JP2007024742A - Enzyme immunoassay method and enzyme immunosensor for the same - Google Patents

Enzyme immunoassay method and enzyme immunosensor for the same Download PDF

Info

Publication number
JP2007024742A
JP2007024742A JP2005209598A JP2005209598A JP2007024742A JP 2007024742 A JP2007024742 A JP 2007024742A JP 2005209598 A JP2005209598 A JP 2005209598A JP 2005209598 A JP2005209598 A JP 2005209598A JP 2007024742 A JP2007024742 A JP 2007024742A
Authority
JP
Japan
Prior art keywords
enzyme
region
antibody
reaction product
enzyme reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005209598A
Other languages
Japanese (ja)
Other versions
JP4581128B2 (en
Inventor
Ryoji Kurita
僚二 栗田
Osamu Niwa
修 丹羽
Fumio Mizutani
文雄 水谷
Midori Sato
緑 佐藤
Yasuhiro Mie
安弘 三重
Hisashi Hirano
悠 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005209598A priority Critical patent/JP4581128B2/en
Publication of JP2007024742A publication Critical patent/JP2007024742A/en
Application granted granted Critical
Publication of JP4581128B2 publication Critical patent/JP4581128B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an enzyme immunoassay method capable of speedily, highly sensitively, and easily measuring even a very small amount of molecules present in a living body with a satisfactory S/N ratio and without a part to be detected affected by the effects of nonspecific adsorption or having to use a sandwich method and provide an enzyme immunosensor for the same. <P>SOLUTION: The enzyme immunosensor is provided with both an antibody capture region in which a substance to be tested is immobilized in a channel and an enzyme reaction product measuring region capable of detecting enzyme reaction products of a labeling enzyme. A sample liquid containing the substance to be tested and an anti-substance-to-be-tested antibody labelled with the labelling enzyme is made to flow through the antibody capture region to capture an unreacted antibody in the antibody capture region. A substrate solution containing a substrate of the labelling enzyme is made to flow through the antibody capture region to induce enzyme reaction by the labelling enzyme, and products of the enzyme reaction are brought into contact with the enzyme reaction product measuring region and measured. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、酵素免疫測定方法及びそれに用いられる酵素免疫センサに関する。   The present invention relates to an enzyme immunoassay method and an enzyme immunosensor used therefor.

従来、生体中のペプチド類を高感度かつ選択的に測定することが盛んに行われている。これまでは、これらペプチドに対する抗体の分子認識能力を利用した免疫測定法が行われてきた。しかしながら、生体試料中には脳性ナトリウム利尿ペプチド(BNP、血液中で10 pg/mL程度)や、心房性ナトリウム利尿ペプチド(ANP)、インシュリン、サブスタンスPなど極めて低濃度でのみ存在する重要なペプチド類があり、これまで汎用的に用いられてきた酵素免疫測定法を用いてこれら極低濃度ペプチドを定量することは感度的に困難である。酵素免疫測定法の中でもサンドイッチ法によれば、より高感度な測定が可能であることが知られているが、同一抗原上で異なるエピトープを認識する2つのモノクローナル抗体を準備する必要があるため応用範囲は限られており、特に目的分子が小さい場合にはサンドイッチ法を適用することが困難であった。一方、ラジオ免疫測定法は極めて高感度な定量が可能であるものの、放射性同位元素を用いるため安全性に問題があり、ベッドサイド或いは在宅での測定は困難であった。このため、例えば心疾患患者などの一刻を争う臨床現場においては、心疾患のマーカー分子をベッドサイドなどで迅速・簡便に測定する新規なセンサが必要とされている。   Conventionally, highly sensitive and selective measurement of peptides in a living body has been actively performed. Until now, immunoassay methods utilizing the molecular recognition ability of antibodies against these peptides have been performed. However, important peptides such as brain natriuretic peptide (BNP, about 10 pg / mL in blood), atrial natriuretic peptide (ANP), insulin, substance P, etc. present in biological samples only at very low concentrations It is difficult to quantitate these extremely low-concentration peptides using enzyme immunoassay methods that have been widely used so far. Among the enzyme immunoassays, the sandwich method is known to be capable of more sensitive measurement, but it is necessary to prepare two monoclonal antibodies that recognize different epitopes on the same antigen. The range was limited, and it was difficult to apply the sandwich method especially when the target molecule was small. On the other hand, although the radioimmunoassay method is capable of extremely high-sensitivity quantification, there is a problem in safety due to the use of radioisotopes, and measurement at the bedside or at home is difficult. For this reason, for example, in a clinical setting where patients with heart disease are competing for a moment, a novel sensor for quickly and easily measuring a marker molecule for heart disease at the bedside or the like is required.

現在、迅速・簡便な免疫測定法としては、一般的にイムノクロマトグラフィ法が良く用いられ、各社から市販されている(例えば、特許文献1など)。しかしながら、一般的にイムノクロマトグラフィ法の検出下限界は数ng/mL程度であり、測定対象は比較的高濃度に存在する分子に限られている。   Currently, immunochromatography is commonly used as a rapid and simple immunoassay and is commercially available from various companies (for example, Patent Document 1). However, generally, the lower limit of detection of the immunochromatography method is about several ng / mL, and the measurement object is limited to molecules present at a relatively high concentration.

一方、近年、ガラスやシリコンなどの上に分析システムを微小化、集積化する試みが盛んに行われており、操作の簡便化、自動化や分析時間の短縮などに有効であると考えられている。免疫測定法に関してもこれまでバルクで行われてきた手法を微小流路を用いて行うことにより、迅速で簡便な検出が可能になると考えられ、いくつかの報告例がある(例えば特許文献2及び特許文献3)。   On the other hand, in recent years, attempts to miniaturize and integrate an analysis system on glass, silicon, etc. have been actively carried out, and it is considered effective for simplification of operation, automation, and shortening of analysis time. . Regarding the immunoassay method, it is considered that rapid and simple detection can be performed by performing a technique that has been conventionally performed in bulk using a microchannel, and there are some reports (for example, Patent Document 2 and Patent Document 3).

特開平5−133956号公報JP-A-5-133958 特開2003−114229号公報JP 2003-114229 A 特開2001−4628号公報JP 2001-4628 A W.C. Tang, D.P. Bame, T.K. Tang, Sensors and Actuators 83_2000.188193, I. ChakrabortyW.C.Tang, D.P.Bame, T.K.Tang, Sensors and Actuators 83_2000.188193, I. Chakraborty

現在、一般的なイムノクロマトグラフィ法では簡便かつ短時間に測定を行うことが可能であるものの、試料送液は毛細管現象を利用して行っているため、任意の流速に定めることが困難であり、定量性及び検出限界に乏しいという課題がある。比較的高感度な蛍光標識抗体とその蛍光検出においても、対象試料が展開される多孔質は一般的に透明性が低く、光の散乱が激しいこともイムノクロマトグラフィ法の定量性を乏しくしている。一方、これまで報告されている微小流路を用いた免疫測定法により微量生体分子の検出例が報告されているものの、微少量で十分な感度を得るために流路内でサンドイッチイムノアッセイを行い、さらに金コロイド等を標識した二次抗体を用いている。このために、測定対象分子はサンドイッチイムノアッセイが可能な比較的大きな分子に限られてしまうことや、チップ上に多数の微小流路を集積化し、反応と洗浄を複数回繰り返す必要があるため、複雑な送液手順を必要とするなどの問題点を残している。また、検出部分に試料溶液を直接導入した場合、非特異吸着の影響が非常に大きく、再現性に乏しいためS/N比向上が課題となっている。   At present, although it is possible to perform measurement easily and in a short time with a general immunochromatography method, since the sample feeding is performed using the capillary phenomenon, it is difficult to determine an arbitrary flow rate, There is a problem that the quantitativeness and the detection limit are poor. Even in relatively sensitive fluorescence-labeled antibodies and their fluorescence detection, the porous in which the target sample is developed is generally low in transparency, and the light scattering is severe, and the quantitativeness of the immunochromatography method is poor. . On the other hand, although detection examples of trace biomolecules have been reported by immunoassay methods using microchannels that have been reported so far, sandwich immunoassay is performed in the channel to obtain sufficient sensitivity in very small amounts, Further, a secondary antibody labeled with colloidal gold or the like is used. For this reason, the molecules to be measured are limited to relatively large molecules capable of sandwich immunoassay, and it is necessary to integrate a large number of microchannels on the chip and repeat the reaction and washing multiple times. The problem of requiring a simple liquid feeding procedure remains. In addition, when the sample solution is directly introduced into the detection portion, the influence of non-specific adsorption is very large and the reproducibility is poor, so that the improvement of the S / N ratio is a problem.

本発明の目的は、これまで報告されてきたイムノクロマトグラフィ法や微小流路を有する免疫測定法における感度や非特異吸着の影響、測定時間並びに測定操作の煩雑さの問題点に鑑み、生体内に極微量で存在する分子においても、検出部分が非特異吸着の影響を受けずにS/N比良く、迅速、高感度かつ簡便に測定可能な、サンドイッチ法によらない酵素免疫測定方法及びそのための酵素免疫センサを提供することである。   The object of the present invention is in view of the problems of sensitivity, influence of nonspecific adsorption, measurement time, and complexity of measurement operation in the immunochromatography method and immunoassay method having a microchannel that have been reported so far. Enzyme immunoassay method not based on the sandwich method, which can be measured quickly, highly sensitively and easily with a good S / N ratio without affecting the nonspecific adsorption even in molecules present in extremely small amounts, and for the same It is to provide an enzyme immunosensor.

本願発明者らは、鋭意研究の結果、流路内に被検物質を不動化した抗体捕捉領域と、標識酵素の酵素反応生成物を検出可能な酵素反応生成物測定領域を設け、被検物質と、酵素標識した抗被検物質抗体とを含む試料液を、抗体捕捉領域に流通させて未反応の抗体を抗体捕捉領域に捕捉し、次いで、標識酵素の基質を含む基質液を抗体捕捉領域に流通させて標識酵素による酵素反応を行なわせた後、その酵素反応生成物を酵素反応生成物測定領域と接触させて該酵素反応生成物を測定することにより、サンドイッチ法を用いることなく、生体内に極微量で存在する分子においても、検出部分が非特異吸着の影響を受けずにS/N比良く、迅速、高感度かつ簡便に測定することが可能であることを見出し本発明を完成した。   As a result of earnest research, the inventors of the present application provided an antibody capture region in which the test substance is immobilized in the flow path, and an enzyme reaction product measurement region capable of detecting the enzyme reaction product of the labeled enzyme. And a sample solution containing the enzyme-labeled anti-test substance antibody is circulated in the antibody capture region to capture unreacted antibody in the antibody capture region, and then the substrate solution containing the labeled enzyme substrate is captured in the antibody capture region. The enzyme reaction product is made to contact the enzyme reaction product measurement region and the enzyme reaction product is measured without using the sandwich method. The present invention was completed by finding that even a very small amount of molecules in the body can be measured quickly, highly sensitively and easily with a good S / N ratio without being influenced by non-specific adsorption. did.

すなわち、本発明は、流路が設けられた基板と、該流路内に設けられ、被検物質に対する抗体と抗原抗体反応する抗体捕捉物質を不動化した抗体捕捉領域と、前記流路内の前記抗体捕捉領域以外の領域に設けられた酵素反応生成物測定領域とを具備する酵素免疫センサを用い、前記被検物質と、該被検物質と抗原抗体反応する、酵素標識した抗体又はその抗原結合性断片とを含む試料液を前記抗体捕捉領域に流通させて未反応の前記抗体又はその抗原結合性断片を前記抗体捕捉領域に捕捉し、次いで、前記標識酵素の基質を含む基質液を前記抗体捕捉領域に流通させて前記標識酵素による酵素反応を行なわせた後、その酵素反応生成物の少なくとも一部を前記酵素反応生成物測定領域と接触させて該酵素反応生成物を測定することを含む、前記被検物質の酵素免疫測定方法を提供する。また、本発明は、流路が設けられた基板と、該流路内に設けられ、被検物質に対する抗体と抗原抗体反応する抗体捕捉物質を不動化した抗体捕捉領域と、前記流路内の前記抗体捕捉領域以外の領域に設けられた酵素反応生成物測定領域とを具備する、上記本発明の酵素免疫測定方法を行なうための酵素免疫センサを提供する。   That is, the present invention includes a substrate provided with a flow path, an antibody capture region provided in the flow path and immobilizing an antibody capture substance that undergoes an antigen-antibody reaction with an antibody against a test substance, Using an enzyme immunosensor having an enzyme reaction product measurement region provided in a region other than the antibody capture region, an enzyme-labeled antibody or antigen thereof that reacts with the test substance and the test substance with an antigen antibody A sample solution containing a binding fragment is allowed to flow through the antibody capture region to capture the unreacted antibody or antigen-binding fragment thereof in the antibody capture region, and then a substrate solution containing a substrate for the labeling enzyme is Flowing an antibody capture region and performing an enzyme reaction with the labeled enzyme, and then contacting at least a part of the enzyme reaction product with the enzyme reaction product measurement region to measure the enzyme reaction product. Including, before Providing an enzyme immunoassay of a test substance. The present invention also provides a substrate provided with a flow path, an antibody capture region provided in the flow path and immobilizing an antibody capture substance that undergoes an antigen-antibody reaction with an antibody against a test substance, There is provided an enzyme immunosensor for performing the enzyme immunoassay method of the present invention, comprising an enzyme reaction product measurement region provided in a region other than the antibody capture region.

本発明の酵素免疫測定方法によれば、サンドイッチ法を用いることなく、生体内に極微量で存在する分子においても、検出部分が非特異吸着の影響を受けずにS/N比良く、迅速、高感度かつ簡便に測定することが可能である。また、本発明の免疫測定方法は、酵素免疫測定方法であるので、危険で大掛かりな装置が必要で取扱いが不便な放射標識を用いない。したがって、本発明の方法は、ベッドサイドや患者の自宅等でも容易に行なうことができ、各種疾患の診断やそれに基づく治療に大いに貢献するものと期待される。   According to the enzyme immunoassay method of the present invention, without using the sandwich method, even in a molecule present in a very small amount in a living body, the detection portion is not affected by non-specific adsorption, has a good S / N ratio, is rapid, High sensitivity and simple measurement are possible. In addition, since the immunoassay method of the present invention is an enzyme immunoassay method, it does not use a radiolabel that requires a dangerous and large-scale apparatus and is inconvenient to handle. Therefore, the method of the present invention can be easily performed at the bedside, the patient's home, and the like, and is expected to greatly contribute to the diagnosis and treatment based on various diseases.

上記の通り、本発明の酵素免疫測定方法では、流路が設けられた基板と、該流路内に設けられ、被検物質に対する抗体と抗原抗体反応する抗体捕捉物質を不動化した抗体捕捉領域と、前記流路内の前記抗体捕捉領域以外の領域に設けられた酵素反応生成物測定領域とを具備する酵素免疫センサを用いる。以下、先ず、この酵素免疫センサについて説明する。   As described above, in the enzyme immunoassay method of the present invention, a substrate provided with a flow path, and an antibody capture region provided in the flow path and immobilizing an antibody capture substance that reacts with an antibody against a test substance with an antigen antibody. And an enzyme immunosensor comprising an enzyme reaction product measurement region provided in a region other than the antibody capture region in the channel. Hereinafter, this enzyme immunosensor will be described first.

本発明の酵素免疫測定方法に用いられる酵素免疫センサの基板は、液体が流通する流路を有する。流路は、基板の表面に設けられた溝状のものが好ましいが、これに限定されるものではなく、例えば、後述する試料液や基質液の供給や排出を行なう位置以外の部分を被覆したトンネル状のものとすることも可能である。基板は、単一の部材から構成されていてもよいが、流路になる部分を貫通孔とした上部シートと、単なる板状の下部基板とを貼り合せて基板としてもよい。この場合には下部基板が流路の底面を構成する。基板を構成する材料は、被検物質を非特異吸着しない材料であれば何ら限定されるものではなく、各種合成樹脂、合成ゴム、ガラス等を利用することができる。下記実施例では、流路を貫通孔としたシリコーンゴムシート(上部シート)と、ガラス板(下部基板)とを貼り合せて基板を構成しているが、もちろんこれに限定されるものではない。なお、基板は可撓性のある材料で形成してもよい。   The substrate of the enzyme immunosensor used in the enzyme immunoassay method of the present invention has a flow path through which a liquid flows. The channel is preferably a groove provided on the surface of the substrate, but is not limited to this. For example, a portion other than a position where sample liquid or substrate liquid described later is supplied or discharged is covered. It can also be a tunnel. The substrate may be composed of a single member, but an upper sheet having a through hole as a flow path portion and a simple plate-like lower substrate may be bonded to form a substrate. In this case, the lower substrate constitutes the bottom surface of the flow path. The material constituting the substrate is not limited as long as the material does not non-specifically adsorb the test substance, and various synthetic resins, synthetic rubbers, glass, and the like can be used. In the following example, a silicon rubber sheet (upper sheet) having a flow path as a through hole and a glass plate (lower substrate) are bonded together to form a substrate. However, the present invention is not limited to this. Note that the substrate may be formed of a flexible material.

流路は、分岐を1つ有する形状(例えばT字形)や、分岐を有さない形状(例えば直線状)が好ましい。流路の形状については、後で図面を参照して詳しく説明する。流路のサイズは特に限定されないが、あまりに大きいと試料液や基質液が多量に必要となって不利であり、また、あまりに小さいと液が流通しにくくなるので、流路の幅は、通常、50μmないし3mm程度、好ましくは500μmないし2m程度、流路の深さは通常20μmないし500μm程度、好ましくは100μmないし200μm程度である。流路の長さは特に限定されないが、分岐のない1本の流路の場合、通常、10mm〜100mm程度、好ましくは10mm〜40mm程度である。   The channel preferably has a shape having one branch (for example, a T shape) or a shape having no branch (for example, a straight shape). The shape of the flow path will be described in detail later with reference to the drawings. The size of the flow path is not particularly limited, but if it is too large, a large amount of sample solution or substrate liquid is required, which is disadvantageous, and if it is too small, the liquid is difficult to circulate. About 50 μm to 3 mm, preferably about 500 μm to 2 m, and the depth of the channel is usually about 20 μm to 500 μm, preferably about 100 μm to 200 μm. The length of the flow path is not particularly limited, but in the case of a single flow path without branching, it is usually about 10 mm to 100 mm, preferably about 10 mm to 40 mm.

流路内には、被検物質に対する抗体と抗原抗体反応する抗体捕捉物質を不動化した抗体捕捉領域が設けられている。ここで、被検物質は、本発明の酵素免疫測定方法により測定すべき物質であり、抗原として抗原抗体反応し得るものであれば何ら限定されず、生体に投与された際に免疫応答を誘起する抗原のみならず、それ自体免疫応答は誘起しないが抗体とは抗原抗体反応するハプテンも包含される。被検物質としては、生体内、好ましくは血液や尿等の体液中に含まれる各種ペプチド類、タンパク質、多糖類、ポリヌクレオチド等の生体関連物質であるがこれらに限定されるものではなく、飲食品や環境水等、生体以外に含まれるものであってもよい。本発明の方法は、測定感度が高いので、被検物質が、試料中に微量にしか含まれない物質、例えば利尿ペプチド類、特に脳性ナトリウム利尿ペプチド(BNP)等である場合に威力を発揮する。抗体捕捉領域には、このような被検物質に対する抗体と抗原抗体反応する抗体捕捉物質が不動化される。抗体捕捉領域には、好ましくは、被検物質自体が抗体捕捉物質として不動化されるが、被検物質に対する抗体と交差反応する、被検物質の誘導体等を抗体捕捉物質として不動化してもよい。正確な測定のために、抗体捕捉領域には、後述する試料液に含まれる抗体又はその抗原結合性断片の全量を抗原抗体反応により捕捉できる過剰量の抗体捕捉物質を不動化することが好ましい。好ましくは、試料液に含まれる抗体又はその抗原結合性断片のモル数の10〜100倍程度の抗体捕捉物質が不動化される。   An antibody capture region in which an antibody capture substance that undergoes an antigen-antibody reaction with an antibody against a test substance is immobilized in the flow path. Here, the test substance is a substance to be measured by the enzyme immunoassay method of the present invention, and is not limited as long as it can undergo an antigen-antibody reaction as an antigen, and induces an immune response when administered to a living body. It also includes haptens that do not elicit an immune response per se but react with the antibody antigen-antibody. The test substance is a biological substance such as various peptides, proteins, polysaccharides, and polynucleotides contained in a living body, preferably in body fluids such as blood and urine, but is not limited thereto. It may be contained other than living organisms, such as goods and environmental water. Since the method of the present invention has high measurement sensitivity, it is effective when the test substance is a substance contained only in a trace amount in the sample, such as diuretic peptides, particularly brain natriuretic peptide (BNP). . In the antibody capture region, an antibody capture substance that undergoes an antigen-antibody reaction with an antibody against such a test substance is immobilized. Preferably, the test substance itself is immobilized as an antibody capture substance in the antibody capture region, but a derivative of the test substance that cross-reacts with an antibody against the test substance may be immobilized as the antibody capture substance. . For accurate measurement, it is preferable to immobilize an excessive amount of an antibody capture substance capable of capturing the whole amount of an antibody or an antigen-binding fragment thereof contained in a sample solution described later by an antigen-antibody reaction in the antibody capture region. Preferably, about 10 to 100 times the number of moles of the antibody or antigen-binding fragment thereof contained in the sample solution is immobilized.

抗体捕捉領域は、流路の底面のみに形成してもよいし、底面と側壁の両方又は側壁のみに形成してもよいが、試料液や基質液との接触を十分確保するために少なくとも底面の全面に形成することが好ましい。基板を上記のように上部シートと下部基板を貼り合わせて形成する場合には、下部基板の表面に部分的に形成するのが製造上便利である。抗体捕捉領域の長さは、このような過剰量の抗体捕捉物質が不動化できるサイズであれば特に限定されないが、通常、1mm〜20mm程度、好ましくは5mm〜10mm程度である。   The antibody capture region may be formed only on the bottom surface of the flow path, or may be formed on both the bottom surface and the side wall or only on the side wall, but at least the bottom surface in order to ensure sufficient contact with the sample solution and the substrate solution. Preferably, it is formed on the entire surface. When the substrate is formed by bonding the upper sheet and the lower substrate as described above, it is convenient for manufacturing to partially form the surface of the lower substrate. The length of the antibody capture region is not particularly limited as long as such an excessive amount of the antibody capture substance can be immobilized, but is usually about 1 mm to 20 mm, preferably about 5 mm to 10 mm.

上記した抗体捕捉物質の抗体捕捉領域への不動化は、常法により行なうことができる。例えば、流路内の一領域にスパッタリングや蒸着等により金層を形成し、これにシステアミンを反応させることにより金層にアミノ基を結合させ、これにカルボジイミドのような結合試薬を用いてペプチド類等の被検物質のカルボキシル基を結合させることができる。あるいは、合成樹脂にアミノ基を共有結合させたものや、リジンで被覆した領域に同様にして抗体捕捉物質を結合させることも可能である。また、抗体捕捉物質を物理吸着させることも可能である。   Immobilization of the above-described antibody capture substance to the antibody capture region can be performed by a conventional method. For example, a gold layer is formed in one region in the flow path by sputtering, vapor deposition, etc., and cysteamine is reacted therewith to bond an amino group to the gold layer, and then a peptide using a binding reagent such as carbodiimide. The carboxyl group of the test substance such as can be bound. Alternatively, it is also possible to bind the antibody capture substance in the same manner to a synthetic resin obtained by covalently bonding an amino group or a region coated with lysine. It is also possible to physically adsorb the antibody capture substance.

流路内には、上記抗体捕捉領域以外の領域に、酵素反応生成物測定領域が設けられている。酵素反応生成物測定領域は、後述する、試料液に添加される抗体又はその抗原結合性断片の標識に用いられる標識酵素による酵素反応の反応生成物を検出する領域である。このため、その構成は用いる標識酵素の種類により異なる。   In the flow path, an enzyme reaction product measurement region is provided in a region other than the antibody capture region. The enzyme reaction product measurement region is a region for detecting a reaction product of an enzyme reaction with a labeling enzyme used for labeling an antibody or antigen-binding fragment thereof added to a sample solution, which will be described later. For this reason, the structure changes with kinds of labeling enzyme to be used.

本発明の酵素免疫測定方法の好ましい態様では、標識酵素として、チオール化合物を生成するアシルチオコリンエステラーゼ等が用いられるが、この場合には、酵素反応生成物測定領域として、金薄層を好ましく用いることができる。チオール化合物は、そのSH基が金に結合することが知られており、その結合反応を表面プラズモン共鳴(Surface Plasmon Resonance: SPR)角の測定によりリアルタイムで測定することができる。SPRにより金層への酵素反応生成物の結合を測定する場合には、酵素反応生成物測定領域は、流路内に設けられた単なる金薄層であってよい。SPR測定による場合、金薄層からのエバネッセント波の染みだしが必要なため、金層の厚さは200nm以下が好ましい。金層の厚さの下限は特にないが、通常、50nm程度が適している。また、酵素反応生成物測定領域を金薄層により構成し、金薄層の質量変化を水晶振動子マイクロバランスにより測定して酵素反応生成物を測定することも可能である。なお、本明細書において、「測定」には定量、半定量及び検出のいずれもが包含される。酵素反応生成物測定領域を金薄層としてSPRにより測定する場合、その金薄層のサイズは特に限定されないが、測定を容易にするために、流路の幅よりも大きな径の領域とすることが好ましく、例えば、直径1mm〜5mm程度の円形等とすることができる。あるいは、酵素反応生成物測定領域を金層で構成し、金層に電圧をかけることにより、金に結合したチオール化合物を還元脱離させ、その際の還元電流を測定することによってもチオール化合物を測定することができる。この場合は、例えば、チオール化合物が結合する金層を作用電極とし、他に流路内に対向電極及び好ましくはさらに参照電極となる金属層をそれぞれ流路内に形成して電気化学セルを形成し、各電極をポテンショスタットに接続して作用電極の還元電流を測定することができる。電気化学セルにより還元電流を測定する際には、送液を停止することが好ましい。具体的な方法については後述する。また、測定時には流路に水酸化カリウム溶液のようなアルカリ液を満たして各電極を該アルカリ液に浸漬した状態で還元電流を測定することが好ましい。   In a preferred embodiment of the enzyme immunoassay method of the present invention, acylthiocholinesterase or the like that generates a thiol compound is used as the labeling enzyme. In this case, a gold thin layer is preferably used as the enzyme reaction product measurement region. Can do. The thiol compound is known to have its SH group bonded to gold, and the binding reaction can be measured in real time by measuring the surface plasmon resonance (SPR) angle. When the binding of the enzyme reaction product to the gold layer is measured by SPR, the enzyme reaction product measurement region may be a simple gold thin layer provided in the flow path. In the case of SPR measurement, since the evanescent wave oozes out from the thin gold layer, the thickness of the gold layer is preferably 200 nm or less. There is no particular lower limit on the thickness of the gold layer, but usually about 50 nm is suitable. It is also possible to measure the enzyme reaction product by configuring the enzyme reaction product measurement region with a thin gold layer and measuring the change in mass of the thin gold layer with a quartz crystal microbalance. In the present specification, “measurement” includes any of quantitative, semi-quantitative and detection. When the enzyme reaction product measurement area is measured by SPR as a thin gold layer, the size of the thin gold layer is not particularly limited, but in order to facilitate measurement, the area should be larger than the width of the channel. For example, it may be a circle having a diameter of about 1 mm to 5 mm. Alternatively, the enzyme reaction product measurement region is composed of a gold layer, and a voltage is applied to the gold layer to reduce and desorb the thiol compound bound to gold, and the thiol compound is also measured by measuring the reduction current at that time. Can be measured. In this case, for example, a gold layer to which a thiol compound is bonded is used as a working electrode, and a counter electrode and preferably further a metal layer serving as a reference electrode is formed in the flow channel in the flow channel to form an electrochemical cell. Then, each electrode can be connected to a potentiostat to measure the reduction current of the working electrode. When measuring the reduction current with an electrochemical cell, it is preferable to stop the liquid feeding. A specific method will be described later. At the time of measurement, it is preferable to measure the reduction current in a state where the flow path is filled with an alkaline solution such as a potassium hydroxide solution and each electrode is immersed in the alkaline solution.

あるいは、標識酵素として、各種オキシダーゼ等の、過酸化水素を生成する反応を触媒する酵素を用い、生成する過酸化水素を酵素反応生成物測定領域において測定することもできる。この場合、酵素反応生成物測定領域としては、過酸化水素測定電極を好ましく採用することができる。過酸化水素測定電極自体は周知である。この場合も、流路内に作用電極及び対向電極、好ましくはさらに参照電極を形成して電気化学セルを構成し、各電極をポテンショスタットに接続して溶液中の過酸化水素を測定することができる。あるいは、過酸化水素測定電極は、過酸化水素により直接的又は間接的に酸化される物質が結合された金属で構成することもできる。この場合、該電極に電圧を印加して、過酸化水素により酸化された前記物質を還元し、その際の還元電流を測定することにより過酸化水素を測定する。過酸化水素により直接的又は間接的に酸化される物質としては、例えば、フェロセン及びその誘導体、これを含む高分子化合物、ヒドロキノン及びその誘導体、これを含む高分子化合物、オスミウムビピリジン錯体及びその誘導体、並びにこれを含む高分子化合物から成る群より選ばれる少なくとも1種の酸化還元性物質を例示することができる。なお、ここで、「誘導体」としては、フェロセン、ヒドロキノン、オスミウムビピリジン錯体をそっくり含み、これらと同様な酸化還元性を発揮するものが好ましく、例えば、アルキル基(好ましくは炭素数1〜20程度)が結合したアルキル誘導体等を例示することができる。これらの酸化還元性物質の酸化のために、基質液にはペルオキシダーゼやマイクロペルオキシダーゼのような過酸化水素を一方の基質とするペルオキシダーゼ類や、過酸化水素により酸化され、次いで前記酸化還元性物質を酸化するヘミン等が含まれる。この場合、基質液中に含まれるペルオキシダーゼ類やヘミンの量は、標識酵素による酵素反応で生じた過酸化水素の全量が消費されるのに十分な過剰量であることが好ましい。   Alternatively, an enzyme that catalyzes a reaction that generates hydrogen peroxide, such as various oxidases, can be used as the labeling enzyme, and the generated hydrogen peroxide can be measured in the enzyme reaction product measurement region. In this case, a hydrogen peroxide measurement electrode can be preferably employed as the enzyme reaction product measurement region. The hydrogen peroxide measuring electrode itself is well known. In this case as well, a working electrode and a counter electrode, preferably a reference electrode, are formed in the flow channel to form an electrochemical cell, and each electrode is connected to a potentiostat to measure hydrogen peroxide in the solution. it can. Alternatively, the hydrogen peroxide measuring electrode may be composed of a metal to which a substance that is directly or indirectly oxidized by hydrogen peroxide is bound. In this case, a voltage is applied to the electrode to reduce the substance oxidized by hydrogen peroxide, and hydrogen peroxide is measured by measuring a reduction current at that time. Examples of the substance that is directly or indirectly oxidized by hydrogen peroxide include ferrocene and derivatives thereof, polymer compounds containing the same, hydroquinone and derivatives thereof, polymer compounds including the same, osmium bipyridine complexes and derivatives thereof, In addition, at least one redox substance selected from the group consisting of polymer compounds containing the same can be exemplified. Here, the “derivative” preferably includes ferrocene, hydroquinone, and osmium bipyridine complex, and exhibits the same redox properties as these, for example, an alkyl group (preferably having about 1 to 20 carbon atoms). Examples thereof include alkyl derivatives to which is bonded. In order to oxidize these oxidation-reduction substances, the substrate solution is oxidized by hydrogen peroxide such as peroxidase or microperoxidase, or hydrogen peroxide, and then the oxidation-reduction substance is added. Contains hemins that oxidize. In this case, it is preferable that the amount of peroxidase or hemin contained in the substrate solution is an excessive amount sufficient to consume the entire amount of hydrogen peroxide generated by the enzyme reaction with the labeling enzyme.

本発明の酵素免疫測定方法は、上記した酵素免疫センサを用いて行なう。先ず、前記被検物質と、該被検物質と抗原抗体反応する、酵素標識した抗体又はその抗原結合性断片とを含む試料液を前記抗体捕捉領域に流通させる。被検物質は上記の通りである。被検物質を含む試料液には、該被検物質と抗原抗体反応する、酵素標識した抗体又はその抗原結合性断片が添加されている。酵素標識に用いられる標識酵素としては、上記の通り、チオール化合物を生成する酵素や過酸化水素を生成する反応を触媒する酵素が好ましく用いられる。チオール化合物を生成する酵素の好ましい例としては、アシルチオコリンエステラーゼ、特にアセチルチオコリンエステラーゼを挙げることができる。過酸化水素を生成する反応を触媒する酵素の好ましい例としては各種オキシダーゼ、特にグルコースオキシダーゼを挙げることができる。これらの酵素自体は周知であり、市販もされているので容易に入手することができる。   The enzyme immunoassay method of the present invention is performed using the enzyme immunosensor described above. First, a sample solution containing the test substance and an enzyme-labeled antibody or antigen-binding fragment thereof that undergoes an antigen-antibody reaction with the test substance is circulated through the antibody capture region. The test substance is as described above. An enzyme-labeled antibody or antigen-binding fragment thereof that reacts with the test substance for antigen-antibody reaction is added to the sample solution containing the test substance. As the labeling enzyme used for enzyme labeling, as described above, an enzyme that generates a thiol compound or an enzyme that catalyzes a reaction that generates hydrogen peroxide is preferably used. Preferable examples of the enzyme that generates a thiol compound include acylthiocholinesterase, particularly acetylthiocholinesterase. Preferable examples of the enzyme that catalyzes the reaction for generating hydrogen peroxide include various oxidases, particularly glucose oxidase. These enzymes are well known and are also commercially available, so that they can be easily obtained.

