JP2007019564A - Illumination optical system, aligner and manufacturing method of device - Google Patents

Illumination optical system, aligner and manufacturing method of device Download PDF

Info

Publication number
JP2007019564A
JP2007019564A JP2006294004A JP2006294004A JP2007019564A JP 2007019564 A JP2007019564 A JP 2007019564A JP 2006294004 A JP2006294004 A JP 2006294004A JP 2006294004 A JP2006294004 A JP 2006294004A JP 2007019564 A JP2007019564 A JP 2007019564A
Authority
JP
Japan
Prior art keywords
illumination
light source
optical system
mask
effective light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006294004A
Other languages
Japanese (ja)
Inventor
Kenichiro Shinoda
健一郎 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006294004A priority Critical patent/JP2007019564A/en
Publication of JP2007019564A publication Critical patent/JP2007019564A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an illumination optical system enabling to obtain a desired effective light source depending on the pattern change and to relatively displace each partial effective light source. <P>SOLUTION: An illumination optical system is provided for illuminating a surface to be illuminated using a light flux from a light source, including illumination light generating means for generating light quantity distribution in a plane having a relationship of Fourier transformation with respect to the surface to be illuminated. The illumination light generating means includes a prism having incident planes of the light flux that are first polygonal pyramidal planes, and exit planes of the light flux that are second polygonal pyramid planes, and a flat top. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、一般には、照明光学系に関し、特に、半導体ウェハ用の単結晶基板、液晶ディスプレイ(LCD)用のガラス基板などのデバイスを製造するのに使用される照明光学系に関する。本発明は、例えば、フォトリソグラフィー工程において、被処理体にコンタクトホール列のパターン、あるいは孤立コンタクトホールとコンタクトホール列とが混在するパターンを投影露光する照明光学系に好適である。   The present invention relates generally to illumination optical systems, and more particularly to illumination optical systems used to manufacture devices such as single crystal substrates for semiconductor wafers and glass substrates for liquid crystal displays (LCDs). The present invention is suitable, for example, for an illumination optical system that projects and exposes a contact hole array pattern or a mixture of isolated contact holes and contact hole arrays on an object to be processed in a photolithography process.

近年の電子機器の小型化及び薄型化の要請から、電子機器に搭載される半導体素子の微細化への要求はますます高くなっている。例えば、デザインルールは、100nm以下の回路パターン形成を量産工程で達成しようとし、今後は更に80nm以下の回路パターン形成に移行することが予想される。その主流となる加工技術はフォトリソグラフィーであり、マスク又はレチクル(本明細書ではこれらの用語を交換可能に使用する)に描画されたマスクパターンを投影光学系によってウェハに投影してパターンを転写する投影露光装置が従来から使用されている。   Due to the recent demand for smaller and thinner electronic devices, there is an increasing demand for miniaturization of semiconductor elements mounted on electronic devices. For example, according to the design rule, it is expected that circuit pattern formation of 100 nm or less will be achieved in a mass production process, and that it will be further shifted to circuit pattern formation of 80 nm or less in the future. The main processing technique is photolithography, and a mask pattern drawn on a mask or a reticle (in this specification, these terms are used interchangeably) is projected onto a wafer by a projection optical system to transfer the pattern. Projection exposure apparatuses are conventionally used.

投影露光装置の解像度Rは、光源の波長λと投影光学系の開口数(NA)を用いて以下のレーリーの式で与えられる。   The resolution R of the projection exposure apparatus is given by the following Rayleigh equation using the wavelength λ of the light source and the numerical aperture (NA) of the projection optical system.

一方、一定の結像性能を維持できる焦点範囲を焦点深度といい、焦点深度DOFは次式で与えられる。   On the other hand, the focal range in which constant imaging performance can be maintained is called the focal depth, and the focal depth DOF is given by the following equation.

なお、焦点深度DOFは小さくなるとフォーカス合わせが難しくなり、基板のフラットネス(平坦度)やフォーカス精度を上げることが要求されるため、基本的に大きい方が好ましい。 Note that when the depth of focus DOF is small, focusing becomes difficult, and it is required to increase the flatness (flatness) and focus accuracy of the substrate.

マスクパターンは、近接した周期的なラインアンドスペース(L&S)パターン、近接及び周期的な(即ち、ホール径と同レベルの間隔で並べた)コンタクトホール列、近接せずに孤立した孤立コンタクトホール、その他の孤立パターン等を含むが、高解像度でパターンを転写するためには、パターンの種類に応じて最適な照明条件を選択する必要がある。   The mask pattern includes adjacent periodic line and space (L & S) patterns, adjacent and periodic (that is, arranged at intervals of the same level as the hole diameter), isolated isolated contact holes without proximity, Including other isolated patterns, etc., in order to transfer a pattern with high resolution, it is necessary to select an optimal illumination condition according to the type of pattern.

また、近年の半導体産業は、より高付加価値な、多種多様なパターンが混在するシステムチップに生産が移行しつつあり、マスクにも複数種類のコンタクトパターンを混在させる必要が生じてきた。しかし、コンタクトホール列と孤立コンタクトホールが混在したコンタクトホールパターンを同時に解像度よく露光することができなかった。   In recent years, the semiconductor industry is shifting to a system chip having a higher value-added and a variety of patterns, and it has become necessary to mix a plurality of types of contact patterns in the mask. However, contact hole patterns in which contact hole arrays and isolated contact holes are mixed cannot be exposed simultaneously with high resolution.

そこで、コンタクトホール列や縦横の繰り返し配線パターンのみに限定して、その解像限界を高め、焦点深度を増加する方式が種々提案されている。かかる方式として、例えば、2枚のマスクを用いて異なる種類のパターンを別々に露光する二重露光(又は多重露光)方式や後述する1枚のマスクを特殊な照明条件下で露光を行う方式がある。それ以外にも、マスクパターンに種々の補助パターンを設けて正規パターンの解像力を強化する方式などがある。   Therefore, various methods for increasing the resolution limit and increasing the depth of focus are proposed only for contact hole rows and vertical and horizontal repetitive wiring patterns. As such a method, for example, there are a double exposure (or multiple exposure) method in which different types of patterns are separately exposed using two masks, and a method in which one mask described later is exposed under special illumination conditions. is there. In addition, there is a method for enhancing the resolution of the regular pattern by providing various auxiliary patterns to the mask pattern.

しかし、上述した方式に共通して要求される照明光学系の機能としては、マスクパターンの寸法及び配列がプロセス毎に変化する場合において、照明条件(具体的には、照明光学系の有効光源分布)を自由に変更することができないために、最適な照明条件で露光を行うことができず高解像度を得られないという問題がある。   However, a function of the illumination optical system that is commonly required for the above-described method is that the illumination condition (specifically, the effective light source distribution of the illumination optical system) when the size and arrangement of the mask pattern changes from process to process. ) Cannot be freely changed, and there is a problem in that exposure cannot be performed under optimum illumination conditions and high resolution cannot be obtained.

従来の技術においては、通常の円形状の有効光源から輪帯状の有効光源への変換機能、又は、四重極有効光源への切り換え機構の開示はされている。しかしながら、今後のパターンの微細化に対応するためには、同じタイプの有効光源であってもそれを変化させて解像性能を高めることが必要である。   In the prior art, a conversion function from a normal circular effective light source to an annular effective light source or a switching mechanism to a quadrupole effective light source has been disclosed. However, in order to cope with future pattern miniaturization, it is necessary to improve resolution performance by changing the effective light source of the same type.

本発明の一側面としての請求項1の照明光学系は、光源からの光束で被照明面を照明する照明光学系であって、前記被照明面に対してフーリエ変換の関係となる面における光量分布を生成する照明光生成手段を有し、該照明光生成手段は、前記光束の入射面が第1多角錐面であり、前記光束の射出面が第2多角錐面であるプリズムを含み、該プリズムの頂点は、平らにされていることを特徴とする。   An illumination optical system according to a first aspect of the present invention is an illumination optical system that illuminates a surface to be illuminated with a light beam from a light source, and a light amount on a surface that has a Fourier transform relationship with respect to the surface to be illuminated. Illumination light generation means for generating a distribution, the illumination light generation means includes a prism whose incident surface of the light beam is a first polygonal pyramid surface and whose emission surface of the light beam is a second polygonal pyramid surface; The apex of the prism is flattened.

本発明の更なる目的又はその他の特徴は、以下添付図面を参照して説明される好ましい実施例によって明らかにされるであろう。   Further objects and other features of the present invention will become apparent from the preferred embodiments described below with reference to the accompanying drawings.

本発明の照明光学系によれば、マスクパターンの寸法及び配列のプロセス毎の変化に応じて所望の有効光源が得られる。   According to the illumination optical system of the present invention, a desired effective light source can be obtained in accordance with changes in dimensions and arrangement of the mask pattern for each process.

以下、添付図面を参照して本発明の例示的一態様である露光装置について説明する。但し、本発明は、これらの実施例に限定するものではなく、本発明の目的が達成される範囲において、各構成要素が代替的に置換されてもよい。なお、各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。   Hereinafter, an exposure apparatus which is an exemplary embodiment of the present invention will be described with reference to the accompanying drawings. However, the present invention is not limited to these examples, and each constituent element may be alternatively substituted as long as the object of the present invention is achieved. In addition, in each figure, the same reference number is attached | subjected about the same member and the overlapping description is abbreviate | omitted.

図1は、本発明の一側面としての露光装置100の例示的一形態を示す概略構成図である。露光装置100は、図1によく示されるように、照明装置200と、マスク300と、投影光学系400と、プレート500とを有する。   FIG. 1 is a schematic block diagram showing an exemplary embodiment of an exposure apparatus 100 as one aspect of the present invention. The exposure apparatus 100 includes an illumination device 200, a mask 300, a projection optical system 400, and a plate 500, as well shown in FIG.

露光装置100は、例えば、ステップアンドリピート方式やステップ・アンド・スキャン方式でマスク300に形成された回路パターンをプレート500に露光する投影露光装置である。かかる露光装置は、サブミクロンやクオーターミクロン以下のリソグラフィー工程に好適であり、以下、本実施形態ではステップ・アンド・スキャン方式の露光装置(「スキャナー」とも呼ばれる)を例に説明する。ここで、「ステップ・アンド・スキャン方式」は、マスクに対してウェハを連続的にスキャンしてマスクパターンをウェハに露光すると共に、1ショットの露光終了後ウェハをステップ移動して、次のショットの露光領域に移動する露光方法である。また、「ステップアンドリピート方式」は、ウェハのショットの一括露光ごとにウェハをステップ移動して次のショットを露光領域に移動する露光方法である。   The exposure apparatus 100 is a projection exposure apparatus that exposes a circuit pattern formed on the mask 300 to the plate 500 by, for example, a step-and-repeat method or a step-and-scan method. Such an exposure apparatus is suitable for a lithography process of submicron or quarter micron or less, and in the present embodiment, a step-and-scan exposure apparatus (also referred to as a “scanner”) will be described as an example. Here, in the “step and scan method”, the wafer is continuously scanned with respect to the mask to expose the mask pattern onto the wafer, and after the exposure of one shot is completed, the wafer is stepped to the next shot. The exposure method moves to the exposure area. The “step and repeat method” is an exposure method in which the wafer is stepped for each batch exposure of shots of the wafer and the next shot is moved to the exposure region.

照明装置200は、転写用の回路パターンが形成されたマスク300を照明し、光源部210と照明光学系220とを有する。   The illumination device 200 illuminates a mask 300 on which a transfer circuit pattern is formed, and includes a light source unit 210 and an illumination optical system 220.

光源部210は、例えば、光源としてレーザーを使用する。レーザーは、波長約193nmのArFエキシマレーザー、波長約248nmのKrFエキシマレーザー、波長約157nmのFレーザーなどを使用することができるが、レーザーの種類はエキシマレーザーに限定されず、そのレーザーの個数も限定されない。また、光源部210に使用可能な光源はレーザーに限定されるものではなく、一又は複数の水銀ランプなどのランプも使用可能である。 The light source unit 210 uses, for example, a laser as a light source. As the laser, an ArF excimer laser with a wavelength of about 193 nm, a KrF excimer laser with a wavelength of about 248 nm, an F 2 laser with a wavelength of about 157 nm can be used, but the type of laser is not limited to an excimer laser, and the number of lasers Is not limited. The light source that can be used for the light source unit 210 is not limited to a laser, and one or a plurality of lamps such as a mercury lamp can also be used.

照明光学系220は、光源部210から射出した光束を用いて所望のパターンを有する被照射面(例えば、マスク300)を照明する光学系であり、本実施形態では、光束整形光学系221と、集光光学系222と、オプティカルパイプ(光束混合手段)223と、集光ズームレンズ224と、ハエの目レンズ225と、絞り部材226と、照射レンズ227と、視野絞り228と、結像レンズ229a及び229bと、偏向ミラー230と、照明光生成手段240とを有する。   The illumination optical system 220 is an optical system that illuminates an irradiated surface (for example, the mask 300) having a desired pattern using the light beam emitted from the light source unit 210. In this embodiment, the light beam shaping optical system 221; A condensing optical system 222, an optical pipe (light beam mixing means) 223, a condensing zoom lens 224, a fly-eye lens 225, a diaphragm member 226, an irradiation lens 227, a field diaphragm 228, and an imaging lens 229a 229b, a deflection mirror 230, and an illumination light generation means 240.

光源部210から発せられた光束は、光束整形光学系221により所望の光束形状に変換され、集光光学系222にて、オプティカルパイプ223の入射面223a近傍に集光されている。集光光学系222は、後段の集光ズームレンズ224が変倍しても、ハエの目レンズ225へ入射する光束の角度を適正にするために、射出角度の異なる集光光学系222aと交換可能な構成となっている。   The light beam emitted from the light source unit 210 is converted into a desired light beam shape by the light beam shaping optical system 221, and is collected near the incident surface 223 a of the optical pipe 223 by the condensing optical system 222. The condensing optical system 222 is replaced with a condensing optical system 222a having a different exit angle in order to make the angle of the light beam incident on the fly-eye lens 225 appropriate even if the subsequent condensing zoom lens 224 is zoomed. It has a possible configuration.

なお、オプティカルパイプ223がガラス棒で構成されている場合には、ガラス棒の耐久性を高めるために、集光光学系222(又は222a)による集光点Pはオプティカルパイプ223の入射面223aより光源部210側にデフォーカスされている。   In the case where the optical pipe 223 is formed of a glass rod, the condensing point P by the condensing optical system 222 (or 222a) is from the incident surface 223a of the optical pipe 223 in order to increase the durability of the glass rod. Defocused to the light source unit 210 side.

集光ズームレンズ224は、オプティカルパイプ223からの光束をハエの目レンズ(多光束発生手段)225の入射面225aに集光している。   The condensing zoom lens 224 condenses the light beam from the optical pipe 223 on the incident surface 225 a of the fly-eye lens (multi-beam generating means) 225.

集光ズームレンズ224は、オプティカルパイプ223の射出面223bをハエの目レンズ225の入射面225aに所定の倍率で結像させており、双方が互いに略共役関係となっている。また、集光ズームレンズ224を倍率可変のズームレンズとすることで、ハエの目レンズ225へ入射する光束領域を調整することが可能となっており、複数の照明条件を形成させることができる。   The condensing zoom lens 224 forms an image of the exit surface 223b of the optical pipe 223 on the entrance surface 225a of the fly-eye lens 225 at a predetermined magnification, and both are substantially conjugated. In addition, by using the condenser zoom lens 224 as a zoom lens having a variable magnification, it is possible to adjust a light flux region incident on the fly-eye lens 225, and a plurality of illumination conditions can be formed.

ハエの目レンズ225の射出面225b近傍は2次光源(有効光源)となっており、そこには不要光を遮光して所望の有効光源を形成するため、絞り部材226が配置されている。絞り部材226は、図示しない絞り駆動機構により、開口の大きさ及び形状が可変となっている。   In the vicinity of the exit surface 225b of the fly-eye lens 225 is a secondary light source (effective light source), and an aperture member 226 is disposed there in order to block unnecessary light and form a desired effective light source. The aperture member 226 has a variable aperture size and shape by an aperture drive mechanism (not shown).

照射レンズ227は、ハエの目レンズ225の射出面225b近傍で形成された2次光源を、視野絞り228上に重畳照明している。視野絞り228は、複数の可動な遮光板から成り、任意の開口形状が形成されるようにして、被照射面であるマスク300面上の照明領域を規定している。   The irradiation lens 227 superimposes a secondary light source formed near the exit surface 225 b of the fly-eye lens 225 on the field stop 228. The field stop 228 is composed of a plurality of movable light-shielding plates, and defines an illumination area on the mask 300 surface, which is an irradiated surface, so that an arbitrary opening shape is formed.

結像レンズ229a及び229bは、偏向ミラー230を介して視野絞り228の開口形状を被照射面であるマスク300上に転写している。   The imaging lenses 229a and 229b transfer the aperture shape of the field stop 228 via the deflection mirror 230 onto the mask 300 that is the irradiated surface.

照明光生成手段240は、照明条件(輪帯照明、四重極照明など)に応じて、オプティカルパイプ223からの光束を輪帯状や四重極状に変換するための素子を含んでいる。   The illumination light generation means 240 includes an element for converting the light flux from the optical pipe 223 into an annular shape or a quadrupole shape according to illumination conditions (annular illumination, quadrupole illumination, etc.).

ここで、照明光生成手段240について詳細に説明する。図2に示すように、従来からよく知られている輪帯状の輪帯発光部Aを有する有効光源分布を形成させる場合、照明光生成手段240は、図3に示すような、入射側(即ち、入射面)に凹の円錐面(もしくは、平面)250aを設け、射出側(即ち、射出面)に凸の円錐面250bを設けたプリズム250とすればよい。図2は、輪帯形状の有効光源分布を示す概略図、図3は、図2に示す有効光源分布を形成するためのプリズム250を示す概略図である。   Here, the illumination light generation means 240 will be described in detail. As shown in FIG. 2, in the case of forming an effective light source distribution having an annular light emitting portion A that has been well known from the past, the illumination light generating means 240 has an incident side (that is, as shown in FIG. The prism 250 is provided with a concave conical surface (or flat surface) 250a on the incident surface and a convex conical surface 250b on the exit side (that is, the exit surface). FIG. 2 is a schematic diagram showing an annular effective light source distribution, and FIG. 3 is a schematic diagram showing a prism 250 for forming the effective light source distribution shown in FIG.

また、図4に示すように、四重極発光部Bを有する四重極有効光源分布を形成させるためには、照明光生成手段240を、図5に示すような、入射側(即ち、入射面)に凹四角錐面(もしくは、平面)260aを設け、射出側(即ち、射出面)に凸四角錐面260bを設けたプリズム260とすればよい。このとき、入射面と射出面における四角錐の稜線260c及び260dと光軸とが成す角θ及びθは等しくてもよいし、照明効率を向上もしくは四重極状に発光する領域(図4の部分B)を変化させるために、入射側の角度θと射出側の角度θを異ならせてもよい。これは、図3に示した円錐状のプリズム250でも同様である。図4は、四重極形状の有効光源分布を示す概略図、図5は、図4に示す有効光源分布を形成するためのプリズム260を示す概略図である。なお、このプリズム260の頂点を所定量だけ平らにすることで4つの部分有効光源の真中にも部分有効光源を持つ五重極有効光源分布を形成することも可能である。 Further, as shown in FIG. 4, in order to form a quadrupole effective light source distribution having the quadrupole light emitting part B, the illumination light generating means 240 is provided on the incident side (ie, incident side as shown in FIG. 5). A prism 260 having a concave quadrangular pyramid surface (or flat surface) 260a on the surface and a convex quadrangular pyramid surface 260b on the exit side (that is, the exit surface) may be used. At this time, the angles θ 1 and θ 2 formed by the ridgelines 260c and 260d of the quadrangular pyramids on the entrance surface and the exit surface and the optical axis may be equal, and the illumination efficiency is improved or the region emits light in a quadrupole shape (see FIG. In order to change the portion B) of FIG. 4, the angle θ 1 on the incident side may be different from the angle θ 2 on the exit side. The same applies to the conical prism 250 shown in FIG. 4 is a schematic diagram showing a quadrupole-shaped effective light source distribution, and FIG. 5 is a schematic diagram showing a prism 260 for forming the effective light source distribution shown in FIG. It is also possible to form a pentapole effective light source distribution having a partial effective light source in the middle of the four partial effective light sources by flattening the apex of the prism 260 by a predetermined amount.

図6に示すような、第1の照明領域Cと、第2の照明領域Dを有する有効光源分布を形成させるには、照明光生成手段240を、図7に示すような、入射側(即ち、入射面)に凹四角錐面270aを設け、射出側(即ち、射出面)に凸の円錐面270bを設けたプリズム270とすればよい。このように、光束を分割する作用を持たせる多面体と、分割光束を適度に重ね合わせる作用の円錐面とを組み合わせることで、これまで形成が困難であった図6に示すような有効光源分布の形成が可能となる。   In order to form an effective light source distribution having the first illumination area C and the second illumination area D as shown in FIG. 6, the illumination light generation means 240 is arranged on the incident side (ie, as shown in FIG. The prism 270 is provided with a concave quadrangular pyramid surface 270a on the incident surface and a convex conical surface 270b on the exit side (that is, the exit surface). In this way, by combining the polyhedron that has the function of splitting the luminous flux and the conical surface that appropriately superimposes the split luminous flux, the effective light source distribution as shown in FIG. Formation is possible.

なお、この第1の照明領域Cと、第2の照明領域Dを有する有効光源分布を形成する照明光学系により、所望のパターンと補助パターンを有する所定のマスクを照明すると、コンタクトホール列や縦横の繰り返し配線パターンの解像限界を高め、焦点深度を増加することができる。以下その詳細について述べる。   When a predetermined mask having a desired pattern and an auxiliary pattern is illuminated by an illumination optical system that forms an effective light source distribution having the first illumination area C and the second illumination area D, contact hole rows and vertical and horizontal directions are obtained. It is possible to increase the resolution limit of the repeated wiring pattern and increase the depth of focus. The details will be described below.

図1のマスク300として、図15に示すマスク300aのような所望のコンタクトホールパターンが所定の周期で配置され、その周辺に補助パターン(ダミーのコンタクトホールパターン)が配置されたものを使う。ここで、図15は所望のコンタクトホールパターン及び補助パターンを形成したバイナリマスクの概略図である。図15のマスクは、透光部である所望のコンタクトホールパターン31及び補助パターン32と、遮光部33とから構成されている。なお、各光透過部の位相は等しい。コンタクトホールパターン31及び補助パターン32は、ホール径をPとすると縦横方向にピッチP=2Pで整列して、コンタクトホール列を2次元的に形成する。 As the mask 300 in FIG. 1, a mask in which a desired contact hole pattern such as the mask 300a shown in FIG. 15 is arranged at a predetermined period and an auxiliary pattern (dummy contact hole pattern) is arranged around the mask 300a is used. Here, FIG. 15 is a schematic view of a binary mask in which a desired contact hole pattern and auxiliary pattern are formed. The mask shown in FIG. 15 includes a desired contact hole pattern 31 and auxiliary pattern 32 that are translucent portions, and a light shielding portion 33. In addition, the phase of each light transmission part is equal. When the hole diameter is P, the contact hole pattern 31 and the auxiliary pattern 32 are aligned with a pitch P 0 = 2P in the vertical and horizontal directions to form a contact hole row two-dimensionally.

このマスク300aに対して、コンタクトホールを解像するための十字斜入射照明と、その十字斜入射照明によって生じる偽解像を抑制する(即ち、偽解像パターンに対応する露光量は抑え(露光量の増加小)、所望のコンタクトホールパターンの露光量を強調する(露光量の増加大))ような照明を行うことで、所望のコンタクトホールパターンをプレート500に解像力良く露光することができる。以下、その詳細について述べる。   With respect to this mask 300a, cross oblique incidence illumination for resolving contact holes and false resolution caused by the cross oblique incidence illumination are suppressed (that is, the exposure amount corresponding to the false resolution pattern is suppressed (exposure). The desired contact hole pattern can be exposed to the plate 500 with high resolving power by performing illumination that emphasizes the exposure amount of the desired contact hole pattern (high increase in exposure amount). The details will be described below.

コンタクトホールのピッチが小さいと図15のマスク300aを用いて少σ照明をした場合には、投影光学系400の瞳面における回折光は、0次回折光を除き他の回折光は瞳外へ外れてしまう。図16に示すように、0次回折光10が生じ、他の回折次数の回折光は瞳面上において、回折光11乃至18のようになる。よって、0次以外の回折光は投影レンズの瞳の外へ出てしまい、このような条件のもとではパターンが形成されない。ここで、図16は、図15に示すマスク300aに小σ照明したときの投影光学系400の瞳面上の回折光の位置と、斜入射照明をしたときの回折光の移動する位置を示した模式図である。   When the contact hole pitch is small, when σ illumination is performed using the mask 300a of FIG. 15, the diffracted light on the pupil plane of the projection optical system 400 deviates from the pupil except for the 0th-order diffracted light. End up. As shown in FIG. 16, 0th-order diffracted light 10 is generated, and diffracted light of other diffraction orders becomes diffracted light 11 to 18 on the pupil plane. Therefore, diffracted light other than the 0th order goes out of the pupil of the projection lens, and no pattern is formed under such conditions. Here, FIG. 16 shows the position of the diffracted light on the pupil plane of the projection optical system 400 when the mask 300a shown in FIG. 15 is illuminated with a small σ, and the position where the diffracted light moves when the oblique illumination is performed. It is a schematic diagram.

そこで、これらの回折光11乃至18が瞳に入るような照明をする必要がある。例えば、2つの回折光10及び15を例にとって、かかる回折光が図16に示す投影光学系400の瞳面の斜線領域に来るようにするには、図17で示される有効光源面において、暗い矩形の領域aで示されるように斜入射照明を設定する。10’及び15’で示される回折光はクロス及び斜線で示す矩形領域b1及びb2にそれぞれ移動し、投影光学系400の瞳両端に入射することになる。一つの矩形で示される有効光源で2つの回折光が瞳に入射し、両者の干渉によりプレート500に等ピッチの直線状の干渉縞が形成される。同様に、2つの回折光10及び17においても10及び15で説明した斜入射照明を設定することができる。このような矩形の有効光源領域を図18に示すように4つ組み合わせることにより、プレート500には縦と横の等ピッチ直線状の干渉縞が形成され、光強度の重なった交点に強度が大きい部分と小さい部分が2次元周期的に現れる。このときの有効光源形状を図19(a)に示すように、十字に配置された瞳の半径方向に直交する方向に長手を有する4つの矩形となる。   Therefore, it is necessary to perform illumination so that these diffracted lights 11 to 18 enter the pupil. For example, taking the two diffracted lights 10 and 15 as an example, in order to make such diffracted lights come to the oblique line region of the pupil plane of the projection optical system 400 shown in FIG. 16, the effective light source surface shown in FIG. The oblique incident illumination is set as indicated by the rectangular area a. The diffracted light indicated by 10 ′ and 15 ′ moves to rectangular areas b 1 and b 2 indicated by crosses and diagonal lines, respectively, and enters both ends of the pupil of the projection optical system 400. Two diffracted lights are incident on the pupil by an effective light source indicated by one rectangle, and a linear interference fringe having an equal pitch is formed on the plate 500 by interference between the two. Similarly, in the two diffracted lights 10 and 17, the oblique incidence illumination described in 10 and 15 can be set. By combining four such rectangular effective light source regions as shown in FIG. 18, vertical and horizontal equal-pitch linear interference fringes are formed on the plate 500, and the intensity is high at the intersection where the light intensities overlap. A part and a small part appear two-dimensionally periodically. As shown in FIG. 19A, the effective light source shape at this time is four rectangles having a length in the direction orthogonal to the radial direction of the pupil arranged in the cross.

図15に示すマスク300aでは、所望のコンタクトホールパターンのホール径の大きさが、補助パターンより大きくしてあるので、その部分のみ周辺より強度が大きく、所望のコンタクトホールパターンがプレート500に形成されることになる。しかしながら、単に十字型の斜入射照明をしただけでは、プレート500には、図20(a)及び(b)に示すように偽解像パターンが生じてしまい、所望のコンタクトホールパターン以外にも不必要なパターンが生まれてしまう(ここで、図20は右側の開口絞りの開口形状に対応したプレート500での解像パターンのシミュレーションを示した図である)。   In the mask 300a shown in FIG. 15, since the hole diameter of the desired contact hole pattern is larger than that of the auxiliary pattern, only the portion is stronger than the periphery, and the desired contact hole pattern is formed on the plate 500. Will be. However, if the cross-shaped oblique incidence illumination is simply applied, a false resolution pattern is generated on the plate 500 as shown in FIGS. 20 (a) and 20 (b). A necessary pattern is born (FIG. 20 is a diagram showing a simulation of a resolution pattern on the plate 500 corresponding to the aperture shape of the right aperture stop).

つまり、露光量で考えると、図21に示す細い実線で描かれた波線のようになり、所望径露光量レベル(レジストの閾値)においては、所望パターンPの間に偽解像パターンPが生じてしまっているのである(ここで、図21は十字斜入射照明及び本発明の変形照明における露光量及び当該露光量に対応するプレート500での像を示した図である)。 That is, in terms of the exposure amount, it looks like a wavy line drawn with a thin solid line shown in FIG. 21, and at the desired diameter exposure amount level (resist threshold), the pseudo-resolution pattern P 2 between the desired patterns P 1. (Here, FIG. 21 is a diagram showing the exposure amount in the oblique incidence illumination and the modified illumination of the present invention and an image on the plate 500 corresponding to the exposure amount).

そこで、図16に示すように、瞳面上で2つの回折光位置を直線的に結んで表される領域cを除き、少なくとも1つの回折光のみ瞳面に入射する有効光源分布を加える。この場合は一つの回折光としては0次光とするのが斜入射角を小さくできるので都合が良い。図22に有効光源分布の一例を示す。このような照明を行うためには、例えば、1つの回折光10’が瞳面において暗い扇型の領域aとして示されるように照明を設定すればよい。これにより、10’で示される回折光は明るい扇型として示される領域bにそれぞれ移動し、回折光が瞳面320に入射することになる。このような条件に相当するものは合計4つ存在し、結局図19(b)に示すような形の有効光源となる。   Therefore, as shown in FIG. 16, an effective light source distribution in which only at least one diffracted light is incident on the pupil surface is added except for a region c represented by linearly connecting two diffracted light positions on the pupil surface. In this case, it is convenient to use zero-order light as one diffracted light because the oblique incident angle can be reduced. FIG. 22 shows an example of the effective light source distribution. In order to perform such illumination, for example, the illumination may be set so that one diffracted light 10 'is shown as a dark sector area a on the pupil plane. As a result, the diffracted light indicated by 10 ′ moves to the region b indicated as a bright fan shape, and the diffracted light enters the pupil plane 320. There are a total of four corresponding to such conditions, and eventually an effective light source having a shape as shown in FIG.

このように、照明系は、2つの回折光が瞳に入射する有効光源分布(図19(a)参照)と、1つの回折光が瞳に入射する有効光源分布(図19(b)参照)を足し合わせた、図19(c)に示されるような中央が十字状に抜けた有効光源を持つ変形照明を行うことができる。このような有効光源分布を有する変形照明を行うことで、プレート500面上では、図20(c)に示すように偽解像が消滅して所望のパターンのみを得られることが理解される。   As described above, the illumination system has an effective light source distribution in which two diffracted lights enter the pupil (see FIG. 19A) and an effective light source distribution in which one diffracted light enters the pupil (see FIG. 19B). As shown in FIG. 19C, modified illumination having an effective light source with the center removed in a cross shape can be performed. It is understood that by performing the modified illumination having such an effective light source distribution, the false resolution disappears and only a desired pattern can be obtained on the surface of the plate 500 as shown in FIG.

つまり、プレート500での露光量は図21に示す太い実線で描かれた波線のようになり、所望径露光量レベル(レジストの閾値)において、マスクの所望のパターンに相当する部分の露光量のみが増加され、偽解像パターンが消失した所望パターンPのみを得ることができるのである。 That is, the exposure amount on the plate 500 is like a wavy line drawn with a thick solid line shown in FIG. 21, and only the exposure amount corresponding to the desired pattern of the mask at the desired diameter exposure amount level (resist threshold). There are increased, it is possible to obtain only the desired pattern P 3 of spurious resolution pattern has disappeared.

以上より、図15のマスク300aに対して、図19(c)ような有効光源分布を有する変形照明を行うことで、コンタクトホールパターンの解像力が良くなることがわかる。   From the above, it can be seen that the resolution of the contact hole pattern is improved by performing modified illumination having an effective light source distribution as shown in FIG. 19C on the mask 300a of FIG.

また、図19(c)の有効光源分布のうち、コンタクトホールを解像するための照明を行うための部分が第1の照明領域Dに対応し、その照明によって生じる偽解像を抑制する(所望のコンタクトホールパターンと補助パターンのコントラストをよくする)照明を行うための部分が第2の照明領域Cに対応することもわかる(参照:図6)。   Further, in the effective light source distribution of FIG. 19C, the portion for performing illumination for resolving the contact hole corresponds to the first illumination region D, and the false resolution caused by the illumination is suppressed ( It can also be seen that the portion for performing illumination (which improves the contrast between the desired contact hole pattern and the auxiliary pattern) corresponds to the second illumination area C (see FIG. 6).

図5に示したプリズム260の凹四角錐面260aと凸四角錐面260bとを光軸周りに45°ずらして形成することで、図6に示す有効光源分布を形成することもできる。ここで、図6は、本発明で提案する八重極形状の有効光源分布を示す概略図、図7は、図6に示す有効光源分布を形成するためのプリズム270を示す概略図である。   The effective light source distribution shown in FIG. 6 can also be formed by forming the concave quadrangular pyramid surface 260a and the convex quadrangular pyramid surface 260b of the prism 260 shown in FIG. Here, FIG. 6 is a schematic diagram showing an effective light source distribution having an octapole shape proposed in the present invention, and FIG. 7 is a schematic diagram showing a prism 270 for forming the effective light source distribution shown in FIG.

照明光生成手段240にプリズム270を使用すれば、ハエの目レンズ射出面225b近傍に配置される絞り部材226で必要以上に光を切り出す必要がなく、高い照明効率で有効光源分布の形成が可能であるという効果がある。   If the prism 270 is used for the illumination light generation means 240, it is not necessary to cut out light more than necessary by the diaphragm member 226 disposed in the vicinity of the fly-eye lens exit surface 225b, and an effective light source distribution can be formed with high illumination efficiency. There is an effect that.

更に、照明光生成手段240を、図8及び図9に示すような、一対のプリズム280(多面体282aを有するプリズム282と円錐面284aを有するプリズム284)で構成し、光軸方向に相対移動可能とすれば、より多様な有効光源分布の形成が可能となる。図8及び図9は、図6に示す有効光源分布を形成するための一対のプリズム280を示す概略図であって、図8は、一対のプリズム280の間隔Lが小さい場合、図9は、一対のプリズム280の間隔Lが大きい場合を示している。   Further, the illumination light generation means 240 is constituted by a pair of prisms 280 (a prism 282 having a polyhedron 282a and a prism 284 having a conical surface 284a) as shown in FIGS. 8 and 9, and can be relatively moved in the optical axis direction. If so, it is possible to form a wider variety of effective light source distributions. 8 and 9 are schematic views showing a pair of prisms 280 for forming the effective light source distribution shown in FIG. 6. FIG. 8 shows a case where the distance L between the pair of prisms 280 is small, and FIG. The case where the space | interval L of a pair of prisms 280 is large is shown.

図8を参照するに、一対のプリズム280の間隔Lが小さいとき、図10で示すように、第1の照明領域Cの長さC1が大きく、第2の照明領域Dの幅D1が小さい有効光源分布が形成される。図10は、図8に示す一対のプリズム280のプリズム間隔Lと形成される有効光源形状の関係を示す概略図である。   Referring to FIG. 8, when the distance L between the pair of prisms 280 is small, as shown in FIG. 10, the length C1 of the first illumination region C is large and the width D1 of the second illumination region D is small. A light source distribution is formed. FIG. 10 is a schematic diagram showing the relationship between the prism spacing L of the pair of prisms 280 shown in FIG. 8 and the effective light source shape formed.

一方、図9を参照するに、一対のプリズム280の間隔Lが大きいときは、図11で示すように、第1の照明領域Cの長さC1が小さく、第2の照明領域Dの幅D1が大きい有効光源分布が形成される。図11は、図9に示す一対のプリズム280のプリズム間隔Lと形成される有効光源形状の関係を示す概略図である。   On the other hand, referring to FIG. 9, when the distance L between the pair of prisms 280 is large, the length C1 of the first illumination region C is small and the width D1 of the second illumination region D is shown in FIG. A large effective light source distribution is formed. FIG. 11 is a schematic diagram showing the relationship between the prism spacing L of the pair of prisms 280 shown in FIG. 9 and the effective light source shape formed.

従って、形成させたいパターンに応じて、補助パターンによるアシスト効果が最適となるように、第1の照明領域Cと第2の照明領域Dの相対比(光量比もしくは面積比)を調節することが可能となる。   Therefore, the relative ratio (light quantity ratio or area ratio) between the first illumination area C and the second illumination area D can be adjusted so that the assist effect by the auxiliary pattern is optimized according to the pattern to be formed. It becomes possible.

更に、後段の集光ズームレンズ224と組み合わせれば、第1の照明領域Cと第2の照明領域Dの相対比を維持したまま、有効光源分布の大きさ(σ値)を調整することが可能となる。   Further, when combined with the condenser zoom lens 224 in the subsequent stage, the size (σ value) of the effective light source distribution can be adjusted while maintaining the relative ratio between the first illumination area C and the second illumination area D. It becomes possible.

図8及び図9では、光源部210側のプリズム282の入射側を凹の多面体、射出側を平面とし、マスク300側のプリズム284の入射面を平面、射出側を凸の円錐としたが、光源部210側のプリズム282の入射面を平面、射出側を凹の多面体とし、マスク300側のプリズム284の入射面を凸の円錐、射出側を平面とすることももちろん可能である。更に、円錐と多面体を有する面をそれぞれ逆に配置することも可能である。但し、異なる形状を一対のプリズムとして接近させる場合は、図8及び図9に示す構成の方が好ましい。   8 and 9, the incident side of the prism 282 on the light source unit 210 side is a concave polyhedron, the exit side is a plane, the entrance surface of the prism 284 on the mask 300 side is a plane, and the exit side is a convex cone. Of course, the incident surface of the prism 282 on the light source unit 210 side may be a plane, the exit side may be a concave polyhedron, the incident surface of the prism 284 on the mask 300 side may be a convex cone, and the exit side may be a plane. Furthermore, it is also possible to arrange the conical and polyhedral surfaces in reverse. However, when making different shapes approach as a pair of prisms, the configuration shown in FIGS. 8 and 9 is preferable.

なお、以上では、異なる形状の面を持つ一対のプリズムとして、円錐と多面体の組み合わせのものについて述べたが、多面体と多面体との組み合わせ(例えば4角錐面と4角錐面)を用いてもよいのは言うまでも無い。   In the above, a combination of a cone and a polyhedron has been described as a pair of prisms having differently shaped surfaces, but a combination of a polyhedron and a polyhedron (for example, a quadrangular pyramid surface and a quadrangular pyramid surface) may be used. Needless to say.

また、光源部210側のプリズムとマスク300のプリズムの少なくともいずれか一方を光軸に関して回動可能とすることで、有効光源分布を可変としても良い(例えばどちらも4角錐面を有する場合には、図4のような四重極照明と図6のような八重極照明との切り替えが可能となる)
さらに、以上では、複数のプリズムの一部を光軸方向に移動可能とすることで、多様な有効光源分布の形成を可能としたが、前述したプリズム250、260、270のように、それぞれ異なる性質を持つプリズムをターレットに載せて切り替えることでも、多様な有効光源分布の形成は可能である。
In addition, the effective light source distribution may be made variable by making at least one of the prism on the light source unit 210 side and the prism of the mask 300 rotatable with respect to the optical axis (for example, when both have quadrangular pyramid surfaces). Switching between the quadrupole illumination as shown in FIG. 4 and the octupole illumination as shown in FIG. 6 is possible)
Furthermore, in the above, by making some of the plurality of prisms movable in the optical axis direction, various effective light source distributions can be formed. However, as in the prisms 250, 260, and 270 described above, they are different from each other. Various effective light source distributions can also be formed by switching prisms having properties on the turret.

次に、図12を参照して、照明光生成手段240の変形例である照明光生成手段290について説明する。図12は、照明光生成手段240の変形例である照明光生成手段290を含む投影露光装置100Aを示す概略構成図である。照明光生成手段290は、図1に示す照明光生成手段240と比べて、ハエの目レンズ入射面225aとほぼフーリエ変換の関係(本明細書において、フーリエ変換の関係とは、光学的に瞳面と物体面(又は像面)、物体面(又は像面)と瞳面となる関係を意味する)となる位置に回折光学素子295(例えば、BO(Bainary Optics)やCGH(Computer Generated Hologram)等)を配置している点が異なる。   Next, with reference to FIG. 12, an illumination light generation unit 290 that is a modification of the illumination light generation unit 240 will be described. FIG. 12 is a schematic block diagram showing a projection exposure apparatus 100A including an illumination light generation means 290 that is a modification of the illumination light generation means 240. Compared with the illumination light generation means 240 shown in FIG. 1, the illumination light generation means 290 is substantially in a Fourier transform relationship with the fly-eye lens entrance surface 225a (in this specification, the Fourier transform relationship is optically the pupil). A diffractive optical element 295 (for example, BO (Baily Optics) or CGH (Computer Generated Hologram)) is located at a position that becomes a plane and an object plane (or image plane), or a relationship between an object plane (or image plane) and a pupil plane. Etc.) is different.

回折光学素子295は、平行光を入射すると、フーリエ変換の関係となる面に所望の分布、すなわち有効光源分布を形成するよう設計されている。従って、図6に示す有効光源分布を形成させたければ、それに対応した回折光学素子を設計、製作すれば良い。なお、回折光学素子295の設計及び製作については、特開平11−054426号公報や回折光学素子入門(監修:応用物理学会、発行:オプトニクス社)等に記載の方法を用いることができるので、ここでの詳細な説明は省略する。   The diffractive optical element 295 is designed so as to form a desired distribution, that is, an effective light source distribution on a plane having a Fourier transform relationship when parallel light is incident. Therefore, if the effective light source distribution shown in FIG. 6 is to be formed, a corresponding diffractive optical element may be designed and manufactured. As for the design and production of the diffractive optical element 295, methods described in Japanese Patent Application Laid-Open No. 11-054426 and an introduction to the diffractive optical element (supervision: Japan Society of Applied Physics, published by Optonics) can be used Detailed description here is omitted.

また、回折光学素子295への入射光が平行ではなく、角度を持つとフーリエ変換面で形成される像がぼけるので、集光光学系222で規定されるNAを可変となるように構成する集光光学系222aとすれば、図6で示す第1の照明領域C及び第2の照明領域Dの幅を可変とすることが可能となる。なお、集光光学系222aは、異なるNAを射出する光学系をターレットを用いて切り換える構成としてもよいし、NA可変のズーム系としてもよい。   Further, if the incident light to the diffractive optical element 295 is not parallel and has an angle, an image formed on the Fourier transform plane is blurred, so that the NA defined by the condensing optical system 222 is variable. With the optical optical system 222a, the widths of the first illumination area C and the second illumination area D shown in FIG. 6 can be made variable. The condensing optical system 222a may be configured to switch an optical system that emits different NAs using a turret, or may be a zoom system with variable NA.

照明光生成手段290として、複数の光学素子295aをマスク300に形成された所望のパターンに応じてターレット状の切り替え手段等を用いて交換可能としたものを用いてもよい。   As the illumination light generation means 290, a plurality of optical elements 295a that can be exchanged using a turret-like switching means or the like according to a desired pattern formed on the mask 300 may be used.

以上の実施例では、オプティカルパイプ223とハエの目レンズ225との間に照明光束形成手段240、290を配置していたが、オプティカルパイプ223に代えてさらに第2のハエの目レンズを使用しても良く、その場合には、第2のハエの目レンズとハエの目レンズ225との間に照明光束形成手段240、290を配置すればよい。その際、その照明光束形成手段240、290はハエの目レンズ225の入射面と光学的にフーリエ変換の関係にある位置に配置するのが望ましい。   In the above embodiment, the illumination light beam forming means 240 and 290 are arranged between the optical pipe 223 and the fly-eye lens 225. However, a second fly-eye lens is used in place of the optical pipe 223. In this case, the illumination light beam forming means 240, 290 may be disposed between the second fly-eye lens and the fly-eye lens 225. At that time, it is desirable that the illumination light beam forming means 240 and 290 be disposed at a position optically Fourier-transformed with respect to the incident surface of the fly-eye lens 225.

再び、図1に戻って、マスク300は、例えば、石英製で、その上には転写されるべき回路パターン(又は像)が形成され、図示しないマスクステージに支持及び駆動される。マスク300から発せられた回折光は投影光学系400を通りプレート500上に投影される。マスク300とプレート500とは共役の関係に配置される。露光装置100は、ステップ・アンド・スキャン方式の露光装置であるため、マスク300とプレート500を走査することによりマスクパターンをプレート500上に縮小投影する。   Returning to FIG. 1 again, the mask 300 is made of, for example, quartz, on which a circuit pattern (or image) to be transferred is formed, and supported and driven by a mask stage (not shown). The diffracted light emitted from the mask 300 passes through the projection optical system 400 and is projected onto the plate 500. The mask 300 and the plate 500 are arranged in a conjugate relationship. Since the exposure apparatus 100 is a step-and-scan exposure apparatus, the mask pattern is reduced and projected onto the plate 500 by scanning the mask 300 and the plate 500.

投影光学系400は、物体面(例えば、マスク300)からの光束を像面(例えば、プレート500などの被処理体)に結像する。投影光学系400は、複数のレンズ素子のみからなる光学系、複数のレンズ素子と少なくとも一枚の凹面鏡とを有する光学系(カタディオプトリック光学系)、複数のレンズ素子と少なくとも一枚のキノフォームなどの回折光学素子とを有する光学系、全ミラー型の光学系等を使用することができる。色収差の補正の必要な場合には、互いに分散値(アッベ値)の異なるガラス材からなる複数のレンズ素子を使用したり、回折光学素子をレンズ素子と逆方向の分散が生じるように構成したりする。   The projection optical system 400 forms an image of a light beam from an object plane (for example, the mask 300) on an image plane (for example, an object to be processed such as the plate 500). The projection optical system 400 includes an optical system including only a plurality of lens elements, an optical system (catadioptric optical system) having a plurality of lens elements and at least one concave mirror, a plurality of lens elements, and at least one kinoform. An optical system having a diffractive optical element such as an all-mirror optical system can be used. When correction of chromatic aberration is necessary, a plurality of lens elements made of glass materials having different dispersion values (Abbe values) can be used, or the diffractive optical element can be configured to generate dispersion in the opposite direction to the lens element. To do.

プレート500は、本実施形態ではウェハであるが、液晶基板その他の被処理体(被露光体)を広く含む。プレート500には、フォトレジストが塗布されている。フォトレジスト塗布工程は、前処理と、密着性向上剤塗布処理と、フォトレジスト塗布処理と、プリベーク処理とを含む。前処理は、洗浄、乾燥などを含む。密着性向上剤塗布処理は、フォトレジストと下地との密着性を高めるための表面改質(即ち、界面活性剤塗布による疎水性化)処理であり、HMDS(Hexamethyl−disilazane)などの有機膜をコート又は蒸気処理する。プリベークは、ベーキング(焼成)工程であるが現像後のそれよりもソフトであり、溶剤を除去する。   The plate 500 is a wafer in this embodiment, but widely includes a liquid crystal substrate and other objects to be processed (objects to be exposed). Photoresist is applied to the plate 500. The photoresist coating process includes a pretreatment, an adhesion improver coating process, a photoresist coating process, and a prebaking process. Pretreatment includes washing, drying and the like. The adhesion improver coating process is a surface modification process for improving the adhesion between the photoresist and the base (that is, a hydrophobic process by application of a surfactant), and an organic film such as HMDS (Hexmethyl-disilazane) is used. Coat or steam. Pre-baking is a baking (baking) step, but is softer than that after development, and removes the solvent.

プレート500は、図示しないプレートステージに支持される。プレートステージは、当業界で周知のいかなる構成をも適用することができるので、ここでは詳しい構造及び動作の説明は省略する。例えば、プレートステージはリニアモータを利用してXY方向にプレート500を移動することができる。マスク300とプレート500は、例えば、同期走査され、図示しないプレートステージ及びマスクステージの位置は、例えば、レーザー干渉計などにより監視され、両者は一定の速度比率で駆動される。プレートステージは、例えば、ダンパを介して床等の上に支持されるステージ定盤上に設けられ、マスクステージ及び投影光学系400は、例えば、鏡筒定盤は床等に載置されたベースフレーム上にダンパ等を介して支持される図示しない鏡筒定盤上に設けられる。   The plate 500 is supported by a plate stage (not shown). Since any configuration known in the art can be applied to the plate stage, a detailed description of the structure and operation is omitted here. For example, the plate stage can move the plate 500 in the XY directions using a linear motor. The mask 300 and the plate 500 are synchronously scanned, for example, and the positions of a plate stage and a mask stage (not shown) are monitored by, for example, a laser interferometer, and both are driven at a constant speed ratio. The plate stage is provided on a stage surface plate supported on a floor or the like via a damper, for example, and the mask stage and the projection optical system 400 are, for example, a base mounted on the floor or the like. It is provided on a lens barrel surface plate (not shown) supported on a frame via a damper or the like.

露光において、光源部210から発せられた光束は、照明光学系220によりマスク300を照明する。マスク300を通過してマスクパターンを反映する光は投影光学系400によりプレート500に結像される。   In the exposure, the light beam emitted from the light source unit 210 illuminates the mask 300 by the illumination optical system 220. Light that passes through the mask 300 and reflects the mask pattern is imaged on the plate 500 by the projection optical system 400.

露光装置100が使用する照明光学系200は、マスク300に形成された所望のパターンに応じて最適な照明条件でマスク300を照明することができるので、高い解像度とスループットで経済性よくデバイス(半導体素子、LCD素子、撮像素子(CCDなど)、薄膜磁気ヘッドなど)を提供することができる。   The illumination optical system 200 used by the exposure apparatus 100 can illuminate the mask 300 under optimum illumination conditions in accordance with a desired pattern formed on the mask 300, so that the device (semiconductor) with high resolution and throughput can be economically obtained. Elements, LCD elements, imaging elements (CCD, etc.), thin film magnetic heads, etc.) can be provided.

次に、図12及び図13を参照して、上述の露光装置100を利用したデバイスの製造方法の実施例を説明する。図12は、デバイス(ICやLSIなどの半導体チップ、LCD、CCD等)の製造を説明するためのフローチャートである。ここでは、半導体チップの製造を例に説明する。ステップ1(回路設計)では、デバイスの回路設計を行う。ステップ2(マスク製作)では、設計した回路パターンを形成したマスクを製作する。ステップ3(ウェハ製造)では、シリコンなどの材料を用いてウェハを製造する。ステップ4(ウェハプロセス)は前工程と呼ばれ、マスクとウェハを用いてリソグラフィー技術によってウェハ上に実際の回路を形成する。ステップ5(組み立て)は後工程と呼ばれ、ステップ4によって作成されたウェハを用いて半導体チップ化する工程であり、アッセンブリ工程(ダイシング、ボンディング)、パッケージング工程(チップ封入)等の工程を含む。ステップ6(検査)では、ステップ5で作成された半導体デバイスの動作確認テスト、耐久性テストなどの検査を行う。こうした工程を経て半導体デバイスが完成し、これが出荷(ステップ7)される。   Next, an embodiment of a device manufacturing method using the above-described exposure apparatus 100 will be described with reference to FIGS. FIG. 12 is a flowchart for explaining how to fabricate devices (ie, semiconductor chips such as IC and LSI, LCDs, CCDs, and the like). Here, the manufacture of a semiconductor chip will be described as an example. In step 1 (circuit design), a device circuit is designed. In step 2 (mask production), a mask on which the designed circuit pattern is formed is produced. In step 3 (wafer manufacture), a wafer is manufactured using a material such as silicon. Step 4 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by lithography using the mask and the wafer. Step 5 (assembly) is called a post-process, and is a process for forming a semiconductor chip using the wafer created in step 4, and includes processes such as an assembly process (dicing and bonding) and a packaging process (chip encapsulation). . In step 6 (inspection), inspections such as an operation confirmation test and a durability test of the semiconductor device created in step 5 are performed. Through these steps, the semiconductor device is completed and shipped (step 7).

図13は、ステップ4のウェハプロセスの詳細なフローチャートである。ステップ11(酸化)では、ウェハの表面を酸化させる。ステップ12(CVD)では、ウェハの表面に絶縁膜を形成する。ステップ13(電極形成)では、ウェハ上に電極を蒸着などによって形成する。ステップ14(イオン打ち込み)では、ウェハにイオンを打ち込む。ステップ15(レジスト処理)では、ウェハに感光剤を塗布する。ステップ16(露光)では、露光装置100によってマスクの回路パターンをウェハに露光する。ステップ17(現像)では、露光したウェハを現像する。ステップ18(エッチング)では、現像したレジスト像以外の部分を削り取る。ステップ19(レジスト剥離)では、エッチングが済んで不要となったレジストを取り除く。これらのステップを繰り返し行うことによってウェハ上に多重に回路パターンが形成される。本実施形態のデバイス製造方法によれば従来よりも高品位のデバイスを製造することができる。   FIG. 13 is a detailed flowchart of the wafer process in Step 4. In step 11 (oxidation), the surface of the wafer is oxidized. In step 12 (CVD), an insulating film is formed on the surface of the wafer. In step 13 (electrode formation), an electrode is formed on the wafer by vapor deposition or the like. Step 14 (ion implantation) implants ions into the wafer. In step 15 (resist process), a photosensitive agent is applied to the wafer. Step 16 (exposure) uses the exposure apparatus 100 to expose a circuit pattern on the mask onto the wafer. In step 17 (development), the exposed wafer is developed. In step 18 (etching), portions other than the developed resist image are removed. In step 19 (resist stripping), the resist that has become unnecessary after the etching is removed. By repeatedly performing these steps, multiple circuit patterns are formed on the wafer. According to the device manufacturing method of the present embodiment, it is possible to manufacture a higher quality device than before.

以上、本発明の好ましい実施例を説明したが、本発明はこれらに限定されずその要旨の範囲内で様々な変形や変更が可能である。   Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the gist thereof.

本発明の一側面としての露光装置の例示的一形態を示す概略構成図である。1 is a schematic block diagram showing an exemplary embodiment of an exposure apparatus as one aspect of the present invention. 輪帯形状の有効光源分布を示す概略図である。It is the schematic which shows ring-shaped effective light source distribution. 図2に示す有効光源分布を形成するためのプリズムを示す概略図である。It is the schematic which shows the prism for forming the effective light source distribution shown in FIG. 四重極形状の有効光源分布を示す概略図である。It is the schematic which shows the effective light source distribution of quadrupole shape. 図4に示す有効光源分布を形成するためのプリズムを示す概略図である。It is the schematic which shows the prism for forming the effective light source distribution shown in FIG. 本発明で提案する八重極形状の有効光源分布を示す概略図である。It is the schematic which shows the effective light source distribution of the octupole shape proposed by this invention. 図6に示す有効光源分布を形成するためのプリズムを示す概略図である。It is the schematic which shows the prism for forming the effective light source distribution shown in FIG. 図6に示す有効光源分布を形成するための一対のプリズムの一例を示す概略図である。It is the schematic which shows an example of a pair of prism for forming the effective light source distribution shown in FIG. 図6に示す有効光源分布を形成するための一対のプリズムの一例を示す概略図である。It is the schematic which shows an example of a pair of prism for forming the effective light source distribution shown in FIG. 図8に示す一対のプリズム280のプリズム間隔Lと形成される有効光源形状の関係を示す概略図である。It is the schematic which shows the relationship between the prism space | interval L of a pair of prism 280 shown in FIG. 8, and the effective light source shape formed. 図9に示す一対のプリズムのプリズム間隔Lと形成される有効光源形状の関係を示す概略図である。It is the schematic which shows the relationship between the prism space | interval L of a pair of prism shown in FIG. 9, and the effective light source shape formed. 本発明の一側面としての露光装置の例示的一形態を示す概略構成図である。1 is a schematic block diagram showing an exemplary embodiment of an exposure apparatus as one aspect of the present invention. デバイス(ICやLSIなどの半導体チップ、LCD、CCD等)の製造を説明するためのフローチャートである。It is a flowchart for demonstrating manufacture of devices (semiconductor chips, such as IC and LSI, LCD, CCD, etc.). 図13に示すステップ4のウェハプロセスの詳細なフローチャートである。14 is a detailed flowchart of the wafer process in Step 4 shown in FIG. 13. バイナリマスクの概略を示す図である。It is a figure which shows the outline of a binary mask. 図15に示すバイナリマスクに小σ照明したときの瞳面上の回折光の位置と、斜入射照明をしたときの回折光の移動する位置を示した模式図である。It is the schematic diagram which showed the position of the diffracted light on a pupil surface when small σ illumination is carried out to the binary mask shown in FIG. 15, and the position to which a diffracted light moves when carrying out oblique incidence illumination. 有効光源分布を説明するための模式図である。It is a schematic diagram for demonstrating effective light source distribution. 有効光源分布を説明するための模式図である。It is a schematic diagram for demonstrating effective light source distribution. 有効光源分布を説明するための模式図である。It is a schematic diagram for demonstrating effective light source distribution. パターン面上での解像パターンのシミュレーションを示した図である。It is the figure which showed the simulation of the resolution pattern on a pattern surface. 変形照明における露光量及び当該露光量に対応するパターン上での像を示した図である。It is the figure which showed the image on the pattern corresponding to the exposure amount in modified illumination, and the said exposure amount. 有効光源分布の一例を示す図である。It is a figure which shows an example of effective light source distribution.

符号の説明Explanation of symbols

100 露光装置
200 照明装置
210 光源部
220 照明光学系
240 照明光生成手段
270 プリズム
280 一対のプリズム
300 マスク
400 投影光学系
500 プレート
DESCRIPTION OF SYMBOLS 100 Exposure apparatus 200 Illumination device 210 Light source part 220 Illumination optical system 240 Illumination light production | generation means 270 Prism 280 A pair of prism 300 Mask 400 Projection optical system 500 Plate

Claims (4)

光源からの光束で被照明面を照明する照明光学系であって、
前記被照明面に対してフーリエ変換の関係となる面における光量分布を生成する照明光生成手段を有し、
該照明光生成手段は、前記光束の入射面が第1多角錐面であり、前記光束の射出面が第2多角錐面であるプリズムを含み、
該プリズムの頂点は、平らにされていることを特徴とする照明光学系。
An illumination optical system that illuminates a surface to be illuminated with a light beam from a light source,
Illumination light generating means for generating a light amount distribution on a surface that is in a Fourier transform relationship with respect to the surface to be illuminated;
The illumination light generating means includes a prism in which an incident surface of the light beam is a first polygonal pyramid surface, and an emission surface of the light beam is a second polygonal pyramid surface,
An illumination optical system characterized in that the apex of the prism is flattened.
前記照明光生成手段は、4つの部分有効光源の真中にも部分有効光源を持つ五重極有効光源分布を生成することを特徴とする請求項1記載の照明光学系。   The illumination optical system according to claim 1, wherein the illumination light generation unit generates a quintuple effective light source distribution having a partial effective light source in the middle of four partial effective light sources. 前記被照明面上のレチクルを照明する請求項1又は2記載の照明光学系と、
前記レチクルのパターンを被処理体に投影する投影光学系と、を有することを特徴とする露光装置。
The illumination optical system according to claim 1 or 2, which illuminates a reticle on the illuminated surface;
An exposure apparatus comprising: a projection optical system that projects the reticle pattern onto an object to be processed.
請求項3に記載の露光装置を用いて前記被処理体を露光するステップと、
該露光された被処理体を現像するステップと、を有することを特徴とするデバイス製造方法。
Exposing the object to be processed using the exposure apparatus according to claim 3;
And a step of developing the exposed object to be processed.
JP2006294004A 2006-10-30 2006-10-30 Illumination optical system, aligner and manufacturing method of device Withdrawn JP2007019564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006294004A JP2007019564A (en) 2006-10-30 2006-10-30 Illumination optical system, aligner and manufacturing method of device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006294004A JP2007019564A (en) 2006-10-30 2006-10-30 Illumination optical system, aligner and manufacturing method of device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002121378A Division JP3950731B2 (en) 2002-04-23 2002-04-23 Illumination optical system, exposure apparatus having the illumination optical system, and device manufacturing method

Publications (1)

Publication Number Publication Date
JP2007019564A true JP2007019564A (en) 2007-01-25

Family

ID=37756373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006294004A Withdrawn JP2007019564A (en) 2006-10-30 2006-10-30 Illumination optical system, aligner and manufacturing method of device

Country Status (1)

Country Link
JP (1) JP2007019564A (en)

Similar Documents

Publication Publication Date Title
JP3950731B2 (en) Illumination optical system, exposure apparatus having the illumination optical system, and device manufacturing method
KR100538362B1 (en) Exposure method and apparatus
JP4497968B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
US7079220B2 (en) Illumination optical system and method, and exposure apparatus
JP2007123333A (en) Exposure method
JPH1154426A (en) Lighting device and aligner using the same
US7592130B2 (en) Exposure method
JP2003234285A (en) Method and device for exposure
JP2011135099A (en) Optical integrator, illumination optical device, photolithographic apparatus, photolithographic method, and method for fabricating device
KR100823405B1 (en) Exposure apparatus and device manufacturing method
JP4612849B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP4332331B2 (en) Exposure method
JP4684584B2 (en) Mask, manufacturing method thereof, and exposure method
JP2006120675A (en) Optical illumination device, aligner, and exposure method
JP3997199B2 (en) Exposure method and apparatus
JP2009130091A (en) Illumination optical device, aligner, and device manufacturing method
JP4235410B2 (en) Exposure method
JP2006119601A (en) Light modulator and optical apparatus using the same
JP3977096B2 (en) Mask, exposure method and device manufacturing method
JP2007019564A (en) Illumination optical system, aligner and manufacturing method of device
JP3962581B2 (en) Exposure method and device manufacturing method
JP2006135346A (en) Exposure method and apparatus
JP2022128509A (en) Illumination optical system, exposure device, and device manufacturing method
JP2005142599A (en) Exposure method and apparatus
JP2002110502A (en) Lighting device and aligner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090402