JP2007015653A - Control device of active type vibration control support device - Google Patents

Control device of active type vibration control support device Download PDF

Info

Publication number
JP2007015653A
JP2007015653A JP2005201874A JP2005201874A JP2007015653A JP 2007015653 A JP2007015653 A JP 2007015653A JP 2005201874 A JP2005201874 A JP 2005201874A JP 2005201874 A JP2005201874 A JP 2005201874A JP 2007015653 A JP2007015653 A JP 2007015653A
Authority
JP
Japan
Prior art keywords
engine
vibration
cylinder
cylinder deactivation
support device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005201874A
Other languages
Japanese (ja)
Other versions
JP4657037B2 (en
Inventor
Hiroomi Nemoto
浩臣 根本
Tetsuya Ishiguro
哲矢 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005201874A priority Critical patent/JP4657037B2/en
Priority to US11/483,962 priority patent/US7581720B2/en
Publication of JP2007015653A publication Critical patent/JP2007015653A/en
Application granted granted Critical
Publication of JP4657037B2 publication Critical patent/JP4657037B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely estimate a vibration state of an engine performing a cylinder deactivation operation having one cycle combining one time cylinder deactivation period and two times combustion period. <P>SOLUTION: When reading the vibration state of the engine performing the cylinder deactivation operation having one cycle combining one time cylinder deactivation period and two times combustion period, the peak value p2 and the bottom value b2 of the vibration state in one cycle can be surely grasped, and the vibration control performance of the active type vibration control support device can be improved by accurately estimating the vibration state of the engine, since the starting time is set to be the starting time (a second pattern) of the cylinder deactivation period. When tentatively a first pattern is employed, two peak values p1, p2 can not be precisely discriminated, and when a third pattern is employed, two bottom values b1, b2 can not be precisely discriminated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、1サイクルが1回の気筒休止期間および2回の燃焼期間の組み合わせよりなる気筒休止運転を行うエンジンを能動型防振支持装置を介して車体に支持し、制御手段が能動型防振支持装置のアクチュエータをエンジンの振動状態に応じて制御することでエンジンから車体への振動伝達を抑制する能動型防振支持装置の制御装置に関する。   According to the present invention, an engine that performs cylinder deactivation operation in which one cycle is a combination of one cylinder deactivation period and two combustion periods is supported on the vehicle body via an active vibration isolation support device, and the control means is active type anti-vibration. The present invention relates to a control device for an active vibration isolating support device that suppresses vibration transmission from an engine to a vehicle body by controlling an actuator of the vibration support device according to the vibration state of the engine.

エンジンのクランクシャフトの角加速度からエンジンの振動状態を推定し、その振動状態に基づいて能動型防振支持装置のアクチュエータの作動を制御する際に、エンジン振動が大きくて位相の推定が容易な場合(休筒運転時)に、推定したエンジン振動の位相に基づいてアクチュエータの作動を制御し、逆にエンジン振動が小さくて位相の推定が困難な場合(全筒運転時)に、予め設定したエンジン振動の位相に基づいてアクチュエータの作動を制御するものが、下記特許文献1により公知である。
特開2003−113892号公報
When the vibration state of the engine is estimated from the angular acceleration of the crankshaft of the engine, and the operation of the actuator of the active vibration isolation support device is controlled based on the vibration state, the phase of the engine is large and phase estimation is easy The actuator is controlled based on the estimated engine vibration phase (when the cylinder is in idle mode). Conversely, if the engine vibration is small and phase estimation is difficult (during all cylinder operation), a preset engine A device that controls the operation of an actuator based on the phase of vibration is known from Patent Document 1 below.
JP 2003-113892 A

ところでV型6気筒エンジンにおいて、片側バンクを休止して直列3気筒エンジンとして作動させる休筒運転状態と、両バンクの各1個の気筒を休止してV型4気筒エンジンとして作動させる休筒運転状態とを切り換え可能なものがある。   By the way, in a V-type 6-cylinder engine, a cylinder resting operation state in which one side bank is deactivated and operated as an in-line three-cylinder engine, and a cylinder resting operation in which each cylinder in both banks is deactivated and operated as a V-type four-cylinder engine. Some can be switched between states.

しかしながら、V型6気筒エンジンの両バンクの各1個の気筒を休止してV型4気筒エンジンとして使用する場合、本来のV型4気筒エンジンとは気筒の爆発間隔が異なるために振動状態も異なってくる。即ち、本来のV型4気筒エンジンでは4個の気筒が等間隔で爆発するのに対し、V型6気筒エンジンを気筒休止させた仮想的なV型4気筒エンジンでは休止気筒を除く4個の気筒の爆発間隔が一定にならないため、後から実施例で詳述するように、振動の1周期の取り方によって、推定されるエンジンの振動状態が異なってしまう可能性がある。   However, when one cylinder in both banks of the V-type 6-cylinder engine is deactivated and used as a V-type 4-cylinder engine, the explosion state of the cylinder is different from that of the original V-type 4-cylinder engine, so that the vibration state also occurs. Come different. That is, in the original V-type 4-cylinder engine, four cylinders explode at equal intervals, whereas in the virtual V-type 4-cylinder engine in which the V-type 6-cylinder engine is deactivated, the four cylinders excluding the deactivated cylinder are excluded. Since the cylinder explosion interval is not constant, the estimated vibration state of the engine may differ depending on how one cycle of vibration is taken, as will be described later in detail in the embodiment.

本発明は前述の事情に鑑みてなされたもので、1サイクルが1回の気筒休止期間および2回の燃焼期間の組み合わせよりなる気筒休止運転を行うエンジンの振動状態を的確に推定できるようにすることを目的とする。   The present invention has been made in view of the above-described circumstances, and makes it possible to accurately estimate the vibration state of an engine that performs cylinder deactivation operation in which one cycle is a combination of one cylinder deactivation period and two combustion periods. For the purpose.

上記目的を達成するために、請求項1に記載された発明によれば、1サイクルが1回の気筒休止期間および2回の燃焼期間の組み合わせよりなる気筒休止運転を行うエンジンを能動型防振支持装置を介して車体に支持し、制御手段が能動型防振支持装置のアクチュエータをエンジンの振動状態に応じて制御することでエンジンから車体への振動伝達を抑制する能動型防振支持装置の制御装置であって、前記制御手段は、気筒休止運転中におけるエンジンの振動状態を読み込む1サイクルの開始時を、前記気筒休止期間の開始時に設定することを特徴とする能動型防振支持装置の制御装置が提案される。   In order to achieve the above object, according to the first aspect of the present invention, an engine that performs cylinder deactivation operation in which one cycle is a combination of one cylinder deactivation period and two combustion periods is active vibration isolation. Of the active vibration isolating support device that suppresses vibration transmission from the engine to the vehicle body by controlling the actuator of the active vibration isolating support device according to the vibration state of the engine. A control device, wherein the control means sets a start time of one cycle for reading an engine vibration state during a cylinder deactivation operation at the start of the cylinder deactivation period. A control device is proposed.

また請求項2に記載された発明によれば、1サイクルが1回の気筒休止期間および2回の燃焼期間の組み合わせよりなる気筒休止運転を行うエンジンを能動型防振支持装置を介して車体に支持し、制御手段が能動型防振支持装置のアクチュエータをエンジンの振動状態に応じて制御することでエンジンから車体への振動伝達を抑制する能動型防振支持装置の制御装置であって、前記制御手段は、クランクシャフトの回転変動に基づくクランク角速度を微分フィルタによりフィルタ演算してエンジンの振動状態を演算し、気筒休止運転中におけるエンジンの振動状態を読み込む1サイクルの開始時を、前記気筒休止期間の次の燃焼期間の開始時に設定することを特徴とする能動型防振支持装置の制御装置が提案される。 尚、実施例の電子制御ユニットUは本発明の制御手段に対応する。   According to the second aspect of the present invention, an engine that performs cylinder deactivation operation in which one cycle is a combination of one cylinder deactivation period and two combustion periods is applied to the vehicle body via the active vibration isolation support device. A control device for the active vibration isolating support device that suppresses vibration transmission from the engine to the vehicle body by controlling the actuator of the active vibration isolating support device in accordance with the vibration state of the engine. The control means calculates the engine vibration state by filtering the crank angular speed based on the crankshaft rotation fluctuation using a differential filter, and reads the vibration state of the engine during the cylinder deactivation operation. A control device for an active vibration isolating support device is proposed, which is set at the start of the next combustion period. The electronic control unit U of the embodiment corresponds to the control means of the present invention.

請求項1の構成によれば、1サイクルが1回の気筒休止期間および2回の燃焼期間の組み合わせよりなる気筒休止運転を行うエンジンの1サイクルの振動状態を読み込むときに、その開始時を前記気筒休止期間の開始時に設定するので、前記1サイクルにおける振動状態のピーク値およびボトム値を確実に把握し、エンジンの振動状態を精度良く推定して能動型防振支持装置の防振性能を高めることができる。   According to the configuration of the first aspect, when the vibration state of one cycle of the engine performing the cylinder deactivation operation in which one cycle is a combination of one cylinder deactivation period and two combustion periods is read, Since it is set at the start of the cylinder deactivation period, the peak value and bottom value of the vibration state in the one cycle are surely grasped, and the vibration state of the engine is accurately estimated to improve the vibration isolation performance of the active vibration isolation support device. be able to.

請求項2の構成によれば、請求項1の効果に加えて、クランクシャフトの回転変動に基づくクランク角速度を微分フィルタによりフィルタ演算してエンジンの振動状態を演算するので、ノイズの影響を除去することができる。微分フィルタによるフィルタ演算でエンジンの振動波形は90°前にずれるが、気筒休止運転中におけるエンジンの振動状態を読み込む1サイクルの開始時を、前記気筒休止期間の次の燃焼期間の開始時に設定するので支障はない。   According to the second aspect of the present invention, in addition to the effect of the first aspect, the crank angular speed based on the crankshaft rotational fluctuation is filtered by the differential filter to calculate the engine vibration state, thereby eliminating the influence of noise. be able to. The vibration waveform of the engine deviates 90 degrees before in the filter calculation by the differential filter, but the start time of one cycle for reading the vibration state of the engine during the cylinder deactivation operation is set at the start of the combustion period next to the cylinder deactivation period. So there is no problem.

以下、本発明の実施の形態を、添付の図面に示した本発明の実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples of the present invention shown in the accompanying drawings.

図1〜図8は本発明の一実施例を示すもので、図1は能動型防振支持装置の縦断面図、図2は図1の2部拡大図、図3はV型6気筒エンジンの気筒番号および爆発順序を示す図、図4はV6全筒運転時の読取期間、演算期間および制御期間を示す図、図5は能動型防振支持装置の制御手法を説明するフローチャート、図6はV4休筒運転の作用を説明するタイムチャート、図7はL3休筒運転からV4休筒運転への移行時の作用を説明するタイムチャート、図8はV6全筒運転からV4休筒運転への移行時の作用を説明するタイムチャートである。   1 to 8 show an embodiment of the present invention. FIG. 1 is a longitudinal sectional view of an active vibration isolating support device, FIG. 2 is an enlarged view of a part 2 in FIG. 1, and FIG. FIG. 4 is a diagram illustrating a reading period, a calculation period, and a control period during V6 all-cylinder operation, FIG. 5 is a flowchart illustrating a control method of the active vibration isolating support device, and FIG. Is a time chart explaining the operation of the V4 idle cylinder operation, FIG. 7 is a time chart explaining the operation at the time of transition from the L3 idle cylinder operation to the V4 idle cylinder operation, and FIG. 8 is from the V6 all cylinder operation to the V4 idle cylinder operation. It is a time chart explaining the effect | action at the time of transfer.

図1および図2に示すように、自動車のエンジンを車体フレームに弾性的に支持するために用いられる能動型防振支持装置M(アクティブ・コントロール・マウント)は、軸線Lに関して実質的に軸対称な構造を有するもので、概略円筒状の上部ハウジング11の下端のフランジ部11aと、概略円筒状の下部ハウジング12の上端のフランジ部12aとの間に、上面が開放した概略カップ状のアクチュエータケース13の外周のフランジ部13aと、環状の第1弾性体支持リング14の外周部と、環状の第2弾性体支持リング15の外周部とが重ね合わされてカシメにより結合される。このとき、下部ハウジング12のフランジ部12aとアクチュエータケース13のフランジ部13aとの間に環状の第1フローティングラバー16を介在させ、かつアクチュエータケース13の上部と第2弾性体支持部材15の内面との間に環状の第2フローティングラバー17を介在させることで、アクチュエータケース13は上部ハウジング11および下部ハウジング12に対して相対移動可能にフローティング支持される。   As shown in FIGS. 1 and 2, an active anti-vibration support device M (active control mount) used for elastically supporting an automobile engine on a body frame is substantially axisymmetric with respect to an axis L. A substantially cup-shaped actuator case having an open upper surface between a flange portion 11a at the lower end of the substantially cylindrical upper housing 11 and a flange portion 12a at the upper end of the generally cylindrical lower housing 12. The outer peripheral flange portion 13a, the outer peripheral portion of the annular first elastic body support ring 14, and the outer peripheral portion of the annular second elastic body support ring 15 are overlapped and joined by caulking. At this time, the annular first floating rubber 16 is interposed between the flange portion 12a of the lower housing 12 and the flange portion 13a of the actuator case 13, and the upper portion of the actuator case 13 and the inner surface of the second elastic body support member 15 By interposing the annular second floating rubber 17 therebetween, the actuator case 13 is floatingly supported so as to be movable relative to the upper housing 11 and the lower housing 12.

第1弾性体支持リング14と、軸線L上に配置された第1弾性体支持ボス18とに、厚肉のラバーで形成した第1弾性体19の下端および上端がそれぞれが加硫接着により接合される。第1弾性体支持ボス18の上面にダイヤフラム支持ボス20がボルト21で固定されており、ダイヤフラム支持ボス20に内周部を加硫接着により接合されたダイヤフラム22の外周部が上部ハウジング11に加硫接着により接合される。ダイヤフラム支持ボス20の上面に一体に形成されたエンジン取付部20aがエンジンに固定される。また下部ハウジング12の下端の車体取付部12bが車体フレームに固定される。   The lower end and the upper end of the first elastic body 19 formed of thick rubber are joined to the first elastic body support ring 14 and the first elastic body support boss 18 disposed on the axis L by vulcanization adhesion. Is done. A diaphragm support boss 20 is fixed to the upper surface of the first elastic body support boss 18 with bolts 21, and the outer peripheral portion of the diaphragm 22, which is joined to the diaphragm support boss 20 by vulcanization adhesion, is added to the upper housing 11. Joined by sulfur adhesion. An engine mounting portion 20a integrally formed on the upper surface of the diaphragm support boss 20 is fixed to the engine. A vehicle body attachment portion 12b at the lower end of the lower housing 12 is fixed to the vehicle body frame.

上部ハウジング11の上端のフランジ部11bにストッパ部材23の下端のフランジ部23aがボルト24…およびナット25…で結合されており、ストッパ部材23の上部内面に取り付けたストッパラバー26にダイヤフラム支持ボス20の上面に突設したエンジン取付部20aが当接可能に対向する。能動型防振支持装置Mに大荷重が入力したとき、エンジン取付部20aがストッパラバー26に当接することで、エンジンの過大な変位が抑制される。   A flange portion 23a at the lower end of the stopper member 23 is coupled to the flange portion 11b at the upper end of the upper housing 11 by bolts 24 ... and nuts 25 ..., and a diaphragm support boss 20 is attached to a stopper rubber 26 attached to the upper inner surface of the stopper member 23. The engine mounting portion 20a that protrudes from the upper surface of the upper and lower surfaces faces each other so as to be capable of contacting. When a large load is input to the active vibration isolating support device M, the engine mounting portion 20a abuts against the stopper rubber 26, thereby suppressing excessive displacement of the engine.

第2弾性体支持リング15に膜状のラバーで形成した第2弾性体27の外周部が加硫接着により接合されており、第2弾性体27の中央部に埋め込むように可動部材28が加硫接着により接合される。第2弾性体支持リング15の上面と第1弾性体19の外周部との間に円板状の隔壁部材29が固定されており、隔壁部材29および第1弾性体19により区画された第1液室30と、隔壁部材29および第2弾性体27により区画された第2液室31とが、隔壁部材29の中央に形成した連通孔29aを介して相互に連通する。   The outer peripheral portion of the second elastic body 27 formed of a film-like rubber is joined to the second elastic body support ring 15 by vulcanization adhesion, and the movable member 28 is added so as to be embedded in the central portion of the second elastic body 27. Joined by sulfur adhesion. A disk-shaped partition wall member 29 is fixed between the upper surface of the second elastic body support ring 15 and the outer periphery of the first elastic body 19, and the first partition partitioned by the partition wall member 29 and the first elastic body 19. The liquid chamber 30 and the second liquid chamber 31 partitioned by the partition member 29 and the second elastic body 27 communicate with each other through a communication hole 29 a formed at the center of the partition member 29.

第1弾性体支持リング14と上部ハウジング11との間に環状の連通路32が形成されており、連通路32の一端は連通孔33を介して第1液室30に連通し、連通路32の他端は連通孔34を介して、第1弾性体19およびダイヤフラム22により区画された第3液室35に連通する。   An annular communication path 32 is formed between the first elastic body support ring 14 and the upper housing 11, and one end of the communication path 32 communicates with the first liquid chamber 30 through the communication hole 33. The other end communicates with the third liquid chamber 35 defined by the first elastic body 19 and the diaphragm 22 through the communication hole 34.

次に、前記可動部材28を駆動するアクチュエータ41の構造を説明する。   Next, the structure of the actuator 41 that drives the movable member 28 will be described.

アクチュエータケース13の内部に固定コア42、コイル組立体43およびヨーク44が下から上に順次取り付けられる。コイル組立体43は、円筒状のコイル46と、コイル46の外周を覆うコイルカバー47とで構成される。コイルカバー47には、アクチュエータケース13および下部ハウジング12に形成した開口13b,12cを貫通して外部に延出するコネクタ48が一体に形成される。   The fixed core 42, the coil assembly 43, and the yoke 44 are sequentially attached to the inside of the actuator case 13 from the bottom to the top. The coil assembly 43 includes a cylindrical coil 46 and a coil cover 47 that covers the outer periphery of the coil 46. The coil cover 47 is integrally formed with a connector 48 that extends through the openings 13b and 12c formed in the actuator case 13 and the lower housing 12 and extends to the outside.

コイルカバー47の上面とヨーク44の下面との間にシール部材49が配置され、コイルカバー47の下面とアクチュエータケース13の上面との間にシール部材50が配置される。これらのシール部材49,50によって、アクチュエータケース13および下部ハウジング12に形成した開口13b,12cからアクチュエータ41の内部空間61に水や塵が入り込むのを阻止することができる。   A seal member 49 is disposed between the upper surface of the coil cover 47 and the lower surface of the yoke 44, and a seal member 50 is disposed between the lower surface of the coil cover 47 and the upper surface of the actuator case 13. These seal members 49 and 50 can prevent water and dust from entering the internal space 61 of the actuator 41 from the openings 13 b and 12 c formed in the actuator case 13 and the lower housing 12.

ヨーク44の円筒部44aの内周面に薄肉円筒状の軸受け部材51が上下摺動自在に嵌合しており、この軸受け部材51の上端には径方向内向きに折り曲げられた上部フランジ51aが形成されるとともに、下端には径方向外向きに折り曲げられた下部フランジ51bが形成される。下部フランジ51bとヨーク44の円筒部44aの下端との間にセットばね52が圧縮状態で配置されており、このセットばね52の弾発力で下部フランジ51bを弾性体53を介して固定コア42の上面に押し付けることで、軸受け部材51がヨーク44に支持される。   A thin cylindrical bearing member 51 is slidably fitted to the inner peripheral surface of the cylindrical portion 44a of the yoke 44, and an upper flange 51a bent radially inward is formed at the upper end of the bearing member 51. A lower flange 51b that is bent radially outward is formed at the lower end. A set spring 52 is disposed in a compressed state between the lower flange 51b and the lower end of the cylindrical portion 44a of the yoke 44. The elastic force of the set spring 52 causes the lower flange 51b to be fixed to the fixed core 42 via the elastic body 53. The bearing member 51 is supported by the yoke 44 by being pressed against the upper surface of the yoke 44.

軸受け部材51の内周面に概略円筒状の可動コア54が上下摺動自在に嵌合する。前記可動部材28の中心から下向きに延びるロッド55が可動コア54の中心を緩く貫通し、その下端にナット56が締結される。可動コア54の上面に設けたばね座57と可動部材28の下面との間に圧縮状態のセットばね58が配置されており、このセットばね58の弾発力で可動コア54はナット56に押し付けられて固定される。この状態で、可動コア54の下面と固定コア42の上面とが、円錐状のエアギャップgを介して対向する。ロッド55およびナット56は固定コア42の中心に形成された開口42aに緩く嵌合しており、この開口42aはシール部材59を介してプラグ60で閉塞される。   A substantially cylindrical movable core 54 is fitted to the inner peripheral surface of the bearing member 51 so as to be slidable up and down. A rod 55 extending downward from the center of the movable member 28 penetrates the center of the movable core 54 loosely, and a nut 56 is fastened to the lower end thereof. A set spring 58 in a compressed state is disposed between a spring seat 57 provided on the upper surface of the movable core 54 and the lower surface of the movable member 28, and the movable core 54 is pressed against the nut 56 by the elastic force of the set spring 58. Fixed. In this state, the lower surface of the movable core 54 and the upper surface of the fixed core 42 face each other via the conical air gap g. The rod 55 and the nut 56 are loosely fitted in an opening 42 a formed at the center of the fixed core 42, and the opening 42 a is closed by a plug 60 through a seal member 59.

エンジンのクランクシャフトの回転に伴って出力されるクランクパルスを検出するクランクパルスセンサSaと、各気筒のTDCパルスを検出するTDCパルスセンサSbとが接続された電子制御ユニットUは、能動型防振支持装置Mのアクチュエータ41に対する通電を制御する。本実施例のエンジンでは、クランクパルスはクランクシャフトの1回転につき24回、つまりクランクアングルの15°毎に1回出力され、またTDCパルスはクランクシャフトの2回転につき6回、つまりクランクアングルの120°毎に1回出力される。   An electronic control unit U, to which a crank pulse sensor Sa that detects a crank pulse that is output as the crankshaft of the engine rotates and a TDC pulse sensor Sb that detects a TDC pulse of each cylinder, is connected to an active vibration isolator. The energization of the actuator 41 of the support device M is controlled. In the engine of this embodiment, the crank pulse is output 24 times per crankshaft rotation, that is, once every 15 ° of the crank angle, and the TDC pulse is output 6 times per crankshaft rotation, that is, 120 times the crank angle. Output once per degree.

図3に示すように、エンジンはV型6気筒エンジンであって、第1バンクに♯1気筒、♯2気筒および♯3気筒が配置され、第2バンクに♯4気筒、♯5気筒および♯6気筒が配置される。エンジンは、♯1気筒〜♯6気筒を♯1→♯4→♯2→♯5→♯3→♯6の順序で爆発させる全筒運転(以下、V6全筒運転という)と、第1バンクの♯1気筒、♯2気筒および♯3気筒を休止させる休筒運転(以下、L3休筒運転という)と、第1バンクの♯3気筒および第2バンクの♯4気筒を休止する休筒運転(以下、V4休筒運転という)とを、エンジンの負荷状態に応じて切り換え可能である。L3休筒運転の爆発順序は♯1→♯2→♯3であり、V4休筒運転の爆発順序は♯1→♯4(休筒)→♯2→♯5→♯3(休筒)→♯6である。   As shown in FIG. 3, the engine is a V-type 6-cylinder engine, and # 1 cylinder, # 2 cylinder and # 3 cylinder are arranged in the first bank, and # 4 cylinder, # 5 cylinder and # 3 are arranged in the second bank. Six cylinders are arranged. The engine includes all cylinder operation (hereinafter referred to as V6 all cylinder operation) in which the cylinders # 1 to # 6 are exploded in the order of # 1, # 4, # 2, # 5, # 3, and # 6. Idle cylinder operation (hereinafter referred to as L3 idle cylinder operation), and idle cylinder operation in which the # 3 cylinder in the first bank and the # 4 cylinder in the second bank are deactivated. (Hereinafter referred to as V4 idle cylinder operation) can be switched according to the engine load state. The explosion order in the L3 idle cylinder operation is # 1 → # 2 → # 3, and the explosion order in the V4 cylinder idle operation is # 1 → # 4 (closed cylinder) → # 2 → # 5 → # 3 (closed cylinder) → # 6.

V6全筒運転ではクランクシャフトが2回転する間に♯1気筒〜♯6気筒が等間隔で各1回ずつ爆発するため、エンジンの振動状態は3次振動(クランクシャフトの1回転に3周期の振動)となり、振動の一周期は120°となる。   In the V6 all-cylinder operation, the # 1 cylinder to the # 6 cylinder explode once at equal intervals while the crankshaft rotates twice, so the vibration state of the engine is the third vibration (three cycles per one rotation of the crankshaft). Vibration), and one period of vibration is 120 °.

L3休筒運転ではクランクシャフトが2回転する間に第2バンクの♯4気筒、♯5気筒および♯6気筒が等間隔で各1回ずつ爆発するため、エンジンの振動状態は1.5次振動(クランクシャフトの1回転に1.5周期の振動)となり、振動の一周期は240°となる。   In L3 idle cylinder operation, the # 4 cylinder, # 5 cylinder and # 6 cylinder of the second bank explode once at equal intervals while the crankshaft rotates twice, so the engine vibration state is 1.5th order vibration. (1.5 cycles of vibration per crankshaft rotation), and one cycle of vibration is 240 °.

V4休筒運転ではクランクアングル120°の一つの休筒期間と、クランクアングル120°の二つの爆発期間とが組み合わさって振動の一周期を構成するため、エンジンの振動状態は1次振動(クランクシャフトの1回転に1周期の振動)となり、振動の一周期は360°となる。従って、V4休筒運転では、1周期のとり方として、以下の第1パターン〜第3パターンが存在する。「爆」は爆発、「休」は休止である。   In V4 idle cylinder operation, one idle cylinder period with a crank angle of 120 ° and two explosion periods with a crank angle of 120 ° constitute a cycle of vibration, so the engine vibration state is the primary vibration (crank Vibration of one cycle per one rotation of the shaft), and one cycle of vibration is 360 °. Therefore, in the V4 idle cylinder operation, the following first pattern to third pattern exist as one cycle. “Explosion” means explosion, and “Rest” means pause.

第1パターン:「爆」→「休」→「爆」
第2パターン:「休」→「爆」→「爆」
第3パターン:「爆」→「爆」→「休」
図4に示すように、能動型防振支持装置Mの制御は、ある1周期(読取期間)でエンジンの振動状態を読み取り、次の1周期(演算期間)で能動型防振支持装置Mのアクチュエータ41の制御電流を演算し、次の1周期(制御期間)で前記制御電流を出力して能動型防振支持装置Mのアクチュエータ41を作動させるようになっており、従って今回の一周期の能動型防振支持装置Mの作動は、前々回の一周期の振動状態に基づいて制御されることになる。
First pattern: “explosion” → “off” → “explosion”
2nd pattern: “Rest” → “Explosion” → “Explosion”
Third pattern: “explosion” → “explosion” → “rest”
As shown in FIG. 4, the control of the active vibration isolating support apparatus M reads the vibration state of the engine in one cycle (reading period), and the active vibration isolation support apparatus M in the next cycle (calculation period). The control current of the actuator 41 is calculated, and the control current is output in the next one cycle (control period) to operate the actuator 41 of the active vibration isolating support device M. The operation of the active vibration isolating support device M is controlled based on the vibration state of one cycle last time.

次に、上記構成を備えた能動型防振支持装置Mの作用について説明する。   Next, the operation of the active vibration isolating support apparatus M having the above configuration will be described.

自動車の走行中に低周波数のエンジンシェイク振動が発生したとき、エンジンからダイヤフラム支持ボス20および第1弾性体支持ボス18を介して入力される荷重で第1弾性体19が変形して第1液室30の容積が変化すると、連通路32を介して接続された第1液室30および第3液室35間で液体が行き来する。第1液室30の容積が拡大・縮小すると、それに応じて第3液室35の容積が縮小・拡大するが、この第3液室35の容積変化はダイヤフラム22の弾性変形により吸収される。このとき、連通路32の形状および寸法、並びに第1弾性体19のばね定数は前記エンジンシェイク振動の周波数領域で低ばね定数および高減衰力を示すように設定されているため、エンジンから車体フレームに伝達される振動を効果的に低減することができる。   When low-frequency engine shake vibration is generated while the vehicle is running, the first elastic body 19 is deformed by a load input from the engine via the diaphragm support boss 20 and the first elastic body support boss 18, and the first liquid When the volume of the chamber 30 changes, the liquid goes back and forth between the first liquid chamber 30 and the third liquid chamber 35 connected via the communication path 32. When the volume of the first liquid chamber 30 is enlarged / reduced, the volume of the third liquid chamber 35 is reduced / expanded accordingly, but the volume change of the third liquid chamber 35 is absorbed by the elastic deformation of the diaphragm 22. At this time, the shape and size of the communication path 32 and the spring constant of the first elastic body 19 are set so as to exhibit a low spring constant and a high damping force in the frequency region of the engine shake vibration. The vibration transmitted to can be effectively reduced.

尚、上記エンジンシェイク振動の周波数領域では、アクチュエータ41は非作動状態に保たれる。   In the frequency region of the engine shake vibration, the actuator 41 is kept in an inoperative state.

前記エンジンシェイク振動よりも周波数の高い振動、即ちエンジンのクランクシャフトの回転に起因するアイドル時の振動や気筒休止時の振動が発生した場合、第1液室30および第3液室35を接続する連通路32内の液体はスティック状態になって防振機能を発揮できなくなるため、アクチュエータ41を駆動して防振機能を発揮させる。   When vibration having a higher frequency than the engine shake vibration, that is, vibration during idling or vibration during cylinder deactivation caused by rotation of the crankshaft of the engine occurs, the first liquid chamber 30 and the third liquid chamber 35 are connected. Since the liquid in the communication path 32 is in a stick state and cannot exhibit the anti-vibration function, the actuator 41 is driven to exhibit the anti-vibration function.

能動型防振支持装置Mのアクチュエータ41を作動させて防振機能を発揮させるべく、電子制御ユニットUはクランクパルスセンサSaおよびTDCパルスセンサSbからの信号に基づいて能動型防振支持装置Mのアクチュエータ41のコイル46に対する通電を制御する。   In order to operate the actuator 41 of the active vibration isolating support device M to exhibit the anti-vibration function, the electronic control unit U determines the active vibration isolation support device M based on the signals from the crank pulse sensor Sa and the TDC pulse sensor Sb. The energization to the coil 46 of the actuator 41 is controlled.

次に、能動型防振支持装置Mの制御を具体的に説明する。   Next, the control of the active vibration isolating support apparatus M will be specifically described.

図5のフローチャートにおいて、先ずステップS1でクランクパルスセンサSaからクランクアングルの15°毎に出力されるクランクパルスを読み込むとともに、TDCパルスセンサSbからクランクアングルの120°毎に出力されるTDCパルスを読み込み、ステップS2で前記読み込んだクランクパルスを基準となるTDCパルスと比較することでクランクパルスの時間間隔を演算する。続くステップS3で前記15°のクランクアングルをクランクパルスの時間間隔で除算することでクランク角速度ωを演算し、ステップS4でクランク角速度ωを時間微分してクランク角加速度dω/dtを演算する。続くステップS5でエンジンのクランクシャフト62回りのトルクTqを、エンジンのクランクシャフト62回りの慣性モーメントをIとして、
Tq=I×dω/dt
により演算する。このトルクTqはクランクシャフトが一定の角速度ωで回転していると仮定すると0になるが、膨張行程ではピストンの加速により角速度ωが増加し、圧縮行程ではピストンの減速により角速度ωが減少してクランク角加速度dω/dtが発生するため、そのクランク角加速度dω/dtに比例したトルクTqが発生することになる。
In the flowchart of FIG. 5, first, in step S1, the crank pulse output from the crank pulse sensor Sa every 15 ° of the crank angle is read, and the TDC pulse output every 120 ° of the crank angle is read from the TDC pulse sensor Sb. In Step S2, the crank pulse time interval is calculated by comparing the read crank pulse with a reference TDC pulse. In the next step S3, the crank angular velocity ω is calculated by dividing the crank angle of 15 ° by the time interval of the crank pulse, and in step S4, the crank angular velocity ω is time differentiated to calculate the crank angular acceleration dω / dt. In the following step S5, the torque Tq around the engine crankshaft 62 is set as I, and the moment of inertia around the engine crankshaft 62 is set as I.
Tq = I × dω / dt
Calculate by This torque Tq is zero assuming that the crankshaft is rotating at a constant angular velocity ω, but in the expansion stroke, the angular velocity ω increases due to acceleration of the piston, and in the compression stroke, the angular velocity ω decreases due to deceleration of the piston. Since crank angular acceleration dω / dt is generated, torque Tq proportional to the crank angular acceleration dω / dt is generated.

続くステップS6で時間的に隣接するトルクの最大値および最小値(図6のピーク値Pおよびボトム値Bに相当)を判定し、ステップS7でトルクの最大値および最小値の偏差、つまりトルクの変動量としてエンジンを支持する能動型防振支持装置Mの位置における振幅を演算する。そしてステップS8でアクチュエータ41のコイル46に印加する電流のデューティ波形を決定するとともに、前記振幅のボトム位置をTDCパルスと比較することで電流のデューティの出力タイミングを決定する。   In the next step S6, the maximum value and the minimum value (corresponding to the peak value P and the bottom value B in FIG. 6) of the temporally adjacent torque are determined. In step S7, the deviation between the maximum value and the minimum value of the torque, The amplitude at the position of the active vibration isolating support device M that supports the engine is calculated as the amount of variation. In step S8, the duty waveform of the current applied to the coil 46 of the actuator 41 is determined, and the output timing of the current duty is determined by comparing the bottom position of the amplitude with the TDC pulse.

その結果、能動型防振支持装置Mは以下のようにして防振機能を発揮する。   As a result, the active vibration-proof support device M exhibits a vibration-proof function as follows.

即ち、エンジンが車体フレームに対して下向きに移動し、第1弾性体19が下向きに変形して第1液室30の容積が減少したとき、それにタイミングを合わせてアクチュエータ41のコイル46を励磁すると、エアギャップgに発生する吸着力で可動コア54が固定コア42に向けて下向きに移動し、可動コア54にロッド55を介して接続された可動部材28に引かれて第2弾性体27が下向きに変形する。その結果、第2液室31の容積が増加するため、エンジンからの荷重で圧縮された第1液室30の液体が隔壁部材29の連通孔29aを通過して第2液室31に流入し、エンジンから車体フレームに伝達される荷重を低減することができる。   That is, when the engine moves downward with respect to the vehicle body frame and the first elastic body 19 is deformed downward and the volume of the first liquid chamber 30 is reduced, the coil 46 of the actuator 41 is excited in accordance with the timing. The movable core 54 moves downward toward the fixed core 42 by the suction force generated in the air gap g, and is pulled by the movable member 28 connected to the movable core 54 via the rod 55, so that the second elastic body 27 is moved. Deforms downward. As a result, since the volume of the second liquid chamber 31 increases, the liquid in the first liquid chamber 30 compressed by the load from the engine passes through the communication hole 29a of the partition wall member 29 and flows into the second liquid chamber 31. The load transmitted from the engine to the vehicle body frame can be reduced.

続いてエンジンが車体フレームに対して上向きに移動し、第1弾性体19が上向きに変形して第1液室30の容積が増加したとき、それにタイミングを合わせてアクチュエータ41のコイル46を消磁すると、エアギャップgに発生する吸着力が消滅して可動コア54が自由に移動できるようになるため、下向きに変形した第2弾性体27が自己の弾性復元力で上向きに復元する。その結果、第2液室31の容積が減少するため、第2液室31の液体が隔壁部材29の連通孔29aを通過して第1液室30に流入し、エンジンが車体フレームに対して上向きに移動するのを許容することができる。   Subsequently, when the engine moves upward with respect to the vehicle body frame and the first elastic body 19 is deformed upward to increase the volume of the first liquid chamber 30, the coil 46 of the actuator 41 is demagnetized in accordance with the timing. Since the attracting force generated in the air gap g disappears and the movable core 54 can move freely, the second elastic body 27 deformed downward is restored upward by its own elastic restoring force. As a result, since the volume of the second liquid chamber 31 decreases, the liquid in the second liquid chamber 31 passes through the communication hole 29a of the partition wall member 29 and flows into the first liquid chamber 30, and the engine is in contact with the vehicle body frame. It can be allowed to move upward.

ところで、V6全筒運転およびL3休筒運転では気筒の爆発間隔が一定であるため、エンジンの振動状態を読み取る読取期間の開始タイミングを、全ての気筒の爆発期間の開始タイミングに一致させれば良い。   By the way, in the V6 all-cylinder operation and the L3 idle cylinder operation, the explosion interval of the cylinder is constant. Therefore, the start timing of the reading period for reading the vibration state of the engine may be made coincident with the start timing of the explosion period of all the cylinders. .

一方、図6に示すように、V4休筒運転において、前記第1パターンの読取期間(「爆」→「休」→「爆」)を採用すると、エンジンの振動波形の二つのピーク値p1,p1が読取期間の初めと終わりの近傍に現れるため、どちらか真のピーク値であるか判断できなくなり、エンジンの振動状態を正確に検出できなくなる。同様に前記第3パターンの読取期間(「爆」→「爆」→「休」)を採用すると、エンジンの振動波形の二つのボトム値b1,b1が読取期間の初めと終わりの近傍に現れるため、どちらか真のボトム値であるか判断できなくなり、エンジンの振動状態を正確に検出できなくなる。   On the other hand, as shown in FIG. 6, when the reading period of the first pattern (“explosion” → “off” → “explosion”) is employed in the V4 idle cylinder operation, two peak values p1, p1 of the engine vibration waveform are adopted. Since p1 appears in the vicinity of the beginning and end of the reading period, it cannot be determined which of the peak values is true, and the vibration state of the engine cannot be accurately detected. Similarly, if the reading period of the third pattern (“explosion” → “explosion” → “rest”) is adopted, two bottom values b1 and b1 of the engine vibration waveform appear near the beginning and end of the reading period. , It is impossible to determine which is the true bottom value, and the vibration state of the engine cannot be accurately detected.

それに対して、前記第2パターンの読取期間(「休」→「爆」→「爆」)を採用すると、エンジンの振動波形の一つのピーク値p2および一つのボトム値b2が読取期間の中間部に現れるため、真のピーク値p1および真のボトム値b2から真の振幅を読み取って、エンジンの振動状態を正確に検出することができる。   On the other hand, when the reading period of the second pattern (“rest” → “explosion” → “explosion”) is adopted, one peak value p2 and one bottom value b2 of the vibration waveform of the engine are in the middle of the reading period. Therefore, it is possible to accurately detect the vibration state of the engine by reading the true amplitude from the true peak value p1 and the true bottom value b2.

図7はL3休筒運転からV4休筒運転への切り換え時の制御を示すもので、t1位置でL3休筒運転からV4休筒運転への切換信号が入力すると、その切換信号の入力以後の最初♯3気筒(あるいは♯4気筒)の休止期間の開始時であるt2位置が、V4休筒運転の1サイクルの開始時として採用される。これにより、V4休筒運転の読取期間は前記第2パターンの読取期間(「休」→「爆」→「爆」)となり、エンジンの振動波形の真のピーク値p1および真のボトム値をb1読み取って、エンジの振動状態を正確に検出することができる。   FIG. 7 shows the control at the time of switching from the L3 idle cylinder operation to the V4 idle cylinder operation. When a switching signal from the L3 idle cylinder operation to the V4 idle cylinder operation is inputted at the t1 position, The position t2, which is the start of the rest period of the first # 3 cylinder (or # 4 cylinder), is adopted as the start of one cycle of the V4 cylinder rest operation. As a result, the reading period of the V4 idle cylinder operation becomes the reading period of the second pattern (“rest” → “explosion” → “explosion”), and the true peak value p1 and the true bottom value of the engine vibration waveform are set to b1. By reading, the vibration state of the engine can be accurately detected.

尚、t1位置でL3休筒運転からV4休筒運転への切換信号が入力してから、V4休筒運転の読取期間および演算期間を経て、制御期間で実際にV4休筒運転用の制御が開始される時点(t3位置)まで、能動型防振支持装置MはL3休筒運転からV4休筒運転への過渡期の制御が行われる。この過渡期の制御には任意の手法を採用することができる。   In addition, after the switching signal from the L3 closed cylinder operation to the V4 closed cylinder operation is input at the position t1, the control for the V4 closed cylinder operation is actually performed in the control period after the reading period and the calculation period of the V4 closed cylinder operation. Until the start time (t3 position), the active vibration-proof support device M is controlled in a transition period from the L3 cylinder-closed operation to the V4 cylinder-closed operation. Any method can be adopted for the control in the transition period.

図8はV6全筒運転からV4休筒運転への切り換え時の制御を示すもので、t1位置でV6全筒運転からV4休筒運転への切換信号が入力すると、その切換信号の入力以後の最初♯3気筒(あるいは♯4気筒)の休止期間の開始時であるt2位置が、V4休筒運転の1サイクルの開始時として採用される。これにより、V4休筒運転の読取期間は前記第2パターンの読取期間(「休」→「爆」→「爆」)となり、エンジンの振動波形の真のピーク値p1および真のボトム値b1を読み取って、エンジンの振動状態を正確に検出することができる。   FIG. 8 shows the control at the time of switching from the V6 all-cylinder operation to the V4 idle cylinder operation. When the switching signal from the V6 all cylinder operation to the V4 idle cylinder operation is inputted at the position t1, The position t2, which is the start of the rest period of the first # 3 cylinder (or # 4 cylinder), is adopted as the start of one cycle of the V4 cylinder rest operation. As a result, the reading period of the V4 cylinder resting operation becomes the reading period of the second pattern (“rest” → “explosion” → “explosion”), and the true peak value p1 and the true bottom value b1 of the vibration waveform of the engine are obtained. By reading, the vibration state of the engine can be accurately detected.

尚、t1位置でV6全筒運転からV4休筒運転への切換信号が入力してから、V4休筒運転の読取期間および演算期間を経て、制御期間で実際にV4休筒運転用の制御が開始される時点(t3位置)まで、能動型防振支持装置MはV6全筒運転からV4休筒運転への過渡期の制御が行われる。この過渡期の制御には任意の手法を採用することができる。   In addition, after the switching signal from the V6 all cylinder operation to the V4 cylinder idle operation is inputted at the position t1, the control for the V4 cylinder idle operation is actually performed in the control period after the reading period and the calculation period of the V4 cylinder idle operation. Until the start time (t3 position), the active vibration isolating support device M is controlled in a transition period from the V6 all-cylinder operation to the V4 idle cylinder operation. Any method can be adopted for the control in the transition period.

以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   Although the embodiments of the present invention have been described above, various design changes can be made without departing from the scope of the present invention.

例えば、実施例ではV4休筒運転時に♯3気筒および♯4気筒を休止しているが、休止する気筒は♯3気筒および♯4気筒に限定されるものではない。   For example, in the embodiment, the # 3 cylinder and the # 4 cylinder are deactivated during the V4 cylinder deactivation operation, but the deactivated cylinders are not limited to the # 3 cylinder and the # 4 cylinder.

能動型防振支持装置の縦断面図Longitudinal section of active vibration isolator 図1の2部拡大図2 enlarged view of FIG. V型6気筒エンジンの気筒番号および爆発順序を示す図The figure which shows the cylinder number and explosion order of V type 6 cylinder engine V6全筒運転時の読取期間、演算期間および制御期間を示す図The figure which shows the reading period at the time of V6 all cylinder operation, a calculation period, and a control period 能動型防振支持装置の制御手法を説明するフローチャートFlowchart explaining control method of active vibration isolating support device V4休筒運転の作用を説明するタイムチャートTime chart explaining the effect of V4 cylinder-free operation L3休筒運転からV4休筒運転への移行時の作用を説明するタイムチャートTime chart explaining the action when shifting from L3 idle cylinder operation to V4 idle cylinder operation V6全筒運転からV4休筒運転への移行時の作用を説明するタイムチャートTime chart explaining the action at the time of transition from V6 all cylinder operation to V4 idle cylinder operation

符号の説明Explanation of symbols

M 能動型防振支持装置
U 電子制御ユニット(制御手段)
41 アクチュエータ
M Active anti-vibration support device U Electronic control unit (control means)
41 Actuator

Claims (2)

1サイクルが1回の気筒休止期間および2回の燃焼期間の組み合わせよりなる気筒休止運転を行うエンジンを能動型防振支持装置(M)を介して車体に支持し、制御手段(U)が能動型防振支持装置(M)のアクチュエータ(41)をエンジンの振動状態に応じて制御することでエンジンから車体への振動伝達を抑制する能動型防振支持装置の制御装置であって、
前記制御手段(U)は、気筒休止運転中におけるエンジンの振動状態を読み込む1サイクルの開始時を、前記気筒休止期間の開始時に設定することを特徴とする能動型防振支持装置の制御装置。
An engine that performs cylinder deactivation operation consisting of a combination of one cylinder deactivation period and two combustion periods per cycle is supported on the vehicle body via an active vibration isolation support device (M), and the control means (U) is active. A control device for an active anti-vibration support device that suppresses vibration transmission from the engine to the vehicle body by controlling the actuator (41) of the anti-vibration support device (M) according to the vibration state of the engine,
The control device for an active vibration isolating support apparatus, wherein the control means (U) sets a start time of one cycle for reading a vibration state of the engine during a cylinder deactivation operation at the start of the cylinder deactivation period.
1サイクルが1回の気筒休止期間および2回の燃焼期間の組み合わせよりなる気筒休止運転を行うエンジンを能動型防振支持装置(M)を介して車体に支持し、制御手段(U)が能動型防振支持装置(M)のアクチュエータ(41)をエンジンの振動状態に応じて制御することでエンジンから車体への振動伝達を抑制する能動型防振支持装置の制御装置であって、
前記制御手段(U)は、クランクシャフトの回転変動に基づくクランク角速度を微分フィルタによりフィルタ演算してエンジンの振動状態を演算し、気筒休止運転中におけるエンジンの振動状態を読み込む1サイクルの開始時を、前記気筒休止期間の次の燃焼期間の開始時に設定することを特徴とする能動型防振支持装置の制御装置。
An engine that performs cylinder deactivation operation consisting of a combination of one cylinder deactivation period and two combustion periods per cycle is supported on the vehicle body via an active vibration isolation support device (M), and the control means (U) is active. A control device for an active anti-vibration support device that suppresses vibration transmission from the engine to the vehicle body by controlling the actuator (41) of the anti-vibration support device (M) according to the vibration state of the engine,
The control means (U) calculates the engine vibration state by filtering the crank angular speed based on the crankshaft rotation fluctuation with a differential filter, and reads the vibration state of the engine during the cylinder deactivation operation. A control device for an active vibration isolating support device, which is set at the start of a combustion period next to the cylinder deactivation period.
JP2005201874A 2005-07-11 2005-07-11 Control device for active anti-vibration support device Expired - Fee Related JP4657037B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005201874A JP4657037B2 (en) 2005-07-11 2005-07-11 Control device for active anti-vibration support device
US11/483,962 US7581720B2 (en) 2005-07-11 2006-07-10 Vibration isolation system and method for engine, and control system and method for active vibration isolation support system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005201874A JP4657037B2 (en) 2005-07-11 2005-07-11 Control device for active anti-vibration support device

Publications (2)

Publication Number Publication Date
JP2007015653A true JP2007015653A (en) 2007-01-25
JP4657037B2 JP4657037B2 (en) 2011-03-23

Family

ID=37753170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005201874A Expired - Fee Related JP4657037B2 (en) 2005-07-11 2005-07-11 Control device for active anti-vibration support device

Country Status (1)

Country Link
JP (1) JP4657037B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038967A (en) * 2005-08-05 2007-02-15 Honda Motor Co Ltd Control device for active type vibration-proof support device
JP2009228631A (en) * 2008-03-25 2009-10-08 Toyota Motor Corp Multiple cylinder engine
JP2010223348A (en) * 2009-03-24 2010-10-07 Honda Motor Co Ltd Active vibration isolating support apparatus and method for controlling the same
US7831375B2 (en) 2008-04-01 2010-11-09 Toyota Jidosha Kabushiki Kaisha Engine control device and engine control method
JP2011241901A (en) * 2010-05-18 2011-12-01 Bridgestone Corp Vibration control device
US8185295B2 (en) 2008-04-01 2012-05-22 Toyota Jidosha Kabushiki Kaisha Multi-cylinder engine
CN113639006A (en) * 2021-07-26 2021-11-12 东风越野车有限公司 Active and passive combined self-adaptive vibration control suspension system and control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633977A (en) * 1992-07-10 1994-02-08 Mazda Motor Corp Vibration reduction device of vehicle
JPH07217461A (en) * 1994-02-04 1995-08-15 Toyota Motor Corp Suspension device for variable cylinder internal combustion engine
JPH07257196A (en) * 1994-03-25 1995-10-09 Toyota Motor Corp Electronically controlled engine mount device
JP2003113892A (en) * 2001-07-31 2003-04-18 Honda Motor Co Ltd Actuator drive control method for active vibration isolating support device
JP2004263820A (en) * 2003-03-04 2004-09-24 Honda Motor Co Ltd Actuator drive control device for positive type vibration-proof supporting device
JP2005003051A (en) * 2003-06-10 2005-01-06 Honda Motor Co Ltd Actuator drive control device of active type vibrationproof supporting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633977A (en) * 1992-07-10 1994-02-08 Mazda Motor Corp Vibration reduction device of vehicle
JPH07217461A (en) * 1994-02-04 1995-08-15 Toyota Motor Corp Suspension device for variable cylinder internal combustion engine
JPH07257196A (en) * 1994-03-25 1995-10-09 Toyota Motor Corp Electronically controlled engine mount device
JP2003113892A (en) * 2001-07-31 2003-04-18 Honda Motor Co Ltd Actuator drive control method for active vibration isolating support device
JP2004263820A (en) * 2003-03-04 2004-09-24 Honda Motor Co Ltd Actuator drive control device for positive type vibration-proof supporting device
JP2005003051A (en) * 2003-06-10 2005-01-06 Honda Motor Co Ltd Actuator drive control device of active type vibrationproof supporting device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038967A (en) * 2005-08-05 2007-02-15 Honda Motor Co Ltd Control device for active type vibration-proof support device
JP4657056B2 (en) * 2005-08-05 2011-03-23 本田技研工業株式会社 Control device for active anti-vibration support device
JP2009228631A (en) * 2008-03-25 2009-10-08 Toyota Motor Corp Multiple cylinder engine
US8676470B2 (en) 2008-03-25 2014-03-18 Toyota Jidosha Kabushiki Kaisha Multicylinder engine and method for controlling the same
US7831375B2 (en) 2008-04-01 2010-11-09 Toyota Jidosha Kabushiki Kaisha Engine control device and engine control method
US8185295B2 (en) 2008-04-01 2012-05-22 Toyota Jidosha Kabushiki Kaisha Multi-cylinder engine
JP2010223348A (en) * 2009-03-24 2010-10-07 Honda Motor Co Ltd Active vibration isolating support apparatus and method for controlling the same
JP2011241901A (en) * 2010-05-18 2011-12-01 Bridgestone Corp Vibration control device
CN113639006A (en) * 2021-07-26 2021-11-12 东风越野车有限公司 Active and passive combined self-adaptive vibration control suspension system and control method
CN113639006B (en) * 2021-07-26 2023-09-15 东风越野车有限公司 Active-passive combined self-adaptive vibration control suspension system and control method

Also Published As

Publication number Publication date
JP4657037B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4657056B2 (en) Control device for active anti-vibration support device
JP4176662B2 (en) Vibration control method for hybrid vehicle
US7581720B2 (en) Vibration isolation system and method for engine, and control system and method for active vibration isolation support system
JP4657037B2 (en) Control device for active anti-vibration support device
JP4890384B2 (en) Method for detecting natural frequency of engine and control method for active vibration isolating support device
JP2007107579A (en) Controller for active vibration control supporting device
JP4284399B2 (en) Anti-vibration support device for engine
JP4806479B2 (en) Control device for active anti-vibration support device
JP4490880B2 (en) Vibration isolator for multi-cylinder engine
JP3803603B2 (en) Actuator drive control method for active vibration isolation support device
JP4711912B2 (en) Control device for active anti-vibration support device
JP2007064316A (en) Active vibration-isolating support device
JP4648131B2 (en) Active anti-vibration support device
JP3914177B2 (en) Actuator drive controller for active anti-vibration support device
JP2006194271A (en) Active type vibration-proofing support device
JP4078321B2 (en) Active anti-vibration support device
JP3914176B2 (en) Actuator drive controller for active anti-vibration support device
JP4110015B2 (en) Actuator drive controller for active anti-vibration support device
JP2006057753A (en) Active vibration control supporting device
JP2006207633A (en) Active vibration control supporting device
JP2004036435A (en) Control method for preventing vibration of cylinder rest engine
JP2006057752A (en) Active vibration control supporting device
JP4837635B2 (en) Active vibration isolating support device and engine vibration frequency detection method
JP2006232108A (en) Method for flexibly mounting engine
JP2006057750A (en) Drive controller for actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4657037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees