JP2007023221A - Coated illuminant and its utilization - Google Patents

Coated illuminant and its utilization Download PDF

Info

Publication number
JP2007023221A
JP2007023221A JP2005210330A JP2005210330A JP2007023221A JP 2007023221 A JP2007023221 A JP 2007023221A JP 2005210330 A JP2005210330 A JP 2005210330A JP 2005210330 A JP2005210330 A JP 2005210330A JP 2007023221 A JP2007023221 A JP 2007023221A
Authority
JP
Japan
Prior art keywords
coated
illuminant
coating
phosphor
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005210330A
Other languages
Japanese (ja)
Other versions
JP4741895B2 (en
Inventor
Yoshiharu Tanabe
美晴 田辺
Keisuke Yoshida
圭介 吉田
Mikiko Imada
三樹子 今田
Masashi Takei
正史 武居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP2005210330A priority Critical patent/JP4741895B2/en
Publication of JP2007023221A publication Critical patent/JP2007023221A/en
Application granted granted Critical
Publication of JP4741895B2 publication Critical patent/JP4741895B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated illuminant which is not deteriorated with water, has high brightness, and has a long light emission life. <P>SOLUTION: This method for producing the coated illuminant comprises (I) a process for coating an illuminant with a coating material, (II) a process for dispersing the coated illuminant in a solvent to obtain a dispersion, and (III) a process for separating the dispersion into a solid phase and a liquid phase, wherein the processes (II) and (III) are repeated until to give an electric conductivity of ≤100 μS/cm to the liquid phase. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、輝度が高く、水分劣化の少ない被覆発光体、およびにその製造方法、ならびに当該発光体の利用に関するものであり、具体的には、水分劣化を防止し得る被膜を有する、輝度や発光寿命に優れた発光体、およびにその製造方法、ならびに当該発光体の利用に関するものである。   The present invention relates to a coated illuminant having high luminance and less moisture deterioration, a method for producing the same, and use of the illuminant. Specifically, the present invention relates to a luminance or The present invention relates to a luminescent material having an excellent luminescent lifetime, a manufacturing method thereof, and use of the luminescent material.

種々の照明装置および/または表示装置における発光部に用いられる発光体は、水分によって劣化し、発光力および/または輝度が低下することが知られている。そのため、従来から発光体をシリカ膜で被覆することが行われている(例えば、特開昭61−23678を参照のこと)。しかし、特許文献1に記載の方法では、劣化防止が十分であるとはいえなかった。このような水分劣化を解決する目的で被覆緻密な被膜を作製するためのさらなる試みが紹介されている(例えば、特許文献2〜4を参照のこと)。
特開昭61−23678(昭和61年2月1日公開) 特開平6−306356号公報(平成6年11月1日公開) 特開2002−69442号公報(平成14年3月8日公開) 特開2003−261869号公報(平成15年9月19日公開)
It is known that a light-emitting body used for a light-emitting portion in various lighting devices and / or display devices is deteriorated by moisture, and the light emission power and / or luminance is reduced. For this reason, the phosphor has been conventionally coated with a silica film (for example, see JP-A-61-2678). However, the method described in Patent Document 1 has not been sufficient for preventing deterioration. Further attempts have been introduced to produce a dense coating film for the purpose of solving such moisture degradation (see, for example, Patent Documents 2 to 4).
JP 61-23678 (released February 1, 1986) JP-A-6-306356 (published on November 1, 1994) JP 2002-69442 A (published March 8, 2002) JP 2003-261869 A (published on September 19, 2003)

しかしながら、特許文献2〜4に記載される技術を用いた場合であっても好ましい結果は得られていない。原因としては、形成した被膜の緻密性が依然として不足していたからであると考えられる。   However, even when the techniques described in Patent Documents 2 to 4 are used, preferable results are not obtained. The reason is considered that the denseness of the formed film was still insufficient.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、水分劣化を防止し得る程度の緻密度を有する被膜を備えた被覆発光体を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a coated illuminator provided with a coating having a density sufficient to prevent moisture deterioration.

鋭意検討の結果、本発明者らは、発光体に対して特定の条件を用いて被膜を作製すると、被覆された発光体の水分劣化を防止することができることを見出した。   As a result of intensive studies, the present inventors have found that when a film is produced using specific conditions for a light emitter, moisture degradation of the coated light emitter can be prevented.

すなわち、本発明に係る被覆材料によって発光体が被覆されている被覆発光体を製造する方法は、
(I)発光体を被覆材料によって被覆する工程;
(II)被覆した発光体を溶媒中に分散させた分散液を得る工程;および
(III)該分散液を固相と液相とに分離する工程
を包含し、該液相の電気伝導度が100μS/cm以下になるまで工程(II)および(III)を繰返すことを特徴としている。
That is, a method for producing a coated illuminant in which a illuminant is coated with a coating material according to the present invention,
(I) a step of coating the illuminant with a coating material;
(II) a step of obtaining a dispersion in which the coated phosphor is dispersed in a solvent; and (III) a step of separating the dispersion into a solid phase and a liquid phase, the electric conductivity of the liquid phase being It is characterized by repeating steps (II) and (III) until it becomes 100 μS / cm or less.

本発明に係る方法において、上記溶媒は水または有機溶媒であることが好ましい。   In the method according to the present invention, the solvent is preferably water or an organic solvent.

本発明に係る方法において、上記分離する工程は遠心分離によることが好ましい。   In the method according to the present invention, the separating step is preferably performed by centrifugation.

本発明に係る方法において、上記被覆材料はシリカであることが好ましい。   In the method according to the present invention, the coating material is preferably silica.

本発明に係る被覆発光体は、上記の方法によって製造されたことを特徴としている。   The coated illuminant according to the present invention is manufactured by the above method.

本発明に係る被覆発光体は、被覆材料によって発光体が被覆されている被覆発光体であって、該被膜を介する該発光体の溶出が100ppm以下であることを特徴としている。   The coated illuminant according to the present invention is a coated illuminant in which an illuminant is coated with a coating material, and the elution of the illuminant through the film is 100 ppm or less.

本発明に係る被覆発光体において、上記被覆材料はシリカであることが好ましい。   In the coated illuminant according to the present invention, the coating material is preferably silica.

本発明を用いれば、緻密な被膜を有し、被覆された発光体に水分が接近する危険性が少なく、輝度低下が生じず、発光寿命が長い被覆発光体を得ることができる。   By using the present invention, it is possible to obtain a coated illuminant having a dense coating film, having a low risk of moisture approaching the coated illuminant, having no reduction in luminance, and having a long emission lifetime.

本発明者らは、鋭意検討を重ねた結果、被覆発光体の分散液から不純物などを可能な限り除去すれば、被覆発光体内部への水分侵入を抑制し得、その結果、被覆発光体の輝度低下を防止し得ることを見出した。   As a result of intensive studies, the present inventors have been able to suppress moisture intrusion into the coated illuminant by removing impurities as much as possible from the dispersion of the coated illuminant. It has been found that a reduction in luminance can be prevented.

被覆発光体内部への水分侵入をほぼ完全に抑制し得た要因は、被覆化反応後に残存する溶液、未反応の試薬、塩、アルカリ成分、酸成分を可能な限り除去し、その上で焼成工程を行ったためであると考えられる。従来の技術では、未反応の反応系、アルカリ成分、酸成分が被膜上に残存し、これにより、加熱による加水分解が促進され、その結果、緻密性が不十分な被膜しか得ることができなかった。   The factor that could almost completely suppress the intrusion of moisture into the coated phosphor was to remove as much of the solution, unreacted reagent, salt, alkali component, and acid component as possible after the coating reaction, followed by firing. This is probably because the process was performed. In the prior art, unreacted reaction system, alkali component, and acid component remain on the film, thereby promoting hydrolysis by heating, and as a result, only a film with insufficient denseness can be obtained. It was.

分散液中に夾雑物がほとんど存在しないということは、純粋な被膜が内部物質の表面を完全に被覆しているということであり、これにより被覆発光体内部への水分侵入を抑制され、輝度低下が抑制されたと考えられる。また、発光体の発光はその表面の寄与するところが大きいが、通常の被覆発光体表面には欠陥部位が多く、そのために輝度の低下が生じやすい。しかし、夾雑物がほとんど存在しない程度の被覆発光体を得ることにより、発光体表面上の欠陥が補完され得、その結果、輝度の低下が抑制されたと考えられる。   The fact that there is almost no impurities in the dispersion means that the pure coating completely covers the surface of the internal material, which suppresses moisture intrusion into the coated illuminant and reduces brightness. Is considered to be suppressed. In addition, the light emission of the light emitter largely contributes to the surface, but the surface of a normal coated light emitter has many defective portions, and therefore, the luminance is likely to be lowered. However, it is considered that by obtaining a coated illuminant having almost no impurities, defects on the illuminant surface can be complemented, and as a result, a decrease in luminance is suppressed.

本発明は、被覆材料によって発光体が被覆されている被覆発光体を製造する方法を提供する。本発明に係る被覆発光体を製造する方法は、(I)発光体を被覆材料によって被覆する工程;(II)被覆した発光体を溶媒中に分散させた分散液を得る工程;および(III)該分散液を固相と液相とに分離する工程を包含し、該液相の電気伝導度が100μS/cm以下になるまで工程(II)および(III)を繰返すことを特徴としている。   The present invention provides a method for producing a coated illuminant in which the illuminant is coated with a coating material. The method for producing a coated illuminant according to the present invention comprises: (I) a step of coating the illuminant with a coating material; (II) a step of obtaining a dispersion in which the coated illuminant is dispersed in a solvent; and (III) It includes a step of separating the dispersion into a solid phase and a liquid phase, and the steps (II) and (III) are repeated until the electric conductivity of the liquid phase becomes 100 μS / cm or less.

本発明に係る製造方法に従えば、被覆された発光体への水分侵入をほぼ完全に抑制し得た被覆発光体を製造することができる。すなわち、本発明に係る被覆発光体は、内部への水分侵入をほぼ完全に抑制し得る被膜を有するという特徴を有する。   According to the manufacturing method according to the present invention, it is possible to manufacture a coated illuminant that can almost completely suppress moisture intrusion into the coated illuminant. In other words, the coated illuminant according to the present invention has a feature that it has a coating that can almost completely suppress moisture intrusion into the interior.

このような被膜は、被覆化反応後に未反応の試薬、残存する塩、アルカリ成分、酸成分、残存溶媒をできる限り除去したために得られたと考えられる。従来技術では、未反応の反応系、アルカリ成分、酸成分が存在することによって、加熱による加水分解が促進される結果となり、ほぼ純粋な被膜を得ることができなかったと推測される。   It is considered that such a film was obtained because the unreacted reagent, remaining salt, alkali component, acid component, and remaining solvent were removed as much as possible after the coating reaction. In the prior art, the presence of an unreacted reaction system, an alkali component, and an acid component resulted in accelerated hydrolysis by heating, and it was assumed that a substantially pure film could not be obtained.

従来の被覆発光体の製造方法において、デカンテーションまたはゲル濾過を用いた被覆後の粒子の洗浄は行われていたが、被覆後に残留する未反応の試薬などを可能な限り除去することの重要性はさほど認識されておらず、その洗浄の程度は曖昧であった。   In conventional coated phosphor manufacturing methods, particles after coating were washed using decantation or gel filtration, but the importance of removing unreacted reagents remaining after coating as much as possible It was not so recognized and the degree of cleaning was ambiguous.

上記液相の電気伝導度が所望のレベルに達するまで、上記被覆発光体を溶媒中に再分散させた後に再度分離することを繰り返す必要がある。本発明に係る被覆発光体を製造する方法において、被覆発光体と分離された液相の電気伝導度は100μS/cm以下であることが好ましく、20μS/cm以下であることがより好ましく、10μS/cm以下であることが最も好ましい。   Until the electrical conductivity of the liquid phase reaches a desired level, it is necessary to re-disperse the coated illuminant and then separate it again in a solvent. In the method for producing a coated illuminant according to the present invention, the electric conductivity of the liquid phase separated from the coated illuminant is preferably 100 μS / cm or less, more preferably 20 μS / cm or less, and more preferably 10 μS / cm. Most preferably, it is cm or less.

本明細書中で使用される場合、用語「発光体」には、蛍光体、燐光体、蓄光体が含まれ、紫外線、X線、電子線などを照射することにより、「蛍光体」は、蛍光を発する化学物質が意図され、「燐光体」は、照射エネルギーの除去後も持続する蛍光(すなわち、「燐光」)を発する物質が意図され、「蓄光体」は、光エネルギーを蓄積し得、自ら発光することにより蓄積したエネルギーを発散する物質が意図される。発光体が発する発光量は照射エネルギー量に比例する。   As used herein, the term “luminescent material” includes phosphors, phosphors, and phosphors, and by irradiating ultraviolet rays, X-rays, electron beams, etc., “phosphor” Chemicals that fluoresce are intended, “phosphor” is intended to be a substance that fluoresces lasting after removal of irradiation energy (ie, “phosphorescence”), and “phosphor” can accumulate light energy. Substances that emit stored energy by self-luminous are intended. The amount of light emitted from the light emitter is proportional to the amount of irradiation energy.

発光体は、当該分野において公知の種々の方法を用いて製造することができる。また、被覆する工程としても、ゾル・ゲル法、気相法などの当該分野において公知の種々の方法を採用することができる。   The light emitter can be manufactured using various methods known in the art. Also, as the coating step, various methods known in the art such as a sol / gel method and a gas phase method can be employed.

発光体の形状としては、針状、板状、球状、粒状、楕円状、立方形状など各種の形状のものが使用することができるが、粒子形状は、核酸が結合した被覆発光体からの核酸の溶出に影響しやすいので、球状ないし粒状であることが好ましい。   As the shape of the illuminant, various shapes such as a needle shape, a plate shape, a spherical shape, a granular shape, an elliptical shape, and a cubic shape can be used. The particle shape is a nucleic acid from a coated illuminant to which a nucleic acid is bound. Since it is easy to influence the elution of, it is preferably spherical or granular.

発光体の平均粒子サイズとして0.01〜100μmの範囲のものが好ましく、0.02〜1μmの範囲のものがより好ましい。   The average particle size of the luminescent material is preferably in the range of 0.01 to 100 μm, more preferably in the range of 0.02 to 1 μm.

本発明において用いられる発光体は蛍光体であることが好ましい。蛍光体としては、硫化亜鉛(ZnS)、硫化カルシウム(CaS)、硫化ストロンチウム(SrS)などを基材としたものが挙げられるが、無機物を主成分とする蛍光体であれば特に限定されない。また、このような被覆される材料は、多色化、高輝度化を目的として、銅、銀、マンガンなどの種々の付活剤および/または共付活剤が添加されていてもよい。   The phosphor used in the present invention is preferably a phosphor. Examples of the phosphor include those based on zinc sulfide (ZnS), calcium sulfide (CaS), strontium sulfide (SrS), and the like, but are not particularly limited as long as the phosphor is mainly composed of an inorganic substance. In addition, such a material to be coated may be added with various activators and / or coactivators such as copper, silver, and manganese for the purpose of increasing the color and brightness.

本明細書中で使用される場合、「被覆材料」は、使用する波長域の光に対するある程度の透過性を有する材料が意図される。被覆材料としては、例えば、酸化物(例えば、シリカ、チタニア、セリア、イットリアなど)、複酸化物(例えば、チタン酸バリウム、チタン酸ストロンチウムなど)、フッ化物(例えば、フッ化カルシウム、フッ化マグネシウムなど)が挙げられるが、これらに限定されない。   As used herein, “coating material” is intended to be a material that has a certain degree of transparency to light in the wavelength range used. Examples of the coating material include oxides (eg, silica, titania, ceria, yttria, etc.), double oxides (eg, barium titanate, strontium titanate, etc.), fluorides (eg, calcium fluoride, magnesium fluoride, etc.) However, it is not limited to these.

被覆する工程としては、例えば、低温CVD(Chemical Vapor Deposition:化学気相成長)方式、減圧CVD方式、プラズマCVD方式、低温ゾル・ゲル方式などが挙げられるが、当該分野において公知の被覆方法(成膜方法)であれば特に限定されない。   Examples of the coating process include a low temperature CVD (Chemical Vapor Deposition) method, a low pressure CVD method, a plasma CVD method, a low temperature sol-gel method, and the like. If it is a film | membrane method), it will not specifically limit.

本明細書中で使用される場合、「溶媒」は、被覆した発光体を均一に分散し得る溶媒であれば特に限定されず、水または有機溶媒が好ましい。有機溶媒としては、アルコール(例えば、メタノール、エタノール、プロパノール、ペンタノールなど)、エーテル、ケトン、多価アルコール類(例えば、エチレングリコール、プロピレングリコール、ジエチレングリコールなど)が挙げられるが、これらに限定されない。反応速度制御の観点から、好ましい有機溶媒はアルコール類であり、より好ましくはエタノールである。なお、有機溶媒は、単独でまたは組み合わせて使用され得る。   As used herein, the “solvent” is not particularly limited as long as it can uniformly disperse the coated phosphor, and water or an organic solvent is preferable. Examples of the organic solvent include, but are not limited to, alcohol (for example, methanol, ethanol, propanol, pentanol and the like), ether, ketone, and polyhydric alcohols (for example, ethylene glycol, propylene glycol, diethylene glycol and the like). From the viewpoint of reaction rate control, preferred organic solvents are alcohols, more preferably ethanol. The organic solvents can be used alone or in combination.

分散液(すなわち、コロイド溶液)を固相と液相とに分離する手段としては、遠心分離、デカンテーションおよびケル濾過などが挙げられる。   Examples of means for separating the dispersion (that is, colloidal solution) into a solid phase and a liquid phase include centrifugation, decantation, and Kel filtration.

分散液中にて超音波処理を行うこともまた好ましく、超音波処理は複数回行われることがより好ましい。   It is also preferable to perform sonication in the dispersion, and it is more preferable that the sonication is performed a plurality of times.

本発明に係る被覆発光体は、発光体が実質的に溶出しない程度に緻密である被膜を有し、具体的には、被膜を介する発光体の溶出が100ppm以下、より好ましくは10ppm以下であり得る。   The coated illuminant according to the present invention has a coating film that is so dense that the illuminant does not substantially elute, and specifically, the illuminant elution through the film is 100 ppm or less, more preferably 10 ppm or less. obtain.

つまり、本発明の目的は、水分劣化を防止し得る被膜を有する、輝度や発光寿命に優れた発光体およびその製造方法を提供することにあるのであって、本明細書中に具体的に記載した発光体の形状、種類およびその製造方法、ならびに被覆方法などの条件に存するのではない。   That is, an object of the present invention is to provide a light-emitting body having a coating capable of preventing moisture deterioration and excellent in luminance and light-emission life and a method for producing the same, and is specifically described in this specification. It does not depend on conditions such as the shape, type and manufacturing method of the phosphor, and coating method.

尚、発明を実施するための最良の形態の項においてなした具体的な実施態様および以下の実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、当業者は、本発明の精神および添付の特許請求の範囲内で変更して実施することができる。   It should be noted that the specific embodiments made in the section of the best mode for carrying out the invention and the following examples are merely to clarify the technical contents of the present invention, and to such specific examples. It is not to be construed as limiting in any way whatsoever, and those skilled in the art can implement the invention within the spirit of the invention and the scope of the appended claims.

また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。   Moreover, all the academic literatures and patent literatures described in this specification are incorporated herein by reference.

〔実施例1〕
市販の蛍光体(銅、アルミドープ硫化亜鉛(東芝製))10gを分取し、エタノール(和光純薬工業製)100ml、イオン交換水5ml、28%アンモニア水(和光純薬工業製)7mlからなる溶液中に分散させた。この分散液を攪拌しながら、エタノール50ml中5gのオルトケイ酸テトラエチル(和光純薬工業製)をこの分散液に添加し、さらに8時間攪拌を続けることによりシリカ被覆蛍光体の分散液を得た。
[Example 1]
10 g of commercially available phosphor (copper, aluminum-doped zinc sulfide (manufactured by Toshiba)) was collected, and 100 ml of ethanol (manufactured by Wako Pure Chemical Industries), 5 ml of ion-exchanged water, 7 ml of 28% ammonia water (manufactured by Wako Pure Chemical Industries) Was dispersed in the resulting solution. While stirring this dispersion, 5 g of tetraethyl orthosilicate (manufactured by Wako Pure Chemical Industries, Ltd.) in 50 ml of ethanol was added to this dispersion, and stirring was continued for 8 hours to obtain a dispersion of silica-coated phosphor.

このシリカ被覆蛍光体の分散液を約470×gで10分間遠心分離し、上清を除去した後に沈殿物をメタノール(和光純薬工業製)150ml中にて懸濁し、手にて十分振とうし、同様に遠心分離した。これらの操作をさらにもう1度行った。上清を除去した後に沈殿物を水150ml中にて洗浄し、約470×gで10分間遠心分離して得た上清の電気伝導度を測定した。この電気伝導度が10μS/cm以下になるまで洗浄を繰り返した。続いて、重量変化がなくなるまでダイアフラム型真空ポンプを用いて減圧乾燥した後、300℃の乾燥機にて8時間焼成した。   This silica-coated phosphor dispersion was centrifuged at about 470 × g for 10 minutes, the supernatant was removed, and then the precipitate was suspended in 150 ml of methanol (manufactured by Wako Pure Chemical Industries, Ltd.) and sufficiently shaken by hand. And centrifuged in the same manner. These operations were performed once more. After removing the supernatant, the precipitate was washed in 150 ml of water, and the electric conductivity of the supernatant obtained by centrifuging at about 470 × g for 10 minutes was measured. Washing was repeated until the electrical conductivity reached 10 μS / cm or less. Subsequently, after drying under reduced pressure using a diaphragm type vacuum pump until there was no change in weight, it was baked in a dryer at 300 ° C. for 8 hours.

〔実施例2〕
上記の蛍光体の代わりに銀ドープ硫化亜鉛(東芝製)10gを用いる以外は、実施例1と同様に行ってシリカ被覆蛍光体を得た。
[Example 2]
A silica-coated phosphor was obtained in the same manner as in Example 1 except that 10 g of silver-doped zinc sulfide (manufactured by Toshiba) was used instead of the phosphor.

〔実施例3〕
実施例2にて得られたシリカ被覆蛍光体10gを、さらに実施例1と同様のシリカ被覆処理に供して、シリカ被覆がより厚いシリカ被覆蛍光体を得た。
Example 3
10 g of the silica-coated phosphor obtained in Example 2 was further subjected to the same silica coating treatment as in Example 1 to obtain a silica-coated phosphor with a thicker silica coating.

〔比較例1〕
実施例1にて使用した市販の蛍光体をシリカ被覆せずに用いた。
[Comparative Example 1]
The commercially available phosphor used in Example 1 was used without being coated with silica.

〔比較例2〕
実施例2にて使用した市販の蛍光体をシリカ被覆せずに用いた。
[Comparative Example 2]
The commercially available phosphor used in Example 2 was used without being coated with silica.

<A.成分元素の溶出評価>
被覆した蛍光体(実施例1〜3)または被覆していない蛍光体(比較例1〜2)1gを分取し、1mol%硝酸水溶液(和光純薬工業製)500mlに20分間浸し、上澄み液に含まれる亜鉛量を原子吸光分析装置(島津製作所製)を用いて測定した。
<A. Elution evaluation of component elements>
1 g of the coated phosphor (Examples 1 to 3) or the uncoated phosphor (Comparative Examples 1 and 2) is fractionated and immersed in 500 ml of 1 mol% nitric acid aqueous solution (manufactured by Wako Pure Chemical Industries) for 20 minutes, and the supernatant liquid The amount of zinc contained in was measured using an atomic absorption analyzer (manufactured by Shimadzu Corporation).

<B.輝度評価>
蛍光リン光装置(パーキンエルマー製)を用いて、各蛍光体を粉体ホルダに充填して励起波長320nmにて発光スペクトルを測定し、ピーク強度を比較した。
<B. Luminance evaluation>
Using a fluorescent phosphor (manufactured by Perkin Elmer), each phosphor was filled in a powder holder, and an emission spectrum was measured at an excitation wavelength of 320 nm, and peak intensities were compared.

<C.耐水輝度評価>
70℃のイオン交換水に48時間浸した後に輝度評価を行い、耐水試験前後のピーク強度比を算出した。
<C. Water resistance evaluation>
After immersion in ion exchange water at 70 ° C. for 48 hours, the luminance was evaluated, and the peak intensity ratio before and after the water resistance test was calculated.

Figure 2007023221
なお、比較例1および2では、輝度が低下していた。
Figure 2007023221
In Comparative Examples 1 and 2, the luminance was lowered.

本発明を用いれば、緻密な被膜を有し、被覆された発光体に水分が接近する危険性が少なく、輝度低下が生じず、発光寿命が長い被覆発光体を得ることができるので、ディスプレイ、医療用X線増感紙、バイオイメージングなどの分野および関連産業の発展に貢献することができる。   By using the present invention, it is possible to obtain a coated illuminant having a dense film, having a low risk of moisture approaching the coated illuminant, causing no reduction in luminance, and having a long emission lifetime. It can contribute to the development of fields such as medical X-ray intensifying screens and bioimaging and related industries.

Claims (7)

被覆材料によって発光体が被覆されている被覆発光体を製造する方法であって、
(I)発光体を被覆材料によって被覆する工程;
(II)被覆した発光体を溶媒中に分散させた分散液を得る工程;および
(III)該分散液を固相と液相とに分離する工程
を包含し、該液相の電気伝導度が100μS/cm以下になるまで工程(II)および(III)を繰返すことを特徴とする方法。
A method for producing a coated illuminant, in which the illuminant is coated with a coating material,
(I) a step of coating the illuminant with a coating material;
(II) a step of obtaining a dispersion in which the coated phosphor is dispersed in a solvent; and (III) a step of separating the dispersion into a solid phase and a liquid phase, the electric conductivity of the liquid phase being A method characterized by repeating steps (II) and (III) until it becomes 100 μS / cm or less.
前記溶媒が水または有機溶媒であることを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein the solvent is water or an organic solvent. 前記分離する工程が遠心分離によることを特徴とする請求項1に記載の方法。   The method of claim 1, wherein the separating is by centrifugation. 前記被覆材料がシリカであることを特徴とする請求項1に記載の方法。   The method of claim 1, wherein the coating material is silica. 請求項1に記載の方法によって製造された被覆発光体。   A coated illuminator produced by the method according to claim 1. 被覆材料によって発光体が被覆されている被覆発光体であって、該被覆材料を介する該発光体の溶出が100ppm以下であることを特徴とする被覆発光体。   A coated illuminant in which a illuminant is coated with a coating material, and the elution of the illuminant through the coating material is 100 ppm or less. 前記被覆材料がシリカであることを特徴とする請求項4に記載の被覆発光体。   The coated light-emitting body according to claim 4, wherein the coating material is silica.
JP2005210330A 2005-07-20 2005-07-20 Coated phosphor and use thereof Expired - Fee Related JP4741895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005210330A JP4741895B2 (en) 2005-07-20 2005-07-20 Coated phosphor and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005210330A JP4741895B2 (en) 2005-07-20 2005-07-20 Coated phosphor and use thereof

Publications (2)

Publication Number Publication Date
JP2007023221A true JP2007023221A (en) 2007-02-01
JP4741895B2 JP4741895B2 (en) 2011-08-10

Family

ID=37784418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005210330A Expired - Fee Related JP4741895B2 (en) 2005-07-20 2005-07-20 Coated phosphor and use thereof

Country Status (1)

Country Link
JP (1) JP4741895B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229363A (en) * 2009-03-30 2010-10-14 Econet Engineering:Kk Water resistant light accumulating material and fluorescent material, method of producing thereof, coating material composition and ink composition using these
WO2012099179A1 (en) 2011-01-18 2012-07-26 ソニーケミカル&インフォメーションデバイス株式会社 Process for producing coated phosphor, and coated phosphor
WO2013084921A1 (en) 2011-12-07 2013-06-13 デクセリアルズ株式会社 Coated phosphor and method for producing coated phosphor
WO2014017334A1 (en) 2012-07-25 2014-01-30 デクセリアルズ株式会社 Phosphor sheet
WO2014046088A1 (en) 2012-09-24 2014-03-27 デクセリアルズ株式会社 Anisotropic conductive adhesive and connection structure
JP2014087686A (en) * 2008-03-11 2014-05-15 Immunolight Llc Plasmonic assisted system and method for interior energy-activation from exterior source

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892549A (en) * 1994-09-09 1996-04-09 Philips Electron Nv Method of coating luminous powder,luminous powder and article coated
JP2004071434A (en) * 2002-08-08 2004-03-04 Konica Minolta Holdings Inc Plasma display panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0892549A (en) * 1994-09-09 1996-04-09 Philips Electron Nv Method of coating luminous powder,luminous powder and article coated
JP2004071434A (en) * 2002-08-08 2004-03-04 Konica Minolta Holdings Inc Plasma display panel

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9498643B2 (en) 2007-04-08 2016-11-22 Immunolight, Llc Systems and methods for interior energy-activation from an exterior source
US10213763B2 (en) 2007-04-08 2019-02-26 Immunolight, Llc. Plasmonic assisted systems and methods for interior energy-activation from an exterior source
US10201796B2 (en) 2007-04-08 2019-02-12 Immunolight, Llc. Plasmonic assisted systems and methods for interior energy-activation from an exterior source
US10029117B2 (en) 2007-04-08 2018-07-24 Immunolight, Llc Systems and methods for interior energy-activation from an exterior source
US9682250B2 (en) 2007-04-08 2017-06-20 Immunolight, Llc Systems and methods for interior energy-activation from an exterior source
US9630022B2 (en) 2007-04-08 2017-04-25 Immunolight, Llc. Plasmonic assisted systems and methods for interior energy-activation from an exterior source
US9579523B2 (en) 2007-04-08 2017-02-28 Immunolight, Llc Plasmonic assisted systems and methods for interior energy-activation from an exterior source
JP2014087686A (en) * 2008-03-11 2014-05-15 Immunolight Llc Plasmonic assisted system and method for interior energy-activation from exterior source
JP2016187808A (en) * 2008-03-11 2016-11-04 イミュノライト・エルエルシー Plasmonic assisted systems and methods for interior energy-activation from exterior radiation source
US11173467B2 (en) 2008-03-11 2021-11-16 Immunolight, Llc Systems and methods for interior energy-activation from an exterior source
US10363541B2 (en) 2008-03-11 2019-07-30 Immunolight, Llc. Systems and methods for interior energy-activation from an exterior source
JP2010229363A (en) * 2009-03-30 2010-10-14 Econet Engineering:Kk Water resistant light accumulating material and fluorescent material, method of producing thereof, coating material composition and ink composition using these
US9309457B2 (en) 2011-01-18 2016-04-12 Dexerials Corporation Method for manufacturing coated phosphor, and coated phosphor
WO2012099179A1 (en) 2011-01-18 2012-07-26 ソニーケミカル&インフォメーションデバイス株式会社 Process for producing coated phosphor, and coated phosphor
WO2013084921A1 (en) 2011-12-07 2013-06-13 デクセリアルズ株式会社 Coated phosphor and method for producing coated phosphor
US9540563B2 (en) 2011-12-07 2017-01-10 Dexerials Corporation Coated phosphor and method for producing coated phosphor
US9850427B2 (en) 2012-07-25 2017-12-26 Dexerials Corporation Phosphor sheet
WO2014017334A1 (en) 2012-07-25 2014-01-30 デクセリアルズ株式会社 Phosphor sheet
KR20150038078A (en) 2012-07-25 2015-04-08 데쿠세리아루즈 가부시키가이샤 Phosphor sheet
WO2014046088A1 (en) 2012-09-24 2014-03-27 デクセリアルズ株式会社 Anisotropic conductive adhesive and connection structure
KR20150060705A (en) 2012-09-24 2015-06-03 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive adhesive and connection structure

Also Published As

Publication number Publication date
JP4741895B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP5952902B2 (en) Luminescent substance particles comprising a coating and lighting unit comprising said luminescent substance
JP4741895B2 (en) Coated phosphor and use thereof
CN1160258C (en) Device combined with UV-C gas discharge lamp for sterilization water
JP5074381B2 (en) UVC radiation generator
CN1304526C (en) Device for generating radiation
CN1395285A (en) Low voltage gas discharge lamp with fluorescent coating
JP5281285B2 (en) Low pressure gas discharge lamp with UV-B phosphor
CN1879193A (en) Low-pressure vapor discharge lamp with a mercury-free gas filling
CN1222981C (en) Low voltage mercury discharge lamp with external bulb
JP2007224262A (en) Phosphor particle
JP2012518698A (en) Discharge lamp that emits UV light
JP4822513B2 (en) EL phosphor and method for producing the same
CN1265421C (en) Gas discharge lamp with lower frequency converting luminating body
JP5229748B2 (en) Phosphor and light emitting device including the phosphor
CN1274004C (en) Gas discharge lamp with sownconversion phosphor
CN1265420C (en) Gas discharge lamp with descending-conversion light emitter
JP5850539B2 (en) Discharge lamp, method of use and system
JP2007063301A (en) Phosphor for el
JP2005120117A (en) Phosphor, and porous body and filter obtained using the same
JP2006307211A (en) Uv emitting strontium borate fluorescent material having improved holdover stability
CN1327257A (en) Gas discharging lamp containing phosphor layer
JP2015178602A (en) Up-conversion coated particle
CN1207754C (en) Gas discharge lamp with downwards frequency-changing light emitter
CN1887032A (en) El fiber and photocatalyst reaction vessel
JP2003201473A (en) Zinc oxide-silica inorganic porous fluorescent body and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101108

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110223

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110509

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees