガスを、試料104の被処理面に向って供給する高圧反応ガス供給口107と、反応ガスを試料104の被処理面から排気する反応ガス排気口108とが形成される。   The electrode floating type high-pressure levitation electrode 106 includes a high-pressure reaction gas supply port 107 that supplies a high-pressure reaction gas supplied from the reaction gas supply means toward the surface to be processed of the sample 104, and a reaction gas to be processed of the sample 104 A reaction gas exhaust port 108 for exhausting from the surface is formed.

高圧プラズマ処理装置100において、反応ガス供給手段から高圧反応ガス供給口107へ高圧反応ガスを供給すると、高圧反応ガス供給口107から反応ガス排気口108または周囲の気体雰囲気に向う反応ガス流109が形成され、供給された高圧反応ガスの圧力と周囲の気体雰囲気の圧力との差圧によって電極浮上型高圧浮上電極106が間隔Dだけ浮上する。この間隔Dが狭いので、電極浮上型高圧浮上電極106と試料104とで挟まれる部分に形成される反応ガス流109の流れる反応ガス流路が、低コンダクタンスな気体流路となり、電極浮上型高圧浮上電極106と試料104とで挟まれる部分に高圧反応ガス領域が形成される。この高圧反応ガス領域の圧力は大気圧であってもよい。   In the high-pressure plasma processing apparatus 100, when a high-pressure reaction gas is supplied from the reaction gas supply means to the high-pressure reaction gas supply port 107, a reaction gas flow 109 from the high-pressure reaction gas supply port 107 toward the reaction gas exhaust port 108 or the surrounding gas atmosphere is generated. The electrode-floating type high-pressure levitation electrode 106 is levitated by a distance D by the differential pressure between the pressure of the high-pressure reaction gas formed and supplied and the pressure of the surrounding gas atmosphere. Since this distance D is narrow, the reaction gas flow path through which the reaction gas flow 109 formed in the portion sandwiched between the electrode floating high voltage floating electrode 106 and the sample 104 becomes a low conductance gas flow path, and the electrode floating high pressure A high-pressure reaction gas region is formed in a portion sandwiched between the floating electrode 106 and the sample 104. The pressure in the high-pressure reaction gas region may be atmospheric pressure.

なお、電極浮上型高圧浮上電極106を試料104に対して浮上させることなく、すなわち前記間隔Dが極めて小さな隙間になるように両者を近接して配置するようにしても、反応ガス流109の形成される反応ガス流路が低コンダクタンスな気体流路となり、電極浮上型高圧浮上電極106と試料104とに挟まれる部分に高圧反応ガス領域を形成することができる。   It should be noted that the reactive gas flow 109 is formed even if the electrode floating type high voltage floating electrode 106 is not floated with respect to the sample 104, that is, even if both are arranged close to each other so that the distance D becomes a very small gap. The reaction gas channel thus formed becomes a gas channel having a low conductance, and a high-pressure reaction gas region can be formed in a portion sandwiched between the electrode floating type high-pressure floating electrode 106 and the sample 104.

また内側電極101に電源から電圧を印加すると、絶縁体103が試料104に臨む側の端面部において、絶縁体103を跨いで内側電極101から外側電極102へと電力が供給される回路が形成される。この絶縁体103を跨いで電力が供給される回路部分は、導電体のない反応ガス流路中に形成されるので、便宜上電力伝達回路開放端110と呼ぶことにする。   When a voltage is applied from the power source to the inner electrode 101, a circuit is formed in which power is supplied from the inner electrode 101 to the outer electrode 102 across the insulator 103 at the end surface on the side where the insulator 103 faces the sample 104. The Since the circuit portion to which power is supplied across the insulator 103 is formed in the reaction gas flow path without a conductor, it will be referred to as a power transmission circuit open end 110 for convenience.

電極浮上型高圧浮上電極106と試料104との間で形成される高圧反応ガス領域のうち、電源から内側電極101に電圧が印加されることによって絶縁体103を跨いで内側電極101と外側電極102との間で形成される電力伝達回路開放端110においては、局所的な高圧プラズマ111が発生し、この高圧プラズマ111で発生した活性種によって試料104の被処理面に成膜、加工、表面処理などのプラズマ処理を行なう。また試料104と電極浮上型高圧浮上電極106とを矢符112にて示す略水平方向に相対移動させることによって、試料104の被処理面全体の処理を行なう。   Of the high-pressure reactive gas region formed between the electrode-floating type high-pressure levitation electrode 106 and the sample 104, the inner electrode 101 and the outer electrode 102 are straddled across the insulator 103 by applying a voltage from the power source to the inner electrode 101. At the open end 110 of the power transmission circuit formed between the two, a local high-pressure plasma 111 is generated, and the active species generated by the high-pressure plasma 111 form, process, and treat the surface of the sample 104. Perform plasma treatment. Further, the entire surface to be processed of the sample 104 is processed by relatively moving the sample 104 and the electrode floating type high voltage floating electrode 106 in a substantially horizontal direction indicated by an arrow 112.

高圧プラズマ装置100では、内側電極101と試料104との間に高圧プラズマを発生させるのではなく、内側電極101と外側電極102との間に高圧プラズマ111を発生させ、高圧プラズマ111中で発生する活性種を試料104の表面に拡散させて成膜、加工、表面処理などを行なうので、試料104にプラズマが直接接触することがなく試料104を損傷しないとされる。   In the high-pressure plasma apparatus 100, high-pressure plasma 111 is not generated between the inner electrode 101 and the sample 104 but is generated between the inner electrode 101 and the outer electrode 102 and generated in the high-pressure plasma 111. Since active species are diffused on the surface of the sample 104 to perform film formation, processing, surface treatment, and the like, plasma is not in direct contact with the sample 104 and the sample 104 is not damaged.

しかしながら、特許文献1に開示される高圧プラズマ処理装置100には、次のような問題がある。たとえば、高圧プラズマ処理装置100の内側電極101に、電圧:1.0kVを印加した場合の電界強度について例示する。図9は電界強度の算出位置を示す図であり、図10は電界強度分布計算結果を示す図である。   However, the high-pressure plasma processing apparatus 100 disclosed in Patent Document 1 has the following problems. For example, the electric field strength when a voltage of 1.0 kV is applied to the inner electrode 101 of the high-pressure plasma processing apparatus 100 is illustrated. FIG. 9 is a diagram showing the calculation position of the electric field strength, and FIG. 10 is a diagram showing the calculation result of the electric field strength distribution.

電界強度分布を求めるに際し、水平方向をX軸とし、試料104の被処理面104aに対して垂直な方向をY軸とし、被処理面104aをY軸の原点(零)とし、X−Y軸に垂直な図9の紙面に対して垂直な方向をZ軸方向とした。なお、このX−Y−Z軸方向は、本明細書中において共通に用いられる。   When obtaining the electric field intensity distribution, the horizontal direction is the X axis, the direction perpendicular to the surface 104a of the sample 104 is the Y axis, the surface 104a is the origin (zero) of the Y axis, and the XY axis The direction perpendicular to the paper surface of FIG. In addition, this XYZ axial direction is used in common in this specification.

試料104の被処理面104aと、電極浮上型高圧浮上電極106の前記被処理面104aを臨む面とで成す間隔Dが4.0mm、絶縁体103の厚み、すなわち内側電極101と外側電極102との離隔距離が3.0mmとなる配置とした。また、絶縁体103はアルミナ(比誘電率εr=9.4)からなるものとし、内側電極101と外側電極102とを隔てる絶縁体103の部分に、高さ3.5mm、底辺7.0mmの断面が三角形状の窪みを有するものとして電界強度を求めた。   The distance D formed by the surface 104a to be processed of the sample 104 and the surface of the electrode floating type high-voltage levitation electrode 106 facing the surface to be processed 104a is 4.0 mm, the thickness of the insulator 103, that is, the inner electrode 101 and the outer electrode 102 The separation distance was set to be 3.0 mm. The insulator 103 is made of alumina (relative permittivity εr = 9.4), and a portion of the insulator 103 that separates the inner electrode 101 and the outer electrode 102 has a height of 3.5 mm and a base of 7.0 mm. The electric field strength was determined on the assumption that the cross section had a triangular depression.

電界強度を次の3つの領域について求めた。内側電極101と試料104とに挟まれる領域U、絶縁体103と試料104とで挟まれる領域であって上記三角形状の窪みが形成される領域V、外側電極102と試料104とで挟まれる領域Wである。図10中、ライン115a,115bが領域Uの電界強度を示し、ライン116が領域Vの電界強度を示し、ライン117が領域Wの電界強度を示す。領域Uの電界強度を示すライン115が、Y軸方向の距離が4.0mmにおいて断続部を有し2つに分かれているのは、反応ガス流路内の空間における電界強度と、内側電極101内における電界強度とが不連続的に変化することによる。   The electric field strength was determined for the following three regions. A region U sandwiched between the inner electrode 101 and the sample 104, a region V sandwiched between the insulator 103 and the sample 104, and a region V formed with the triangular depression, and a region sandwiched between the outer electrode 102 and the sample 104 W. In FIG. 10, lines 115 a and 115 b indicate the electric field strength in the region U, the line 116 indicates the electric field strength in the region V, and the line 117 indicates the electric field strength in the region W. The line 115 indicating the electric field strength in the region U is divided into two having an intermittent portion when the distance in the Y-axis direction is 4.0 mm, and the electric field strength in the space in the reaction gas flow path and the inner electrode 101. This is because the electric field strength in the inside changes discontinuously.

領域Vすなわち窪みの深奥部Y=7.5mmにおいて最も大きな6.4E5[V/m]の電界強度が発生する。領域Uにおける被処理面104a近傍には、2.2E5[V/m]の電界強度が発生し、領域Wにおける被処理面104a近傍には0.06[V/m]の電界強度が発生する。   The largest electric field strength of 6.4E5 [V / m] is generated in the region V, that is, the deep part Y = 7.5 mm of the depression. An electric field strength of 2.2E5 [V / m] is generated in the vicinity of the processing surface 104a in the region U, and an electric field strength of 0.06 [V / m] is generated in the vicinity of the processing surface 104a in the region W. .

内側電極101に対する印加電圧を大きくすることによって、最も大きな電界強度が発生している領域V、すなわち絶縁体103の窪み部分に反応ガスに応じた大気圧プラズマが発生し、大気圧プラズマ中で発生した活性種によって、被処理面104aに対して、成膜、加工、表面処理などを行なう。プラズマ処理速度を増加させるために内側電極101に対する投入電力、すなわち印加電圧を増加させると、内側電極101と外側電極102との間に発生した大気圧プラズマの分解が促進されると同時に、領域Uにおける被処理面104a近傍の電界強度も増加し、最終的には試料104の被処理面104aにも大気圧プラズマが発生し、被処理面104aに直接大気圧プラズマが接触することによって、試料104の表面である被処理面104aに損傷を与えるという問題がある。   By increasing the voltage applied to the inner electrode 101, atmospheric pressure plasma corresponding to the reaction gas is generated in the region V where the highest electric field strength is generated, that is, the depression of the insulator 103, and is generated in the atmospheric pressure plasma. With the activated species, film formation, processing, surface treatment, and the like are performed on the surface 104a to be processed. When the input power to the inner electrode 101, that is, the applied voltage is increased to increase the plasma processing speed, the decomposition of the atmospheric pressure plasma generated between the inner electrode 101 and the outer electrode 102 is promoted, and at the same time, the region U The electric field strength in the vicinity of the surface to be processed 104a also increases. Finally, atmospheric pressure plasma is also generated on the surface to be processed 104a of the sample 104, and the atmospheric pressure plasma directly contacts the surface to be processed 104a. There is a problem of damaging the surface to be processed 104a.

逆に、内側電極101に印加し得る電圧の限界が、試料104の表面に大気圧プラズマが発生しない程度に規制されることになるので、投入電力の上限が規定され、高い処理速度を達成することができないという問題を有する。   On the contrary, since the limit of the voltage that can be applied to the inner electrode 101 is regulated to such an extent that atmospheric pressure plasma is not generated on the surface of the sample 104, the upper limit of input power is defined, and a high processing speed is achieved. Have the problem of not being able to.

上記電界強度を求めた結果から、内側電極101の近傍で最も高い電界強度をEpとし、試料104の表面である被処理面104a上で最も高い電界強度をEsとすると、両者の比:Ep/Esは、6.4E5/2.2E5=2.9倍となる。したがって、内側電極101に印加する電圧を増大させ、領域U〜Wの間で最も高い電界強度Epの部分で大気圧プラズマが発生した時に印加した電圧に対して2.9倍となる電圧を内側電極101に印加すると、被処理面104a上で最も高い電界強度Esを示す部分も2.9倍の電界強度に増加するので、被処理面104a上においてもプラズマ発生電界強度に達し、試料104の表面上に大気圧プラズマが発生して試料104の表面を損傷することを示している。   From the result of obtaining the electric field strength, if the highest electric field strength in the vicinity of the inner electrode 101 is Ep and the highest electric field strength on the surface to be processed 104a which is the surface of the sample 104 is Es, the ratio between them: Ep / Es is 6.4E5 / 2.2E5 = 2.9 times. Therefore, the voltage applied to the inner electrode 101 is increased, and the voltage that is 2.9 times the voltage applied when atmospheric pressure plasma is generated in the portion of the highest electric field strength Ep between the regions U to W is increased to the inner side. When applied to the electrode 101, the portion showing the highest electric field strength Es on the surface to be processed 104a also increases to 2.9 times the electric field strength, so that the electric field intensity generated by the plasma is reached also on the surface to be processed 104a. It shows that atmospheric pressure plasma is generated on the surface and damages the surface of the sample 104.

特開2000−306848号公報JP 2000-306848 A

本発明の目的は、試料の表面に損傷を与えることなく、高い処理速度を発揮することができるプラズマ処理装置を提供することである。   An object of the present invention is to provide a plasma processing apparatus capable of exhibiting a high processing speed without damaging the surface of a sample.

本発明は、電源と、電源から出力される交番電圧が印加される印加電極と、印加電極に対して絶縁体を挟んで対向しかつ接地するように設けられる接地電極とを備え、印加電極と絶縁体と接地電極とで構成される電極ユニットを試料に対向するように配置し、電極ユニットと試料とで形成される空間に局所的に反応ガスを供給し、印加電極に交番電圧を印加することによって電極ユニットの試料に対向する面にプラズマを発生させ、該プラズマによって試料の加工、成膜、表面処理を行うプラズマ処理装置であって、
印加電極は、2つの第1印加電極と第2印加電極とを含み、
第1印加電極に印加される交番電圧の位相と、第2印加電極に印加される交番電圧の位相との位相差が、π(2k+1)[ただし、kは整数]となるように電源から印加電極に交番電圧が印加されることを特徴とするプラズマ処理装置である。
The present invention includes a power source, an application electrode to which an alternating voltage output from the power source is applied, and a ground electrode provided so as to face and ground the application electrode with an insulator interposed therebetween, An electrode unit composed of an insulator and a ground electrode is arranged so as to face the sample, a reactive gas is locally supplied to the space formed by the electrode unit and the sample, and an alternating voltage is applied to the applied electrode. A plasma processing apparatus for generating plasma on a surface of the electrode unit facing the sample, and processing, film-forming, and surface-treating the sample with the plasma,
The application electrode includes two first application electrodes and a second application electrode,
Applied from the power supply so that the phase difference between the phase of the alternating voltage applied to the first application electrode and the phase of the alternating voltage applied to the second application electrode is π (2k + 1), where k is an integer. The plasma processing apparatus is characterized in that an alternating voltage is applied to the electrodes.

また本発明は、電源から出力される交番電圧を、第1印加電極に接続される第1伝達回路と第2印加電極に接続される第2伝達回路とに分岐する電圧分岐部と、
第2伝達回路に設けられ、第2印加電極に印加される交番電圧の位相を、第1印加電極に印加される交番電圧の位相に対して、π(2k+1)[ただし、kは整数]だけ遅延させる位相遅延手段とを含むことを特徴とする。
The present invention also provides a voltage branching unit that branches the alternating voltage output from the power source into a first transmission circuit connected to the first application electrode and a second transmission circuit connected to the second application electrode;
The phase of the alternating voltage applied to the second application electrode provided in the second transmission circuit is π (2k + 1) [where k is an integer] with respect to the phase of the alternating voltage applied to the first application electrode. And phase delay means for delaying.

また本発明は、電源から出力される交番電圧を、第1印加電極に接続される第1伝達回路と第2印加電極に接続される第2伝達回路とに分岐する電圧分岐部と、
第1伝達回路に設けられるm個[ただし、mは正の整数]の第1誘電体群と、
第2伝達回路に設けられるn個[ただし、nは正の整数]の第2誘電体群とを含み、
第1誘電体群に含まれるi番目[ただし、iは正の整数かつi≦m]の誘電体の誘電率をε1i、透磁率をμ1i、第1伝達回路が延びる方向の長さをL1iとし、
第1伝達回路の第1誘電体群が設けられていない部分の誘電率をε10、透磁率をμ10、第1伝達回路が延びる方向の長さをL10とし、
第2誘電体群に含まれるj番目[ただし、jは正の整数かつj≦n]の誘電体の誘電率をε2j、透磁率をμ2j、第2伝達回路が延びる方向の長さをL2jとし、
第2伝達回路の第2誘電体群が設けられていない部分の誘電率をε20、透磁率をμ20、第2伝達回路が延びる方向の長さをL20とし、
交番電圧の周波数をfとし、
第1印加電極に印加される交番電圧の位相をθ1、第2印加電極に印加される交番電圧の位相をθ2とするとき、
以下の式が満足されるように、第1および第2印加電極に交番電圧が印加されることを特徴とする。
The present invention also provides a voltage branching unit that branches the alternating voltage output from the power source into a first transmission circuit connected to the first application electrode and a second transmission circuit connected to the second application electrode;
M [where m is a positive integer] first dielectric group provided in the first transmission circuit;
And n [where n is a positive integer] second dielectric group provided in the second transmission circuit,
The dielectric constant of the i-th dielectric material (where i is a positive integer and i ≦ m) included in the first dielectric group is ε1i, the magnetic permeability is μ1i, and the length in the direction in which the first transmission circuit extends is L1i. ,
The dielectric constant of the portion where the first dielectric group of the first transmission circuit is not provided is ε10, the magnetic permeability is μ10, the length in the direction in which the first transmission circuit extends is L10,
The dielectric constant of the jth [j is a positive integer and j ≦ n] dielectric included in the second dielectric group is ε2j, the magnetic permeability is μ2j, and the length in the direction in which the second transmission circuit extends is L2j. ,
The dielectric constant of the portion where the second dielectric group of the second transmission circuit is not provided is ε20, the magnetic permeability is μ20, and the length in the direction in which the second transmission circuit extends is L20,
Let f be the frequency of the alternating voltage,
When the phase of the alternating voltage applied to the first application electrode is θ1, and the phase of the alternating voltage applied to the second application electrode is θ2,
An alternating voltage is applied to the first and second application electrodes so that the following expression is satisfied.

Figure 2007026781
Figure 2007026781

本発明によれば、試料の表面に損傷を与えることなく、電極近傍に大きな電界強度を発生させて高い分解率と活性種密度とを有する大気圧プラズマを発生させることによって、高い処理速度を有するプラズマ処理装置を実現できる。   According to the present invention, a high electric field intensity is generated in the vicinity of the electrode without damaging the surface of the sample, thereby generating an atmospheric pressure plasma having a high decomposition rate and active species density, thereby having a high processing speed. A plasma processing apparatus can be realized.

図1は、本発明の実施の第1形態であるプラズマ処理装置1の構成を簡略化して示す図である。プラズマ処理装置1は、大略、2つの第1および第2電源2,3と、第1および第2電源2,3から出力される交番電圧がそれぞれ印加される2つの第1および第2印加電極4,5と、第1印加電極4と第2印加電極5とに対して絶縁体6を挟んで対向しかつ接地するように設けられる接地電極7と、第1電源2から第1印加電極4に印加される交番電圧の位相と、第2電源3から第2印加電極5に印加される交番電圧の位相との位相差が、π(2k+1)[ただし、kは整数]となるように、一方の交番電圧の位相に対して他方の交番電圧の位相を遅延させる位相遅延手段8とを含む。なお、第1および第2印加電極4,5と、絶縁体6と、接地電極7とで電極ユニット9を構成する。   FIG. 1 is a diagram showing a simplified configuration of a plasma processing apparatus 1 according to a first embodiment of the present invention. The plasma processing apparatus 1 generally includes two first and second power sources 2 and 3 and two first and second application electrodes to which alternating voltages output from the first and second power sources 2 and 3 are applied, respectively. 4, 5, a ground electrode 7 provided so as to be opposed to and grounded with the insulator 6 between the first application electrode 4 and the second application electrode 5, and the first application electrode 4 from the first power supply 2. So that the phase difference between the phase of the alternating voltage applied to and the phase of the alternating voltage applied to the second application electrode 5 from the second power supply 3 is π (2k + 1) [where k is an integer] Phase delay means 8 for delaying the phase of the other alternating voltage with respect to the phase of the other alternating voltage. The first and second application electrodes 4, 5, the insulator 6, and the ground electrode 7 constitute an electrode unit 9.

プラズマ処理装置1は、電極ユニット9を試料10に対向するように配置し、電極ユニット9と試料10とで形成される空間11(以後、処理空間11と呼ぶ)に局所的に反応ガスを供給し、第1印加電極4と第2印加電極5とに交番電圧を印加することによって電極ユニット9の試料10に対向する面にプラズマを発生させ、該プラズマによって試料10の加工、成膜、表面処理などを行うことに用いられる。   In the plasma processing apparatus 1, the electrode unit 9 is disposed so as to face the sample 10, and a reactive gas is locally supplied to a space 11 (hereinafter referred to as a processing space 11) formed by the electrode unit 9 and the sample 10. Then, by applying an alternating voltage to the first application electrode 4 and the second application electrode 5, plasma is generated on the surface of the electrode unit 9 facing the sample 10, and processing, film formation, and surface of the sample 10 are generated by the plasma. It is used for processing.

第1電源2および第2電源3は、たとえば低周波電力、高周波電力、VHF電力、マイクロ波電力などを発振することのできる電源であり、共に周波数f[Hz]の交番電圧を発生する。この第1電源2および第2電源3から発生される周波数fの交番電圧の波形は、略正弦波形である。なお、第1電源2および第2電源3が、高周波電力、VHF電力、またはマイクロ波電力を発振するものである場合、インピーダンスマッチングを行なうインピーダンス整合器をも電源に含める。第1電源2により発生される交番電圧は、第1伝達回路12を通じて第1印加電極4に印加され、第2電源3により発生される交番電圧は、第2伝達回路13を通じて第2印加電極5に印加される。   The first power source 2 and the second power source 3 are power sources capable of oscillating, for example, low frequency power, high frequency power, VHF power, microwave power, and the like, and both generate an alternating voltage having a frequency f [Hz]. The waveform of the alternating voltage of frequency f generated from the first power supply 2 and the second power supply 3 is a substantially sine waveform. When the first power supply 2 and the second power supply 3 oscillate high frequency power, VHF power, or microwave power, an impedance matching device that performs impedance matching is also included in the power supply. The alternating voltage generated by the first power source 2 is applied to the first application electrode 4 through the first transmission circuit 12, and the alternating voltage generated by the second power source 3 is applied to the second application electrode 5 through the second transmission circuit 13. To be applied.

第1伝達回路12を通して第1電源2から第1印加電極4に対して印加される交番電圧の位相θ1と、第2伝達回路13を通して第2電源3から第2印加電極5に対して印加される交番電圧の位相θ2とは、第1および第2伝達回路12,13に電気的に接続される位相測定器14によって測定される。また位相測定器14による位相測定結果は位相調整器15へ入力され、位相調整器15は第1および第2電源2,3に接続される。位相調整器15は、前記位相θ1と前記位相θ2との間に、予め定める位相遅延が生じるように位相調整する。この位相調整については、後で詳述する。したがって、位相測定器14と位相調整器15とが、位相遅延手段8を構成する。   The phase θ1 of the alternating voltage applied from the first power supply 2 to the first application electrode 4 through the first transmission circuit 12 is applied to the second application electrode 5 from the second power supply 3 through the second transmission circuit 13. The phase θ2 of the alternating voltage is measured by a phase measuring device 14 that is electrically connected to the first and second transmission circuits 12 and 13. The phase measurement result by the phase measuring device 14 is input to the phase adjusting device 15, and the phase adjusting device 15 is connected to the first and second power sources 2 and 3. The phase adjuster 15 adjusts the phase so that a predetermined phase delay is generated between the phase θ1 and the phase θ2. This phase adjustment will be described in detail later. Therefore, the phase measuring device 14 and the phase adjuster 15 constitute the phase delay means 8.

第1および第2印加電極4,5は、図1の紙面に対して垂直な方向に細長く延びる長尺状の板形状を有する電極であり、たとえば銅合金などによって形成される。第1印加電極4と第2印加電極5とは、長尺状の長手方向に対して直交する方向に、絶縁体6aを介して交互に対向して配置(本実施形態では、第1印加電極4が3個、第2印加電極5が4個配置)される。第1および第2印加電極4,5が、交互に配置される配列方向の両外方側に、前記絶縁体6を介して接地電極7が配置される。   The first and second application electrodes 4 and 5 are electrodes having an elongated plate shape that is elongated in a direction perpendicular to the paper surface of FIG. 1, and are formed of, for example, a copper alloy. The first application electrode 4 and the second application electrode 5 are alternately arranged to face each other through the insulator 6a in a direction orthogonal to the long longitudinal direction (in this embodiment, the first application electrode 1 4 and 3 second application electrodes 5 are arranged 4). A ground electrode 7 is disposed via the insulator 6 on both outer sides in the arrangement direction in which the first and second application electrodes 4 and 5 are alternately disposed.

接地電極7は、第1および第2印加電極4,5の配列方向において、第1および第2印加電極4,5を介して対向するように設けられる。接地電極7のうち一方の接地電極7aには、電極ユニット9に対向する面であって試料10のプラズマ処理される面である被処理面10aに対して垂直な方向に貫通して反応ガス供給孔16が形成され、反応ガス供給孔16の被処理面10aを臨む処理空間11への開口部が反応ガス供給口16aを構成する。一方の接地電極7aと対向する他方の接地電極7bには、被処理面10aに対して垂直な方向に貫通して反応ガス排気孔17が形成され、反応ガス排気孔17の被処理面10aを臨む処理空間11への開口部が反応ガス排気口17aを構成する。   The ground electrode 7 is provided so as to face the first and second application electrodes 4 and 5 in the arrangement direction of the first and second application electrodes 4 and 5. One of the ground electrodes 7 is supplied with a reaction gas through one of the ground electrodes 7a in a direction perpendicular to the surface 10a to be processed, which is a surface facing the electrode unit 9 and on which the sample 10 is subjected to plasma processing. A hole 16 is formed, and an opening to the processing space 11 facing the processing surface 10a of the reaction gas supply hole 16 constitutes the reaction gas supply port 16a. The other ground electrode 7b opposite to the one ground electrode 7a is formed with a reaction gas exhaust hole 17 penetrating in a direction perpendicular to the surface to be processed 10a. The opening to the processing space 11 that faces the reaction gas exhaust port 17a.

第1および第2印加電極4,5と絶縁体6,6aと接地電極7とで構成される電極ユニット9と、試料10とは、たとえばチャンバ内に収容され、所定の気体雰囲気内に配置される。   The electrode unit 9 including the first and second application electrodes 4 and 5, the insulators 6 and 6 a, and the ground electrode 7, and the sample 10 are accommodated in, for example, a chamber and arranged in a predetermined gas atmosphere. The

電極ユニット9と試料10とは、間隔:Gとなるように、また互いに相対移動が可能なように配置される。一方の接地電極7aの反応ガス供給孔16に不図示の反応ガス供給源を接続し、反応ガス供給源から反応ガス供給孔16を通して反応ガス供給口16aから処理空間11へ反応ガスを供給し、他方の接地電極7bの反応ガス排気口17aおよび反応ガス排気孔17から反応ガスの排気を行なうことによって、試料10の被処理面10aと電極ユニット9との間に形成される処理空間11が反応ガス流路となり、処理空間11に反応ガス供給口16aから反応ガス排気口17aに向う反応ガス流18が形成される。   The electrode unit 9 and the sample 10 are arranged so as to have a gap G and can be moved relative to each other. A reaction gas supply source (not shown) is connected to the reaction gas supply hole 16 of one ground electrode 7a, and the reaction gas is supplied from the reaction gas supply source 16 through the reaction gas supply hole 16 to the processing space 11 from the reaction gas supply source. By exhausting the reaction gas from the reaction gas exhaust port 17a and the reaction gas exhaust hole 17 of the other ground electrode 7b, the processing space 11 formed between the surface to be processed 10a of the sample 10 and the electrode unit 9 reacts. A reaction gas flow 18 is formed in the processing space 11 from the reaction gas supply port 16a toward the reaction gas exhaust port 17a.

以下位相遅延手段8による位相調整について説明する。前述のように第1電源2によって第1印加電極4に対して印加される交番電圧の位相をθ1、第2電源3によって第3印加電極5に対して印加される交番電圧の位相をθ2とすると、位相θ1,θ2は、位相測定器14によって常時測定される。   Hereinafter, the phase adjustment by the phase delay means 8 will be described. As described above, the phase of the alternating voltage applied to the first application electrode 4 by the first power source 2 is θ1, and the phase of the alternating voltage applied to the third application electrode 5 by the second power source 3 is θ2. Then, the phases θ1 and θ2 are constantly measured by the phase measuring device 14.

位相測定器14は第1および第2電源2,3と位相調整器15で接続されており、位相調整器15は、位相θ1と位相θ2との位相差Δθ(=θ1−θ2)が、π(2k+1)[ただし、kは整数]となるように第1および第2電源2,3の交番電圧発生動作を制御する。なお、本実施の形態では、位相調整器15は、位相差Δθが、π(180度;k=0)となり、かつ波形振幅が等しい交番電圧が、第1印加電極4と第2印加電極5とに印加されるよう調整する。   The phase measuring device 14 is connected to the first and second power sources 2 and 3 by the phase adjuster 15, and the phase adjuster 15 has a phase difference Δθ (= θ1−θ2) between the phase θ1 and the phase θ2 as π. The alternating voltage generation operation of the first and second power supplies 2 and 3 is controlled so that (2k + 1) [where k is an integer]. In the present embodiment, the phase adjuster 15 has the first application electrode 4 and the second application electrode 5 with alternating voltages having a phase difference Δθ of π (180 degrees; k = 0) and the same waveform amplitude. And adjust to be applied.

このように構成されるプラズマ処理装置1では、第1印加電極4に電圧+V1が印加されるとき、第2印加電極5には位相がπだけ遅延している電圧−V1が印加されることになり、第1印加電極4と第2印加電極5との間には合計2V1の電位差が発生する。このことによって、第1印加電極4と第2印加電極5との間に局所的に高い電界強度が発生し、第1印加電極4と第2印加電極5との間で、処理空間11に供給される反応ガスに基づく大気圧プラズマ19が発生し、大気圧プラズマ19中で発生する活性種により試料10の被処理面10aをプラズマ処理する。   In the plasma processing apparatus 1 configured as described above, when the voltage + V1 is applied to the first application electrode 4, the voltage −V1 having a phase delayed by π is applied to the second application electrode 5. Thus, a total potential difference of 2V1 is generated between the first application electrode 4 and the second application electrode 5. As a result, a high electric field strength is locally generated between the first application electrode 4 and the second application electrode 5, and is supplied to the processing space 11 between the first application electrode 4 and the second application electrode 5. The atmospheric pressure plasma 19 based on the reaction gas is generated, and the surface to be processed 10 a of the sample 10 is plasma-treated by the active species generated in the atmospheric pressure plasma 19.

以下、プラズマ処理装置1における電界強度を求めた具体的な1事例について説明する。図2は電界強度を求める設定条件を示す図であり、図3は電界強度を求めた結果を示す図である。   Hereinafter, a specific example in which the electric field strength in the plasma processing apparatus 1 is obtained will be described. FIG. 2 is a diagram showing setting conditions for obtaining the electric field strength, and FIG. 3 is a diagram showing a result of obtaining the electric field strength.

第1および第2印加電極4,5を共に完全導体とし、第1印加電極4と第2印加電極5との距離、すなわち絶縁体6aの厚みを3.0mmとし、電極ユニット9の試料10を臨む側の面と試料10の被処理面10aとの距離Gを4.0mmとする。第1および第2印加電極4,5と接地電極7との間に介在し、第1印加電極4と第2印加電極5とを覆う絶縁体6は、比誘電率εr=9.6のアルミナとする。   The first and second application electrodes 4 and 5 are both perfect conductors, the distance between the first application electrode 4 and the second application electrode 5, that is, the thickness of the insulator 6a is 3.0 mm, and the sample 10 of the electrode unit 9 is The distance G between the facing surface and the surface 10a of the sample 10 is set to 4.0 mm. An insulator 6 interposed between the first and second application electrodes 4 and 5 and the ground electrode 7 and covering the first application electrode 4 and the second application electrode 5 is made of alumina having a relative dielectric constant εr = 9.6. And

第1印加電極4に周波数f=13.56MHzの交番電圧を+0.5kV印加し、同時に、第1印加電極4に印加される交番電圧に対して位相がπ(180度)だけずれ、かつ大きさの等しい交番電圧、すなわち周波数f=13.56MHzで−0.5kV印加することとする。すなわち、第1印加電極4と第2印加電極5との間に1.0kVの電位差を与えた場合について、試料10近傍の電界強度分布を計算した。   An alternating voltage of frequency f = 13.56 MHz is applied to the first application electrode 4 at +0.5 kV, and at the same time, the phase is shifted by π (180 degrees) with respect to the alternating voltage applied to the first application electrode 4 and is large. It is assumed that the same alternating voltage, that is, −0.5 kV is applied at a frequency f = 13.56 MHz. That is, the electric field strength distribution in the vicinity of the sample 10 was calculated when a potential difference of 1.0 kV was applied between the first application electrode 4 and the second application electrode 5.

なお、電界強度を求めるにあたって、3軸は、前述の図9におけるものと同一に設定した。3次元の座標については、3個設けられる第1印加電極4の中央に配置される第1印加電極4の被処理面10aに臨む側の面の中央を(X=0)とし、被処理面10aに投影して得られる位置を(X,Y=0,0)とし、被処理面10aから電極ユニット9へ向う方向をY軸の正方向とした。なお、Z軸については、任意の断面位置を(Z=0)にとった。電界強度の算出は、第1印加電極4の直下にあたる領域A1と、第1印加電極4と第2印加電極5との間におけるその中央部分の直下にあたる領域B1と、第2印加電極5の直下にあたる領域C1とについて行った。   In obtaining the electric field strength, the three axes were set to be the same as those in FIG. For the three-dimensional coordinates, the center of the surface of the first application electrode 4 arranged at the center of the three first application electrodes 4 facing the surface to be processed 10a is (X = 0), and the surface to be processed The position obtained by projecting to 10a is (X, Y = 0, 0), and the direction from the surface to be processed 10a to the electrode unit 9 is the positive direction of the Y axis. For the Z axis, an arbitrary cross-sectional position was taken as (Z = 0). The calculation of the electric field intensity is performed by calculating a region A1 immediately below the first application electrode 4, a region B1 immediately below the central portion between the first application electrode 4 and the second application electrode 5, and a region immediately below the second application electrode 5. It performed about the area | region C1 which hits.

図3中、領域A1の電界強度分布をライン21a,21bで示し、領域B1の電界強度分布をライン22で示し、領域C1の電界強度分布をライン23a,23bで示す。第1印加電極4と第2印加電極5との間の領域B1における絶縁体6aの窪み部分において、最も大きな6.5E5[V/m]の電界強度が発生し、同じ領域B1の被処理面10aの近傍では、0.02E5[V/m]の電界強度が発生する。このとき、第1印加電極4直下の領域A1および第2印加電極5直下の領域C1における被処理面10a近傍には、共に1.0E5[V/m]の電界強度が発生する。   In FIG. 3, the electric field strength distribution in the region A1 is indicated by lines 21a and 21b, the electric field strength distribution in the region B1 is indicated by line 22, and the electric field strength distribution in the region C1 is indicated by lines 23a and 23b. The largest electric field strength of 6.5E5 [V / m] is generated in the hollow portion of the insulator 6a in the region B1 between the first application electrode 4 and the second application electrode 5, and the surface to be processed in the same region B1. In the vicinity of 10a, an electric field strength of 0.02E5 [V / m] is generated. At this time, an electric field strength of 1.0E5 [V / m] is generated in the vicinity of the surface to be processed 10a in the region A1 immediately below the first application electrode 4 and the region C1 immediately below the second application electrode 5.

なお、参考事例として、幾何学的設定を図2に示すのと同様にし、第2印加電極には電圧を印加せず接地し、第1印加電極にのみ電圧を+1.0kV印加し、第1印加電極と第2印加電極との間に1.0kVの電位差を与えた場合の電界強度分布を求めた。図4は参考事例の電界強度を求めた結果を示す図である。電界強度算出位置は、図2に示す場合と同様にし、第1印加電極の直下にあたる領域A2と、第1印加電極と第2印加電極との間におけるその中央部分の直下にあたる領域B2と、第2印加電極の直下にあたる領域C2とについて行った。   As a reference example, the geometric setting is the same as shown in FIG. 2, the voltage is not applied to the second application electrode, the voltage is applied to the first application electrode only at +1.0 kV, and the first application electrode is grounded. The electric field strength distribution was obtained when a potential difference of 1.0 kV was applied between the application electrode and the second application electrode. FIG. 4 is a diagram showing the result of obtaining the electric field strength of the reference case. The electric field intensity calculation position is the same as in the case shown in FIG. 2, and a region A2 immediately below the first application electrode, a region B2 immediately below the central portion between the first application electrode and the second application electrode, 2 It performed about the area | region C2 directly under an application electrode.

図4中、領域A2の電界強度分布をライン24a,24bで示し、領域B2の電界強度分布をライン25で示し、領域C2の電界強度分布をライン26で示す。参考事例の場合、第1印加電極と第2印加電極との間の領域B2における絶縁体の窪み部分において、最も大きな6.5E5[V/m]の電界強度が発生することは、前述の図2の場合と同様である。しかしながら、このとき、第2印加電極直下の領域C2における被処理面近傍には0.1[V/m]の電界強度しか発生しないが、第1印加電極の直下の領域A2における被処理面近傍には2.1E5[V/m]の電界強度が発生する。   In FIG. 4, the electric field strength distribution in the region A2 is indicated by lines 24a and 24b, the electric field strength distribution in the region B2 is indicated by line 25, and the electric field strength distribution in the region C2 is indicated by line 26. In the case of the reference example, the largest electric field strength of 6.5E5 [V / m] is generated in the recessed portion of the insulator in the region B2 between the first application electrode and the second application electrode. This is the same as the case of 2. However, at this time, only an electric field strength of 0.1 [V / m] is generated in the vicinity of the surface to be processed in the region C2 immediately below the second application electrode, but in the vicinity of the surface to be processed in the region A2 immediately below the first application electrode. Generates an electric field strength of 2.1E5 [V / m].

図1〜図3に示す本発明のプラズマ処理装置1において、第1印加電極4と第2印加電極5とに印加する交番電圧の位相をπ(180度)だけずれた状態を維持したまま、交番電圧の振幅を大きくすると、最も大きな電界強度が発生している領域B1の絶縁体6aの窪み部分に、反応ガスに応じた大気圧プラズマが発生し、大気圧プラズマ中で発生する活性種によって、被処理面10aに対してプラズマ処理が行われる。プラズマ処理装置1においては、領域B1の絶縁体6aの窪み部分における最も高い電界強度をEp1、領域A1または領域C1の被処理面10a上で得られる最も高い電界強度をEs1とすると、両者の比はEp1/Es1=6.5E5/1.0E5=6.5倍になる。   In the plasma processing apparatus 1 of the present invention shown in FIGS. 1 to 3, while maintaining the state in which the phase of the alternating voltage applied to the first application electrode 4 and the second application electrode 5 is shifted by π (180 degrees), When the amplitude of the alternating voltage is increased, atmospheric pressure plasma corresponding to the reaction gas is generated in the hollow portion of the insulator 6a in the region B1 where the greatest electric field strength is generated, and depending on the active species generated in the atmospheric pressure plasma. Then, the plasma processing is performed on the processing target surface 10a. In the plasma processing apparatus 1, when the highest electric field strength in the recessed portion of the insulator 6a in the region B1 is Ep1, and the highest electric field strength obtained on the surface to be processed 10a in the region A1 or the region C1 is Es1, the ratio between the two is given. Becomes Ep1 / Es1 = 6.5E5 / 1.0E5 = 6.5 times.

一方参考事例のように、第2印加電極には電圧を印加せずに接地し、第1印加電極にのみ+1.0kVの電圧を印加し、第1印加電極と第2印加電極との間に1.0kVの電位差を与えた場合、領域B2の絶縁体6aの窪み部分における最も高い電界強度Ep2と、領域C2の被処理面上で得られる最も高い電界強度をEs2との比はEp2/Es2=6.5E5/2.1E5=3.1倍になる。   On the other hand, as in the reference example, the second application electrode is grounded without applying a voltage, a voltage of +1.0 kV is applied only to the first application electrode, and the voltage is between the first application electrode and the second application electrode. When a potential difference of 1.0 kV is applied, the ratio of the highest electric field strength Ep2 in the recessed portion of the insulator 6a in the region B2 to the highest electric field strength Es2 obtained on the surface to be processed in the region C2 is Ep2 / Es2. = 6.5E5 / 2.1E5 = 3.1 times.

参考事例の場合、第1印加電極に対する印加電圧を増大させ、第1印加電極と第2印加電極との間に大気圧プラズマが発生したときに印加する電圧に比べて、3.1倍の電圧を第1印加電極と第2印加電極との間に印加すると、試料の被処理面にも大気圧プラズマが発生し、試料の被処理面を損傷することを意味する。   In the case of the reference example, the voltage applied to the first application electrode is increased, and the voltage is 3.1 times the voltage applied when atmospheric pressure plasma is generated between the first application electrode and the second application electrode. Is applied between the first application electrode and the second application electrode, atmospheric pressure plasma is also generated on the surface to be processed of the sample, which means that the surface to be processed of the sample is damaged.

しかしながら、本発明のプラズマ処理装置1では、第1印加電極4と第2印加電極5とに対する印加電圧を増大させ、第1印加電極4と第2印加電極5との間に大気圧プラズマが発生したときに印加する電圧に比べて、6.5倍の電圧を第1印加電極4と第2印加電極5とに印加するまで、試料10の被処理面10aには大気圧プラズマが発生しないことを意味する。したがって、プラズマ処理装置1では、被処理面10a上で大気圧プラズマを発生させることなく、より大きな電圧を第1および第2印加電極4,5に印加することができる。このことによって、より大きな電界強度によって高い分解率および活性種密度を有する大気圧プラズマを発生させることができるので、被処理面10aを損傷することなく、高い処理速度でプラズマ処理することが可能になる。   However, in the plasma processing apparatus 1 of the present invention, the applied voltage to the first application electrode 4 and the second application electrode 5 is increased, and atmospheric pressure plasma is generated between the first application electrode 4 and the second application electrode 5. The atmospheric pressure plasma is not generated on the surface to be processed 10a of the sample 10 until a voltage 6.5 times higher than the voltage applied to the first applied electrode 4 and the second applied electrode 5 is applied. Means. Therefore, in the plasma processing apparatus 1, a larger voltage can be applied to the first and second application electrodes 4 and 5 without generating atmospheric pressure plasma on the surface 10a to be processed. As a result, atmospheric pressure plasma having a high decomposition rate and active species density can be generated with a larger electric field strength, so that plasma processing can be performed at a high processing speed without damaging the surface to be processed 10a. Become.

図5は、本発明の実施の第2形態であるプラズマ処理装置31の構成を簡略化して示す図である。本実施の形態のプラズマ処理装置31は、実施の第1形態のプラズマ処理装置1に類似し、対応する部分については同一の参照符号を付して説明を省略する。   FIG. 5 is a diagram showing a simplified configuration of the plasma processing apparatus 31 according to the second embodiment of the present invention. The plasma processing apparatus 31 of the present embodiment is similar to the plasma processing apparatus 1 of the first embodiment, and corresponding portions are denoted by the same reference numerals and description thereof is omitted.

プラズマ処理装置31は、1つの電源32と、電源32から出力される交番電圧を、第1印加電極4に接続される第1伝達回路12と第2印加電極5に接続される第2伝達回路13とに分岐する電圧分岐部33と、第1伝達回路12に設けられる1個の第1誘電体34と、第2伝達回路13に設けられる1個の第2誘電体35とを含むことを特徴とする。   The plasma processing apparatus 31 includes a single power source 32 and an alternating voltage output from the power source 32, and a second transmission circuit connected to the first transmission circuit 12 and the second application electrode 5 connected to the first application electrode 4. 13, including a voltage branching portion 33 that branches into the first transmission circuit 12, one first dielectric 34 provided in the first transmission circuit 12, and one second dielectric 35 provided in the second transmission circuit 13. Features.

電圧分岐部33は、たとえば分岐端子であり、電源32から電源出力回路36を通して出力される交番電圧を、第1伝達回路12と第2伝達回路13とに分岐させる。第1伝達回路12には、第1伝達回路12の交番電圧伝播方向に長さ:L11を有する第1誘電体34が挿入される。第2伝達回路13には、第3伝達回路13の交番電圧伝播方向に長さ:L21を有する第2誘電体35が挿入される。   The voltage branch unit 33 is, for example, a branch terminal, and branches the alternating voltage output from the power source 32 through the power output circuit 36 to the first transmission circuit 12 and the second transmission circuit 13. A first dielectric 34 having a length L11 in the direction of alternating voltage propagation of the first transmission circuit 12 is inserted into the first transmission circuit 12. A second dielectric 35 having a length L21 in the direction of alternating voltage propagation of the third transmission circuit 13 is inserted into the second transmission circuit 13.

また、回路分岐後交番電圧伝播方向に延びる部分であって、電極ユニット9に導入される手前部分の第1誘電体34が挿入されていない部分の第1伝達回路12の長さをL10とし、同様に電極ユニット9に導入される手前部分の第2誘電体35が挿入されていない部分の第2伝達回路13の長さをL20とする。   Further, the length of the first transmission circuit 12 that extends in the alternating voltage propagation direction after circuit branching and is not inserted with the first dielectric 34 in the front portion introduced into the electrode unit 9 is L10, Similarly, the length of the second transmission circuit 13 in the portion where the second dielectric 35 in the front portion introduced into the electrode unit 9 is not inserted is L20.

電源32から発振される周波数fの交番電圧は、電圧分岐部33によって第1および第2伝達回路12,13に分岐されて伝播し、電極ユニット9の第1および第2印加電極4,5にそれぞれ印加される。このとき、電圧分岐部33によって分岐された直後の第1および第2伝達回路12,13に伝播する交番電圧の位相は互いに等しく、この位相をθとする。   The alternating voltage of the frequency f oscillated from the power supply 32 is branched and propagated to the first and second transmission circuits 12 and 13 by the voltage branching section 33 and propagates to the first and second application electrodes 4 and 5 of the electrode unit 9. Each is applied. At this time, the phases of the alternating voltages propagating to the first and second transmission circuits 12 and 13 immediately after being branched by the voltage branching unit 33 are equal to each other, and this phase is θ.

第1伝達回路12によって第1印加電極4に印加される交番電圧の位相をθ1とすると、位相θ1は位相θに比べて、第1誘電体34の長さL11と、第1誘電体34が挿入されていない部分の長さL10との分だけ位相が遅れる。したがって、第1伝達回路12の第1誘電体34が挿入されていない部分の誘電率をε10、透磁率をμ10とし、第1誘電体34の誘電率をε11、透磁率をμ11とすると、位相θと位相θ1との関係は、式(1)のように表される。
θ−θ1=2πf{L10×√(ε10・μ10)+L11×√(ε11・μ11)}
…(1)
Assuming that the phase of the alternating voltage applied to the first application electrode 4 by the first transmission circuit 12 is θ1, the phase θ1 is longer than the phase θ by the length L11 of the first dielectric 34 and the first dielectric 34 The phase is delayed by the length L10 of the portion not inserted. Therefore, when the dielectric constant of the portion of the first transmission circuit 12 where the first dielectric 34 is not inserted is ε10, the magnetic permeability is μ10, the dielectric constant of the first dielectric 34 is ε11, and the magnetic permeability is μ11, the phase is The relationship between θ and phase θ1 is expressed as in equation (1).
θ−θ1 = 2πf {L10 × √ (ε10 · μ10) + L11 × √ (ε11 · μ11)}
... (1)

第2伝達回路13によって第2印加電極5に印加される交番電圧の位相をθ2とすると、位相θ2は位相θに比べて、第2誘電体35の長さL21と、第2誘電体35が挿入されていない部分の長さL20との分だけ位相が遅れる。したがって、第2伝達回路13の第2誘電体35が挿入されていない部分の誘電率をε20、透磁率をμ20とし、第2誘電体35の誘電率をε21、透磁率をμ21とすると、位相θと位相θ1との関係は、式(2)のように表される。
θ−θ2=2πf{L20×√(ε20・μ20)+L21×√(ε21・μ21)}
…(2)
Assuming that the phase of the alternating voltage applied to the second application electrode 5 by the second transmission circuit 13 is θ2, the phase θ2 has a length L21 of the second dielectric 35 and the second dielectric 35 are compared with the phase θ. The phase is delayed by the length L20 of the portion not inserted. Therefore, when the dielectric constant of the portion of the second transmission circuit 13 where the second dielectric 35 is not inserted is ε20, the magnetic permeability is μ20, the dielectric constant of the second dielectric 35 is ε21, and the magnetic permeability is μ21, the phase is The relationship between θ and phase θ1 is expressed as in equation (2).
θ−θ2 = 2πf {L20 × √ (ε20 · μ20) + L21 × √ (ε21 · μ21)}
... (2)

したがって、第1印加電極4に印加される交番電圧の位相θ1と、第2印加電極5に印加される交番電圧の位相θ2との位相差Δθ(=θ1−θ2)は、式(1)と式(2)とから、以下の式(3)のように表される。
Δθ=2πf{L20×√(ε20・μ20)+L21×√(ε21・μ21)
−L10×√(ε10・μ10)−L11×√(ε11・μ11)} …(3)
Therefore, the phase difference Δθ (= θ1−θ2) between the phase θ1 of the alternating voltage applied to the first application electrode 4 and the phase θ2 of the alternating voltage applied to the second application electrode 5 is expressed by the following equation (1). From the formula (2), it is expressed as the following formula (3).
Δθ = 2πf {L20 × √ (ε20 · μ20) + L21 × √ (ε21 · μ21)
−L10 × √ (ε10 · μ10) −L11 × √ (ε11 · μ11)} (3)

プラズマ処理装置31においては、式(3)で与えられるΔθが、式(4)の関係を満足するように、第1および第2伝達回路12,13の前記長さL10,L20、誘電率ε10,ε20、透磁率μ10,μ20がそれぞれ選択設定され、第1および第2誘電体34,35の前記長さL11,L21、誘電率ε11,ε21、透磁率μ11,μ21がそれぞれ選択設定される。
Δθ=π(2k+1)[ただし、kは整数] …(4)
In the plasma processing apparatus 31, the lengths L10 and L20 and the dielectric constant ε10 of the first and second transmission circuits 12 and 13 are set so that Δθ given by the expression (3) satisfies the relationship of the expression (4). , Ε20, and magnetic permeability μ10, μ20 are selected and set, and the lengths L11, L21, dielectric constants ε11, ε21, and magnetic permeability μ11, μ21 of the first and second dielectrics 34, 35 are respectively selected and set.
Δθ = π (2k + 1) [where k is an integer] (4)

このことによって、位相θ1と、位相θ2との位相差Δθが、±π、±3π、…だけ異なることになり、たとえば第1印加電極4に電圧V1が印加されるとき、第2印加電極5には電圧−V1が印加される。したがって、実施の第1形態のプラズマ処理装置1と同様に、第1印加電極4と第2印加電極5との間の絶縁体6aの窪み部分において高い電界強度が発生し、該電界強度によって分解度の高い大気圧プラズマを発生すると同時に、第1および第2印加電極4,5直下の試料10の被処理面10a近傍には低い電界強度しか発生しない状態を現出させることができる。すなわち、高速度でプラズマ処理が可能であるにも関らず、試料10の被処理面10aを損傷することのないプラズマ処理装置31が実現される。   Accordingly, the phase difference Δθ between the phase θ1 and the phase θ2 differs by ± π, ± 3π,..., For example, when the voltage V1 is applied to the first application electrode 4, the second application electrode 5 The voltage -V1 is applied to the. Therefore, similarly to the plasma processing apparatus 1 of the first embodiment, a high electric field strength is generated in the hollow portion of the insulator 6a between the first application electrode 4 and the second application electrode 5, and the electric field strength causes decomposition. At the same time as generating a high-pressure atmospheric pressure plasma, a state in which only a low electric field strength is generated can appear in the vicinity of the surface to be processed 10a of the sample 10 immediately below the first and second application electrodes 4 and 5. That is, the plasma processing apparatus 31 is realized that does not damage the surface 10a to be processed of the sample 10 although the plasma processing is possible at a high speed.

また、1つの電源32から発振した交番電圧を電圧分岐部33によって分岐し、第1および第2印加電極4,5に印加するので、第1および第2印加電極4,5のそれぞれに交番電圧を印加するための2つの電源を動作させる必要がなく、印加電極および伝達回路を通じた電源同士の干渉を防止することができる。   Further, since the alternating voltage oscillated from one power supply 32 is branched by the voltage branching unit 33 and applied to the first and second application electrodes 4 and 5, the alternating voltage is applied to each of the first and second application electrodes 4 and 5. It is not necessary to operate two power supplies for applying the voltage, and interference between the power supplies through the application electrode and the transmission circuit can be prevented.

また第1および第2誘電体34,35は、特にその素材が限定されるものではなく、固体、液体、気体または真空であってよい。さらに第1伝達回路12の第1誘電体34が挿入されていない部分の誘電率ε10および透磁率μ10と、第1誘電体34の誘電率ε11および透磁率μ11とが、同じであってもよい。同様に、第2伝達回路13の第2誘電体35が挿入されていない部分の誘電率ε20および透磁率μ20と、第2誘電体35の誘電率ε21および透磁率μ21とが、同じであってもよい。   The materials of the first and second dielectrics 34 and 35 are not particularly limited, and may be solid, liquid, gas, or vacuum. Furthermore, the dielectric constant ε10 and the magnetic permeability μ10 of the portion of the first transmission circuit 12 where the first dielectric 34 is not inserted may be the same as the dielectric constant ε11 and the magnetic permeability μ11 of the first dielectric 34. . Similarly, the portion of the second transmission circuit 13 where the second dielectric 35 is not inserted has the same dielectric constant ε20 and magnetic permeability μ20, and the dielectric constant ε21 and magnetic permeability μ21 of the second dielectric 35 are the same. Also good.

図6は、本発明の実施の第3形態であるプラズマ処理装置41の構成を簡略化して示す図である。本実施の形態のプラズマ処理装置41は、実施の第2形態のプラズマ処理装置31に類似し、対応する部分については同一の参照符号を付して説明を省略する。   FIG. 6 is a diagram showing a simplified configuration of a plasma processing apparatus 41 according to the third embodiment of the present invention. The plasma processing apparatus 41 of the present embodiment is similar to the plasma processing apparatus 31 of the second embodiment, and corresponding portions are denoted by the same reference numerals and description thereof is omitted.

プラズマ処理装置41において注目すべきは、第1伝達回路12に2個の誘電体からなる第1誘電体群42が挿入され、第2伝達回路13に2個の誘電体からなる第2誘電体群43が挿入されることである。第1誘電体群42には、第11誘電体44と第12誘電体45とが含まれる。また第2誘電体群43には、第21誘電体46と第22誘電体47とが含まれる。   It should be noted in the plasma processing apparatus 41 that a first dielectric group 42 composed of two dielectrics is inserted into the first transmission circuit 12 and a second dielectric composed of two dielectrics is inserted into the second transmission circuit 13. The group 43 is inserted. The first dielectric group 42 includes an eleventh dielectric 44 and a twelfth dielectric 45. The second dielectric group 43 includes a twenty-first dielectric 46 and a twenty-second dielectric 47.

第1伝達回路12において、電圧分岐後の交番電圧伝播方向の長さであって、第1誘電体群42が挿入されていない部分の第1伝達回路12の長さをL10とし、第1誘電体群42の第11誘電体44の長さをL11および第12誘電体45の長さをL12とする。またこれら第1誘電体群42が挿入されていない部分の第1伝達回路12と、第11誘電体44と、第12誘電体45との(誘電率,透磁率)を、それぞれ(ε10,μ10)、(ε11,μ11)、(ε12,μ12)とする。   In the first transmission circuit 12, the length of the first transmission circuit 12 in the portion where the first dielectric group 42 is not inserted is L10, which is the length in the alternating voltage propagation direction after the voltage branch, and the first dielectric The length of the eleventh dielectric 44 of the body group 42 is L11, and the length of the twelfth dielectric 45 is L12. Further, the (dielectric constant, magnetic permeability) of the first transmission circuit 12, the eleventh dielectric 44, and the twelfth dielectric 45 in the portion where the first dielectric group 42 is not inserted are respectively (ε10, μ10). ), (Ε11, μ11), and (ε12, μ12).

同様に、第2伝達回路13において、電圧分岐後の交番電圧伝播方向の長さであって、第2誘電体群43が挿入されていない部分の第2伝達回路13の長さをL20とし、第2誘電体群43の第21誘電体46の長さをL21および第22誘電体47の長さをL22とする。またこれら第2誘電体群43が挿入されていない部分の第2伝達回路13と、第21誘電体46と、第22誘電体47との(誘電率,透磁率)を、それぞれ(ε20,μ20)、(ε21,μ21)、(ε22,μ22)とする。   Similarly, in the second transmission circuit 13, the length of the second transmission circuit 13 in the length in the alternating voltage propagation direction after voltage branching and where the second dielectric group 43 is not inserted is L20, The length of the 21st dielectric 46 of the second dielectric group 43 is L21 and the length of the 22nd dielectric 47 is L22. Further, the (dielectric constant, permeability) of the second transmission circuit 13, the 21st dielectric 46, and the 22nd dielectric 47 of the portion where the second dielectric group 43 is not inserted are respectively (ε20, μ20). ), (Ε21, μ21), (ε22, μ22).

このとき、第1印加電極4に印加される交番電圧の位相θ1と、第2印加電極5に印加される交番電圧の位相θ2との位相差Δθ(=θ1−θ2)は、式(5)で与えられる。
Δθ=2πf{L20×√(ε20・μ20)+L21×√(ε21・μ21)
+L22×√(ε22・μ22)−L10×√(ε10・μ10)
−L11×√(ε11・μ11)−L12×√(ε12・μ12)} …(5)
At this time, the phase difference Δθ (= θ1−θ2) between the phase θ1 of the alternating voltage applied to the first application electrode 4 and the phase θ2 of the alternating voltage applied to the second application electrode 5 is expressed by Equation (5). Given in.
Δθ = 2πf {L20 × √ (ε20 · μ20) + L21 × √ (ε21 · μ21)
+ L22 × √ (ε22 · μ22) −L10 × √ (ε10 · μ10)
−L11 × √ (ε11 · μ11) −L12 × √ (ε12 · μ12)} (5)

プラズマ処理装置41においては、式(5)で与えられるΔθが、π(2k+1)[ただし、kは整数]となるように、第1および第2伝達回路12,13の前記長さL10,L20と、誘電率ε10,ε20と、透磁率μ10,μ20とがそれぞれ選択設定され、第1誘電体群42を構成する第11および第12誘電体44,45の前記長さL11,L12と、誘電率ε11,ε12と、透磁率μ11,μ12とがそれぞれ選択設定され、また第2誘電体群43を構成する第21および第22誘電体46,47の前記長さL21,L22と、誘電率ε21,ε22と、透磁率μ21,μ22とが、それぞれ選択設定される。このことによって、プラズマ処理装置41は、前述のプラズマ処理装置31と同じ効果を奏することができる。   In the plasma processing apparatus 41, the lengths L10 and L20 of the first and second transmission circuits 12 and 13 are set so that Δθ given by the equation (5) is π (2k + 1) [where k is an integer]. And dielectric constants ε10, ε20 and magnetic permeability μ10, μ20 are selected and set, respectively, and the lengths L11, L12 of the eleventh and twelfth dielectrics 44, 45 constituting the first dielectric group 42, and the dielectric The ratios ε11 and ε12 and the magnetic permeability μ11 and μ12 are selected and set, and the lengths L21 and L22 of the twenty-first and twenty-second dielectrics 46 and 47 constituting the second dielectric group 43 and the dielectric constant ε21. , Ε22 and magnetic permeability μ21, μ22 are selected and set, respectively. As a result, the plasma processing apparatus 41 can achieve the same effects as the plasma processing apparatus 31 described above.

第1伝達回路12および第2伝達回路13にそれぞれ挿入される誘電体は、1個ないし2個に限定されるものではなく、第1伝達回路12にm個の誘電体からなる第1誘電体群を挿入することができ、第2伝達回路13にn個の誘電体からなる第2誘電体群を挿入することができる。   The number of dielectrics inserted into the first transmission circuit 12 and the second transmission circuit 13 is not limited to one or two. The first dielectric made of m dielectrics in the first transmission circuit 12 A second dielectric group consisting of n dielectrics can be inserted into the second transmission circuit 13.

第1伝達回路に設けられるm個[ただし、mは正の整数]の第1誘電体群に含まれるi番目[ただし、iは正の整数かつi≦m]の誘電体の誘電率をε1i、透磁率をμ1i、交番電圧伝播方向の長さをL1iとし、第1伝達回路の第1誘電体群が設けられていない部分の誘電率をε10、透磁率をμ10、交番電圧伝播方向の長さをL10とする。   The dielectric constant of the i-th [where i is a positive integer and i ≦ m] dielectric material included in the m [where m is a positive integer] provided in the first transmission circuit is ε1i. The permeability is μ1i, the length in the alternating voltage propagation direction is L1i, the dielectric constant of the portion of the first transmission circuit where the first dielectric group is not provided is ε10, the permeability is μ10, and the length in the alternating voltage propagation direction is This is L10.

また、第2伝達回路に設けられるn個[ただし、nは正の整数]の第2誘電体群に含まれるj番目[ただし、jは正の整数かつj≦n]の誘電体の誘電率をε2j、透磁率をμ2j、交番電圧伝播方向の長さをL2jとし、第2伝達回路の第2誘電体群が設けられていない部分の誘電率をε20、透磁率をμ20、交番電圧伝播方向の長さをL20とする。   Further, the dielectric constant of the jth [j is a positive integer and j ≦ n] dielectric included in the n [where n is a positive integer] second dielectric group provided in the second transmission circuit. Is ε2j, the permeability is μ2j, the length in the alternating voltage propagation direction is L2j, the dielectric constant of the portion of the second transmission circuit where the second dielectric group is not provided is ε20, the permeability is μ20, and the alternating voltage propagation direction The length of is assumed to be L20.

このとき、第1および第2伝達回路12,13、第1および第2誘電体群の長さ、誘電率、透磁率が、以下の式(6)を満足するように選択設定されることによって、プラズマ処理装置は、前述の第2および第3実施形態のプラズマ処理装置31,41と同一の効果を奏することができる。   At this time, the length, dielectric constant, and magnetic permeability of the first and second transmission circuits 12, 13 and the first and second dielectric groups are selectively set so as to satisfy the following expression (6). The plasma processing apparatus can achieve the same effects as the plasma processing apparatuses 31 and 41 of the second and third embodiments described above.

Figure 2007026781
Figure 2007026781

なお、第1および第2伝達回路12,13にそれぞれ複数の誘電体を含む誘電体群が挿入されるとき、各誘電体の素材は、固体、液体、気体または真空のいずれであってもよく、また各誘電体の誘電率、透磁率と、第1および第2伝達回路12,13の誘電率、透磁率とは互いに等しくてもよい。   When a dielectric group including a plurality of dielectrics is inserted into each of the first and second transmission circuits 12 and 13, the material of each dielectric may be any of solid, liquid, gas, or vacuum The dielectric constant and permeability of each dielectric material may be equal to the dielectric constant and permeability of the first and second transmission circuits 12 and 13.

図7は、本発明の実施の第4形態であるプラズマ処理装置51の構成を簡略化して示す図である。本実施の形態のプラズマ処理装置51は、実施の第3形態のプラズマ処理装置41に類似し、対応する部分については同一の参照符号を付して説明を省略する。   FIG. 7 is a diagram showing a simplified configuration of a plasma processing apparatus 51 according to the fourth embodiment of the present invention. The plasma processing apparatus 51 of the present embodiment is similar to the plasma processing apparatus 41 of the third embodiment, and corresponding portions are denoted by the same reference numerals and description thereof is omitted.

プラズマ処理装置51において注目すべきは、第2伝達回路13に設けられ、第2印加電極5に印加される交番電圧の位相θ2を、第1印加電極4に印加される交番電圧の位相θ1に対して、π(2k+1)[ただし、kは整数]だけ遅延させる位相遅延手段52を含むことである。   It should be noted in the plasma processing apparatus 51 that the phase θ2 of the alternating voltage applied to the second application electrode 5 is provided in the second transmission circuit 13 to the phase θ1 of the alternating voltage applied to the first application electrode 4. On the other hand, it includes phase delay means 52 that delays by π (2k + 1) [where k is an integer].

位相遅延手段52は、第1および第2伝達回路12,13に接続されて前記位相θ1および位相θ2を測定する位相測定器53と、第2伝達回路13に設けられ、位相測定器53の測定結果に応じて誘電率を調整する誘電体調整器54とを含んで構成される。   The phase delay means 52 is connected to the first and second transmission circuits 12 and 13 to measure the phase θ1 and the phase θ2, and is provided in the second transmission circuit 13 to measure the phase measurement device 53. And a dielectric adjuster 54 that adjusts the dielectric constant according to the result.

本実施形態では、第2誘電体群43の第21誘電体46は液体を素材として容器内に収容するように構成される。誘電体調整器54は、第21誘電体46の容器に接続されて、第21誘電体46の素材である液体を容器から出し入れ可能に構成され、液体を出し入れすることによって、第21誘電体46の長さL21と、第2誘電体群43が挿入されていない部分の第2伝達回路13の長さL20とを調整し、第2誘電体群43および第2誘電体群43が挿入されない部分の第2伝達回路13の誘電率の調整を可能にしている。   In this embodiment, the 21st dielectric 46 of the 2nd dielectric group 43 is comprised so that a liquid may be accommodated in a container as a raw material. The dielectric adjuster 54 is connected to the container of the twenty-first dielectric 46 and is configured to allow the liquid as the material of the twenty-first dielectric 46 to be taken in and out of the container. Length L21 and the length L20 of the second transmission circuit 13 where the second dielectric group 43 is not inserted, and the portion where the second dielectric group 43 and the second dielectric group 43 are not inserted The dielectric constant of the second transmission circuit 13 can be adjusted.

プラズマ処理装置51では、位相遅延手段52の位相測定器53が位相θ1と位相θ2とを常時測定し、誘電体調整器54が、位相θ1および位相θ2の測定結果に基づいて、前述のように第21誘電体46の長さL21、および第2伝達回路13の前記長さL20を調整することによって、位相θ1と位相θ2との位相差Δθ(=θ1−θ2)が、π(2k+1)[ただし、kは整数]を満足するように制御する。   In the plasma processing apparatus 51, the phase measuring unit 53 of the phase delay means 52 constantly measures the phase θ1 and the phase θ2, and the dielectric adjuster 54 is based on the measurement results of the phase θ1 and the phase θ2 as described above. By adjusting the length L21 of the twenty-first dielectric 46 and the length L20 of the second transmission circuit 13, the phase difference Δθ (= θ1-θ2) between the phase θ1 and the phase θ2 is π (2k + 1) [ However, k is controlled to satisfy an integer].

このようにして、プラズマ処理装置51は、前述の本発明の各プラズマ処理装置1,31,41と同じ効果を奏することができる。   In this way, the plasma processing apparatus 51 can achieve the same effects as the plasma processing apparatuses 1, 31, and 41 of the present invention described above.

本発明の実施の第1形態であるプラズマ処理装置1の構成を簡略化して示す図である。It is a figure which simplifies and shows the structure of the plasma processing apparatus 1 which is 1st Embodiment of this invention. 電界強度を求める設定条件を示す図である。It is a figure which shows the setting conditions which obtain | require an electric field strength. 電界強度を求めた結果を示す図である。It is a figure which shows the result of having calculated | required the electric field strength. 参考事例の電界強度を求めた結果を示す図である。It is a figure which shows the result of having calculated | required the electric field strength of the reference example. 本発明の実施の第2形態であるプラズマ処理装置31の構成を簡略化して示す図である。It is a figure which simplifies and shows the structure of the plasma processing apparatus 31 which is 2nd Embodiment of this invention. 本発明の実施の第3形態であるプラズマ処理装置41の構成を簡略化して示す図である。It is a figure which simplifies and shows the structure of the plasma processing apparatus 41 which is 3rd Embodiment of this invention. 本発明の実施の第4形態であるプラズマ処理装置51の構成を簡略化して示す図である。It is a figure which simplifies and shows the structure of the plasma processing apparatus 51 which is 4th Embodiment of this invention. 従来の高圧プラズマ処理装置100の構成を示す概略図である。It is the schematic which shows the structure of the conventional high pressure plasma processing apparatus 100. FIG. 電界強度の算出位置を示す図である。It is a figure which shows the calculation position of electric field strength. 電界強度分布計算結果を示す図である。It is a figure which shows an electric field strength distribution calculation result.

符号の説明Explanation of symbols

1,31,41,51 プラズマ処理装置
2,3,32 電源
4 第1印加電極
5 第2印加電極
6 絶縁体
7 接地電極
8,52 位相遅延手段
9 電極ユニット
10 試料
12 第1伝達回路
13 第2伝達回路
14,53 位相測定器
15 位相調整器
33 電圧分岐部
34,35,44,45,46,47 誘電体
42,43 誘電体群
54 誘電体調整器
DESCRIPTION OF SYMBOLS 1, 31, 41, 51 Plasma processing apparatus 2, 3, 32 Power supply 4 1st application electrode 5 2nd application electrode 6 Insulator 7 Ground electrode 8, 52 Phase delay means 9 Electrode unit 10 Sample 12 1st transmission circuit 13 1st 2 Transmission circuit 14, 53 Phase measuring device 15 Phase adjuster 33 Voltage branching unit 34, 35, 44, 45, 46, 47 Dielectric 42, 43 Dielectric group 54 Dielectric adjusting device

Claims (3)

電源と、電源から出力される交番電圧が印加される印加電極と、印加電極に対して絶縁体を挟んで対向しかつ接地するように設けられる接地電極とを備え、印加電極と絶縁体と接地電極とで構成される電極ユニットを試料に対向するように配置し、電極ユニットと試料とで形成される空間に局所的に反応ガスを供給し、印加電極に交番電圧を印加することによって電極ユニットの試料に対向する面にプラズマを発生させ、該プラズマによって試料の加工、成膜、表面処理を行うプラズマ処理装置であって、
印加電極は、2つの第1印加電極と第2印加電極とを含み、
第1印加電極に印加される交番電圧の位相と、第2印加電極に印加される交番電圧の位相との位相差が、π(2k+1)[ただし、kは整数]となるように電源から印加電極に交番電圧が印加されることを特徴とするプラズマ処理装置。
A power supply, an application electrode to which an alternating voltage output from the power supply is applied, and a ground electrode provided so as to face and ground the application electrode with an insulator interposed therebetween, the application electrode, the insulator, and the ground An electrode unit composed of an electrode is arranged so as to face the sample, a reactive gas is locally supplied to a space formed by the electrode unit and the sample, and an alternating voltage is applied to the applied electrode. A plasma processing apparatus that generates plasma on a surface facing the sample of the sample and performs processing, film formation, and surface treatment of the sample with the plasma,
The application electrode includes two first application electrodes and a second application electrode,
Applied from the power supply so that the phase difference between the phase of the alternating voltage applied to the first application electrode and the phase of the alternating voltage applied to the second application electrode is π (2k + 1), where k is an integer. A plasma processing apparatus, wherein an alternating voltage is applied to an electrode.
電源から出力される交番電圧を、第1印加電極に接続される第1伝達回路と第2印加電極に接続される第2伝達回路とに分岐する電圧分岐部と、
第2伝達回路に設けられ、第2印加電極に印加される交番電圧の位相を、第1印加電極に印加される交番電圧の位相に対して、π(2k+1)[ただし、kは整数]だけ遅延させる位相遅延手段とを含むことを特徴とする請求項1記載のプラズマ処理装置。
A voltage branching section for branching an alternating voltage output from the power source into a first transmission circuit connected to the first application electrode and a second transmission circuit connected to the second application electrode;
The phase of the alternating voltage applied to the second application electrode provided in the second transmission circuit is π (2k + 1) [where k is an integer] with respect to the phase of the alternating voltage applied to the first application electrode. 2. The plasma processing apparatus according to claim 1, further comprising phase delay means for delaying.
電源から出力される交番電圧を、第1印加電極に接続される第1伝達回路と第2印加電極に接続される第2伝達回路とに分岐する電圧分岐部と、
第1伝達回路に設けられるm個[ただし、mは正の整数]の第1誘電体群と、
第2伝達回路に設けられるn個[ただし、nは正の整数]の第2誘電体群とを含み、
第1誘電体群に含まれるi番目[ただし、iは正の整数かつi≦m]の誘電体の誘電率をε1i、透磁率をμ1i、第1伝達回路が延びる方向の長さをL1iとし、
第1伝達回路の第1誘電体群が設けられていない部分の誘電率をε10、透磁率をμ10、第1伝達回路が延びる方向の長さをL10とし、
第2誘電体群に含まれるj番目[ただし、jは正の整数かつj≦n]の誘電体の誘電率をε2j、透磁率をμ2j、第2伝達回路が延びる方向の長さをL2jとし、
第2伝達回路の第2誘電体群が設けられていない部分の誘電率をε20、透磁率をμ20、第2伝達回路が延びる方向の長さをL20とし、
交番電圧の周波数をfとし、
第1印加電極に印加される交番電圧の位相をθ1、第2印加電極に印加される交番電圧の位相をθ2とするとき、
以下の式が満足されるように、第1および第2印加電極に交番電圧が印加されることを特徴とする請求項1または2記載のプラズマ処理装置。
Figure 2007026781
A voltage branching section for branching an alternating voltage output from the power source into a first transmission circuit connected to the first application electrode and a second transmission circuit connected to the second application electrode;
M [where m is a positive integer] first dielectric group provided in the first transmission circuit;
And n [where n is a positive integer] second dielectric group provided in the second transmission circuit,
The dielectric constant of the i-th dielectric material (where i is a positive integer and i ≦ m) included in the first dielectric group is ε1i, the magnetic permeability is μ1i, and the length in the direction in which the first transmission circuit extends is L1i. ,
The dielectric constant of the portion where the first dielectric group of the first transmission circuit is not provided is ε10, the magnetic permeability is μ10, the length in the direction in which the first transmission circuit extends is L10,
The dielectric constant of the jth [j is a positive integer and j ≦ n] dielectric included in the second dielectric group is ε2j, the magnetic permeability is μ2j, and the length in the direction in which the second transmission circuit extends is L2j. ,
The dielectric constant of the portion where the second dielectric group of the second transmission circuit is not provided is ε20, the magnetic permeability is μ20, and the length in the direction in which the second transmission circuit extends is L20,
Let f be the frequency of the alternating voltage,
When the phase of the alternating voltage applied to the first application electrode is θ1, and the phase of the alternating voltage applied to the second application electrode is θ2,
3. The plasma processing apparatus according to claim 1, wherein an alternating voltage is applied to the first and second application electrodes so that the following expression is satisfied.
Figure 2007026781
JP2005204781A 2005-07-13 2005-07-13 Plasma treatment device Pending JP2007026781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005204781A JP2007026781A (en) 2005-07-13 2005-07-13 Plasma treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005204781A JP2007026781A (en) 2005-07-13 2005-07-13 Plasma treatment device

Publications (1)

Publication Number Publication Date
JP2007026781A true JP2007026781A (en) 2007-02-01

Family

ID=37787313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005204781A Pending JP2007026781A (en) 2005-07-13 2005-07-13 Plasma treatment device

Country Status (1)

Country Link
JP (1) JP2007026781A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010039883A2 (en) * 2008-09-30 2010-04-08 Applied Materials, Inc. Multi-electrode pecvd source
CN103681196A (en) * 2012-09-26 2014-03-26 株式会社东芝 Plasma processing apparatus and plasma processing method
US20140216343A1 (en) 2008-08-04 2014-08-07 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US9721765B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US9721764B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Method of producing plasma by multiple-phase alternating or pulsed electrical current
US10242846B2 (en) 2015-12-18 2019-03-26 Agc Flat Glass North America, Inc. Hollow cathode ion source
US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
US10586685B2 (en) 2014-12-05 2020-03-10 Agc Glass Europe Hollow cathode plasma source
US10755901B2 (en) 2014-12-05 2020-08-25 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02177429A (en) * 1988-09-15 1990-07-10 Lam Res Corp Phase-splitting drive of plasma etching system
JPH08327959A (en) * 1994-06-30 1996-12-13 Seiko Epson Corp Treating device for wafer and substrate and treatment method therefor and transfer device for wafer and substrate
JP2000306848A (en) * 1999-04-22 2000-11-02 Sharp Corp Method and device for surface-treating sample using plasma
JP2001334147A (en) * 2000-05-26 2001-12-04 Matsushita Electric Works Ltd Device and method for plasma treatment
JP2002184599A (en) * 2000-12-19 2002-06-28 Tokyo Electron Ltd Plasma device
JP2003273602A (en) * 2001-12-11 2003-09-26 Matsushita Electric Ind Co Ltd Phase adjusting method and apparatus, element separating and combining method and apparatus, and plasma processing apparatus
JP2004153071A (en) * 2002-10-31 2004-05-27 Mitsubishi Heavy Ind Ltd Method and apparatus for plasma chemical vapor deposition
JP2004193462A (en) * 2002-12-13 2004-07-08 Canon Inc Plasma processing method
JP2004259484A (en) * 2003-02-24 2004-09-16 Sharp Corp Plasma processing unit
JP2004311116A (en) * 2003-04-03 2004-11-04 Matsushita Electric Works Ltd Plasma processing method and plasma processing device
JP2005026062A (en) * 2003-07-02 2005-01-27 Sharp Corp Plasma process device
JP2006244835A (en) * 2005-03-02 2006-09-14 Matsushita Electric Works Ltd Plasma processing device and plasma processing method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02177429A (en) * 1988-09-15 1990-07-10 Lam Res Corp Phase-splitting drive of plasma etching system
JPH08327959A (en) * 1994-06-30 1996-12-13 Seiko Epson Corp Treating device for wafer and substrate and treatment method therefor and transfer device for wafer and substrate
JP2000306848A (en) * 1999-04-22 2000-11-02 Sharp Corp Method and device for surface-treating sample using plasma
JP2001334147A (en) * 2000-05-26 2001-12-04 Matsushita Electric Works Ltd Device and method for plasma treatment
JP2002184599A (en) * 2000-12-19 2002-06-28 Tokyo Electron Ltd Plasma device
JP2003273602A (en) * 2001-12-11 2003-09-26 Matsushita Electric Ind Co Ltd Phase adjusting method and apparatus, element separating and combining method and apparatus, and plasma processing apparatus
JP2004153071A (en) * 2002-10-31 2004-05-27 Mitsubishi Heavy Ind Ltd Method and apparatus for plasma chemical vapor deposition
JP2004193462A (en) * 2002-12-13 2004-07-08 Canon Inc Plasma processing method
JP2004259484A (en) * 2003-02-24 2004-09-16 Sharp Corp Plasma processing unit
JP2004311116A (en) * 2003-04-03 2004-11-04 Matsushita Electric Works Ltd Plasma processing method and plasma processing device
JP2005026062A (en) * 2003-07-02 2005-01-27 Sharp Corp Plasma process device
JP2006244835A (en) * 2005-03-02 2006-09-14 Matsushita Electric Works Ltd Plasma processing device and plasma processing method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006773A (en) * 2008-08-04 2016-01-14 エージーシー フラット グラス ノース アメリカ,インコーポレイテッドAgc Flat Glass North America,Inc. Plasma source and method for depositing thin film coating using plasma enhanced chemical vapor deposition
US20150002021A1 (en) 2008-08-04 2015-01-01 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US10580625B2 (en) 2008-08-04 2020-03-03 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US10438778B2 (en) 2008-08-04 2019-10-08 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US10580624B2 (en) 2008-08-04 2020-03-03 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US20150004330A1 (en) 2008-08-04 2015-01-01 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US9478401B2 (en) 2008-08-04 2016-10-25 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US20140216343A1 (en) 2008-08-04 2014-08-07 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
WO2010039883A3 (en) * 2008-09-30 2010-07-08 Applied Materials, Inc. Multi-electrode pecvd source
WO2010039883A2 (en) * 2008-09-30 2010-04-08 Applied Materials, Inc. Multi-electrode pecvd source
US8438990B2 (en) 2008-09-30 2013-05-14 Applied Materials, Inc. Multi-electrode PECVD source
KR101497234B1 (en) 2012-09-26 2015-02-27 가부시끼가이샤 도시바 Plasma processing apparatus and plasma processing method
CN103681196A (en) * 2012-09-26 2014-03-26 株式会社东芝 Plasma processing apparatus and plasma processing method
US11875976B2 (en) 2014-12-05 2024-01-16 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
US10755901B2 (en) 2014-12-05 2020-08-25 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
US10586685B2 (en) 2014-12-05 2020-03-10 Agc Glass Europe Hollow cathode plasma source
US9721765B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US10559452B2 (en) 2015-11-16 2020-02-11 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US20170309458A1 (en) 2015-11-16 2017-10-26 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US9721764B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Method of producing plasma by multiple-phase alternating or pulsed electrical current
US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
US10242846B2 (en) 2015-12-18 2019-03-26 Agc Flat Glass North America, Inc. Hollow cathode ion source

Similar Documents

Publication Publication Date Title
JP2007026781A (en) Plasma treatment device
KR100494607B1 (en) Plasma processing apparatus
US6949165B2 (en) Plasma processing apparatus
EP2299789A1 (en) Plasma generating apparatus and plasma processing apparatus
US5162633A (en) Microwave-excited plasma processing apparatus
KR102042576B1 (en) Plasma processing apparatus and plasma processing method
US20160091534A1 (en) Current sensor
CN103187234A (en) Adjustable constraint device used for plasma processing device
JPWO2006120904A1 (en) Surface wave excitation plasma processing equipment
US20100194278A1 (en) Flow manipulation with micro plasma
JPH05211100A (en) Apparatus for thin-film process use for treatment of large-area substrate
Jung et al. On the plasma uniformity of multi-electrode CCPs for large-area processing
JP6373707B2 (en) Plasma processing equipment
JP2003109908A5 (en) Plasma processing apparatus and plasma processing method
KR950034507A (en) Helicon plasma processing method and device
CN105828512A (en) Plasma processing device
JP4600928B2 (en) Microwave directional coupler, plasma generator, and plasma processing apparatus
JP4643387B2 (en) Plasma processing equipment
KR101585891B1 (en) Compound plasma reactor
KR100785960B1 (en) Plasma processing apparatus
JP4069417B2 (en) Surface treatment apparatus and surface treatment method
WO2020116244A1 (en) Plasma processing apparatus
He et al. Measurement of yield and spectrum of secondary electron emission and their characteristics under modification of conductive materials
KR20110121790A (en) Plasma generation apparatus and transformer
JPH08316212A (en) Plasma treatment method and plasma treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713