試料液に添加する抗体又はその抗原結合性断片は、被検物質と抗原抗体反応する抗体又はその抗原結合性断片であればよく、必ずしも被検物質を免疫原として動物に免疫して得られた抗体又はその抗原結合性断片でなくてもよい。遺伝子工学的に生産された抗体でもよいし、被検物質と交差反応する抗体であってもよい。また、完全な抗体のみならず、Fab断片やF(ab')2断片のような、抗原と抗原抗体反応し得る断片(本明細書において「抗原結合性断片」という)であってもよい。また、ScFvのような一本鎖抗体も抗原結合性断片に含めて解釈する。抗体は、ポリクローナル抗体でもモノクローナル抗体でもよいが、再現性や特異性の観点からモノクローナル抗体が好ましい。モノクローナル抗体の作製方法自体は周知である。抗体又はその抗原結合性断片を酵素標識する方法自体は、酵素免疫測定の分野において周知であり、下記実施例にもその1例が具体的に記載されている。 The antibody or antigen-binding fragment thereof added to the sample solution may be an antibody or antigen-binding fragment thereof that reacts with the test substance by antigen-antibody reaction, and is not necessarily obtained by immunizing an animal with the test substance as an immunogen. It may not be an antibody or an antigen-binding fragment thereof. The antibody may be an antibody produced by genetic engineering or an antibody that cross-reacts with a test substance. Further, it may be not only a complete antibody but also a fragment capable of undergoing an antigen-antibody reaction with an antigen, such as a Fab fragment or F (ab ′) 2 fragment (referred to herein as “antigen-binding fragment”). Single-chain antibodies such as ScFv are also included in the antigen-binding fragment for interpretation. The antibody may be a polyclonal antibody or a monoclonal antibody, but a monoclonal antibody is preferred from the viewpoint of reproducibility and specificity. The production method of the monoclonal antibody itself is well known. The method of enzyme-labeling an antibody or an antigen-binding fragment thereof is well known in the field of enzyme immunoassay, and one example is specifically described in the following examples.

試料液には、酵素標識した、抗体又はその抗原結合性断片が添加される。添加する酵素標識抗体又はその抗原結合性断片の量は、試料中に含まれる被検物質に対して過剰量であることが好ましい。すなわち、試料液中に含まれる被検物質の量が、予想範囲の上限である場合であっても、その全量が抗原抗体反応できる量の酵素標識抗体又はその抗原結合性断片を添加することが好ましい。過剰量の酵素標識抗体又はその抗原結合性断片を添加しておけば、抗体又はその抗原結合性断片添加後における、未反応の抗体又はその抗原結合性断片の量が、試料液中に含まれる被検物質の量に必ず依存して変化するからである。   An enzyme-labeled antibody or antigen-binding fragment thereof is added to the sample solution. The amount of the enzyme-labeled antibody or antigen-binding fragment thereof to be added is preferably excessive with respect to the test substance contained in the sample. That is, even when the amount of the test substance contained in the sample solution is the upper limit of the expected range, it is possible to add an enzyme-labeled antibody or an antigen-binding fragment thereof in such an amount that the whole amount can undergo an antigen-antibody reaction. preferable. If an excessive amount of enzyme-labeled antibody or antigen-binding fragment thereof is added, the amount of unreacted antibody or antigen-binding fragment after the addition of the antibody or antigen-binding fragment thereof is included in the sample solution. This is because it changes depending on the amount of the test substance.

被検物質を含む試料液に、酵素標識抗体又はその抗原結合性断片を添加すると、被検物質と酵素標識抗体又はその抗原結合性断片とが抗原抗体反応して結合する。抗原抗体反応は、室温においても速やかに起きるが、十分に抗原抗体反応させるために、酵素標識抗体又はその抗原結合性断片添加後、酵素免疫センサに供する前に、室温にて60〜600秒程度の時間をおくことが好ましい。   When an enzyme-labeled antibody or an antigen-binding fragment thereof is added to a sample solution containing a test substance, the test substance and the enzyme-labeled antibody or an antigen-binding fragment thereof are bound by an antigen-antibody reaction. Although the antigen-antibody reaction occurs rapidly even at room temperature, in order to sufficiently react with the antigen-antibody, after adding the enzyme-labeled antibody or the antigen-binding fragment thereof, it is about 60 to 600 seconds at room temperature before being used for the enzyme immunosensor. It is preferable to leave the time.

上記の試料液を酵素免疫センサの流路に供給し、前記抗体捕捉領域上を流通させる。そうすると、未反応の酵素標識抗体又はその抗原結合性断片が、抗体捕捉領域上の抗体捕捉物質と結合し、抗体捕捉領域上に捕捉される。なお、抗体捕捉領域上を流通させる際の流速は、試料液中の未反応の酵素標識抗体又はその抗原結合性断片と抗体捕捉領域上の抗体捕捉物質との抗原抗体反応が十分に起きる流速に設定することが好ましい。例えば、下記実施例において作製した酵素免疫センサのように、流路が、幅200μm、深さ50μmである場合には、流速は、特に限定されないが、通常、0.1μL/分〜10μL/分程度、好ましくは、0.2μL/分〜0.5μL/分程度である。また、通液する時間は、反応が十分に起きる時間であることが好ましく、特に限定されないが、通常15秒〜5分間、好ましくは30秒〜2分間程度である。なお、流路に流通させる液の流速は、例えば液をシリンジポンプのような微量定量ポンプを用いて流路に供給すること等により制御できる。抗体捕捉領域上を流通した後の試料液は、流路から排出するか、又は酵素反応生成物測定領域が設けられていない分岐流路に導くことにより、後から供給する基質液と混じらないようにすることが好ましい。   The above sample solution is supplied to the flow path of the enzyme immunosensor and circulated over the antibody capture region. Then, the unreacted enzyme-labeled antibody or the antigen-binding fragment thereof binds to the antibody capture substance on the antibody capture region and is captured on the antibody capture region. The flow rate when circulating on the antibody capture region is a flow rate at which the antigen-antibody reaction between the unreacted enzyme-labeled antibody or its antigen-binding fragment in the sample solution and the antibody capture substance on the antibody capture region is sufficiently caused. It is preferable to set. For example, when the flow path is 200 μm wide and 50 μm deep as in the enzyme immunosensor prepared in the following examples, the flow rate is not particularly limited, but is usually about 0.1 μL / min to 10 μL / min. Preferably, it is about 0.2 μL / min to 0.5 μL / min. Further, the time for passing the liquid is preferably a time for which the reaction occurs sufficiently, and is not particularly limited, but is usually 15 seconds to 5 minutes, preferably about 30 seconds to 2 minutes. The flow rate of the liquid flowing through the flow path can be controlled, for example, by supplying the liquid to the flow path using a micro metering pump such as a syringe pump. The sample liquid after flowing through the antibody capture area is discharged from the flow path or guided to the branch flow path where the enzyme reaction product measurement area is not provided so that it does not mix with the substrate liquid supplied later. It is preferable to make it.

次に、標識酵素に用いた酵素の基質を含む基質液を酵素免疫センサの流路に供給し、抗体捕捉領域上を流通させる。基質液中の基質の量は、過剰量、すなわち、抗体捕捉領域に捕捉される予想量の範囲の上限の量の酵素標識抗体又はその抗原結合性断片が捕捉される場合でも、その標識酵素の全量が反応する量であることが好ましい。基質液を流通させる際の流速は、抗体捕捉領域上に捕捉された酵素標識抗体又はその抗原結合性断片の標識酵素による酵素反応が十分に起きる流速であることが好ましく、例えば、下記実施例において作製した酵素免疫センサのように、流路が、幅200μm、深さ50μmである場合には、流速は、特に限定されないが、通常、0.1μL/分〜10μL/分程度、好ましくは、0.2μL/分〜0.5μL/分程度である。また、通液する時間は、反応が十分に起きる時間であることが好ましく、特に限定されないが、通常15秒〜20分間、好ましくは30秒〜5分間程度である。基質液が標識酵素と接触することにより酵素反応が起きることが必要であるので、酵素反応のために複数の基質が必要な場合には、基質液は該複数の基質を含む。   Next, a substrate solution containing the substrate of the enzyme used for the labeling enzyme is supplied to the flow path of the enzyme immunosensor and circulated over the antibody capture region. The amount of the substrate in the substrate solution is an excess amount, that is, even when an amount of the enzyme-labeled antibody or antigen-binding fragment thereof in the upper limit of the expected amount range to be captured in the antibody capture region is captured. It is preferable that the total amount is a reacting amount. The flow rate when the substrate solution is circulated is preferably a flow rate at which an enzyme reaction by the labeled enzyme of the enzyme-labeled antibody or antigen-binding fragment captured on the antibody-capturing region is sufficiently performed. When the flow path has a width of 200 μm and a depth of 50 μm as in the produced enzyme immunosensor, the flow rate is not particularly limited, but is usually about 0.1 μL / min to 10 μL / min, preferably 0.2 μL. / Min to about 0.5 μL / min. Further, the time for passing the liquid is preferably a time for which the reaction occurs sufficiently, and is not particularly limited, but is usually about 15 seconds to 20 minutes, preferably about 30 seconds to 5 minutes. Since it is necessary that an enzyme reaction occurs when the substrate solution comes into contact with the labeling enzyme, when a plurality of substrates are required for the enzyme reaction, the substrate solution contains the plurality of substrates.

基質液が抗体捕捉領域上を流通する際に酵素反応が起き、酵素反応生成物が生成される。この酵素反応生成物は、基質液の中に混じった状態で基質液と共に流通する。酵素反応生成物を含む基質液は、さらに流路内を流通して、上記した酵素反応生成物測定領域と接触し、測定される。酵素反応生成物の測定は、上記したとおり、SPRや過酸化水素の電気化学的測定等のそれ自体周知の方法により測定される。   An enzyme reaction occurs when the substrate solution flows over the antibody capture region, and an enzyme reaction product is generated. This enzyme reaction product flows with the substrate solution in a state of being mixed in the substrate solution. The substrate solution containing the enzyme reaction product is further circulated through the flow path and is measured by contacting with the enzyme reaction product measurement region described above. As described above, the enzyme reaction product is measured by a well-known method such as SPR or electrochemical measurement of hydrogen peroxide.

以下、図面を参照して本発明の酵素免疫測定方法に用いられる好ましい酵素免疫センサの構造を説明する。   Hereinafter, the structure of a preferable enzyme immunosensor used in the enzyme immunoassay method of the present invention will be described with reference to the drawings.

図1は、本発明の酵素免疫センサの好ましい1態様の模式分解斜視図である。なお、図(後述する他の図も同様)は、説明のためのものであるから、各種寸法の比率は実際の寸法比率とは大きく異なっている場合がある。図1に示す酵素免疫センサは、基板10を含み、基板10は、上部シート10aと下部基板10bとを貼り合せたものである。なお、図1では、明瞭性のために、上部シート10aと下部基板10bとを分解した状態を示している。上部シート10aは、例えばポリジメチルシロキサンのようなシリコーンゴム製であり、下部基板10bは例えばガラス製である。基板10には、実質的にT字形の流路12が設けられている。流路12は、上部シート10aを厚さ方向に貫通しており、従って、下部基板10bの表面が流路12の底面を構成する。流路12の各端部は、液の供給や排出を容易にするために、直径が流路の幅よりも大きな円形状になっており、これらは上部シート10aにドリルで透孔を形成すること等により形成される。流路の「T」の字の横棒の一端が液供給口14、「T」の字の横棒の他端が試料液排出口16、「T」の字の縦棒の端部が基質液排出口18である。試料液及び基質液は、液供給口14から流路12内に供給されるので、液供給口14が流路12における最上流になる。液供給口14と、流路12の分岐点(「T」字の横棒と縦棒の交点)との間に抗体捕捉領域20が形成されている。上記のように、抗体捕捉領域20は、例えば、下部基板10b上に蒸着やスパッタリング等により金薄膜を形成し、これにシステアミンを結合させてアミノ基を付加し、このアミノ基に被検物質を結合させることにより形成することができる。図示の例では、抗体捕捉領域20は、流路12の底面にのみ形成されている。流路12の「T」字の縦棒の中央付近は、拡幅された領域22が設けられており、該拡幅領域22の底面には、酵素反応生成物測定領域24が設けられている。図1に示す具体例では、酵素反応生成物測定領域24は、SPR測定のための金薄膜から形成される。この金薄膜も下部基板10b上に蒸着やスパッタリング等により形成することができる。 FIG. 1 is a schematic exploded perspective view of a preferred embodiment of the enzyme immunosensor of the present invention. Note that the drawings (the same applies to other drawings described later) are for illustrative purposes, and therefore the ratio of various dimensions may be significantly different from the actual dimension ratio. Enzyme immunoassay sensor shown in FIG. 1 includes a substrate 10, substrate 10 is obtained by bonding the upper sheet 10a and a lower substrate 10b. Note that FIG. 1 shows a state in which the upper sheet 10a and the lower substrate 10b are disassembled for clarity. The upper sheet 10a is made of silicone rubber such as polydimethylsiloxane, and the lower substrate 10b is made of glass, for example. The substrate 10 is provided with a substantially T-shaped flow path 12. The flow path 12 penetrates the upper sheet 10 a in the thickness direction, and therefore the surface of the lower substrate 10 b forms the bottom surface of the flow path 12. Each end of the flow path 12 has a circular shape whose diameter is larger than the width of the flow path in order to facilitate supply and discharge of the liquid, and these form through holes in the upper sheet 10a. And so on. One end of the “T” horizontal bar of the flow path is the liquid supply port 14, the other end of the “T” horizontal bar is the sample solution outlet 16, and the end of the “T” vertical bar is the substrate. A liquid discharge port 18 is provided. Since the sample liquid and the substrate liquid are supplied from the liquid supply port 14 into the flow channel 12, the liquid supply port 14 becomes the uppermost stream in the flow channel 12. An antibody capture region 20 is formed between the liquid supply port 14 and the branch point of the flow path 12 (intersection of “T” -shaped horizontal bar and vertical bar). As described above, the antibody capture region 20 is formed, for example, by forming a gold thin film on the lower substrate 10b by vapor deposition, sputtering, or the like, bonding cysteamine to this to add an amino group, and adding a test substance to this amino group. It can be formed by bonding. In the illustrated example, the antibody capture region 20 is formed only on the bottom surface of the flow path 12. A widened region 22 is provided in the vicinity of the center of the “T” -shaped vertical bar of the flow path 12, and an enzyme reaction product measurement region 24 is provided on the bottom surface of the widened region 22. In the specific example shown in FIG. 1, the enzyme reaction product measurement region 24 is formed from a gold thin film for SPR measurement. This gold thin film can also be formed on the lower substrate 10b by vapor deposition or sputtering.

図1に示す酵素免疫センサの具体例は、次のようにして使用することができる。先ず、上記した試料液(上記の通り、被検物質に対する、酵素標識した抗体又はその抗原結合性断片を添加したもの)を液供給口14から供給する。試料液の供給は、例えばシリンジポンプのような微量定量ポンプに接続されたキャピラリーの先端を液供給口14に差し込んで行なうことができる。一方、試料液排出口16から吸引する。吸引も同様に、ポンプに接続されたキャピラリーの先端を試料液排出口16に差し込んで行なうことができる。そうすると、供給された試料液は、抗体捕捉領域20上を通過して試料液排出口16に向かって流通し、試料液排出口16から排出される。この際、試料液中に含まれる未反応の抗体又はその抗原結合性断片が抗体捕捉領域20に不動化されている被検物質と抗原抗体反応して抗体捕捉領域20に捕捉される。次に、酵素の基質液を液供給口14から供給すると共に、基質液排出口18から吸引する。そうすると、基質液は、抗体捕捉領域20上を通過し、流路12の分岐点で向きを変えて基質液排出口18に向かう。この際に酵素反応生成物測定領域24上を通過する。抗体捕捉領域20上を通過する際、抗体捕捉領域20に捕捉されている酵素標識抗体又はその抗原結合性断片の標識酵素により基質が酵素反応し、酵素反応生成物が生成する。なお、酵素反応生成物を金に結合させてSPRにより測定する場合には、上記の通り、酵素反応生成物はチオール化合物である。チオール化合物である酵素反応生成物は、金薄膜から成る酵素反応生成物測定領域24上を通過する際に、金と反応して結合する。この際の屈折率変化をSPR法で測定することにより、酵素反応生成物を測定することができる。なお、図1中、矢印26はSPR測定用入射光、矢印28はSPR測定用反射光を示す。   The specific example of the enzyme immunosensor shown in FIG. 1 can be used as follows. First, the above-described sample solution (as described above, to which an enzyme-labeled antibody or antigen-binding fragment thereof is added to the test substance) is supplied from the solution supply port 14. The sample liquid can be supplied by inserting the tip of a capillary connected to a micro metering pump such as a syringe pump into the liquid supply port 14. On the other hand, suction is performed from the sample solution outlet 16. Similarly, suction can be performed by inserting the tip of the capillary connected to the pump into the sample solution discharge port 16. Then, the supplied sample solution passes through the antibody capture region 20 and flows toward the sample solution discharge port 16, and is discharged from the sample solution discharge port 16. At this time, the unreacted antibody or the antigen-binding fragment thereof contained in the sample solution reacts with the test substance immobilized in the antibody capture region 20 and is captured in the antibody capture region 20. Next, the enzyme substrate solution is supplied from the solution supply port 14 and sucked from the substrate solution discharge port 18. Then, the substrate solution passes over the antibody capture region 20, changes its direction at the branch point of the flow path 12, and moves toward the substrate solution discharge port 18. At this time, it passes over the enzyme reaction product measurement region 24. When passing over the antibody capture region 20, the substrate undergoes an enzyme reaction with the enzyme labeled antibody or the antigen-binding fragment thereof captured in the antibody capture region 20, and an enzyme reaction product is generated. When the enzyme reaction product is bonded to gold and measured by SPR, the enzyme reaction product is a thiol compound as described above. When the enzyme reaction product, which is a thiol compound, passes over the enzyme reaction product measurement region 24 composed of a gold thin film, it reacts with and binds to gold. The enzyme reaction product can be measured by measuring the refractive index change at this time by the SPR method. In FIG. 1, an arrow 26 indicates incident light for SPR measurement, and an arrow 28 indicates reflected light for SPR measurement.

試料液に一定量の酵素標識抗体を添加すると、試料液中に含まれる被検物質の量が多いほど、未反応の標識抗体の量が少なくなり、その結果、酵素反応生成物測定領域20に捕捉される酵素標識抗体の量が少なくなり、酵素反応する基質の量が少なくなり、ひいては酵素反応生成物の量が少なくなる。従って、上記方法により酵素反応生成物を測定することにより、試料中に含まれる被検物質を測定することができる。   When a certain amount of enzyme-labeled antibody is added to the sample solution, the amount of unreacted labeled antibody decreases as the amount of the test substance contained in the sample solution increases. As a result, in the enzyme reaction product measurement region 20. The amount of the enzyme-labeled antibody to be captured decreases, the amount of the substrate that undergoes the enzyme reaction decreases, and the amount of the enzyme reaction product decreases accordingly. Therefore, the test substance contained in the sample can be measured by measuring the enzyme reaction product by the above method.

なお、上記の例では、分岐点からの液の流通方向を、試料液排出口16又は基質液排出口18からの吸引により規定したが、例えば、分岐点に微小バルブを設けること等によっても、分岐点からの流通方向を規定することもできる。細い流路に設けられる微小バルブ自体は種々のものが周知であり、例えば、非特許文献1等に記載されている。なお、微小バルブを用いる場合には、各排出口からの吸引が不要になるので、各排出口にスポンジのような多孔性吸水材を配置して液を吸収するようにしてもよい。   In the above example, the flow direction of the liquid from the branch point is defined by suction from the sample liquid discharge port 16 or the substrate liquid discharge port 18, but for example, by providing a micro valve at the branch point, It is also possible to define the distribution direction from the branch point. Various kinds of microvalves themselves provided in the narrow channel are well known, and are described in Non-Patent Document 1, for example. In addition, when using a micro valve, since suction from each discharge port becomes unnecessary, a porous water-absorbing material such as a sponge may be disposed at each discharge port to absorb the liquid.

また、上記の例では、酵素反応生成物測定領域24に結合した酵素反応生成物をSPR法により測定したが、上記の通り、酵素反応生成物測定領域24の質量変化を水晶振動子マイクロバランス(図示せず)により測定して酵素反応生成物を測定することも可能である。   In the above example, the enzyme reaction product bound to the enzyme reaction product measurement region 24 was measured by the SPR method. As described above, the mass change in the enzyme reaction product measurement region 24 is measured using the quartz crystal microbalance ( It is also possible to measure the enzyme reaction product by measuring by (not shown).

本発明の酵素免疫センサの好ましい第2の具体例を図2に示す。なお、図2に示す酵素免疫センサの構成は、図1に示した酵素免疫センサの構成と類似しており、図1に示す酵素免疫センサの部材に対応する部材には図1と同じ参照番号を付してある。図2に示す具体例が図1に示す具体例と異なる点は、金薄膜から成る酵素反応生成物測定領域24の形状が、基板の一端まで続く帯状をしており、さらに、同様な形状の金属薄膜から成る対向電極32及び参照電極30が、酵素反応生成物測定領域24と、間隔をあけて平行に配置されている点である。また、図2に示す具体例では、流路12のT字の縦棒部分に拡幅領域22が設けられていない(ただし、拡幅領域を設けてもよい)。   A preferred second specific example of the enzyme immunosensor of the present invention is shown in FIG. The configuration of the enzyme immunosensor shown in FIG. 2 is similar to that of the enzyme immunosensor shown in FIG. 1, and members corresponding to those of the enzyme immunosensor shown in FIG. Is attached. The specific example shown in FIG. 2 is different from the specific example shown in FIG. 1 in that the shape of the enzyme reaction product measurement region 24 made of a gold thin film has a strip shape extending to one end of the substrate. The counter electrode 32 and the reference electrode 30 made of a metal thin film are arranged in parallel with the enzyme reaction product measurement region 24 at an interval. In the specific example shown in FIG. 2, the widened region 22 is not provided in the T-shaped vertical bar portion of the flow path 12 (however, the widened region may be provided).

図2に示す酵素免疫センサの使用方法も、酵素反応生成物測定領域24に結合した酵素反応生成物の測定方法以外、図1に示す酵素免疫センサの使用方法と同様である。図2に示す酵素免疫センサでは、酵素反応生成物測定領域24を作用電極とし、対向電極32及び参照電極30と共に電気化学セルを形成し、酵素反応生成物測定領域24(作用電極)に電圧をかけて、酵素反応生成物測定領域24に結合している酵素反応生成物を還元脱離させる。この際の還元電流を測定することにより、酵素反応生成物測定領域24に結合した酵素反応生成物の量、ひいては試料液中の被検物質の量を測定することができる。還元電流の測定は、酵素反応生成物測定領域24(作用電極)、対向電極32及び参照電極30をポテンショスタットに接続し、参照電極電位に対して作用電極電位を掃引し、その際に発生する電流を電流計にて測定することにより行なうことができる(下記実施例参照)。   The method for using the enzyme immunosensor shown in FIG. 2 is the same as the method for using the enzyme immunosensor shown in FIG. 1 except for the method for measuring the enzyme reaction product bound to the enzyme reaction product measurement region 24. In the enzyme immunosensor shown in FIG. 2, an enzyme reaction product measurement region 24 is used as a working electrode, an electrochemical cell is formed together with the counter electrode 32 and the reference electrode 30, and a voltage is applied to the enzyme reaction product measurement region 24 (working electrode). Then, the enzyme reaction product bonded to the enzyme reaction product measurement region 24 is reduced and desorbed. By measuring the reduction current at this time, the amount of the enzyme reaction product bound to the enzyme reaction product measurement region 24, and hence the amount of the test substance in the sample solution can be measured. The reduction current is measured when the enzyme reaction product measurement region 24 (working electrode), the counter electrode 32 and the reference electrode 30 are connected to a potentiostat, and the working electrode potential is swept with respect to the reference electrode potential. This can be done by measuring the current with an ammeter (see Examples below).

あるいは、図2に示す具体例において、酵素反応生成物測定領域24は、上記した過酸化水素測定用電極としてもよい(第3の具体例)。この場合には、上記の通り、標識酵素としては、各種オキシダーゼ等の、過酸化水素を生成する反応を触媒する酵素が用いられる。過酸化水素測定電極が、フェロセン誘導体等の酸化還元性物質を結合したものである場合には、上記の通り、基質液中にはヘミンやペルオキシダーゼ類が添加される。第3の具体例の場合でも、酵素反応により生成した過酸化水素は、第2の具体例と同様、酵素反応生成物測定領域24(作用電極)、対向電極32及び参照電極30をポテンショスタットに接続し、参照電極電位に対して作用電極電位を掃引し、その際に発生する電流を電流計にて測定することにより行なうことができる(下記実施例参照)。   Alternatively, in the specific example shown in FIG. 2, the enzyme reaction product measurement region 24 may be the hydrogen peroxide measurement electrode described above (third specific example). In this case, as described above, an enzyme that catalyzes a reaction that generates hydrogen peroxide, such as various oxidases, is used as the labeling enzyme. In the case where the hydrogen peroxide measuring electrode is one in which a redox substance such as a ferrocene derivative is bound, as described above, hemin and peroxidases are added to the substrate solution. Even in the case of the third specific example, the hydrogen peroxide generated by the enzyme reaction is the potentiostat in the enzyme reaction product measurement region 24 (working electrode), the counter electrode 32 and the reference electrode 30 as in the second specific example. It can be performed by connecting, sweeping the working electrode potential with respect to the reference electrode potential, and measuring the current generated at that time with an ammeter (see Examples below).

本発明の酵素免疫センサの好ましい第4の具体例を図3に示す。図3に示す具体例においても、図1に示す酵素免疫センサの部材に対応する部材には図1と同じ参照番号を付してある。図3に示す具体例では、流路12が分岐しておらず、1本の直線状の流路12が形成されている。そして、試料液排出口16が流路12の中央付近に形成されている。抗体捕捉領域20は、液供給口14と試料液排出口16の間に形成され、酵素反応生成物測定領域24は試料液排出口16と基質液排出口18の間に形成されている。他の構成は図1に示す具体例と同様である。   A preferred fourth specific example of the enzyme immunosensor of the present invention is shown in FIG. In the specific example shown in FIG. 3 as well, members corresponding to those of the enzyme immunosensor shown in FIG. In the specific example shown in FIG. 3, the flow path 12 is not branched, and one linear flow path 12 is formed. A sample solution outlet 16 is formed near the center of the flow path 12. The antibody capture region 20 is formed between the liquid supply port 14 and the sample solution discharge port 16, and the enzyme reaction product measurement region 24 is formed between the sample solution discharge port 16 and the substrate solution discharge port 18. Other configurations are the same as the specific example shown in FIG.

図3に示す酵素免疫センサは、流路12の形状と試料液排出口16の位置が図1に示す具体例と異なっているだけであり、その使用方法は図1に示す具体例と同様である。すなわち、液供給口14から試料液を供給し、試料液排出口16から吸引して試料液排出口16から排出する。この際、未反応の酵素標識抗体又はその抗原結合性断片が抗体捕捉領域20に結合する。次に、基質液を液供給口14から供給し、基質液排出口18から吸引して排出する。そうすると、抗体捕捉領域20に結合されている標識酵素による酵素反応により生成した酵素反応生成物が酵素反応生成物測定領域24に結合する。これをSPR法等により測定する。   The enzyme immunosensor shown in FIG. 3 is different from the specific example shown in FIG. 1 only in the shape of the flow path 12 and the position of the sample liquid discharge port 16, and the usage method is the same as the specific example shown in FIG. is there. That is, the sample liquid is supplied from the liquid supply port 14, sucked from the sample liquid discharge port 16, and discharged from the sample liquid discharge port 16. At this time, an unreacted enzyme-labeled antibody or an antigen-binding fragment thereof binds to the antibody capture region 20. Next, the substrate liquid is supplied from the liquid supply port 14 and sucked and discharged from the substrate liquid discharge port 18. Then, the enzyme reaction product generated by the enzyme reaction with the labeling enzyme bonded to the antibody capture region 20 is bonded to the enzyme reaction product measurement region 24. This is measured by the SPR method or the like.

本発明の酵素免疫センサの好ましい第5の具体例を図4及び図5に示す。図5は図4の模式切断部端面図である(図4の流路を縦断して切断)。図4及び図5に示す具体例においても、図1に示す酵素免疫センサの部材に対応する部材には図1と同じ参照番号を付してある。   A preferred fifth specific example of the enzyme immunosensor of the present invention is shown in FIGS. FIG. 5 is an end view of the schematic cut portion of FIG. 4 (cut along the longitudinal direction of the flow path of FIG. 4). Also in the specific examples shown in FIGS. 4 and 5, members corresponding to the members of the enzyme immunosensor shown in FIG. 1 are denoted by the same reference numerals as in FIG.

図4及び図5に示す酵素免疫センサも、図3に示す具体例と同様、流路12は、分岐がなく、一本の直線状である。図4及び図5に示す具体例では、液供給口が試料液供給口14aと基質液供給口14bに分離しており、これらの間に抗体捕捉領域20が配置される。酵素反応生成物測定領域24は、試料液供給口14aと基質液排出口18の間に配置されている。さらに、試料液供給口14aと酵素反応生成物測定領域24の間には第1の流通方向規定領域34が形成され、一方、基質液供給口14bと試料液排出口16の間に第2の流通方向規定領域36が形成され、第1及び第2の流通方向規定領域34及び36は、金属薄膜から成る電極上に、電位により親水性が変化する物質が結合されたものである。電位により親水性が変化する物質は、電極の全面に結合させる必要はなく、流路12の底面に結合していればよい。電位により親水性が変化する物質としては、フェロセン及びその誘導体を挙げることができる。ここで、「誘導体」としては、フェロセン部分をそっくり含み、フェロセンと同様に、電位による親水性が変化するものが好ましく、例えば、アルキルチオール基(好ましくは炭素数1〜20程度)が結合したアルキルチオール誘導体等を例示することができる。電位による親水性が変化する物質が結合した電極は、例えば、下記実施例に具体的に記載するように、フェロセンアルキルチオールの溶液に電極を浸漬し、電極表面をフェロセンアルキルチオールの自己組織化単分子膜で被覆することなどにより形成することができる。   In the enzyme immunosensor shown in FIGS. 4 and 5 as well, as in the specific example shown in FIG. 3, the flow path 12 is not branched and has a single linear shape. In the specific examples shown in FIGS. 4 and 5, the liquid supply port is separated into the sample liquid supply port 14a and the substrate liquid supply port 14b, and the antibody capture region 20 is disposed between them. The enzyme reaction product measurement region 24 is disposed between the sample solution supply port 14 a and the substrate solution discharge port 18. Further, a first flow direction regulating region 34 is formed between the sample solution supply port 14a and the enzyme reaction product measurement region 24, while a second flow direction defining region 34 is formed between the substrate solution supply port 14b and the sample solution discharge port 16. A flow direction defining region 36 is formed, and the first and second flow direction defining regions 34 and 36 are formed by bonding a substance whose hydrophilicity changes depending on an electric potential on an electrode made of a metal thin film. The substance whose hydrophilicity changes depending on the electric potential does not need to be bonded to the entire surface of the electrode, but may be bonded to the bottom surface of the channel 12. Examples of the substance whose hydrophilicity changes with potential include ferrocene and derivatives thereof. Here, the “derivative” preferably includes a ferrocene portion, and similarly to ferrocene, the one whose hydrophilicity changes depending on the electric potential is preferable. For example, an alkyl thiol group (preferably having about 1 to 20 carbon atoms) bonded thereto. Examples thereof include thiol derivatives. An electrode to which a substance whose hydrophilicity varies depending on the potential is bonded is obtained by, for example, immersing the electrode in a solution of ferrocene alkyl thiol, and self-assembling the ferrocene alkyl thiol on the electrode surface, as specifically described in the following examples. It can be formed by coating with a molecular film.

使用時には、第1の流通方向規定領域34をアースし(電位0V)、第2の流通方向規定領域36に正電位(例えば+0.4V)をかける。そうすると、第2の流通方向規定領域36上のフェロセン誘導体は親水性となり、第1の流通方向規定領域34上フェロセン誘導体は疎水性のままである。この状態で、試料液供給口14aから試料液を供給する。そうすると、第1の流通方向規定領域34は疎水性であるので試料液は第1の流通方向規定領域34を乗り越えて進んでいくことはない。一方、第2の流通方向規定領域36は親水性であるので、試料液は第2の流通方向規定領域36を乗り越えて進み、試料液排出口16に至る。この過程で、試料液は抗体捕捉領域20上を通過するので、未反応の酵素標識抗体又はその抗原結合性断片が抗体捕捉領域20上に結合される。次に、第2の流通方向規定領域36をアースし(電位0V)、第1の流通方向規定領域34に正電位(例えば+0.4V)をかける。この状態で基質液供給口14bから基質液を供給する。そうすると、電位の変化により、第2の流通方向規定領域36は疎水性になっているので、基質液は第2の流通方向規定領域36を乗り越えて進むことはない。一方、第1の流通方向規定領域34は、電位の変化により親水性になっているので、基質液は、第1の流通方向規定領域34を乗り越えて進み、基質液排出口18に至る。この過程で、基質液は、抗体捕捉領域20及び酵素反応生成物測定領域24上を通過するので、上記した他の具体例の場合と同様、酵素反応生成物が酵素反応生成物測定領域24上に結合する。これを他の具体例の場合と同様、SPR法等により測定する。この具体例では、以上のように、液の流通方向が、第1及び第2の流通方向規定領域34及び36に印加される電位より規定されるので、各排出口からの吸引が不要であるから、各排出口にスポンジのような多孔性吸水材を配置して液を吸収するようにしてもよい。   In use, the first flow direction defining area 34 is grounded (potential 0 V), and a positive potential (for example, +0.4 V) is applied to the second flow direction defining area 36. Then, the ferrocene derivative on the second flow direction defining region 36 becomes hydrophilic, and the ferrocene derivative on the first flow direction defining region 34 remains hydrophobic. In this state, the sample solution is supplied from the sample solution supply port 14a. Then, since the first flow direction defining region 34 is hydrophobic, the sample liquid does not travel over the first flow direction defining region 34. On the other hand, since the second flow direction defining region 36 is hydrophilic, the sample liquid passes over the second flow direction defining region 36 and reaches the sample liquid discharge port 16. In this process, since the sample solution passes over the antibody capture region 20, unreacted enzyme-labeled antibody or antigen-binding fragment thereof is bound onto the antibody capture region 20. Next, the second flow direction defining region 36 is grounded (potential 0 V), and a positive potential (for example, +0.4 V) is applied to the first flow direction defining region 34. In this state, the substrate solution is supplied from the substrate solution supply port 14b. Then, since the second flow direction defining region 36 is hydrophobic due to the potential change, the substrate liquid does not travel over the second flow direction defining region 36. On the other hand, since the first flow direction defining region 34 becomes hydrophilic due to a change in potential, the substrate liquid proceeds over the first flow direction defining region 34 and reaches the substrate liquid discharge port 18. In this process, since the substrate solution passes over the antibody capture region 20 and the enzyme reaction product measurement region 24, the enzyme reaction product is transferred over the enzyme reaction product measurement region 24 as in the other specific examples described above. To join. This is measured by the SPR method or the like as in the case of other specific examples. In this specific example, as described above, since the flow direction of the liquid is defined by the potential applied to the first and second flow direction defining regions 34 and 36, suction from each discharge port is unnecessary. Therefore, a porous water-absorbing material such as a sponge may be disposed at each outlet to absorb the liquid.

本発明の酵素免疫センサの好ましい第6の具体例を図6に示す。図6に示す具体例においても、図1に示す酵素免疫センサの部材に対応する部材には図1と同じ参照番号を付してある。   A preferred sixth specific example of the enzyme immunosensor of the present invention is shown in FIG. Also in the specific example shown in FIG. 6, members corresponding to the members of the enzyme immunosensor shown in FIG.

図6に示す酵素免疫センサも、図3に示す具体例と同様、流路は、分岐がなく、一本の直線状である。図6に示す具体例では、上部シートが、半透膜38により上下2段に分離されている。従って、流路も半透膜38により上下2段に分離されている。なお、上段のシートを10a1、下段のシートを10a2、上段の流路を12a、下段の流路を12bで示す。半透膜38は、アセチルチオコリンのような酵素反応生成物は透過するが、前記酵素標識抗体又はその抗原結合性断片は透過しないものである。抗体捕捉領域20は、上段のみに形成される。これは、半透膜38上に抗体捕捉領域20を設けることによっても達成されるし、あるいは、上段の流路12aの側壁に抗体捕捉領域20を設けてもよい。図6に示す具体例ではまた、試料液排出口と基質液排出口が同一の排出口18aとなっている。また、下段流路12bの一端が透析液供給口40、他端が透析液排出口42となっている。以上のような上部シートは、2枚のシートを、半透膜38を挟んで貼り合せることにより容易に作製することができる。また、他の具体例と同様、下段シート10a2の下側には、図示しない下部基板が張り合わされ、下部基板の表面に金膜が形成されて酵素反応生成物測定領域24となっている。酵素反応生成物測定領域24は、図3の具体例と同様、抗体捕捉領域20よりも下流に形成される(ただし、酵素反応生成物測定領域24は下段流路12b内、抗体捕捉領域20は上段流路12a内)。   In the enzyme immunosensor shown in FIG. 6 as well, as in the specific example shown in FIG. In the specific example shown in FIG. 6, the upper sheet is separated into two upper and lower stages by the semipermeable membrane 38. Therefore, the flow path is also separated into two upper and lower stages by the semipermeable membrane 38. The upper sheet is denoted by 10a1, the lower sheet is denoted by 10a2, the upper flow path is denoted by 12a, and the lower flow path is denoted by 12b. The semipermeable membrane 38 is permeable to enzyme reaction products such as acetylthiocholine but not the enzyme-labeled antibody or antigen-binding fragment thereof. The antibody capture region 20 is formed only in the upper stage. This can be achieved by providing the antibody capture region 20 on the semipermeable membrane 38, or the antibody capture region 20 may be provided on the side wall of the upper flow path 12a. In the specific example shown in FIG. 6, the sample liquid outlet and the substrate liquid outlet are the same outlet 18a. One end of the lower flow path 12b is a dialysate supply port 40, and the other end is a dialysate discharge port. The upper sheet as described above can be easily manufactured by bonding two sheets with the semipermeable membrane 38 interposed therebetween. Further, similarly to the other specific examples, a lower substrate (not shown) is attached to the lower side of the lower sheet 10a2, and a gold film is formed on the surface of the lower substrate to form the enzyme reaction product measurement region 24. The enzyme reaction product measurement region 24 is formed downstream of the antibody capture region 20 as in the specific example of FIG. 3 (however, the enzyme reaction product measurement region 24 is in the lower flow path 12b, and the antibody capture region 20 is In the upper flow path 12a).

図6に示す具体例の使用方法を説明する。先ず、透析液供給口40から透析液を供給すると共に透析液排出口42から吸引し、下部流路12b内に透析液を満たす。この状態で吸引を停止し、下部流路12b内に透析液が満たされた状態で維持する。なお、透析液としては、例えば0.1Mリン酸バッファー等を用いることができる。次に、液供給口14から試料液を供給すると共に液排出口18aから吸引する。そうすると、試料液は、液排出口18aに向かって流れ、試料液中の未反応の酵素標識抗体又はその抗原結合性断片が抗体捕捉領域20に結合する。この際、酵素標識抗体又はその抗原結合性断片は半透膜38を透過しないので、下部流路12bには移行しない。試料液が血液等の体液である場合、種々のタンパク質等が含まれるが、これらも半透膜38を透過しないので、下部流路12bには移行しない。次に、液供給口14から基質液を供給すると共に液排出口18aから吸引する。そうすると、基質液は、液排出口18aに向かって流れ、その間に抗体捕捉領域20上を通過し、その際に抗体捕捉領域20に結合している標識酵素により酵素反応が起き、酵素反応生成物が生成する。生成した酵素反応生成物は、半透膜38を透過するので、少なくともその一部が半透膜38を介して下段流路12bに移行し、酵素反応生成物測定領域24に結合する。この際、透析液排出口42から吸引してもよい。酵素反応生成物測定領域24に結合した酵素反応生成物は、他の具体例と同様、SPR法等により測定することができる。   A method of using the specific example shown in FIG. 6 will be described. First, the dialysate is supplied from the dialysate supply port 40 and sucked from the dialysate discharge port 42 to fill the lower flow path 12b with the dialysate. In this state, the suction is stopped, and the lower flow path 12b is maintained in a state where the dialysate is filled. As the dialysate, for example, 0.1M phosphate buffer can be used. Next, the sample liquid is supplied from the liquid supply port 14 and sucked from the liquid discharge port 18a. Then, the sample liquid flows toward the liquid discharge port 18a, and the unreacted enzyme-labeled antibody or the antigen-binding fragment thereof in the sample liquid is bound to the antibody capturing region 20. At this time, since the enzyme-labeled antibody or the antigen-binding fragment thereof does not permeate the semipermeable membrane 38, it does not migrate to the lower flow path 12b. When the sample solution is a body fluid such as blood, various proteins and the like are included, but these also do not pass through the semipermeable membrane 38 and therefore do not migrate to the lower flow path 12b. Next, the substrate liquid is supplied from the liquid supply port 14 and sucked from the liquid discharge port 18a. Then, the substrate liquid flows toward the liquid discharge port 18a and passes over the antibody capture region 20 during that time, and an enzyme reaction occurs by the labeling enzyme bound to the antibody capture region 20 at that time, and the enzyme reaction product Produces. Since the generated enzyme reaction product permeates the semipermeable membrane 38, at least a part of the enzyme reaction product moves to the lower flow path 12 b through the semipermeable membrane 38 and is bonded to the enzyme reaction product measurement region 24. At this time, suction may be performed from the dialysate discharge port 42. The enzyme reaction product bound to the enzyme reaction product measurement region 24 can be measured by the SPR method or the like, as in other specific examples.

この具体例によれば、酵素反応生成物の測定を、試料液中の各種タンパク質等の高分子物質の非存在下において行なうことができ、より正確な測定が可能になる。   According to this specific example, the enzyme reaction product can be measured in the absence of a high-molecular substance such as various proteins in the sample solution, and more accurate measurement is possible.

なお、上記した第4ないし第6の具体例において、酵素反応生成物測定領域24は、SPR法用の金薄膜であるが、これに代えて、第2又は第3の具体例と同様に電気化学セルを採用することもできる。   In the fourth to sixth specific examples described above, the enzyme reaction product measurement region 24 is a gold thin film for the SPR method, but instead of this, as in the second or third specific example, A chemical cell can also be employed.

以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.

1. アセチルチオコリンエステラーゼ標識BNPの調製
(1) アセチルチオコリンエステラーゼを標識酵素とする脳性ナトリウム利尿ペプチド(BNP)抗体(Anti−BNP−AchE)を以下のように作製した。10mg/mLのS−アセチルカプトサクシニルアンヒドリド溶液を1mg/mLのアセチルチオコリンエステラーゼと反応させてアセチルチオコリンエステラーゼにチオール基を導入した。一方、0.1mg/mLのスルホサクシニミジル−4−(N−マレイミドメチル)シクロヘキサン−1−カルボキシレートと400μg/mLの抗ヒトBNP抗体(入手先:Phoenix Pharmaceuticals社)と反応させて、抗ヒトBNP抗体にマレイミド基を導入した。その後、チオール修飾したアセチルチオコリンエステラーゼとマレイミド基を導入した抗ヒトBNP抗体を反応させてAnti−BNP−AchEを作製した。
1. Preparation of acetylthiocholinesterase-labeled BNP
(1) A brain natriuretic peptide (BNP) antibody (Anti-BNP-AchE) using acetylthiocholinesterase as a labeling enzyme was prepared as follows. A 10 mg / mL S-acetylcaptosuccinyl hydride solution was reacted with 1 mg / mL acetylthiocholinesterase to introduce a thiol group into acetylthiocholinesterase. On the other hand, it was reacted with 0.1 mg / mL sulfosuccinimidyl-4- (N-maleimidomethyl) cyclohexane-1-carboxylate and 400 μg / mL anti-human BNP antibody (source: Phoenix Pharmaceuticals) to give anti-anti Maleimide groups were introduced into human BNP antibody. Thereafter, anti-BNP-AchE was prepared by reacting thiol-modified acetylthiocholinesterase with an anti-human BNP antibody into which a maleimide group was introduced.

2. 酵素免疫センサの作製
図1に示す第1の具体例になる酵素免疫センサを作製した。上部シート10aはポリジメチルシロキサン(PDMS)のシート(16mm x 16 mm、厚さ50μm)から成り、下部基板10bはガラス板であった。上部シート10aは、ステンレス基板にサンドブラスト加工法により形成した凸構造を有するネガパターンを鋳型としてPDMS及び硬化剤を流し込み、硬化後、剥がし取ることにより作製した。流路は幅200μm、深さ50μmであった。また、T字形の横棒の長さは12mm、縦棒の長さは12mmであった。また、流路12内の拡幅領域22の直径は、3mmであった。その後ドリルにより、液供給口14、試料液排出口16及び基質液排出口18を開け、液の導入及び排出のためのキャピラリを接続した。ドリルで開けたそれぞれの孔の直径は0.6mmであった。
2. Production of enzyme immunosensor An enzyme immunosensor as a first specific example shown in FIG. 1 was produced. The upper sheet 10a was made of a polydimethylsiloxane (PDMS) sheet (16 mm × 16 mm, thickness 50 μm), and the lower substrate 10b was a glass plate. The upper sheet 10a was produced by pouring PDMS and a curing agent using a negative pattern having a convex structure formed on a stainless steel substrate by a sandblasting method as a mold, and peeling off after curing. The flow path had a width of 200 μm and a depth of 50 μm. The length of the T-shaped horizontal bar was 12 mm, and the length of the vertical bar was 12 mm. Further, the diameter of the widened region 22 in the flow channel 12 was 3 mm. Thereafter, the liquid supply port 14, the sample liquid discharge port 16 and the substrate liquid discharge port 18 were opened by a drill, and capillaries for introducing and discharging the liquid were connected. The diameter of each hole drilled was 0.6 mm.

一方、下部基板10bは、ガラス板(16mm x16mm、厚さ0.15mm、松浪硝子社製)から成り、抗体捕捉領域20及び酵素反応生成物測定領域24として、それぞれ金薄膜を形成した。金薄膜は、ガラス板上にマグネトロンスパッタ装置(日本シード社製)を用いてチタンを5nm堆積させた後、さらに金薄膜を厚さ50nm堆積させることにより形成した。抗体捕捉領域20長さは5mm、酵素反応生成物測定領域24の直径は3mmであった。その後、抗体捕捉領域20の金薄膜に0.1mMシスタミン溶液を滴下、2時間放置し、金表面にアミノ基を導入した後、純水で洗浄し、さらに2.5mg/mLのBNP及び0.1g/Lの水溶性カルボジイミドを含む溶液中で1時間反応させることにより、金薄膜表面にBNPを不動化した。得られた下部基板10bを洗浄後、上記上部シート10aと貼り合わせ、本発明の第1の具体例になる酵素免疫センサを作製した。   On the other hand, the lower substrate 10b was made of a glass plate (16 mm × 16 mm, thickness 0.15 mm, manufactured by Matsunami Glass Co., Ltd.), and a gold thin film was formed as the antibody capture region 20 and the enzyme reaction product measurement region 24, respectively. The gold thin film was formed by depositing 5 nm of titanium on a glass plate using a magnetron sputtering apparatus (manufactured by Nippon Seed Co., Ltd.) and then depositing a 50 nm thick gold thin film. The length of the antibody capture region 20 was 5 mm, and the diameter of the enzyme reaction product measurement region 24 was 3 mm. Thereafter, a 0.1 mM cystamine solution was dropped onto the gold thin film in the antibody capture region 20 and allowed to stand for 2 hours. After introducing an amino group on the gold surface, it was washed with pure water, and further 2.5 mg / mL BNP and 0. By reacting in a solution containing 1 g / L of water-soluble carbodiimide for 1 hour, BNP was immobilized on the gold thin film surface. The obtained lower substrate 10b was washed and then bonded to the upper sheet 10a to produce an enzyme immunosensor as a first specific example of the present invention.

3. 定量方法
BNPの定量は以下の手順で行った。各濃度のBNP含む水溶液に終濃度が10ng/mLになるようにAnti−BNP−AchEを加えた。この試料液を、シリンジポンプを用いて液供給口14から供給し、一方、試料液排出口16から吸引し、液供給口14から試料液排出口16の方向に流速1μL/分で1分間流通させた。これにより、未反応抗体をBNPが固定化された抗体捕捉領域20上に固定化した。その後、1mMのアセチルチオコリンを含む基質液を、液供給口14から供給し、一方、基質液排出口18から吸引し、液供給口14から基質液排出口18の方向に流速1μL/分において連続的に流通させつつ、拡幅領域22内に配置された、金薄膜から成る酵素反応生成物測定領域24表面の屈折率変化をSPR法により読み取った。SPR角の測定は、市販されているHandy−SPR(商品名、NTT−AT社製)を用いて行った。
3. Quantification method BNP was quantified by the following procedure. Anti-BNP-AchE was added to an aqueous solution containing BNP at each concentration so that the final concentration was 10 ng / mL. The sample liquid is supplied from the liquid supply port 14 using a syringe pump, and is sucked from the sample liquid discharge port 16 and flows in the direction from the liquid supply port 14 to the sample liquid discharge port 16 at a flow rate of 1 μL / min for 1 minute. I let you. Thereby, the unreacted antibody was immobilized on the antibody capture region 20 on which BNP was immobilized. Thereafter, a substrate solution containing 1 mM acetylthiocholine is supplied from the solution supply port 14, while being sucked from the substrate solution discharge port 18, in the direction from the solution supply port 14 to the substrate solution discharge port 18 at a flow rate of 1 μL / min. While continuously circulating, the refractive index change on the surface of the enzyme reaction product measurement region 24 made of a gold thin film and disposed in the widening region 22 was read by the SPR method. The SPR angle was measured using a commercially available Handy-SPR (trade name, manufactured by NTT-AT).

4. 結果
結果を図7及び図8に示す。図7は各BNP濃度に対するSPR角の上昇する様子を示している。試料液中に多くのBNPが含まれる場合には、抗体捕捉領域20上に固定化される未反応抗体の量が減少するため、アセチルコリンエステラーゼ活性が低く、酵素反応生成物であるチオコリンの生成量が少ない。このため、試料溶液中のBNP増加に伴いSPR角度変化が小さくなった。一方、試料液中にBNPが少ない場合、未反応抗体が増加するため抗体捕捉領域20上に固定化される未反応抗体の量が増加し、固定化されるアセチルコリンエステラーゼ活性が高いため、試料液中のBNP減少に伴いSPR角度変化が大きくなる。図8は各BNP濃度に対する図7における5分後のSPR角の変化量を示している。試料液中のBNP濃度の増加に伴いSPR角の変化速度が小さくなる。すなわち本発明の方法によりBNPが定量可能であることを示している。
4). Results The results are shown in FIGS. FIG. 7 shows how the SPR angle increases for each BNP concentration. When a large amount of BNP is contained in the sample solution, the amount of unreacted antibody immobilized on the antibody capture region 20 decreases, so that the acetylcholinesterase activity is low and the amount of thiocholine that is an enzyme reaction product is generated. Less is. For this reason, the SPR angle change became small with the increase in BNP in the sample solution. On the other hand, when the amount of BNP in the sample solution is small, the amount of unreacted antibody increases, so the amount of unreacted antibody immobilized on the antibody capture region 20 increases, and the immobilized acetylcholinesterase activity is high. As the BNP decreases, the SPR angle change increases. FIG. 8 shows the amount of change in the SPR angle after 5 minutes in FIG. 7 for each BNP concentration. As the BNP concentration in the sample solution increases, the rate of change of the SPR angle decreases. That is, it is shown that BNP can be quantified by the method of the present invention.

1. 酵素免疫センサの作製
図2に示す第2の具体例になる酵素免疫センサを作製した。上部シート10aは、実施例1と同様に作製した(ただし、実施例1の拡幅領域22は形成しない)。下部基板10bも実施例1と同様なガラス板であり、酵素反応生成物測定領域24(作用電極)及び参照電極30は、実施例1と同様に作製した金薄膜とした。対向電極32は銀薄膜とした。なお、各電極の幅は1mmであった。
1. Production of enzyme immunosensor An enzyme immunosensor as a second specific example shown in FIG. 2 was produced. The upper sheet 10a was produced in the same manner as in Example 1 (however, the widened region 22 of Example 1 was not formed). The lower substrate 10b is also a glass plate similar to that in Example 1, and the enzyme reaction product measurement region 24 (working electrode) and the reference electrode 30 are gold thin films produced in the same manner as in Example 1. The counter electrode 32 was a silver thin film. The width of each electrode was 1 mm.

2. 定量
実施例1と同様にAnti−BNP−AchEを作製した後、実施例1と同様に各濃度のBNP含む水溶液に終濃度が10ng/mLになるようにAnti−BNP−AchEを加え、次いで、この試料液を、シリンジポンプを用いて液供給口14から試料液排出口16の方向に1μL/分の流速で1分間流路12中に供給し、未反応抗体をBNPが固定化された金薄膜(抗体捕捉領域)20上に固定化した。その後、1mMのアセチルチオコリンを含む基質液を液供給口14から基質液排出口18に向かって1μL/分の流速で供給し、酵素反応生成物測定領域(作用電極)24表面に酵素反応生成物であるチオコリンを結合させた。その後、0.1Mの水酸化カリウム溶液を液供給口14から基質液排出口18に向かい送液し、検出流路19内を0.1Mの水酸化カリウム溶液で満たし、送液を止めた。
2. Quantification After producing Anti-BNP-AchE in the same manner as in Example 1, Anti-BNP-AchE was added to an aqueous solution containing each concentration of BNP in the same manner as in Example 1 so that the final concentration was 10 ng / mL. This sample liquid is supplied into the flow path 12 at a flow rate of 1 μL / min in the direction from the liquid supply port 14 to the sample liquid discharge port 16 using a syringe pump, and unreacted antibody is immobilized with gold immobilized on BNP. Immobilized on a thin film (antibody capture region) 20. Thereafter, a substrate solution containing 1 mM acetylthiocholine is supplied from the solution supply port 14 toward the substrate solution discharge port 18 at a flow rate of 1 μL / min, and an enzyme reaction product is generated on the surface of the enzyme reaction product measurement region (working electrode) 24. The product thiocholine was bound. Thereafter, a 0.1 M potassium hydroxide solution was fed from the liquid supply port 14 toward the substrate liquid discharge port 18, the inside of the detection channel 19 was filled with a 0.1 M potassium hydroxide solution, and the liquid feeding was stopped.

その後、センサの作用電極24、参照電極30及び対向電極32をポテンシオスタット(ALS社製)に接続し、参照電極電位に対して−0.4Vから−1.4Vへ作用電極電位を掃引すると、−1.1V付近にピークを有する還元電流ピークが確認された。この還元電流は作用電極24上に吸着していたチオコリンが還元脱離した際の電流である。本還元電流値はBNP濃度の上昇に伴い、減少した。これは試料中にBNPが多い場合、未反応抗体が減少するため金薄膜20上に固定化される未反応抗体の量が減少し、固定化されるアセチルコリンエステラーゼ活性が低いため、試料溶液中のBNP増加に伴い還元電流値が減少する。このように本発明では電気化学的手法においてもBNPが定量可能であることを示している。   Thereafter, when the working electrode 24, the reference electrode 30 and the counter electrode 32 of the sensor are connected to a potentiostat (manufactured by ALS), the working electrode potential is swept from -0.4V to -1.4V with respect to the reference electrode potential. , A reduction current peak having a peak in the vicinity of −1.1 V was confirmed. This reduction current is a current when the thiocholine adsorbed on the working electrode 24 is reduced and desorbed. This reduction current value decreased as the BNP concentration increased. This is because when there is a large amount of BNP in the sample, the amount of unreacted antibody decreases, so the amount of unreacted antibody immobilized on the gold thin film 20 decreases, and the immobilized acetylcholinesterase activity is low. As the BNP increases, the reduction current value decreases. Thus, the present invention shows that BNP can be quantified even by an electrochemical method.

1. グルコースオキシダーゼ標識抗BNP抗体の調製
標識酵素としてアセチルチオコリンエステラーゼに代えてグルコースオキシダーゼを用いたことを除き、実施例1と同様にしてグルコースオキシダーゼ標識抗ヒトBNP抗体を調製した。
1. Preparation of glucose oxidase-labeled anti-BNP antibody A glucose oxidase-labeled anti-human BNP antibody was prepared in the same manner as in Example 1 except that glucose oxidase was used instead of acetylthiocholinesterase as the labeling enzyme.

2. 酵素免疫センサの作製
酵素反応生成物測定領域24(作用電極)を1 mMフェロセンウンデカンチオールのエタノール溶液に2時間浸漬し、電極表面をフェロセンウンデカンチオールの自己組織化単分子膜で修飾したことを除き実施例2と同様な酵素免疫センサを作製した。
2. Preparation of enzyme immunosensor Except that the enzyme reaction product measurement region 24 (working electrode) was immersed in an ethanol solution of 1 mM ferroceneundecanethiol for 2 hours and the electrode surface was modified with a self-assembled monolayer of ferroceneundecanethiol. An enzyme immunosensor similar to that of Example 2 was produced.

3. 定量
実施例1と同様に各濃度のBNP含む水溶液に終濃度が10ng/mLになるようにグルコースオキシダーゼ標識抗ヒトBNP抗体を加え、次いで、この試料液を、シリンジポンプを用いて液供給口14から試料液排出口16の方向に1μL/分の流速で1分間流路12中に供給し、未反応抗体をBNPが固定化された金薄膜(抗体捕捉領域)20上に固定化した。その後、基質溶液として10mMグルコース及び1μMヘミンを含む溶液を実施例2と同様に送液した。これにより、流路12内で過酸化水素を生成させ、ヘミンを介して作用電極24上に修飾したフェロセンウンデカンチオールの一部を酸化させた。その後、実施例2と同様にフェロセンウンデカンチオールを修飾した作用電極電位を参照電極30に対して電位を掃印することにより、還元電流ピークを観測することができた。これは、作用電極上に修飾されたフェロセンウンデカンチオールがヘミンを介して一部酸化された分子が、再び還元されたことによる。上記還元電流ピークより過酸化水素濃度を決定することが可能であり、さらに目的とする抗原であるBNP濃度を決定することが可能となる。
3. Quantification As in Example 1, glucose oxidase-labeled anti-human BNP antibody was added to an aqueous solution containing BNP at each concentration so that the final concentration was 10 ng / mL, and this sample solution was then added to the liquid supply port 14 using a syringe pump. To the sample solution outlet 16 at a flow rate of 1 μL / min for 1 minute into the flow path 12 to immobilize the unreacted antibody on the gold thin film (antibody capture region) 20 on which BNP is immobilized. Thereafter, a solution containing 10 mM glucose and 1 μM hemin as a substrate solution was fed in the same manner as in Example 2. As a result, hydrogen peroxide was generated in the flow path 12 and a part of the ferroceneundecanethiol modified on the working electrode 24 was oxidized via hemin. Thereafter, a reduction current peak could be observed by sweeping the potential of the working electrode modified with ferroceneundecanethiol with respect to the reference electrode 30 in the same manner as in Example 2. This is because a molecule in which the ferroceneundecanethiol modified on the working electrode was partially oxidized via hemin was reduced again. The hydrogen peroxide concentration can be determined from the reduction current peak, and the BNP concentration that is the target antigen can be determined.

1. 酵素免疫センサの作製
図3に示す第4の具体例の酵素免疫センサを作製した。上部シート10aの流路の形状を図3のように変更した以外は実施例1と同様にして作製した。ただし、酵素反応生成物測定領域24を構成する金薄膜の直径は10mmであった。
1. Production of enzyme immunosensor An enzyme immunosensor of the fourth specific example shown in FIG. 3 was produced. It was produced in the same manner as in Example 1 except that the shape of the flow path of the upper sheet 10a was changed as shown in FIG. However, the diameter of the gold thin film constituting the enzyme reaction product measurement region 24 was 10 mm.

2. 定量
試料液及び基質液は実施例1と同様にして調製した。試料液排出口16及び基質液排出口18をシリンジに接続し、さらに該シリンジをシリンジポンプに取り付けた。その後、試料液排出口16に接続したシリンジポンプのみを吸引することにより、BNP及びAnti−BNP−AchEを含む試料液を液供給口14から試料液排出口16に向かい吸引送液した。この間にBNPが固定化されている金薄膜20上に未反応抗体が固定化される。その後、基質液排出口18に接続したシリンジポンプを吸引することにより、液供給口14から基質液排出口18に向かい、1mMのアセチルチオコリン溶液を吸引送液した。なお、試料液及び基質液の送液条件は実施例1と同様であった。この時に金薄膜20上に固定化されたAnti−BNP−AchEによりアセチルチオコリンの一部がチオコリンに分解され、金薄膜24上に濃縮される。このチオコリンの濃縮を実施例1と同様にSPR法により検出した。
2. Determination The sample solution and the substrate solution were prepared in the same manner as in Example 1. The sample liquid outlet 16 and the substrate liquid outlet 18 were connected to a syringe, and the syringe was further attached to a syringe pump. Thereafter, by sucking only the syringe pump connected to the sample liquid discharge port 16, the sample liquid containing BNP and Anti-BNP-AchE was sucked and fed from the liquid supply port 14 toward the sample liquid discharge port 16. During this time, the unreacted antibody is immobilized on the gold thin film 20 on which BNP is immobilized. Thereafter, by sucking a syringe pump connected to the substrate liquid discharge port 18, a 1 mM acetylthiocholine solution was sucked and fed from the liquid supply port 14 toward the substrate liquid discharge port 18. The conditions for feeding the sample solution and the substrate solution were the same as in Example 1. At this time, a part of acetylthiocholine is decomposed into thiocholine by Anti-BNP-AchE immobilized on the gold thin film 20 and concentrated on the gold thin film 24. This thiocholine concentration was detected by the SPR method in the same manner as in Example 1.

1. 酵素免疫センサの作製
図4及び図5に示す第5の具体例の酵素免疫センサを作製した。上部シート10aは、流路の形状を図4及び図5に示すように変更した以外は実施例1と同様にして作製した。下部基板10bには、実施例4と同様に抗体捕捉領域20及び酵素反応生成物測定領域24を形成した。さらに、第1の流通方向規定領域34及び第2の流通方向規定領域36の基層をそれぞれ金薄膜で形成した。これらの金薄膜を、1 mMフェロセンウンデカンチオールのエタノール溶液に2時間浸漬し、電極表面をフェロセンウンデカンチオールの自己組織化単分子膜で修飾して第1及び第2の流通方向規定領域34及び36を形成した。
1. Production of enzyme immunosensor An enzyme immunosensor of the fifth specific example shown in FIGS. 4 and 5 was produced. The upper sheet 10a was produced in the same manner as in Example 1 except that the shape of the flow path was changed as shown in FIGS. In the lower substrate 10b, the antibody capture region 20 and the enzyme reaction product measurement region 24 were formed in the same manner as in Example 4. Furthermore, the base layer of the 1st distribution direction regulation area | region 34 and the 2nd distribution direction regulation area | region 36 was each formed with the gold thin film. These gold thin films were immersed in an ethanol solution of 1 mM ferrocene undecanethiol for 2 hours, and the electrode surface was modified with a self-assembled monolayer of ferrocene undecanethiol to provide first and second flow direction defining regions 34 and 36. Formed.

2. 定量
試料液及び基質液は実施例1と同様にして調製した。先ず、第2の流通方向規定領域36及び第1の流通方向規定領域34の電極電位をおのおの0.4V,0Vに印加し、BNP及びAnti−BNP−AchEを含む試料液を試料液供給口14aから送液した。導入された試料液は親水性の高い第2の流通方向規定領域36方向へ送液され、この間にBNPが固定化されている抗体捕捉領域20上に未反応抗体が固定化される。次に、第2の流通方向規定領域36及び第1の流通方向規定領域34の電極電位をおのおの0V,0.4Vに印加し、基質液供給口14bから1mMのアセチルチオコリン溶液を導入した。この際に、アセチルチオコリン溶液は親水性の高い第1の流通方向規定領域34の方向に送液され、さらに酵素反応生成物測定領域(金薄膜)24と接触する。なお、試料液及び基質液の送液条件は実施例1と同様であった。この時に金薄膜24上に固定化されたAnti−BNP−AchEによりアセチルチオコリンの一部がチオコリンに分解され、金薄膜24上に濃縮される。このチオコリンの濃縮を実施例1と同様にSPR法により検出、もしくは実施例2と同様に電気化学的に検出することにより、試料中のBNPを定量可能であった。このように酸化還元種を固定化した金薄膜を各流路の境目に配置させることにより、送液方向を制御し、簡便にかつS/N比よく検出可能である。
2. Determination The sample solution and the substrate solution were prepared in the same manner as in Example 1. First, the electrode potentials of the second flow direction defining region 36 and the first flow direction defining region 34 are respectively applied to 0.4 V and 0 V, and the sample liquid containing BNP and Anti-BNP-AchE is supplied to the sample liquid supply port 14a. The liquid was sent from. The introduced sample liquid is fed in the direction of the second flow direction defining region 36 having high hydrophilicity, and unreacted antibodies are immobilized on the antibody capturing region 20 on which BNP is immobilized. Next, the electrode potentials of the second flow direction defining region 36 and the first flow direction defining region 34 were applied to 0V and 0.4V, respectively, and a 1 mM acetylthiocholine solution was introduced from the substrate solution supply port 14b. At this time, the acetylthiocholine solution is fed in the direction of the first flow direction defining region 34 having high hydrophilicity, and further contacts the enzyme reaction product measurement region (gold thin film) 24. The conditions for feeding the sample solution and the substrate solution were the same as in Example 1. At this time, a part of acetylthiocholine is decomposed into thiocholine by Anti-BNP-AchE immobilized on the gold thin film 24 and concentrated on the gold thin film 24. By detecting the concentration of thiocholine by the SPR method as in Example 1 or by detecting it electrochemically as in Example 2, BNP in the sample could be quantified. Thus, by arranging the gold thin film on which the redox species are immobilized at the boundary of each flow path, the liquid feeding direction is controlled, and the detection can be easily performed with a high S / N ratio.

1. 酵素免疫センサの作製
図6に示す第6の具体例の酵素免疫センサを作製した。上部シートは、流路の形状を図6の通りにしたことを除き実施例1と同様にして作製した2枚のPDMSシートの間に半透膜38を挟んで貼り合せた。半透膜38は、平均孔径4nm、厚さ20μmのセルロース膜であった。上部シートの上段10a1の側壁に、実施例1と同様なスパッタリングにより金薄膜を形成し、これに実施例1と同様にBNPを結合して抗体捕捉領域20とした。下部基板は実施例1と同様であった。なお、下部基板には、酵素反応生成物測定領域24となる金薄膜のみ形成した。
1. Production of enzyme immunosensor An enzyme immunosensor of the sixth specific example shown in FIG. 6 was produced. The upper sheet was bonded by sandwiching a semipermeable membrane 38 between two PDMS sheets prepared in the same manner as in Example 1 except that the shape of the flow path was as shown in FIG. The semipermeable membrane 38 was a cellulose membrane having an average pore diameter of 4 nm and a thickness of 20 μm. A gold thin film was formed on the side wall of the upper stage 10a1 of the upper sheet by sputtering in the same manner as in Example 1, and BNP was bonded to this to form the antibody capture region 20 in the same manner as in Example 1. The lower substrate was the same as in Example 1. Only the gold thin film that becomes the enzyme reaction product measurement region 24 was formed on the lower substrate.

2. 定量
試料液及び基質液は実施例1と同様にして調製した。まず、透析液として0.1Mのリン酸バッファを透析液供給口40から透析液排出口42に向かい送液し、下段流路12b内に透析液を満たした。その後、シリンジポンプを用いて液供給口14からBNP及びAnti−BNP−AchEを含む試料液を排出口18aに向かい吸引送液した。その後、同様に基質液である1mMアセチルチオコリンを送液した。なお、試料液及び基質液の送液条件は実施例1と同様であった。これにより生成されたチオコリンの一部は半透膜38を通過し、酵素反応生成物測定領域(金薄膜)24上に吸着濃縮される。濃縮されるチオコリンは実施例1と同様にSPR法により確認可能である。このように酵素生成物であるチオコリンのように分子量の小さい分子を選択的に検出流路へ送り込むことにより、試料中のタンパク質などの高分子の吸着の影響が無く測定可能である。
2. Determination The sample solution and the substrate solution were prepared in the same manner as in Example 1. First, 0.1 M phosphate buffer as a dialysate was sent from the dialysate supply port 40 toward the dialysate discharge port 42, and the lower flow path 12b was filled with the dialysate. Thereafter, the sample liquid containing BNP and Anti-BNP-AchE was sucked and fed from the liquid supply port 14 toward the discharge port 18a using a syringe pump. Thereafter, similarly, 1 mM acetylthiocholine, which is a substrate solution, was fed. The conditions for feeding the sample solution and the substrate solution were the same as in Example 1. A portion of the thiocholine thus produced passes through the semipermeable membrane 38 and is adsorbed and concentrated on the enzyme reaction product measurement region (gold thin film) 24. Concentrated thiocholine can be confirmed by the SPR method as in Example 1. Thus, by selectively feeding molecules having a small molecular weight such as thiocholine, which is an enzyme product, to the detection channel, measurement can be performed without the influence of adsorption of macromolecules such as proteins in the sample.

本発明の酵素免疫センサの好ましい1具体例を模式的に示す分解斜視図である。It is a disassembled perspective view which shows typically one preferable specific example of the enzyme immunosensor of this invention. 本発明の酵素免疫センサの好ましい他の1具体例を模式的に示す分解斜視図である。It is a disassembled perspective view which shows typically another one specific example of the enzyme immunosensor of this invention typically. 本発明の酵素免疫センサの好ましいさらに他の1具体例を模式的に示す分解斜視図である。It is a disassembled perspective view which shows typically another preferable one specific example of the enzyme immunosensor of this invention. 本発明の酵素免疫センサの好ましいさらに他の1具体例を模式的に示す分解斜視図である。It is a disassembled perspective view which shows typically another preferable one specific example of the enzyme immunosensor of this invention. 図4の切断部端面図である。FIG. 5 is an end view of the cut portion in FIG. 4. 本発明の酵素免疫センサの好ましいさらに他の1具体例を模式的に示す分解斜視図である。It is a disassembled perspective view which shows typically another preferable one specific example of the enzyme immunosensor of this invention. 本発明の実施例1で測定した、種々の濃度の被検物質を含む各標準試料液についてのSPR角の時間変化を示す図である。It is a figure which shows the time change of the SPR angle about each standard sample liquid containing the test substance of various density | concentration measured in Example 1 of this invention. 図7に示す結果から導かれた、試料液中のBNP濃度とSPR角の変化率との関係を示す検量線である。FIG. 8 is a calibration curve showing the relationship between the BNP concentration in the sample solution and the rate of change of the SPR angle, derived from the results shown in FIG.

符号の説明Explanation of symbols

10 基板
10a 上部シート
10a1 上部シートの上段
10a2 上部シートの下段
12 流路
12a 上段流路
12b 下段流路
14 液供給口
14a 試料液供給口
14b 基質液供給口
16 試料液排出口
18 基質液排出口
18a 排出口
20 抗体捕捉領域
22 拡幅領域
24 酵素反応生成物測定領域
26 SPR測定用入射光
28 SPR測定用反射光
30 参照電極
32 対向電極
34 第1の流通方向規定領域
36 第2の流通方向規定領域
38 半透膜
40 透析液供給口
42 透析液排出口

10 substrate 10a upper sheet 10a1 upper sheet upper stage 10a2 upper sheet lower sheet 12 channel 12a upper channel 12b lower channel 14 liquid supply port 14a sample solution supply port 14b substrate solution supply port 16 sample solution discharge port 18 substrate solution discharge port 18a discharge port 20 antibody capture region 22 widening region 24 enzyme reaction product measurement region 26 incident light for SPR measurement 28 reflected light for SPR measurement 30 reference electrode 32 counter electrode 34 first flow direction defining region 36 second flow direction defining region 36 Area 38 Semipermeable membrane 40 Dialysate supply port 42 Dialysate discharge port

Claims (24)

流路が設けられた基板と、該流路内に設けられ、被検物質に対する抗体と抗原抗体反応する抗体捕捉物質を不動化した抗体捕捉領域と、前記流路内の前記抗体捕捉領域以外の領域に設けられた酵素反応生成物測定領域とを具備する酵素免疫センサを用い、前記被検物質と、該被検物質と抗原抗体反応する、酵素標識した抗体又はその抗原結合性断片とを含む試料液を前記抗体捕捉領域に流通させて未反応の前記抗体又はその抗原結合性断片を前記抗体捕捉領域に捕捉し、次いで、前記標識酵素の基質を含む基質液を前記抗体捕捉領域に流通させて前記標識酵素による酵素反応を行なわせた後、その酵素反応生成物の少なくとも一部を前記酵素反応生成物測定領域と接触させて該酵素反応生成物を測定することを含む、前記被検物質の酵素免疫測定方法。   A substrate provided with a channel, an antibody capture region provided in the channel and immobilizing an antibody capture material that reacts with an antibody against a test substance with an antigen antibody, and other than the antibody capture region in the channel Using an enzyme immunosensor having an enzyme reaction product measurement region provided in the region, the test substance, and an enzyme-labeled antibody or antigen-binding fragment thereof that reacts with the test substance with an antigen-antibody A sample solution is circulated in the antibody capture region to capture the unreacted antibody or antigen-binding fragment thereof in the antibody capture region, and then a substrate solution containing the labeling enzyme substrate is circulated in the antibody capture region. And subjecting the enzyme reaction product to measurement by measuring at least a part of the enzyme reaction product in contact with the enzyme reaction product measurement region. Enzyme immunity Constant method. 前記酵素反応生成物測定領域は金薄膜から成り、前記酵素反応は、チオール化合物を生成するものであり、酵素反応により生成した前記チオール化合物の、前記金薄膜への結合を表面プラズモン共鳴法により測定する請求項1記載の方法。   The enzyme reaction product measurement region comprises a gold thin film, and the enzyme reaction generates a thiol compound, and the binding of the thiol compound generated by the enzyme reaction to the gold thin film is measured by a surface plasmon resonance method. The method according to claim 1. 前記酵素反応生成物測定領域は金薄膜から成り、前記酵素反応は、チオール化合物を生成するものであり、酵素反応により生成した前記チオール化合物を前記金薄膜に結合させた後、該金属薄膜に電圧を印加して前記チオール化合物を前記金薄膜から還元脱離させ、その際の還元電流を測定する請求項1記載の方法。   The enzyme reaction product measurement region is composed of a gold thin film, and the enzyme reaction generates a thiol compound. After the thiol compound generated by the enzyme reaction is bonded to the gold thin film, a voltage is applied to the metal thin film. The method according to claim 1, wherein the thiol compound is reductively desorbed from the gold thin film by applying and the reduction current at that time is measured. 前記標識酵素がアシルチオコリンエステラーゼであり、前記基質がアシルチオコリンである請求項2又は3記載の方法。   The method according to claim 2 or 3, wherein the labeling enzyme is acylthiocholinesterase and the substrate is acylthiocholine. 前記標識酵素がアセチルチオコリンエステラーゼであり、前記基質がアセチルチオコリンである請求項4記載の方法。   The method according to claim 4, wherein the labeling enzyme is acetylthiocholinesterase and the substrate is acetylthiocholine. 前記酵素反応は、過酸化水素を生成するものであり、前記酵素反応生成物測定領域は、過酸化水素測定電極である請求項1記載の方法。   The method according to claim 1, wherein the enzyme reaction generates hydrogen peroxide, and the enzyme reaction product measurement region is a hydrogen peroxide measurement electrode. 前記標識酵素がオキシダーゼであり、前記基質がオキシダーゼの作用により過酸化水素を生じる化合物である請求項6記載の方法。   The method according to claim 6, wherein the labeling enzyme is an oxidase, and the substrate is a compound that generates hydrogen peroxide by the action of the oxidase. 前記標識酵素がグルコースオキシダーゼであり、前記基質がグルコースである請求項7記載の方法。   The method according to claim 7, wherein the labeling enzyme is glucose oxidase and the substrate is glucose. 前記過酸化水素測定電極は、過酸化水素により直接的又は間接的に酸化される物質が結合された金属から成り、該電極に電圧を印加して、過酸化水素により酸化された前記物質を還元し、その際の還元電流を測定することにより過酸化水素を測定する請求項6ないし8のいずれか1項に記載の方法。   The hydrogen peroxide measuring electrode is made of a metal bonded with a substance that is directly or indirectly oxidized by hydrogen peroxide, and a voltage is applied to the electrode to reduce the substance oxidized by hydrogen peroxide. The method according to any one of claims 6 to 8, wherein hydrogen peroxide is measured by measuring a reduction current at that time. 前記過酸化水素測定電極は、フェロセン及びその誘導体、これを含む高分子化合物、ヒドロキノン及びその誘導体、これを含む高分子化合物、オスミウムビピリジン錯体及びその誘導体、並びにこれを含む高分子化合物から成る群より選ばれる少なくとも1種の酸化還元性物質が結合され、前記基質溶液は、過酸化水素の存在下で前記酸化還元性物質を酸化する物質又は酵素を含む請求項9記載の方法。   The hydrogen peroxide measuring electrode includes the group consisting of ferrocene and derivatives thereof, polymer compounds including the same, hydroquinone and derivatives thereof, polymer compounds including the same, osmium bipyridine complexes and derivatives thereof, and polymer compounds including the same. The method according to claim 9, wherein at least one selected redox substance is bound, and the substrate solution contains a substance or an enzyme that oxidizes the redox substance in the presence of hydrogen peroxide. 前記過酸化水素の存在下で前記酸化還元性物質を酸化する物質又は酵素が、ヘミン、鉄ポルフィリン錯体、マイクロペルオキシダーゼ及びペルオキシダーゼから成る群より選ばれる少なくとも1種である請求項10記載の方法。   The method according to claim 10, wherein the substance or enzyme that oxidizes the redox substance in the presence of hydrogen peroxide is at least one selected from the group consisting of hemin, iron porphyrin complex, microperoxidase, and peroxidase. 前記過酸化水素測定電極には、フェロセンのアルキル化誘導体が結合され、前記基質液はヘミンを含む請求項11記載の方法。   12. The method according to claim 11, wherein an alkylated derivative of ferrocene is bound to the hydrogen peroxide measuring electrode, and the substrate solution contains hemin. 前記流路は分岐しており、前記抗体捕捉領域は、分岐点よりも上流に位置し、前記酵素反応生成物測定領域は分岐点よりも下流の一方の流路内に位置しており、前記試料液は、分岐点通過後、前記反応生成物検出領域が形成されていない方の流路を流通し、前記基質液は、分岐点通過後、前記酵素反応生成物測定領域が形成されている方の流路を流通する請求項1ないし12のいずれか1項に記載の方法。   The flow path is branched, the antibody capture region is located upstream from the branch point, and the enzyme reaction product measurement region is located in one flow path downstream from the branch point, After passing through the branch point, the sample solution flows through the flow path where the reaction product detection region is not formed, and after passing through the branch point, the substrate solution is formed with the enzyme reaction product measurement region. The method according to any one of claims 1 to 12, wherein the method flows through one of the flow paths. 前記流路は分岐のない1本の流路から成り、前記試料液は、前記抗体捕捉領域よりも上流の位置から前記流路に供給され、前記抗体捕捉領域を通過した後、前記酵素反応生成物測定領域に到達する前に流路から除去され、前記基質液は、前記抗体捕捉領域よりも上流の位置から前記流路に供給され、前記抗体捕捉領域を流通した後前記酵素反応生成物測定領域と接触する請求項1ないし12のいずれか1項に記載の方法。   The flow path is composed of a single flow path without branching, and the sample solution is supplied to the flow path from a position upstream of the antibody capture region and passes through the antibody capture region, and then the enzyme reaction product is generated. The substrate solution is removed from the flow path before reaching the product measurement region, and the substrate solution is supplied to the flow channel from a position upstream of the antibody capture region, and after passing through the antibody capture region, the enzyme reaction product measurement 13. A method according to any one of claims 1 to 12 in contact with a region. 前記流路は分岐のない1本の流路から成り、前記試料液は、前記抗体捕捉領域と前記酵素反応生成物測定領域の間の位置から流路に供給されて前記抗体捕捉領域側に流通して前記抗体捕捉領域を通過し、前記基質液は、前記抗体捕捉領域を挟んで前記酵素反応生成物測定領域と反対側の位置から流路に供給されて前記抗体捕捉領域側に流通して前記抗体捕捉領域を通過して前記酵素反応生成物測定領域と接触する請求項1ないし12のいずれか1項に記載の方法。   The flow path is composed of a single flow path without branching, and the sample solution is supplied to the flow path from a position between the antibody capture region and the enzyme reaction product measurement region and flows to the antibody capture region side. Pass through the antibody capture region, the substrate solution is supplied to the flow channel from a position opposite to the enzyme reaction product measurement region across the antibody capture region, and flows to the antibody capture region side. The method according to any one of claims 1 to 12, wherein the method passes through the antibody capture region and contacts the enzyme reaction product measurement region. 前記免疫センサは、前記抗体捕捉領域と前記酵素反応生成物測定領域の間に形成され、電位により親水性が変化する物質が結合された導体から成る第1の流通方向規定領域と、前記抗体捕捉領域を挟んで前記第1の流通方向規定領域と反対側の位置に形成され、電位により親水性が変化する物質が結合された導体から成る第2の流通方向規定領域を具備し、前記試料液は前記抗体捕捉領域と前記第1の流通方向規定領域の間の位置から前記流路に供給され、前記基質液は前記第2の流通方向規定領域と前記抗体捕捉領域の間の位置から前記流路に供給され、前記試料液を供給した際の流通方向と、前記基質液を供給した際の流通方向とを、前記第1及び第2の流通方向規定領域に印加する電位を変えることにより切り替える請求項15記載の方法。   The immunosensor includes a first flow direction regulating region formed between a conductor that is formed between the antibody capture region and the enzyme reaction product measurement region and is bonded with a substance whose hydrophilicity changes depending on a potential, and the antibody capture A second flow direction regulating region formed of a conductor formed by bonding a substance whose hydrophilicity changes depending on an electric potential, formed at a position opposite to the first flow direction defining region across the region; Is supplied to the flow path from a position between the antibody capture region and the first flow direction defining region, and the substrate liquid is flowed from the position between the second flow direction defining region and the antibody capture region. The flow direction when the sample solution is supplied and the flow direction when the substrate solution is supplied are switched by changing the potential applied to the first and second flow direction defining regions. Claim 15 Law. 前記第1及び第2の流通方向規定領域に結合される、電位により親水性が変化する物質は、フェロセン又はその誘導体である請求項16記載の方法。   The method according to claim 16, wherein the substance that changes the hydrophilicity according to the electric potential and is bonded to the first and second flow direction defining regions is ferrocene or a derivative thereof. 前記流路は、前記酵素反応生成物が透過するが前記酵素標識抗体又はその抗原結合性断片は透過しない半透膜により上下2段に分離され、前記抗体捕捉領域は流路の上段に形成され、前記酵素反応生成物測定領域は下段に形成される請求項1ないし17のいずれか1項に記載の方法。   The flow path is separated into two upper and lower stages by a semipermeable membrane that allows the enzyme reaction product to permeate but does not permeate the enzyme-labeled antibody or antigen-binding fragment thereof, and the antibody capture region is formed in the upper stage of the flow path. The method according to any one of claims 1 to 17, wherein the enzyme reaction product measurement region is formed in a lower stage. 流路が設けられた基板と、該流路内に設けられ、被検物質に対する抗体と抗原抗体反応する抗体捕捉物質を不動化した抗体捕捉領域と、前記流路内の前記抗体捕捉領域以外の領域に設けられた酵素反応生成物測定領域とを具備する、請求項1ないし18のいずれか1項に記載の方法を行なうための酵素免疫センサ。   A substrate provided with a channel, an antibody capture region provided in the channel and immobilizing an antibody capture material that reacts with an antibody against a test substance with an antigen antibody, and other than the antibody capture region in the channel An enzyme immunosensor for performing the method according to claim 1, further comprising an enzyme reaction product measurement region provided in the region. 前記流路は分岐しており、前記抗体捕捉領域は、分岐点よりも上流に位置し、前記酵素反応生成物測定領域は分岐点よりも下流の一方の流路内に位置する請求項19記載の酵素免疫センサ。   The said flow path is branched, The said antibody capture area | region is located upstream from a branch point, and the said enzyme reaction product measurement area | region is located in one flow path downstream from a branch point. Enzyme immunosensor. 前記流路は分岐のない1本の流路から成る請求項19記載の酵素免疫センサ。   The enzyme immunosensor according to claim 19, wherein the flow path comprises a single flow path without branching. 前記免疫センサは、前記抗体捕捉領域と前記酵素反応生成物測定領域の間に形成され、電位により親水性が変化する物質が結合された導体から成る第1の流通方向規定領域と、前記抗体捕捉領域を挟んで前記第1の流通方向規定領域と反対側の位置に形成され、電位により親水性が変化する物質が結合された導体から成る第2の流通方向規定領域とを具備する請求項21記載の酵素免疫センサ。   The immunosensor includes a first flow direction regulating region formed between a conductor that is formed between the antibody capture region and the enzyme reaction product measurement region and is bonded with a substance whose hydrophilicity changes depending on a potential, and the antibody capture 23. A second flow direction defining region, which is formed at a position opposite to the first flow direction defining region across the region and is made of a conductor to which a substance whose hydrophilicity is changed by an electric potential is combined. The enzyme immunosensor described. 前記第1及び第2の流通方向規定領域に結合される、電位により親水性が変化する物質は、フェロセン又はその誘導体である請求項22記載の酵素免疫センサ。   23. The enzyme immunosensor according to claim 22, wherein the substance that is coupled to the first and second flow direction defining regions and whose hydrophilicity is changed by an electric potential is ferrocene or a derivative thereof. 前記流路は、前記酵素反応生成物が透過するが前記酵素標識抗体又はその抗原結合性断片は透過しない半透膜により上下2段に分離され、前記抗体捕捉領域は流路の上段に形成され、前記酵素反応生成物測定領域は下段に形成される請求項19ないし23のいずれか1項に記載の酵素免疫センサ。

The flow path is separated into two upper and lower stages by a semipermeable membrane that allows the enzyme reaction product to permeate but does not permeate the enzyme-labeled antibody or antigen-binding fragment thereof, and the antibody capture region is formed in the upper stage of the flow path. The enzyme immunosensor according to any one of claims 19 to 23, wherein the enzyme reaction product measurement region is formed in a lower stage.

JP2005209598A 2005-07-20 2005-07-20 Enzyme immunoassay method and enzyme immunosensor therefor Expired - Fee Related JP4581128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005209598A JP4581128B2 (en) 2005-07-20 2005-07-20 Enzyme immunoassay method and enzyme immunosensor therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005209598A JP4581128B2 (en) 2005-07-20 2005-07-20 Enzyme immunoassay method and enzyme immunosensor therefor

Publications (2)

Publication Number Publication Date
JP2007024742A true JP2007024742A (en) 2007-02-01
JP4581128B2 JP4581128B2 (en) 2010-11-17

Family

ID=37785694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005209598A Expired - Fee Related JP4581128B2 (en) 2005-07-20 2005-07-20 Enzyme immunoassay method and enzyme immunosensor therefor

Country Status (1)

Country Link
JP (1) JP4581128B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102810A1 (en) * 2007-02-21 2008-08-28 Sharp Kabushiki Kaisha Channel reaction method and channel reaction apparatus
JP2008304270A (en) * 2007-06-06 2008-12-18 Nippon Telegr & Teleph Corp <Ntt> Fluid measuring substrate, analyzer and analysis method
JP2009063300A (en) * 2007-09-04 2009-03-26 Fujifilm Corp Biosensor capable of detecting bonding of substrate and reaction product at same time
JP2009121966A (en) * 2007-11-15 2009-06-04 National Institute Of Advanced Industrial & Technology Immunoassay method using electrochemical luminescence, and kit used in the same for measuring amount of electrochemical luminescence
JP2010025681A (en) * 2008-07-17 2010-02-04 National Institute Of Advanced Industrial & Technology Flow cell
WO2010041736A1 (en) * 2008-10-10 2010-04-15 コニカミノルタホールディングス株式会社 Assay method using surface plasmon
JP2010181323A (en) * 2009-02-06 2010-08-19 Konica Minolta Holdings Inc Assay method using surface plasmon
JP2011214860A (en) * 2010-03-31 2011-10-27 Nec Corp Test material sensing method, sensing device, and sensing set
JP2011223919A (en) * 2010-04-19 2011-11-10 Kyoritsu Denki Kk Device for detecting trace substance
WO2012023391A1 (en) * 2010-08-17 2012-02-23 コニカミノルタホールディングス株式会社 Spfs sensor equipped with non-specific adsorption type purification mechanism
JP2012242274A (en) * 2011-05-20 2012-12-10 Univ Of Tsukuba Food inspection device and food inspection method
JP5421918B2 (en) * 2008-08-11 2014-02-19 藤森工業株式会社 Platelet testing method and platelet testing apparatus
JP2019146593A (en) * 2007-07-13 2019-09-05 ハンディーラブ インコーポレイテッド Microfluidic cartridge
US10443088B1 (en) 2004-05-03 2019-10-15 Handylab, Inc. Method for processing polynucleotide-containing samples
US10571935B2 (en) 2001-03-28 2020-02-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US10590410B2 (en) 2007-07-13 2020-03-17 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US10619191B2 (en) 2001-03-28 2020-04-14 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US10625262B2 (en) 2007-07-13 2020-04-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10695764B2 (en) 2006-03-24 2020-06-30 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10710069B2 (en) 2006-11-14 2020-07-14 Handylab, Inc. Microfluidic valve and method of making same
US10731201B2 (en) 2003-07-31 2020-08-04 Handylab, Inc. Processing particle-containing samples
US10781482B2 (en) 2011-04-15 2020-09-22 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US10799862B2 (en) 2006-03-24 2020-10-13 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US10822644B2 (en) 2012-02-03 2020-11-03 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
US10844368B2 (en) 2007-07-13 2020-11-24 Handylab, Inc. Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
WO2021015105A1 (en) * 2019-07-19 2021-01-28 王子ホールディングス株式会社 Optical sensor sheet
US11266987B2 (en) 2007-07-13 2022-03-08 Handylab, Inc. Microfluidic cartridge
US11453906B2 (en) 2011-11-04 2022-09-27 Handylab, Inc. Multiplexed diagnostic detection apparatus and methods
US11549959B2 (en) 2007-07-13 2023-01-10 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10501425A (en) * 1995-03-27 1998-02-10 コールター インターナショナル コーポレイション Measuring device for analytes in liquid samples
JP2001508180A (en) * 1997-01-15 2001-06-19 カーバリー ハーン リミテッド Biochemical and immunochemical assay devices
JP2001221799A (en) * 1999-12-03 2001-08-17 Shino Test:Kk Measurement instrument having a plurality of determination parts and measurement method for subject of test
JP2003075444A (en) * 2001-08-31 2003-03-12 Mitsubishi Chemicals Corp Chip for measuring substance to be measured, substance measuring apparatus and method therefor
JP2005024483A (en) * 2003-07-01 2005-01-27 Nippon Telegr & Teleph Corp <Ntt> Biosensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10501425A (en) * 1995-03-27 1998-02-10 コールター インターナショナル コーポレイション Measuring device for analytes in liquid samples
JP2001508180A (en) * 1997-01-15 2001-06-19 カーバリー ハーン リミテッド Biochemical and immunochemical assay devices
JP2001221799A (en) * 1999-12-03 2001-08-17 Shino Test:Kk Measurement instrument having a plurality of determination parts and measurement method for subject of test
JP2003075444A (en) * 2001-08-31 2003-03-12 Mitsubishi Chemicals Corp Chip for measuring substance to be measured, substance measuring apparatus and method therefor
JP2005024483A (en) * 2003-07-01 2005-01-27 Nippon Telegr & Teleph Corp <Ntt> Biosensor

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10619191B2 (en) 2001-03-28 2020-04-14 Handylab, Inc. Systems and methods for thermal actuation of microfluidic devices
US10571935B2 (en) 2001-03-28 2020-02-25 Handylab, Inc. Methods and systems for control of general purpose microfluidic devices
US11078523B2 (en) 2003-07-31 2021-08-03 Handylab, Inc. Processing particle-containing samples
US10865437B2 (en) 2003-07-31 2020-12-15 Handylab, Inc. Processing particle-containing samples
US10731201B2 (en) 2003-07-31 2020-08-04 Handylab, Inc. Processing particle-containing samples
US10443088B1 (en) 2004-05-03 2019-10-15 Handylab, Inc. Method for processing polynucleotide-containing samples
US11441171B2 (en) 2004-05-03 2022-09-13 Handylab, Inc. Method for processing polynucleotide-containing samples
US10604788B2 (en) 2004-05-03 2020-03-31 Handylab, Inc. System for processing polynucleotide-containing samples
US10494663B1 (en) 2004-05-03 2019-12-03 Handylab, Inc. Method for processing polynucleotide-containing samples
US11085069B2 (en) 2006-03-24 2021-08-10 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US10695764B2 (en) 2006-03-24 2020-06-30 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US11959126B2 (en) 2006-03-24 2024-04-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US11666903B2 (en) 2006-03-24 2023-06-06 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US11141734B2 (en) 2006-03-24 2021-10-12 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US11142785B2 (en) 2006-03-24 2021-10-12 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US10913061B2 (en) 2006-03-24 2021-02-09 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US10857535B2 (en) 2006-03-24 2020-12-08 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US10843188B2 (en) 2006-03-24 2020-11-24 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US10821446B1 (en) 2006-03-24 2020-11-03 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10821436B2 (en) 2006-03-24 2020-11-03 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using the same
US10799862B2 (en) 2006-03-24 2020-10-13 Handylab, Inc. Integrated system for processing microfluidic samples, and method of using same
US10710069B2 (en) 2006-11-14 2020-07-14 Handylab, Inc. Microfluidic valve and method of making same
WO2008102810A1 (en) * 2007-02-21 2008-08-28 Sharp Kabushiki Kaisha Channel reaction method and channel reaction apparatus
JP2008203158A (en) * 2007-02-21 2008-09-04 Sharp Corp Channel reaction method and channel reactor
JP2008304270A (en) * 2007-06-06 2008-12-18 Nippon Telegr & Teleph Corp <Ntt> Fluid measuring substrate, analyzer and analysis method
US11060082B2 (en) 2007-07-13 2021-07-13 Handy Lab, Inc. Polynucleotide capture materials, and systems using same
US10625261B2 (en) 2007-07-13 2020-04-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10632466B1 (en) 2007-07-13 2020-04-28 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US11845081B2 (en) 2007-07-13 2023-12-19 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10625262B2 (en) 2007-07-13 2020-04-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US11549959B2 (en) 2007-07-13 2023-01-10 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
US10844368B2 (en) 2007-07-13 2020-11-24 Handylab, Inc. Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly
US11466263B2 (en) 2007-07-13 2022-10-11 Handylab, Inc. Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly
US10590410B2 (en) 2007-07-13 2020-03-17 Handylab, Inc. Polynucleotide capture materials, and methods of using same
US10717085B2 (en) 2007-07-13 2020-07-21 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US10875022B2 (en) 2007-07-13 2020-12-29 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US11266987B2 (en) 2007-07-13 2022-03-08 Handylab, Inc. Microfluidic cartridge
US11254927B2 (en) 2007-07-13 2022-02-22 Handylab, Inc. Polynucleotide capture materials, and systems using same
JP2019146593A (en) * 2007-07-13 2019-09-05 ハンディーラブ インコーポレイテッド Microfluidic cartridge
JP2009063300A (en) * 2007-09-04 2009-03-26 Fujifilm Corp Biosensor capable of detecting bonding of substrate and reaction product at same time
JP2009121966A (en) * 2007-11-15 2009-06-04 National Institute Of Advanced Industrial & Technology Immunoassay method using electrochemical luminescence, and kit used in the same for measuring amount of electrochemical luminescence
JP2010025681A (en) * 2008-07-17 2010-02-04 National Institute Of Advanced Industrial & Technology Flow cell
JP5421918B2 (en) * 2008-08-11 2014-02-19 藤森工業株式会社 Platelet testing method and platelet testing apparatus
WO2010041736A1 (en) * 2008-10-10 2010-04-15 コニカミノルタホールディングス株式会社 Assay method using surface plasmon
JP2010181323A (en) * 2009-02-06 2010-08-19 Konica Minolta Holdings Inc Assay method using surface plasmon
JP2011214860A (en) * 2010-03-31 2011-10-27 Nec Corp Test material sensing method, sensing device, and sensing set
JP2011223919A (en) * 2010-04-19 2011-11-10 Kyoritsu Denki Kk Device for detecting trace substance
US9134235B2 (en) 2010-08-17 2015-09-15 Konica Minolta, Inc. SPFS sensor equipped with mechanism purifying non-specifically adsorptive contaminants
WO2012023391A1 (en) * 2010-08-17 2012-02-23 コニカミノルタホールディングス株式会社 Spfs sensor equipped with non-specific adsorption type purification mechanism
US10781482B2 (en) 2011-04-15 2020-09-22 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
US11788127B2 (en) 2011-04-15 2023-10-17 Becton, Dickinson And Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
JP2012242274A (en) * 2011-05-20 2012-12-10 Univ Of Tsukuba Food inspection device and food inspection method
US11453906B2 (en) 2011-11-04 2022-09-27 Handylab, Inc. Multiplexed diagnostic detection apparatus and methods
US10822644B2 (en) 2012-02-03 2020-11-03 Becton, Dickinson And Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
WO2021015105A1 (en) * 2019-07-19 2021-01-28 王子ホールディングス株式会社 Optical sensor sheet

Also Published As

Publication number Publication date
JP4581128B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
JP4581128B2 (en) Enzyme immunoassay method and enzyme immunosensor therefor
JP6484744B2 (en) Protein detection method
Gaikwad et al. Advances in point-of-care diagnostic devices in cancers
Otieno et al. On-line protein capture on magnetic beads for ultrasensitive microfluidic immunoassays of cancer biomarkers
Hasanzadeh et al. Electrochemical nanobiosensing in whole blood: Recent advances
Byfield et al. Biochemical aspects of biosensors
Wu et al. Biomedical and clinical applications of immunoassays and immunosensors for tumor markers
Lin et al. A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen
Ronkainen et al. Electrochemical biosensors
CN202122963U (en) Analysis device
KR100958198B1 (en) Real-time detection devices by continuous monitoring
Hasanzadeh et al. Mesoporous silica materials for use in electrochemical immunosensing
de Ávila et al. Rapid micromotor-based naked-eye immunoassay
US20080014575A1 (en) Rapid Microfluidic Assay for Quantitative Measurement of Interactions Among One or More Analytes
Wang et al. A paper-based device with an adjustable time controller for the rapid determination of tumor biomarkers
JP2006516721A (en) Multi-layered electrochemical microfluidic sensor containing reagent on porous layer
Lim et al. Microfabricated on-chip-type electrochemical flow immunoassay system for the detection of histamine released in whole blood samples
Yazdanpanah et al. Glycated hemoglobin-detection methods based on electrochemical biosensors
US20090246795A1 (en) Immunoassay device and method
Kumar et al. Advance engineered nanomaterials in point-of-care immunosensing for biomedical diagnostics
Lee et al. Lab on a chip for in situ diagnosis: from blood to point of care
KR101218987B1 (en) Biochip and manufacturing method thereof and method for detecting analyzed material using the biochip
US20130130243A1 (en) Method and device for detecting and quantifying an analyte with recycling of the reagents
Ochoa‐Ruiz et al. Electrochemical immunosensors: The evolution from ELISA to EμPADs
Ramanaviciene et al. Design of immunosensors for rapid and sensitive detection of biomarkers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees