JP2007007575A - Microorganism carrier and its production method - Google Patents

Microorganism carrier and its production method Download PDF

Info

Publication number
JP2007007575A
JP2007007575A JP2005192573A JP2005192573A JP2007007575A JP 2007007575 A JP2007007575 A JP 2007007575A JP 2005192573 A JP2005192573 A JP 2005192573A JP 2005192573 A JP2005192573 A JP 2005192573A JP 2007007575 A JP2007007575 A JP 2007007575A
Authority
JP
Japan
Prior art keywords
composite fiber
fiber
microorganisms
core
graft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005192573A
Other languages
Japanese (ja)
Inventor
Kunio Fujiwara
邦夫 藤原
Kensuke Onda
建介 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2005192573A priority Critical patent/JP2007007575A/en
Publication of JP2007007575A publication Critical patent/JP2007007575A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microorganism carrier in which a side chain is introduced into a composite fiber substrate to make the side chain contain an anion-exchange group. <P>SOLUTION: The microorganism carrier including a composite fiber in which the side chain is introduced into the composite fiber substrate by radiation graft polymerization has the anion-exchange group on the side chain. The method for producing the microorganism carrier comprises a process for irradiating the composite fiber substrate including the composite fiber having a core and case structure with radiation, a process for impregnating the substrate with a polymeric monomer and a process for graft-polymerizing the substrate with the monomer. By using the microorganism carrier, a larger amount of microorganisms can efficiently be carried while maintaining an advantage inherent in the composite fiber substrate. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、微生物を担持するための微生物担体及びその製造方法に関する。特に本発明は、水処理又は工業プロセスにおいて液体を処理するために用いられる微生物担体に関する。   The present invention relates to a microorganism carrier for supporting microorganisms and a method for producing the same. In particular, the present invention relates to a microbial carrier used to treat liquids in water treatment or industrial processes.

生物学的な汚染を低減するための用水や廃水の水処理方法として、微生物等を利用する生物学的な処理方法が知られており、従来、生物学的処理としては活性汚泥法が主流であった。しかし、この活性汚泥法は、汚泥を構成する微生物と水との固液分離が必要であるばかりでなく、制御が複雑であった。   Biological treatment methods using microorganisms and the like are known as water treatment methods for water and wastewater to reduce biological contamination. Conventionally, the activated sludge method has been the mainstream biological treatment. there were. However, this activated sludge method requires not only solid-liquid separation between the microorganisms constituting the sludge and water, but also the control is complicated.

そこで最近では、より制御が容易で処理能力が高い固定化微生物による生物学的処理が行われている。固定化微生物による処理方法は、担体に微生物を吸着させ固定化微生物とし、この固定化微生物に被処理水を接触あるいは通水することによって、水処理を行う方法である。そして固定化微生物による処理方法では、比表面積が大きい材料(例えば、水処理では一般に利用される濾過槽の充填材である砂や活性炭など)が微生物固定化担体として好適に使用され、比表面積の大きな材料として空隙性素材、例えばスポンジ、多孔膜、織布や不織布などの繊維集合体を利用することが提案されている。特に織布や不織布などの繊維集合体は、(1)空隙率が大きく微生物の担持量が大きいこと、(2)処理対象の微生物への接触と、処理対象中の粒子の除去とを同時に行うことが可能であること、さらには、(3)成型加工が容易であること(例えば、円筒に巻いて積層構造にしたり、プリーツ状、袋状にすることなどができる)などから、微生物担体としてよく利用される。   Therefore, recently, biological treatment using immobilized microorganisms which are easier to control and have a higher treatment capacity has been performed. The treatment method using immobilized microorganisms is a method in which water treatment is performed by adsorbing microorganisms on a carrier to form immobilized microorganisms and contacting or passing water to be treated with the immobilized microorganisms. In the treatment method using immobilized microorganisms, a material having a large specific surface area (for example, sand or activated carbon which is a filler for filtration tanks generally used in water treatment) is preferably used as a microorganism-immobilized support. It has been proposed to use a porous material such as a sponge, a porous film, a fiber assembly such as a woven fabric or a non-woven fabric as a large material. In particular, a fiber assembly such as a woven fabric or a non-woven fabric has (1) a large porosity and a large amount of microorganisms supported, and (2) simultaneous contact with microorganisms to be treated and removal of particles in the objects to be treated. In addition, (3) it is easy to mold (for example, it can be wound into a cylinder to form a laminated structure, pleated or bag-like), etc. Often used.

このような繊維集合体を化学的な方法でさらに機能化し、微生物吸着材料として利用することも行われている。例えば、化学的な官能基の付与によって繊維表面に正の電荷を持たせ、負の電荷をもつ微生物を繊維上に効果的に吸着させるものである(例えば、特許文献1)。このような原理に基づき、例えば、特許文献2においては、ピリジン基を第四級アンモニウム基として有する不織布を合成し、これを微生物吸着用に用いている。また、特許文献3においては、不溶性ポリマーにビニルピリジンをグラフト共重合し、ピリジン基を第四級アンモニウム基として微生物吸着材としている。
特開昭63−31538号公報 特開平4−11949号公報 特開平4−164035号公報〔発明が解決しようとする課題〕
Such a fiber assembly is further functionalized by a chemical method and used as a microorganism adsorbing material. For example, by imparting a chemical functional group, the fiber surface is positively charged, and negatively charged microorganisms are effectively adsorbed on the fiber (for example, Patent Document 1). Based on such a principle, for example, in Patent Document 2, a nonwoven fabric having a pyridine group as a quaternary ammonium group is synthesized and used for microorganism adsorption. In Patent Document 3, vinyl pyridine is graft copolymerized with an insoluble polymer, and the pyridine group is used as a quaternary ammonium group as a microorganism adsorbent.
Japanese Unexamined Patent Publication No. Sho 63-31538 JP-A-4-11949 JP-A-4-164035 [Problems to be Solved by the Invention]

しかしながら、特許文献2に記載の微生物担体では、水溶性にならないようピリジン基を少なくする必要があり、また、安定な繊維形態とするには別の繊維形成樹脂との混合が必要であるため、実質的な第四級アンモニウム基の密度が小さくなると考えられる。また、特許文献3に記載の微生物担体においては、水酸基を有するポリマー基材が好ましく使用され、レドックス型重合開始剤を使用する方法により好ましく製造されるが、表面に水酸基を有さないような化学的に不活性な表面を有するポリマー基材への適用については何ら記載が無い。   However, in the microbial carrier described in Patent Document 2, it is necessary to reduce the number of pyridine groups so as not to be water-soluble, and in order to obtain a stable fiber form, mixing with another fiber-forming resin is necessary. It is considered that the density of the substantial quaternary ammonium group is reduced. In addition, in the microbial carrier described in Patent Document 3, a polymer base material having a hydroxyl group is preferably used, and is preferably produced by a method using a redox type polymerization initiator. There is no mention of application to polymer substrates having a chemically inert surface.

このような状況に鑑み、本発明は上述の問題点を解消することを目的として考案されたものである。すなわち、本発明の課題は、空隙率や表面積が大きいこと、成型加工しやすいこと、物理的強度が高いこと等の複合繊維基材が有する利点を維持しつつ、より多量の微生物を担持可能な微生物担持体を提供することである。
〔課題を解決するための手段〕
In view of such circumstances, the present invention has been devised for the purpose of solving the above-mentioned problems. That is, the object of the present invention is to support a larger amount of microorganisms while maintaining the advantages of the composite fiber base material such as a high porosity and surface area, easy molding, and high physical strength. It is to provide a microorganism carrier.
[Means for solving the problems]

本発明には、以下の特徴を有する微生物担体およびその製造方法が含まれる。
(1)放射線グラフト重合により複合繊維基材に側鎖が導入された複合繊維を含む微生物担体であって、該側鎖がアニオン交換基を有している微生物担体。
(2)前記複合繊維基材が芯鞘構造を有する繊維を含んでなる、(1)に記載の微生物担体。
(3)前記側鎖のアニオン交換基が0.5 meq/g以上のイオン交換容量を有する、(1)又は(2)に記載の微生物担体。
(4)前記アニオン交換基が、第一級アミノ基、第二級アミノ基、第三級アミノ基及び第四級アンモニウム基から選択される1種以上である、(1)〜(3)のいずれか1項に記載の微生物担体。
(5)前記複合繊維基材が繊維集合体である、(1)〜(4)のいずれか1項に記載の微生物担体。
(6)前記繊維集合体が織布又は不織布である、(5)に記載の微生物担体。
(6)芯鞘構造を有する複合繊維を含む複合繊維基材に放射線を照射する工程と;該基材に重合性モノマーを含浸させる工程と;該モノマーを該基材にグラフト重合させる工程と;を含む微生物担体の製造方法。
The present invention includes a microbial carrier having the following characteristics and a method for producing the same.
(1) A microbial carrier comprising a composite fiber in which a side chain is introduced into a composite fiber base material by radiation graft polymerization, wherein the side chain has an anion exchange group.
(2) The microbial carrier according to (1), wherein the composite fiber substrate comprises fibers having a core-sheath structure.
(3) The microbial carrier according to (1) or (2), wherein the anion exchange group of the side chain has an ion exchange capacity of 0.5 meq / g or more.
(4) The anion exchange group is one or more selected from a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group, of (1) to (3) The microbial carrier according to any one of the above.
(5) The microbial carrier according to any one of (1) to (4), wherein the composite fiber base material is a fiber assembly.
(6) The microbial carrier according to (5), wherein the fiber assembly is a woven fabric or a nonwoven fabric.
(6) a step of irradiating a composite fiber base material including a composite fiber having a core-sheath structure; a step of impregnating the base material with a polymerizable monomer; and a step of graft polymerization of the monomer onto the base material; A method for producing a microbial carrier comprising:

1つの観点から本発明は、放射線グラフト重合により複合繊維基材に側鎖が導入された複合繊維を含む微生物担体であって、該側鎖がアニオン交換基を有している上記微生物担体である。   From one aspect, the present invention is a microbial carrier comprising a composite fiber in which a side chain is introduced into a composite fiber base material by radiation graft polymerization, wherein the side chain has an anion exchange group. .

放射線グラフト重合
本発明の微生物担体は、放射線グラフト重合により複合繊維基材に側鎖が導入された複合繊維を含んでなる。本発明において放射線グラフト重合とは、基材に放射線を照射して開始させる重合方法であって、基材上の重合開始点からモノマー(単量体)を重合させ側鎖を導入する重合方法である。一般に放射線グラフト重合においては、放射線の照射により基材にラジカルを発生させ、そのラジカルをもとに重合が開始され、グラフト側鎖が基材に導入される。したがって、放射線グラフト重合によれば、ポリオレフィンのような表面に水酸基(ヒドロキシ基)等の官能基を持たない基材であっても、種々の官能基を有するグラフト側鎖を導入することができ、基材に対して種々の化学修飾を行うことが可能である。
Radiation Graft Polymerization The microbial carrier of the present invention comprises a composite fiber having side chains introduced into a composite fiber base material by radiation graft polymerization. In the present invention, the radiation graft polymerization is a polymerization method in which a base material is irradiated with radiation, and is a polymerization method in which a monomer (monomer) is polymerized from a polymerization start point on the base material and side chains are introduced. is there. In general, in radiation graft polymerization, radicals are generated on a substrate by irradiation with radiation, polymerization is started based on the radicals, and graft side chains are introduced into the substrate. Therefore, according to radiation graft polymerization, a graft side chain having various functional groups can be introduced even on a substrate that does not have a functional group such as a hydroxyl group (hydroxy group) on the surface such as polyolefin, Various chemical modifications can be performed on the substrate.

特に、放射線グラフト重合では、放射線の種類、照射線量、照射時間などの条件を調整し、基材内部までラジカルを発生させることができる。本発明においては、放射線グラフト重合を利用することにより、基材である繊維の内部にまでラジカルを発生させ、グラフト側鎖を繊維内部まで導入することができるので、基材に付与する官能基(アニオン交換基)の量(密度)を大きくすることが可能になる。担体に担持する微生物の種類にもよるが、微生物の処理対象物質と微生物担体に導入された官能基(アニオン交換基)とが相互作用する場合、微生物担体内部で処理対象物質の吸着濃縮が起こるため、微生物による処理が効率的に行われる。これは、比較的低濃度の汚染物質を除去する場合に特に有効である。このように、放射線グラフト重合を利用することにより本願発明の極めて優れた効果を得ることができる。   In particular, in radiation graft polymerization, conditions such as the type of radiation, irradiation dose, and irradiation time can be adjusted to generate radicals up to the inside of the substrate. In the present invention, by utilizing radiation graft polymerization, radicals can be generated even inside the fiber as the base material, and the graft side chain can be introduced into the fiber. The amount (density) of anion exchange groups) can be increased. Depending on the type of microorganisms supported on the carrier, when the target substance of microorganisms interacts with a functional group (anion exchange group) introduced into the microorganism carrier, adsorption of the target substance occurs inside the microorganism carrier. Therefore, the process by microorganisms is performed efficiently. This is particularly effective when removing relatively low concentrations of contaminants. Thus, the extremely superior effect of the present invention can be obtained by using radiation graft polymerization.

本発明において使用できる放射線としては、例えば、γ線、電子線、β線、α線、紫外線、X線、中性子線などの高エネルギー放射線を挙げることができるが、γ線や電子線が好ましい。照射量としては20〜300kGyが好ましい。20kGy未満だと十分なラジカルが生成せず、300kGyを超えると放射線劣化が大きくなるなどの問題が生じるためである。   Examples of the radiation that can be used in the present invention include high-energy radiation such as γ-rays, electron beams, β-rays, α-rays, ultraviolet rays, X-rays, and neutrons, with γ-rays and electron beams being preferred. The irradiation amount is preferably 20 to 300 kGy. If it is less than 20 kGy, sufficient radicals are not generated, and if it exceeds 300 kGy, problems such as increased radiation degradation occur.

また、放射線グラフト重合としては、放射線照射時に基材とモノマーを共存させる「同時照射グラフト重合法」と、予め基材に放射線を照射した後に基材と重合性モノマーとを接触させる「前照射グラフト重合法」が知られているが、どちらの方法も本発明に利用できる。本発明においては、用途に応じてどちらの方法も使用することができるが、例えば、前照射グラフト重合法は単独重合物の生成量が少ないため高度処理を行うときに適している。ここで、単独重合物とは、グラフト重合に利用されなかったモノマーの重合物を意味し、洗浄工程や処理工程で溶出することがある。また、高度処理は、例えば水処理においては、通常採用される[凝集沈殿−ろ過]や[生物処理−沈殿−ろ過]といった工程のさらに後段に設置されることが多く、例えば、活性炭処理などを例として挙げることができる。   In addition, radiation graft polymerization includes “simultaneous irradiation graft polymerization method” in which a substrate and a monomer coexist at the time of radiation irradiation, and “pre-irradiation grafting in which the substrate and the polymerizable monomer are contacted after the substrate is irradiated with radiation in advance. A "polymerization method" is known, but either method can be used in the present invention. In the present invention, either method can be used depending on the application. For example, the pre-irradiation graft polymerization method is suitable for performing high-level treatment because the amount of homopolymer is small. Here, the homopolymer means a polymer of a monomer that has not been used for graft polymerization, and may be eluted in a washing step or a treatment step. In addition, the advanced treatment is often installed in the subsequent stage of the steps such as [aggregation precipitation-filtration] and [biological treatment-precipitation-filtration] that are usually employed in water treatment, for example, activated carbon treatment, etc. As an example.

また、基材とモノマーとの接触方法により、グラフト重合として、「液相グラフト重合」、「気相グラフト重合」、「含浸気相グラフト重合」などが知られているが、いずれの方法も本発明において利用することができる。特に、含浸気相グラフト重合法は、基材をモノマーに含浸させ基材にモノマーを担持させて、グラフト重合する方法であるが、グラフトモノマーの重合程度(グラフト率)の制御が容易であり、基材に含浸させたモノマーのほぼ全量をグラフト重合することができ、グラフトモノマーを必要以上に消費しないため、好ましい。上記のグラフト重合法は目的に応じていずれも選択することができるが、本発明においては、例えば、芯鞘構造を有する繊維又はその集合体として不織布など長尺のシート状物(反物)を用いる場合、含浸気相グラフト重合を利用することが好ましい。   Further, depending on the contact method between the substrate and the monomer, “liquid phase graft polymerization”, “gas phase graft polymerization”, “impregnation gas phase graft polymerization”, etc. are known as graft polymerization. It can be used in the invention. In particular, the impregnated gas phase graft polymerization method is a method of impregnating a base material into a monomer and supporting the monomer on the base material to perform graft polymerization, but it is easy to control the degree of polymerization of the graft monomer (graft ratio). It is preferable because almost the entire amount of the monomer impregnated in the base material can be graft-polymerized and the graft monomer is not consumed more than necessary. Any of the above graft polymerization methods can be selected depending on the purpose. In the present invention, for example, a long sheet-like material (fabric) such as a nonwoven fabric is used as a fiber having a core-sheath structure or an aggregate thereof. In this case, it is preferable to use impregnation gas phase graft polymerization.

また、グラフト重合によって得られるグラフト重合物においては、グラフト(graft)が「接ぎ木」と訳されるように、グラフト側鎖の一端が基材に共有結合で強固に結合される一方、他端は結合に関与しないため、側鎖のモビリティーが大きい。このため、特にアニオン交換基という親水性の大きな官能基を有する本発明のグラフト側鎖は、水処理のような水溶液系で膨潤し、より効率的に機能を発揮することができる。特に、本発明の微生物担体は、水溶液中での微生物吸着及び保持(固定化)をその目的の1つとしているため、水溶液中で膨潤するアニオン交換基を有するグラフト側鎖は、微生物固定化物を水中で使用する場合、極めて有効である。これは、アニオン交換基による正の電荷とともに、グラフト側鎖が担体基材の表面を覆うことによって微生物吸着に適したより親和性の高い表面状態が提供されるためである。   Further, in the graft polymer obtained by graft polymerization, one end of the graft side chain is firmly bonded to the base material covalently so that the graft is translated as “grafting”, while the other end is Since it does not participate in binding, the mobility of the side chain is large. For this reason, especially the graft side chain of the present invention having a highly hydrophilic functional group called an anion exchange group swells in an aqueous solution system such as water treatment, and can function more efficiently. In particular, since the microbial carrier of the present invention has one of the purposes of microbial adsorption and retention (immobilization) in an aqueous solution, the graft side chain having an anion exchange group that swells in an aqueous solution is used as a microbial immobilization product. It is extremely effective when used in water. This is because, together with the positive charge due to the anion exchange group, the graft side chain covers the surface of the carrier substrate, thereby providing a surface state with higher affinity suitable for microorganism adsorption.

本発明においては、芯鞘構造を有する繊維(後で詳細に説明する)に放射線グラフト重合法を利用してアニオン交換基を導入することができる。この場合、繊維の表面ばかりでなく内部にまでアニオン交換基を導入することができ、また、放射線グラフト重合方法や芯部と鞘部の材質を適宜選択することにより、主に鞘部に対してグラフト重合させることができる。鞘部の寸法変化はグラフト率に依存する。担持対象の微生物、生物処理で除去対象となる物質の種類、導入するアニオン交換基の種類、微生物担持体の使用方法、要求性能などによりグラフト率やグラフト重合方法を適宜選択できる。例えば、複合繊維の芯部と鞘部の組み合わせが、(芯部)ポリエチレンテレフタレート(PET)/(鞘部)ポリエチレン(PE)、(芯部)ポリプロピレン(PP)/(鞘部)PEである場合、γ線照射に引き続き含浸バッチ式でグラフト重合を行うと、鞘部の剥離が生じ、活性汚泥のような大きな微生物群を効率よく保持でき脱落を最小にできる。つまり、芯鞘構造を有する複合繊維にグラフト重合を行うと、鞘部の寸法が増加して芯部と鞘部との間で剥離が生じ、鞘物にひだが生じるため、複合繊維の表面積が増大する。このため、効率的に微生物を担持できるのである。   In the present invention, an anion exchange group can be introduced into a fiber having a core-sheath structure (described in detail later) by using a radiation graft polymerization method. In this case, an anion exchange group can be introduced not only into the surface of the fiber but also into the interior, and by appropriately selecting the radiation graft polymerization method and the material of the core and the sheath, mainly the sheath Graft polymerization can be performed. The dimensional change of the sheath part depends on the graft ratio. The graft ratio and graft polymerization method can be appropriately selected according to the microorganism to be supported, the type of substance to be removed by biological treatment, the type of anion exchange group to be introduced, the method of using the microorganism support, the required performance, and the like. For example, when the combination of the core and sheath of the composite fiber is (core) polyethylene terephthalate (PET) / (sheath) polyethylene (PE), (core) polypropylene (PP) / (sheath) PE When graft polymerization is carried out in an impregnation batch type following γ-ray irradiation, the sheath part is peeled off, and a large group of microorganisms such as activated sludge can be efficiently retained, and dropout can be minimized. In other words, when graft polymerization is performed on a composite fiber having a core-sheath structure, the size of the sheath part increases, peeling occurs between the core part and the sheath part, and folds are generated in the sheath. Increase. For this reason, microorganisms can be carried efficiently.

微生物担体の基材
本発明においては、微生物担体の基材は複合繊維を含んでなる。本発明において複合繊維とは、機能の異なる2種類以上の材料を複合化して作られた繊維を意味する。本発明の複合繊維としては、例えば、熱融着繊維として知られる芯鞘構造を有する繊維や、多成分紡糸法により製造された繊維(例えば剥離分割繊維)を好適に使用することができ、芯鞘構造を有する複合繊維が特に好ましい。一方、複合繊維ではなく、単独の成分から構成された繊維に対して化学修飾を行う場合、繊維の強度を確保すべき部分に化学修飾がなされると、繊維の引張強度や伸度が急激に低下することがわかっている。上述のように、放射線グラフト重合は基材である繊維内部まで化学修飾が行われるため、本発明においては、単一材料からなる繊維ではなく、複合繊維を用いることが必要である。
Microbial carrier base material In the present invention, the microbial carrier base material comprises a composite fiber. In the present invention, the composite fiber means a fiber made by combining two or more materials having different functions. As the composite fiber of the present invention, for example, a fiber having a core-sheath structure known as a heat-sealing fiber, or a fiber manufactured by a multicomponent spinning method (for example, a peeled split fiber) can be preferably used. A composite fiber having a sheath structure is particularly preferred. On the other hand, when chemical modification is performed on a fiber composed of a single component instead of a composite fiber, if the fiber is chemically modified to ensure the strength of the fiber, the tensile strength and elongation of the fiber will rapidly increase. It is known that it will decline. As described above, since radiation graft polymerization is chemically modified to the inside of the fiber that is the base material, in the present invention, it is necessary to use a composite fiber instead of a fiber made of a single material.

ここで、本発明において、芯鞘構造を有する複合繊維とは、繊維の内側(芯部)を構成する材料と繊維の外側(鞘部)を構成する材料とが異なり、二重構造となっている複合繊維をいう。本発明の複合繊維は、芯鞘構造を有する複合繊維であることが好ましい。   Here, in the present invention, the composite fiber having the core-sheath structure is different from the material constituting the inner side (core part) of the fiber and the material constituting the outer side (sheath part) of the fiber, and has a double structure. It is a composite fiber. The conjugate fiber of the present invention is preferably a conjugate fiber having a core-sheath structure.

また、本発明の複合繊維は様々な構造をとることができる。例えば、芯鞘構造を有する複合繊維の場合、芯部は1つでも複数でも良い。例として、図1に、芯部が1つ(単芯)の芯鞘構造を有する複合繊維の断面図を、図2に、芯部が複数(多芯)の芯鞘構造を有する複合繊維の断面図を示す。なお、芯部と鞘部は図1のように同心円でもよいし、偏心していてもよい。また、図3に示すような分割繊維型の複合繊維を使用することもできる。   Moreover, the composite fiber of this invention can take various structures. For example, in the case of a composite fiber having a core-sheath structure, the core part may be one or plural. As an example, FIG. 1 shows a cross-sectional view of a composite fiber having a core-sheath structure with one core (single core), and FIG. 2 shows a composite fiber having a core-sheath structure with multiple cores (multi-core). A cross-sectional view is shown. The core portion and the sheath portion may be concentric as shown in FIG. 1 or may be eccentric. Also, a split fiber type composite fiber as shown in FIG. 3 can be used.

芯鞘構造を有する複合繊維は、芯部と鞘部について、厚みの比率、物質の相違、物質は同じでも物性の異なる組み合わせ等を変更することによって、多種多様な性質を備えることができる。芯部と鞘部とで各々違った役割を分担させることもでき、例えば、芯部によって物理的強度や伸度の維持を、鞘部によって風合いや濡れ性など機能的な側面を、複合繊維に付与することができる。特に本発明において芯鞘構造を有する複合繊維を用いると、外側の鞘部に多様な化学修飾等の表面改質を施し、内側の芯部で必要な強度を確保することができ、極めて好ましい。本発明においては、物理的な強度や伸度の維持といった役割を芯材に受け持たせ、鞘部にアニオン交換基を導入することが好ましく、このようにすることで、強度維持と微生物担持機能とを両立することができる。したがって例えば、鞘部が放射線の照射によってラジカルの生成が可能な材料であり、芯部が放射線の照射によってラジカルの生成及び/又は高分子の崩壊を起こしにくい材料であることが好ましい。   The composite fiber having a core-sheath structure can have a wide variety of properties by changing the ratio of thickness, difference in material, combinations of the same material but different physical properties, etc. for the core and sheath. Different functions can be assigned to the core and sheath, for example, maintaining the physical strength and elongation by the core, and functional aspects such as texture and wettability by the sheath to the composite fiber. Can be granted. In particular, when a composite fiber having a core-sheath structure is used in the present invention, the outer sheath part can be subjected to various surface modifications such as chemical modification, and the required strength can be secured at the inner core part, which is extremely preferable. In the present invention, it is preferable that the core material has a role of maintaining physical strength and elongation, and that an anion exchange group is introduced into the sheath portion. And both. Therefore, for example, it is preferable that the sheath part is a material capable of generating radicals by irradiation with radiation, and the core part is a material which hardly causes generation of radicals and / or polymer collapse by irradiation of radiation.

本発明の複合繊維においては、公知のあらゆる材料を使用することができる。本発明の複合繊維に使用することのできる材料としては、例えば、ポリエチレン(PE)、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリブテン、ポリスチレンなどのポリオレフィン、ポリ塩化ビニルやポリテトラフルオロエチレン(PTFE)に代表されるハロゲン化ポリオレフィン、エチレン−テトラフルオロエチレン共重合体に代表されるオレフィンとハロゲン化ポリオレフィンとの共重合体、エチレン−ビニルアルコール共重合体(EVOH)、エチレン−ビニルアセテート(EVA)に代表されるオレフィンと他の単量体との共重合体、ナイロン、アラミド、ビニロン、ビニリデン、ポリエステル、ポリアクリル酸、ポリウレタンなどを挙げることができる。好ましくはポリオレフィン、さらに好ましくはポリエチレン、ポリプロピレン、ポリエチレンテレフタレートを使用することができる。   Any known material can be used in the conjugate fiber of the present invention. Examples of materials that can be used for the composite fiber of the present invention include polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polybutene, polystyrene and other polyolefins, polyvinyl chloride and polytetrafluoroethylene (PTFE). ), Halogenated polyolefins, ethylene-tetrafluoroethylene copolymers, olefins and halogenated polyolefin copolymers, ethylene-vinyl alcohol copolymers (EVOH), ethylene-vinyl acetate (EVA) Examples thereof include copolymers of olefins and other monomers, nylon, aramid, vinylon, vinylidene, polyester, polyacrylic acid, polyurethane and the like. Preferably, polyolefin, more preferably polyethylene, polypropylene, and polyethylene terephthalate can be used.

本発明において芯鞘構造を有する複合繊維を使用する場合、芯部の材料としては、融点が高く耐熱性があり、耐放射線性にも優れた性質を有する材料が好ましく、例えば、ポリオレフィン類、ポリエチレンテレフタレートやポリブチレンテレフタレート等に代表されるポリエステル類、ポリプロピレン、高密度ポリエチレン、又はこれらの組合せなどを好適に使用できる。一方、鞘部の材料としては、融点が低く熱接着性の良い、放射線によるラジカル生成・保存のよい性質を有する材料が好ましく、例えば、ポリオレフィン系のもの、より具体的には、低密度ポリエチレン、中密度ポリエチレン、ポリビニルアルコールやそれらの組合せなどを好適に使用することができる。   When using a composite fiber having a core-sheath structure in the present invention, the material of the core is preferably a material having a high melting point, heat resistance and excellent radiation resistance. For example, polyolefins, polyethylene Polyesters typified by terephthalate and polybutylene terephthalate, polypropylene, high-density polyethylene, or combinations thereof can be suitably used. On the other hand, the material of the sheath is preferably a material having a low melting point and good thermal adhesion, and a property of radical generation / preservation by radiation, such as polyolefin-based materials, more specifically, low-density polyethylene, Medium density polyethylene, polyvinyl alcohol and combinations thereof can be suitably used.

芯部の材料と鞘部の材料との組み合わせは、いかなるものでもよいが、PP(芯部)および/またはPET(芯部)とPE(鞘部)との組み合わせが好ましい。また、芯部の材質は鞘部の材質より高融点であることが好ましい。この場合、芯鞘構造を有する繊維を熱融着法によって不織布とすることが好ましく、これは、各繊維が鞘部で熱融着されているため、繊維集合体としての強度が確保され、繊維の脱落等を少なくすることができるからである。   The combination of the material of the core part and the material of the sheath part may be any, but the combination of PP (core part) and / or PET (core part) and PE (sheath part) is preferable. Moreover, it is preferable that the material of the core part has a higher melting point than the material of the sheath part. In this case, it is preferable that the fiber having the core-sheath structure is made into a non-woven fabric by a heat-sealing method. This is because each fiber is heat-sealed at the sheath portion, so that the strength as a fiber aggregate is secured, and the fiber This is because it is possible to reduce the omission of the material.

芯鞘構造を有する繊維の鞘部と芯部との重量比は、0.1〜10の範囲が好ましい。0.1未満だと、十分な官能基量を得るために鞘部のグラフト率を非常に高くしなければならず、強度的に弱くなるためである。また、10を超えると、複合繊維における鞘部の占める割合が高くなりすぎ、芯鞘構造にした効果が小さくなるためである。   The weight ratio between the sheath portion and the core portion of the fiber having a core-sheath structure is preferably in the range of 0.1-10. If it is less than 0.1, the graft ratio of the sheath must be very high in order to obtain a sufficient amount of functional groups, and the strength becomes weak. Moreover, when it exceeds 10, the ratio for which the sheath part in a composite fiber accounts will become high too much, and the effect made into the core-sheath structure will become small.

また、本発明においては、通水性、および、被処理水中の処理対象物質と固定化された微生物との接触効率の観点から、複合繊維基材が複合繊維集合体であることが好ましく、複合繊維集合体としては、複合繊維を含んでなる織布または不織布がより好ましい。本発明において繊維集合体を用いると、基材である繊維集合体が有している様々な特性(例えば、空隙が大きい、比表面積が大きい、微生物担持量が大きい、通水時の圧力損失が小さい、成形加工が容易など)を活かすことができるため、好ましい。ここで、不織布については、繊維が十分に絡合して流出または脱落しないものであればよいが、例えば、強度が要求される用途においては熱融着処理等により繊維同士が部分的に接着加工されているものが好ましい。   In the present invention, the composite fiber base material is preferably a composite fiber aggregate from the viewpoint of water permeability and contact efficiency between the substance to be treated in the water to be treated and the immobilized microorganism. As the aggregate, a woven fabric or a nonwoven fabric comprising a composite fiber is more preferable. When the fiber assembly is used in the present invention, various characteristics of the fiber assembly as a base material (for example, a large void, a large specific surface area, a large amount of microorganisms to be loaded, a pressure loss during passage of water) Small, easy molding process, etc.) can be utilized. Here, as for the nonwoven fabric, it is sufficient if the fibers are sufficiently intertwined so that the fibers do not flow out or fall off. For example, in applications where strength is required, the fibers are partially bonded to each other by heat fusion treatment or the like. What is done is preferable.

本発明に好ましく使用できる芯鞘構造を有する複合繊維を含んでなる繊維集合体として、熱融着不織布を挙げることができる。熱融着不織布においては、鞘部は上述したような役割(機能)のみならず、接着剤としての役割(機能)を持つ。例えば、鞘部にPEが用いられている芯鞘構造を有する複合繊維は、PEの融点以上かつ芯部の材料の融点以下の温度で熱処理することにより、鞘部のPEのみが融解する。そしてこのような繊維を含んでなる繊維集合体では、熱により融解した鞘部の材料によって隣接する繊維が接着され、繊維集合体の形態が安定化されるのである。すなわち、熱融着不織布などの繊維集合体は、強度が極めて強くなり、繊維の脱落や空隙の変化などがなくなるため、水処理など過酷な使用状況においても好適に使用できる。このような繊維集合体を構成する芯鞘構造を有する複合繊維は、例えば、鞘部の材料として低融点PE(融点120℃〜130℃)、芯部の材料してPP(融点170℃)やPET(融点270℃)が利用される。なお、本発明の繊維集合体が熱融着不織布のみに限定される訳ではないことは言うまでもない。   An example of a fiber assembly comprising a composite fiber having a core-sheath structure that can be preferably used in the present invention is a heat-sealed nonwoven fabric. In the heat-sealed nonwoven fabric, the sheath has not only the role (function) as described above but also the role (function) as an adhesive. For example, a composite fiber having a core-sheath structure in which PE is used for the sheath part is heat-treated at a temperature not lower than the melting point of the PE and not higher than the melting point of the material of the core part, so that only the PE in the sheath part is melted. In a fiber assembly including such fibers, adjacent fibers are bonded by the material of the sheath portion melted by heat, and the form of the fiber assembly is stabilized. That is, a fiber assembly such as a heat-sealed nonwoven fabric has extremely high strength and does not drop off fibers or change in voids, so that it can be suitably used even in severe use situations such as water treatment. The composite fiber having a core-sheath structure that constitutes such a fiber assembly includes, for example, a low melting point PE (melting point: 120 ° C. to 130 ° C.) as the material of the sheath part and PP (melting point: 170 ° C.) as the core part material. PET (melting point 270 ° C) is used. In addition, it cannot be overemphasized that the fiber assembly of this invention is not necessarily limited only to a heat-fusion nonwoven fabric.

アニオン交換基
本発明においては、グラフト重合により複合繊維基材に導入される側鎖はアニオン交換基を有する。これは、多くの微生物が通常負に帯電していることから、繊維基材にアニオン交換基を導入して正に帯電させて、担体への微生物の吸着速度や吸着量を大きくし、脱落を少なくするためである。このような構成を採用することにより本発明の微生物担体は、微生物を吸着させて水処理等に適用する場合、迅速に担持操作を行うことができる。なお、カチオン交換基を導入すると担体が負に帯電するので本発明には適していない。本発明の微生物担体が担持する微生物は特に限定されないが、負に帯電している微生物が好ましい。本発明の担体は、単一の種類の微生物を担持することもできるが、複数の種類の微生物の集合体(例えば、活性汚泥など)を担持することも可能である。
In the present invention, the side chain introduced into the composite fiber substrate by graft polymerization has an anion exchange group. This is because many microorganisms are usually negatively charged, so that anion exchange groups are introduced into the fiber base and positively charged to increase the adsorption rate and adsorption amount of the microorganisms on the carrier, so that they do not fall off. This is to reduce it. By adopting such a configuration, when the microorganism carrier of the present invention is applied to water treatment or the like by adsorbing microorganisms, the carrying operation can be performed quickly. In addition, since the carrier is negatively charged when a cation exchange group is introduced, it is not suitable for the present invention. The microorganisms carried by the microorganism carrier of the present invention are not particularly limited, but negatively charged microorganisms are preferred. The carrier of the present invention can carry a single kind of microorganisms, but can also carry an aggregate of a plurality of kinds of microorganisms (for example, activated sludge).

本発明において好適なアニオン交換基としては、第一級アミノ基、第二級アミノ基、第三級アミノ基及び第四級アンモニウム基から選択される1種以上を挙げることができる。単純に負に帯電する微生物を正に帯電する微生物担体に吸着させるのであれば、より大きく正に帯電する第四級アンモニウム基が微生物担体上の官能基として最も好ましい。ところが、同時に塩基性も強くなることから、微生物に対する悪影響が現れる可能性がある。特に、第四級アンモニウム基が抗菌剤等に用いられる長鎖アルキル基をもつものの場合には、微生物による分解活性を利用する用途には不適である。微生物の活性を失うことなく微生物を担持し、汚染物質を分解するなどの特定の機能を発揮させるには第三級アミノ基の方が好ましい場合もある。一般的には、第三級アミノ基より第二級又は第一級アミノ基(アミノ基)になると吸着力が弱くなる。どの種類のアニオン交換基を量的にどれだけ導入するかは、用途、要求性能などに応じて、決定することができる。   Suitable anion exchange groups in the present invention include one or more selected from a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group. If a negatively charged microorganism is simply adsorbed to a positively charged microorganism carrier, a larger and more positively charged quaternary ammonium group is most preferred as a functional group on the microorganism carrier. However, since the basicity becomes stronger at the same time, there is a possibility that an adverse effect on microorganisms may appear. In particular, in the case where the quaternary ammonium group has a long-chain alkyl group used for an antibacterial agent or the like, it is unsuitable for applications utilizing the activity of decomposition by microorganisms. Tertiary amino groups are sometimes preferred for carrying out specific functions such as supporting microorganisms and degrading contaminants without losing the activity of the microorganisms. In general, when a secondary or primary amino group (amino group) is used rather than a tertiary amino group, the adsorptive power becomes weak. The quantity and quantity of anion exchange groups to be introduced can be determined according to the application, required performance, and the like.

グラフト側鎖にアニオン交換基を導入する方法としては、(1)アニオン交換基を有するモノマーをグラフト重合により導入する方法、(2)アニオン交換基を有しないモノマーをグラフト重合により導入した後、アニオン交換基に転換する方法が知られており、本発明においてはいずれの方法も採用できる。アニオン交換基を有するモノマーとして、例えば、ビニルベンジルトリメチルアンモニウムクロライド(VBTAC)、ジメチルアミノエチルメタクリレート(DMAEMA)、ジエチルアミノエチルメタクリレート(DEAEMA)、ジメチルアミノプロピルアクリルアミド(DMAPAA)などがある。また、イオン交換基に転換可能なモノマーとしてスチレン(St)、グリシジルメタクリレート(GMA)、アクリル酸グリシジル、クロロメチルスチレン(CMS)、ビニルピリジン(VP)などがある。   As a method of introducing an anion exchange group into the graft side chain, (1) a method of introducing a monomer having an anion exchange group by graft polymerization, and (2) introduction of a monomer having no anion exchange group by graft polymerization, Methods for converting to exchange groups are known, and any method can be employed in the present invention. Examples of the monomer having an anion exchange group include vinylbenzyltrimethylammonium chloride (VBTAC), dimethylaminoethyl methacrylate (DMAEMA), diethylaminoethyl methacrylate (DEAEMA), dimethylaminopropylacrylamide (DMAPAA) and the like. Examples of monomers that can be converted into ion exchange groups include styrene (St), glycidyl methacrylate (GMA), glycidyl acrylate, chloromethylstyrene (CMS), and vinylpyridine (VP).

本発明においては、グラフト側鎖は、アニオン交換基がイオン交換容量として0.5meq/g以上であることことが好ましい。アニオン交換容量が0.5meq/g以上の場合、十分な量の微生物を担持することができ、微生物の処理対象である物質の吸着が可能なためである。この交換容量以下の場合、十分な帯電が得られずまた基材の親水化が不十分のため、微生物担持量や汚染物質吸着量の低下が生じるおそれがある。なお、本明細書においてイオン交換容量とは、イオン交換体の単位重量当たりの交換基の総数を意味する。   In the present invention, the graft side chain preferably has an anion exchange group having an ion exchange capacity of 0.5 meq / g or more. This is because when the anion exchange capacity is 0.5 meq / g or more, a sufficient amount of microorganisms can be supported, and the substance to be treated with microorganisms can be adsorbed. If it is less than this exchange capacity, sufficient charge cannot be obtained, and the hydrophilicity of the substrate is insufficient, so that the amount of microorganisms supported and the amount of contaminants adsorbed may be reduced. In this specification, the ion exchange capacity means the total number of exchange groups per unit weight of the ion exchanger.

また、少なくとも0.5meq/g以上の値を得るには、グラフトさせるモノマーの分子量にもよるが、通常、グラフト率(重量増加率)が30%以上であることが好ましい。基材の材質や重合方法にもよっては、芯部と鞘部の剥離が生じ、繊維表面に凹凸が生じる場合があり、この凹凸によって表面積が増加するため、微生物群の担持に有利である。活性汚泥のような大きな微生物群を効率よく保持でき脱落を最小にできる。図4に未処理の基材の電子顕微鏡写真、図5に微生物を担持した担体の電子顕微鏡写真を示す。   In order to obtain a value of at least 0.5 meq / g or more, although it depends on the molecular weight of the monomer to be grafted, it is usually preferred that the graft ratio (weight increase rate) is 30% or more. Depending on the material of the base material and the polymerization method, the core part and the sheath part may be peeled off, resulting in unevenness on the fiber surface. This unevenness increases the surface area, which is advantageous for supporting the microorganism group. Large microorganisms such as activated sludge can be efficiently retained and omission can be minimized. FIG. 4 shows an electron micrograph of an untreated substrate, and FIG. 5 shows an electron micrograph of a carrier supporting microorganisms.

本発明の微生物担体の使用態様
本発明の微生物担体は、微生物を利用するあらゆる技術(例えば、微生物を利用した特定物質の分離、精製、除去、分解、生産など)に利用することができ、好ましくは微生物を利用した水処理、例えば、一般水処理用途や特定成分の分解除去等に利用することができる。本発明は、廃水等を生物学的に水処理を行うための微生物担体であるので、廃水の種類(状態)と処理目的(又は処理対象)によって多様な実施態様が可能である。しかしながら、従来にあるような運転の経過によって非選択的に微生物を付着させる担体とは異なり、本発明の微生物担体では微生物の初期吸着能が優れることが特長であるので、まず処理対象物質を決定し、それを処理するような微生物を選択的に吸着させることによって選択的処理を行うことが望ましい。
Use Mode of Microbial Carrier of the Present Invention The microbial carrier of the present invention can be used for any technique using microorganisms (for example, separation, purification, removal, decomposition, production, etc. of specific substances using microorganisms), and preferably Can be used for water treatment using microorganisms, for example, for general water treatment and for decomposing and removing specific components. Since the present invention is a microbial carrier for biologically treating wastewater or the like, various embodiments are possible depending on the type (state) of wastewater and the purpose of treatment (or treatment target). However, unlike the conventional carrier that non-selectively attaches microorganisms over the course of operation as in the prior art, the microorganism carrier of the present invention is characterized by its excellent initial ability to adsorb microorganisms. However, it is desirable to perform selective treatment by selectively adsorbing microorganisms that treat the same.

例えばビスフェノールAは、エポキシ樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂などの原料として広く利用され、河川や湖沼などの水環境における生態系に悪影響が懸念される内分泌かく乱物質(いわゆる環境ホルモン)として作用することが指摘され、極低濃度までの除去処理が望まれる。そのような場合に、本発明の微生物担体にあらかじめビスフェノールAを効果的に分解処理することができる微生物を選択的に吸着させ、得られた微生物担体を反応槽に入れることによってビスフェノールA除去処理を行う。処理対象についてはこのような微量成分でもよく、色度成分、臭気成分、難分解性成分等、種類は問わないが、微生物担体に非選択的な微生物層が形成されて選択的な処理が阻害されないように一次処理された水を対象とすることが望ましい。一方、BOD成分の低減を目的とする場合には、微生物担体表面に活性汚泥層を形成させ、通液性を妨げないように定期的に逆洗操作等で必要以上の活性汚泥層を除去することが望ましい。   For example, bisphenol A is widely used as a raw material for epoxy resins, polycarbonate resins, polyvinyl chloride resins, and the like, and acts as an endocrine disrupting substance (so-called environmental hormone) that has an adverse effect on ecosystems in water environments such as rivers and lakes. It is pointed out that removal treatment to extremely low concentrations is desired. In such a case, the microorganism carrier of the present invention is selectively adsorbed with microorganisms capable of effectively decomposing bisphenol A in advance, and the resulting microorganism carrier is placed in a reaction vessel to remove bisphenol A. Do. Such a trace component may be used for the treatment target, and any kind such as a chromaticity component, an odor component, a hardly decomposable component, etc. may be used, but a non-selective microbial layer is formed on the microbial carrier, thereby inhibiting selective treatment. It is desirable to target water that has been first-treated so as not to occur. On the other hand, if the purpose is to reduce the BOD component, an activated sludge layer is formed on the surface of the microorganism carrier, and the activated sludge layer is removed more than necessary by regular backwashing so as not to impede liquid permeability. It is desirable.

別の態様としては、気体や高度処理水等を対象に、負に帯電した微生物を除去する微生物除去フィルターとして利用することも可能である。
本発明の微生物担体の使用形態も特に限定されず、様々な方法を採用できるが、例えば、カラム法や懸濁法において使用することができる。カラム法とは、微生物担体(又は微生物が担持された微生物担体)を容器(例えば、筒状容器)に充填したカラム状の反応槽を利用し、筒状容器の一方から被処理水を送液し、他方から処理水を得る方法である。カラム法において、微生物担体は反応槽内で容易に移動できない程度に充填される。したがって、微生物担体を構成する担体片(集合体)はシート状物の積層構造、または繊維集合体として繊維が大きな絡合体を形成していることが好ましい。例えばフィルターとして枠組へ固定したり、充填塔内に積層させ、そこに被処理液を通過させて粒子と粒子でない汚染物質の両方を除去することも可能である。また、懸濁法においては、被処理水の液相中に微生物担体が懸濁されて使用される。この場合、微生物担体は、液相中に分散され流動性を持ち、微生物担体は反応槽内で容易に移動できる状態である。したがって、微生物担体を構成する担体片(集合体)は流動性又は分散性を保つ程度に小さいことが好ましく、処理性能を安定化させるために反応槽内を攪拌させてもよい。例えば、ある大きさに切断した本発明の微生物担体を槽の中で攪拌して使用することが可能である。
As another aspect, it can be used as a microorganism removal filter for removing negatively charged microorganisms for gas, highly treated water, and the like.
The usage form of the microbial carrier of the present invention is not particularly limited, and various methods can be adopted. For example, it can be used in a column method or a suspension method. The column method uses a column-shaped reaction tank filled with a microbial carrier (or a microbial carrier carrying microorganisms) in a container (for example, a cylindrical container), and feeds water to be treated from one of the cylindrical containers. In this method, treated water is obtained from the other side. In the column method, the microorganism carrier is packed to such an extent that it cannot easily move in the reaction vessel. Therefore, it is preferable that the carrier piece (aggregate) constituting the microbial carrier forms a laminated structure of sheet-like materials or an entangled body in which fibers are large as a fiber aggregate. For example, it can be fixed as a filter to a frame, or laminated in a packed tower, and a liquid to be treated can be passed there to remove both particles and non-particle contaminants. In the suspension method, the microorganism carrier is suspended in the liquid phase of the water to be treated. In this case, the microbial carrier is dispersed in the liquid phase and has fluidity, and the microbial carrier can be easily moved in the reaction vessel. Therefore, it is preferable that the carrier piece (aggregate) constituting the microbial carrier is small enough to maintain fluidity or dispersibility, and the inside of the reaction vessel may be agitated in order to stabilize the processing performance. For example, the microbial carrier of the present invention cut to a certain size can be used by stirring in a tank.

微生物担体の製造方法
また1つの観点からは、本発明は、微生物担体の製造方法である。例えば、ある態様において本発明は、芯鞘構造を有する複合繊維を含む複合繊維基材に放射線を照射する工程と;該基材に重合性モノマーを含浸させる工程と;該モノマーを該基材にグラフト重合させる工程と;を含む微生物担体の製造方法である。
Microbial carrier manufacturing method From one aspect, the present invention is a microbial carrier manufacturing method. For example, in one embodiment, the present invention includes a step of irradiating a composite fiber base material including a composite fiber having a core-sheath structure; a step of impregnating the base material with a polymerizable monomer; And a step of graft polymerization.

グラフト重合工程においては、液相グラフト重合、気相グラフト重合、含浸気相グラフト重合のいずれも利用することができるが、グラフトモノマーの重合程度(グラフト率)を制御でき、さらにグラフトモノマーを必要以上に消費しないため、含浸気相グラフト重合が好ましい。   In the graft polymerization process, any of liquid phase graft polymerization, gas phase graft polymerization, and impregnated gas phase graft polymerization can be used, but the degree of polymerization of the graft monomer (graft rate) can be controlled, and the graft monomer is more than necessary. Impregnated gas phase graft polymerization is preferred.

[実施例1]
微生物担体の製造
芯部がPET、鞘部がPEの芯鞘構造を有する複合繊維(平均繊維径12μm)よりなる目付け55g/m2、厚さ0.3mmの不織布20cm角に窒素雰囲気でガンマ線を160kGy照射した。次に、この不織布にメタクリル酸グリシジル(GMA)のメタノール溶液(GMA濃度:50重量%)の溶液を含浸させ、気相中で50℃にて1時間反応させた。反応後の不織布をジメチルホルムアミド(DMF)中に60℃で3時間浸漬し洗浄した。得られた不織布をさらにメタノールで洗浄し、乾燥後の重量を測定したところ、グラフト率(重量増加率)は63%であった。この不織布をジエタノールアミン30重量%水溶液中に浸漬し、70℃で5時間反応させた。反応後の不織布の酸吸着量から第三級アミノ基の導入量を計算したところ1.66 meq/gであった。
[Example 1]
Production of microbial carrier PET is the core and PE is the sheath. PE fiber is a composite fiber (average fiber diameter: 12 μm), and the basis weight is 55 g / m 2 , 0.3 mm thick nonwoven fabric. Irradiated with 160 kGy. Next, this nonwoven fabric was impregnated with a solution of glycidyl methacrylate (GMA) in methanol (GMA concentration: 50% by weight) and reacted in the gas phase at 50 ° C. for 1 hour. The non-woven fabric after reaction was immersed in dimethylformamide (DMF) at 60 ° C. for 3 hours and washed. The obtained non-woven fabric was further washed with methanol and the weight after drying was measured. The graft ratio (weight increase rate) was 63%. This nonwoven fabric was immersed in a 30% by weight diethanolamine aqueous solution and reacted at 70 ° C. for 5 hours. The amount of tertiary amino groups introduced was calculated from the amount of acid adsorbed on the nonwoven fabric after the reaction and found to be 1.66 meq / g.

微生物担持試験
ビスフェノールA分解微生物としてスフィンゴモナス ヤノイクエ(Sphingomonas yanoikuyae)BP-7(FERM P-17919)、BP-16(FERM P-17920)を使用した。これら分解微生物は200 mlのNB培地(Difco製)で対数増殖後期まで培養し、担体への固定化に使用した。
Microorganism support test Sphingomonas yanoikuyae BP-7 (FERM P-17919), BP-16 (FERM P-17920) were used as bisphenol A-degrading microorganisms. These degrading microorganisms were cultured in 200 ml of NB medium (manufactured by Difco) until the late logarithmic growth and used for immobilization on a carrier.

上記の方法により製造した不織布(15 cm角)をさらに7 mm角に切断し、分解微生物の培養液に投入した。吸光光度計を用いOD660nmを測定し、OD660nmの減少量から不織布投入1時間後の微生物付着量を算出したところ、BP-7、BP-16の担体への付着量は、それぞれ、1.9×109cells/cm2、5.3×108 cells/cm2であった。なお、微生物付着量を示す単位は、微生物担体不織布をシートとみなしたときの見かけ上の面積あたりの菌体数である。 The non-woven fabric (15 cm square) produced by the above method was further cut into 7 mm square and put into a culture solution of degrading microorganisms. OD660nm was measured using an absorptiometer, and the amount of microorganisms attached after 1 hour from the nonwoven fabric was calculated from the decrease in OD660nm. The amount of BP-7 and BP-16 attached to the carrier was 1.9 × 10 9 respectively. cells / cm 2 and 5.3 × 10 8 cells / cm 2 . The unit indicating the amount of attached microorganisms is the number of cells per apparent area when the microorganism carrier nonwoven fabric is regarded as a sheet.

[実施例2]
実施例1においてGMAのメタノール溶液の濃度を80重量%、グラフト重合条件を50℃、5時間として、グラフト率173%の不織布を得た。さらに、実施例1と同様のアミノ化反応を行った後、不織布の酸吸着量から第三級アミノ基の導入量を測定したところ2.91meq/gであった。
[Example 2]
In Example 1, a non-woven fabric having a graft ratio of 173% was obtained by setting the concentration of the methanol solution of GMA to 80% by weight and the graft polymerization conditions to 50 ° C. for 5 hours. Furthermore, after carrying out the same amination reaction as in Example 1, the amount of tertiary amino groups introduced was measured from the acid adsorption amount of the nonwoven fabric and found to be 2.91 meq / g.

この不織布を実施例1と同様の微生物担持試験に供した。OD660nm測定値の減少量から1時間後の微生物付着量を算出したところ、BP-7、BP-16の担体への付着量は、それぞれ、3.2×109cells/cm2、1.8×109 cells/cm2であった。 This nonwoven fabric was subjected to the same microorganism loading test as in Example 1. The amount of microbial adherence after 1 hour was calculated from the decrease in the measured OD660nm, and the amount of BP-7 and BP-16 adhering to the carrier was 3.2 × 10 9 cells / cm 2 and 1.8 × 10 9 cells, respectively. / cm 2 .

[比較例1]
実施例1においてGMAのメタノール溶液の濃度を10重量%、グラフト重合時間を2時間として、グラフト率23%の不織布を得た。さらに、実施例1と同様のアミノ化反応を行った後、不織布の酸吸着量から第三級アミノ基の導入量を計算したところ0.18meq/gであった。
[Comparative Example 1]
In Example 1, the concentration of the methanol solution of GMA was 10% by weight and the graft polymerization time was 2 hours to obtain a nonwoven fabric having a graft rate of 23%. Furthermore, after carrying out the same amination reaction as in Example 1, the amount of tertiary amino groups introduced was calculated from the amount of acid adsorbed on the nonwoven fabric and found to be 0.18 meq / g.

この不織布を実施例1と同様の微生物担持試験に供した。OD660nm測定値の減少量から1時間後の微生物付着量を算出したところ、BP-7、BP-16の担体への付着量は、それぞれ、2.1×108cells/cm2、0.2×107 cells/cm2であった。 This nonwoven fabric was subjected to the same microorganism loading test as in Example 1. The amount of microbial adherence after 1 hour was calculated from the decrease in the measured OD660nm. The amounts of BP-7 and BP-16 adhering to the carrier were 2.1 × 10 8 cells / cm 2 and 0.2 × 10 7 cells, respectively. / cm 2 .

比較例1では、実施例1、2と比較して、グラフト率及びイオン交換容量が小さかった。また、実施例1、実施例2、比較例1で作製した微生物固定化物について1時間後の微生物付着量を比較すると、最も高いグラフト率を有する実施例2の微生物担体に対する微生物付着量が最も大きく、グラフト率が低くなるにしたがって微生物付着量も低下した。これは、グラフト率を高くすることにより微生物担体表面のアニオン交換基の量を増加させることができるため、微生物をより多く吸着することができたものと考えられる。このような微生物担持性能が高い微生物担体によれば、被処理水中の対象成分の処理を効果的に行うことができる。   In Comparative Example 1, compared with Examples 1 and 2, the graft ratio and ion exchange capacity were small. In addition, when the microbial adhesion amount after 1 hour was compared for the microorganism-immobilized products prepared in Example 1, Example 2 and Comparative Example 1, the microbial adhesion amount to the microbial carrier of Example 2 having the highest graft ratio was the largest. As the graft rate decreased, the amount of attached microorganisms also decreased. This is thought to be because more microorganisms could be adsorbed because the amount of anion exchange groups on the surface of the microorganism carrier could be increased by increasing the graft ratio. According to such a microorganism carrier having a high ability to support microorganisms, the target component in the water to be treated can be treated effectively.

[実施例3]
微生物担体の製造
芯部がPP、鞘部がPEの芯鞘構造を有する複合繊維(平均繊維径16μm)よりなる目付け50g/m2、厚み0.3mmの不織布20cm角に窒素雰囲気でガンマ線を160kGy照射した。次に、この不織布をVBTAC/ビニルピロリドン/水=4/4/1(重量比)の溶液に浸漬し、メタクリル酸グリシジル(GMA)/メタノール=1/1(重量比)の溶液に浸漬し、50℃で1時間反応させた。反応後の不織布を純水中に浸漬し70℃で3時間洗浄した。乾燥後の重量を測定したところ、グラフト率(重量増加率)は115%であった。この不織布を5重量%水酸化ナトリウム水溶液に浸漬し再生した。この不織布はイオン交換容量が1.32meq/gであった。
[Example 3]
Microbial carrier production The core part is PP and the sheath part is PE, and the fabric weight (average fiber diameter 16μm) is 50g / m 2 , and the nonwoven fabric is 20cm square with a thickness of 0.3mm. Irradiated. Next, this non-woven fabric was immersed in a solution of VBTAC / vinyl pyrrolidone / water = 4/4/1 (weight ratio), immersed in a solution of glycidyl methacrylate (GMA) / methanol = 1/1 (weight ratio), The reaction was carried out at 50 ° C. for 1 hour. The non-woven fabric after the reaction was immersed in pure water and washed at 70 ° C. for 3 hours. When the weight after drying was measured, the graft ratio (weight increase ratio) was 115%. This nonwoven fabric was dipped in a 5% by weight aqueous sodium hydroxide solution and regenerated. This nonwoven fabric had an ion exchange capacity of 1.32 meq / g.

微生物担持試験
実施例1と同様の微生物担持試験を大腸菌(Escherichia coli)について行った。不織布(15cm角)を7mm角に切断して大腸菌の培養液に投入した。OD660nm測定値の減少量から1時間後の微生物付着量を算出したところ、大腸菌濃度は当初5.1×108cells/mlであったが、2時間後には600 cells/ml以下に減少し、本発明のグラフト化不織布の大腸菌吸着効果が極めて高いことが確認された。
Microorganism support test The same microorganism support test as in Example 1 was performed on Escherichia coli. A non-woven fabric (15 cm square) was cut into a 7 mm square and placed in a culture solution of E. coli. When the amount of microbial adherence after 1 hour was calculated from the decrease in the measured OD660nm value, the E. coli concentration was initially 5.1 × 10 8 cells / ml, but after 2 hours it decreased to 600 cells / ml or less. It was confirmed that the grafted nonwoven fabric had an extremely high E. coli adsorption effect.

[実験例1]ビスフェノールA処理試験
下水処理場の流入水を対象として、分解微生物固定化担体を用いたビスフェノールAの処理を行った。実験は、5Lの攪拌機付反応槽に2Lの下水流入水を入れ、そこに実施例2の方法で作成した固定化物(225cm2)を加えて、室温(25℃)で通気撹拌しながら反応させた。2時間反応後に採水し、ビスフェノールA濃度を測定した。なお、廃水中のビスフェノールAの測定は、下水試験法(追補暫定版、下水道協会、2002年)に従って行った。
[Experimental Example 1] Bisphenol A treatment test Bisphenol A was treated with a decomposing microorganism-immobilized carrier for inflow water from a sewage treatment plant. In the experiment, 2 L of sewage inflow water was placed in a 5 L reactor equipped with a stirrer, and the immobilized product (225 cm 2 ) prepared by the method of Example 2 was added thereto, and reacted at room temperature (25 ° C.) with aeration stirring. It was. Water was collected after the reaction for 2 hours, and the bisphenol A concentration was measured. In addition, the measurement of bisphenol A in wastewater was performed according to the sewage test method (Supplemental Provisional Version, Sewerage Association, 2002).

固定化微生物によって2時間処理した廃水のビスフェノールA濃度を表1に示すが、2時間反応後のビスフェノールA濃度は著しく低減していた。また、分解細菌を添加しないで同様に2時間反応させた系では、ビスフェノールAの低減は認められなかった。   The bisphenol A concentration of wastewater treated with the immobilized microorganism for 2 hours is shown in Table 1, but the bisphenol A concentration after the reaction for 2 hours was significantly reduced. Further, in the system in which the reaction was similarly performed for 2 hours without adding degrading bacteria, reduction of bisphenol A was not observed.

Figure 2007007575
[実験例2]フェノール処理試験
フェノール分解菌Pseudomonas putida ATCC17514をフェノールを含む培地で25℃、4日間培養し、この培養液に実施例2の方法で作成した不織布(225cm2)を投入した。反応槽内にフェノールを主とする廃水と洗浄した固定化物を投入し、DO 2mg/L、水温25℃に維持して撹拌した。その結果、初期濃度400mg/Lだったフェノールは、1時間の反応で90%以上除去された。
Figure 2007007575
[Experimental Example 2] Phenol Treatment Test The phenol-degrading bacterium Pseudomonas putida ATCC17514 was cultured in a medium containing phenol at 25 ° C. for 4 days, and the nonwoven fabric (225 cm 2 ) prepared by the method of Example 2 was added to this culture solution. Wastewater mainly composed of phenol and the washed immobilized product were put into the reaction vessel, and the mixture was stirred while maintaining DO 2 mg / L and a water temperature of 25 ° C. As a result, 90% or more of phenol having an initial concentration of 400 mg / L was removed by reaction for 1 hour.

図1は、本発明の複合繊維(単芯)の断面図である。FIG. 1 is a cross-sectional view of a composite fiber (single core) of the present invention. 図2は、本発明の複合繊維(多芯)の断面図である。FIG. 2 is a cross-sectional view of the conjugate fiber (multicore) of the present invention. 図3は、本発明の複合繊維(分割繊維型)の断面図である。FIG. 3 is a cross-sectional view of the conjugate fiber (split fiber type) of the present invention. 図4は、未処理の基材の電子顕微鏡写真である。FIG. 4 is an electron micrograph of an untreated substrate. 図5は、微生物(Sphingomonas yanoikuyae BP-7)を担持した基材の電子顕微鏡写真である。FIG. 5 is an electron micrograph of a substrate carrying microorganisms (Sphingomonas yanoikuyae BP-7).

Claims (7)

放射線グラフト重合により複合繊維基材に側鎖が導入された複合繊維を含む微生物担体であって、該側鎖がアニオン交換基を有している微生物担体。   A microbial carrier comprising a composite fiber having a side chain introduced into a composite fiber base material by radiation graft polymerization, wherein the side chain has an anion exchange group. 前記複合繊維基材が、芯鞘構造を有する繊維を含んでなる、請求項1に記載の微生物担体。   The microbial carrier according to claim 1, wherein the composite fiber substrate comprises fibers having a core-sheath structure. 前記側鎖のアニオン交換基が0.5 meq/g以上のイオン交換容量を有する、請求項1又は2に記載の微生物担体。   The microbial carrier according to claim 1 or 2, wherein the side chain anion exchange group has an ion exchange capacity of 0.5 meq / g or more. 前記アニオン交換基が、第一級アミノ基、第二級アミノ基、第三級アミノ基及び第四級アンモニウム基から選択される1種以上である、請求項1〜3のいずれか1項に記載の微生物担体。   4. The method according to claim 1, wherein the anion exchange group is at least one selected from a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group. The microbial carrier as described. 前記複合繊維基材が繊維集合体である、請求項1〜4のいずれか1項に記載の微生物担体。   The microbial carrier according to any one of claims 1 to 4, wherein the composite fiber substrate is a fiber assembly. 前記繊維集合体が織布又は不織布である、請求項5に記載の微生物担体。   The microbial carrier according to claim 5, wherein the fiber assembly is a woven fabric or a non-woven fabric. 芯鞘構造を有する複合繊維を含む複合繊維基材に放射線を照射する工程と;
該基材に重合性モノマーを含浸させる工程と;
該モノマーを該基材にグラフト重合させる工程と;
を含む、微生物担体の製造方法。
Irradiating a composite fiber substrate including a composite fiber having a core-sheath structure with radiation;
Impregnating the substrate with a polymerizable monomer;
Graft polymerizing the monomer to the substrate;
A method for producing a microbial carrier, comprising:
JP2005192573A 2005-06-30 2005-06-30 Microorganism carrier and its production method Pending JP2007007575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005192573A JP2007007575A (en) 2005-06-30 2005-06-30 Microorganism carrier and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005192573A JP2007007575A (en) 2005-06-30 2005-06-30 Microorganism carrier and its production method

Publications (1)

Publication Number Publication Date
JP2007007575A true JP2007007575A (en) 2007-01-18

Family

ID=37746730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005192573A Pending JP2007007575A (en) 2005-06-30 2005-06-30 Microorganism carrier and its production method

Country Status (1)

Country Link
JP (1) JP2007007575A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100673A (en) * 2007-10-23 2009-05-14 Inoac Corp Enzyme-immobilized material, cartridge for enzymatic reaction, and production method thereof
KR100910250B1 (en) 2008-01-30 2009-07-31 박현주 Biofilm media having elemination function of nitrogen waste water and its preparing method
KR101034048B1 (en) * 2010-08-27 2011-05-11 남택욱 Water treatment bio-media made by bio-degradable bicomponent yarns
WO2013162695A1 (en) * 2012-04-24 2013-10-31 3M Innovative Properties Company Nonwoven article gafter with copolymer
JP2013545596A (en) * 2010-10-27 2013-12-26 ペキン ユニバーシティ Processing system and method for processing waste
JP2016215116A (en) * 2015-05-20 2016-12-22 株式会社クラレ Microorganism carrier
WO2019123217A1 (en) * 2017-12-19 2019-06-27 3M Innovative Properties Company Methods to detect microorganisms
JP2019126341A (en) * 2018-01-25 2019-08-01 宇部興産株式会社 Nonwoven fabric-containing cell culture module
JP2019126342A (en) * 2018-01-24 2019-08-01 宇部興産株式会社 Cell culture nonwoven fabric module
JP2020506739A (en) * 2016-12-28 2020-03-05 スリーエム イノベイティブ プロパティズ カンパニー Articles and methods for determining the effectiveness of a disinfection process

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228471A (en) * 1988-03-07 1989-09-12 Kuraray Co Ltd Substrate for microorganism membrane and production thereof
JPH0411949A (en) * 1990-04-27 1992-01-16 Japan Vilene Co Ltd Nonwoven fabric for adsorbing microorganism
JPH0649236A (en) * 1992-08-04 1994-02-22 Japan Atom Energy Res Inst Production of ion exchange resin
JPH0797757A (en) * 1993-09-27 1995-04-11 Japan Vilene Co Ltd Three-dimensional nonwoven fabric and its production
JPH08199480A (en) * 1994-11-22 1996-08-06 Japan Atom Energy Res Inst Production of separation functional fiber, and ion exchange fiber and gas adsorbing material produced by using the same
JPH09252770A (en) * 1996-03-26 1997-09-30 Toray Ind Inc Microorganism carrier and biological treatment apparatus using the carrier
JPH10202282A (en) * 1997-01-20 1998-08-04 Toray Ind Inc Carrier for microorganism, biological treating device using that, and contact filter device
JPH10216430A (en) * 1997-02-10 1998-08-18 Ishigaki:Kk Filter for treatment of polluted water
JPH10314784A (en) * 1997-05-20 1998-12-02 Shikibo Ltd Contact filter medium for waste water treatment
JPH11279922A (en) * 1998-02-02 1999-10-12 Chisso Corp Fiber formed product and its production
JP2000000090A (en) * 1998-06-15 2000-01-07 Taiho Ind Co Ltd Microorganism-immobilizing carrier and water treatment
WO2000009797A1 (en) * 1998-08-12 2000-02-24 Ebara Corporation Base material for radiation graft polymerization and raw material for filter
JP2002020959A (en) * 2000-07-07 2002-01-23 Japan Atom Energy Res Inst Separatorily functional fibrous sheet and filter
JP2002294558A (en) * 2001-03-30 2002-10-09 Japan Vilene Co Ltd Ion-exchangeable fiber sheet and method for producing the same
JP2004176235A (en) * 2002-11-29 2004-06-24 Mitsui Chemicals Inc Nonwoven fabric and filtration material for filter
JP2005066595A (en) * 2003-08-06 2005-03-17 Asahi Kasei Clean Chemical Co Ltd Fiber-made contact material, water treatment apparatus and water treating method
JP2007007569A (en) * 2005-06-30 2007-01-18 Ebara Corp Apparatus for treating estrogen

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228471A (en) * 1988-03-07 1989-09-12 Kuraray Co Ltd Substrate for microorganism membrane and production thereof
JPH0411949A (en) * 1990-04-27 1992-01-16 Japan Vilene Co Ltd Nonwoven fabric for adsorbing microorganism
JPH0649236A (en) * 1992-08-04 1994-02-22 Japan Atom Energy Res Inst Production of ion exchange resin
JPH0797757A (en) * 1993-09-27 1995-04-11 Japan Vilene Co Ltd Three-dimensional nonwoven fabric and its production
JPH08199480A (en) * 1994-11-22 1996-08-06 Japan Atom Energy Res Inst Production of separation functional fiber, and ion exchange fiber and gas adsorbing material produced by using the same
JPH09252770A (en) * 1996-03-26 1997-09-30 Toray Ind Inc Microorganism carrier and biological treatment apparatus using the carrier
JPH10202282A (en) * 1997-01-20 1998-08-04 Toray Ind Inc Carrier for microorganism, biological treating device using that, and contact filter device
JPH10216430A (en) * 1997-02-10 1998-08-18 Ishigaki:Kk Filter for treatment of polluted water
JPH10314784A (en) * 1997-05-20 1998-12-02 Shikibo Ltd Contact filter medium for waste water treatment
JPH11279922A (en) * 1998-02-02 1999-10-12 Chisso Corp Fiber formed product and its production
JP2000000090A (en) * 1998-06-15 2000-01-07 Taiho Ind Co Ltd Microorganism-immobilizing carrier and water treatment
WO2000009797A1 (en) * 1998-08-12 2000-02-24 Ebara Corporation Base material for radiation graft polymerization and raw material for filter
JP2002020959A (en) * 2000-07-07 2002-01-23 Japan Atom Energy Res Inst Separatorily functional fibrous sheet and filter
JP2002294558A (en) * 2001-03-30 2002-10-09 Japan Vilene Co Ltd Ion-exchangeable fiber sheet and method for producing the same
JP2004176235A (en) * 2002-11-29 2004-06-24 Mitsui Chemicals Inc Nonwoven fabric and filtration material for filter
JP2005066595A (en) * 2003-08-06 2005-03-17 Asahi Kasei Clean Chemical Co Ltd Fiber-made contact material, water treatment apparatus and water treating method
JP2007007569A (en) * 2005-06-30 2007-01-18 Ebara Corp Apparatus for treating estrogen

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009100673A (en) * 2007-10-23 2009-05-14 Inoac Corp Enzyme-immobilized material, cartridge for enzymatic reaction, and production method thereof
KR100910250B1 (en) 2008-01-30 2009-07-31 박현주 Biofilm media having elemination function of nitrogen waste water and its preparing method
KR101034048B1 (en) * 2010-08-27 2011-05-11 남택욱 Water treatment bio-media made by bio-degradable bicomponent yarns
JP2013545596A (en) * 2010-10-27 2013-12-26 ペキン ユニバーシティ Processing system and method for processing waste
US9278876B2 (en) 2010-10-27 2016-03-08 Peking University Treatment of waste product
KR102043249B1 (en) * 2012-04-24 2019-11-11 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Nonwoven article grafted with copolymer
WO2013162695A1 (en) * 2012-04-24 2013-10-31 3M Innovative Properties Company Nonwoven article gafter with copolymer
KR20150003365A (en) * 2012-04-24 2015-01-08 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Nonwoven article gafter with copolymer
CN104379830A (en) * 2012-04-24 2015-02-25 3M创新有限公司 Nonwoven article gafter with copolymer
US9821276B2 (en) 2012-04-24 2017-11-21 3M Innovative Properties Company Nonwoven article grafted with copolymer
JP2016215116A (en) * 2015-05-20 2016-12-22 株式会社クラレ Microorganism carrier
EP3562370A4 (en) * 2016-12-28 2020-12-16 3M Innovative Properties Company Article and methods to determine efficacy of disinfection process
JP2020506739A (en) * 2016-12-28 2020-03-05 スリーエム イノベイティブ プロパティズ カンパニー Articles and methods for determining the effectiveness of a disinfection process
JP7161995B2 (en) 2016-12-28 2022-10-27 スリーエム イノベイティブ プロパティズ カンパニー Articles and methods for determining the effectiveness of disinfection processes
US11629371B2 (en) 2016-12-28 2023-04-18 3M Innovative Properties Company Article and methods to determine efficacy of disinfection process
WO2019123217A1 (en) * 2017-12-19 2019-06-27 3M Innovative Properties Company Methods to detect microorganisms
US11421261B2 (en) 2017-12-19 2022-08-23 3M Innovative Properties Company Methods to detect microorganisms
JP2019126342A (en) * 2018-01-24 2019-08-01 宇部興産株式会社 Cell culture nonwoven fabric module
JP7279372B2 (en) 2018-01-24 2023-05-23 Ube株式会社 Cell culture non-woven module
JP2019126341A (en) * 2018-01-25 2019-08-01 宇部興産株式会社 Nonwoven fabric-containing cell culture module
JP7354543B2 (en) 2018-01-25 2023-10-03 Ube株式会社 Nonwoven fabric-containing cell culture module

Similar Documents

Publication Publication Date Title
JP2007007575A (en) Microorganism carrier and its production method
AU2001253721B2 (en) Formation of composite materials with expandable matter
EP0616845B1 (en) Adsorptive materials and process for producing them
US4414111A (en) Shaped composite adsorbent and a process for preparing the same
EP0861808B1 (en) Waste water treatment apparatus
AU2001253721A1 (en) Formation of composite materials with expandable matter
EP0503651A1 (en) Electrically regenerable demineralizing apparatus
Torkaman et al. Assessing the radiation-induced graft polymeric adsorbents with emphasis on heavy metals removing: A systematic literature review
WO2004014548A1 (en) Organic porous article having selective adsorption ability for boron, and boron removing module and ultra-pure water production apparatus using the same
US5743940A (en) Process for producing gas adsorbent
US4196065A (en) Hydrophobic substrate with grafted hydrophilic inclusions
JP3200458B2 (en) Electric regeneration type desalination equipment
JPH10296297A (en) Hot water purifying device
JP2001187809A (en) Organic polymer material, its production method and heavy metal ion scavenger comprising the material
Khozamy et al. Implementation of carboxymethyl cellulose/acrylic acid/titanium dioxide nanocomposite hydrogel in remediation of Cd (II), Zn (II) and Pb (II) for water treatment application
KR101473924B1 (en) Hybrid water treatment agent of biogenic manganese oxide nano particle and activated carbon, manufacturing method thereof, and water treatment system and in-situ treatment system for underground water using that
JP2016215147A (en) Membrane fouling factor agent absorbent
WO2003072221A1 (en) Filter cartridge
JP2011156519A (en) Polymer water treatment film, water treatment method, and method for maintaining polymer water treatment film
EP1230968B1 (en) Moisture adsorbing and desorbing material
JPH05131120A (en) Electric regeneration type desalting apparatus
JP3673452B2 (en) Pollution-resistant porous filtration membrane
JPH0584476A (en) Water purifier
JP2007007569A (en) Apparatus for treating estrogen
CN113574125A (en) Particles with biocidal coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101014