JP2007001879A - 1, 9, 10-anthridine compound and organic light emitting device using the same - Google Patents

1, 9, 10-anthridine compound and organic light emitting device using the same Download PDF

Info

Publication number
JP2007001879A
JP2007001879A JP2005180392A JP2005180392A JP2007001879A JP 2007001879 A JP2007001879 A JP 2007001879A JP 2005180392 A JP2005180392 A JP 2005180392A JP 2005180392 A JP2005180392 A JP 2005180392A JP 2007001879 A JP2007001879 A JP 2007001879A
Authority
JP
Japan
Prior art keywords
group
substituted
unsubstituted
anthridine
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005180392A
Other languages
Japanese (ja)
Inventor
Koichi Suzuki
幸一 鈴木
Kazunori Ueno
和則 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005180392A priority Critical patent/JP2007001879A/en
Publication of JP2007001879A publication Critical patent/JP2007001879A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a new 1, 9, 10-anthridine compound. <P>SOLUTION: The 1, 9, 10-anthridine compound is expressed by general formula [I], wherein R<SB>1</SB>to R<SB>7</SB>express each H or a group selected from substituted or nonsubstituted alkyl groups, substituted or nonsubstituted aralkyl groups, substituted or nonsubstituted aryl groups, substituted or nonsubstituted heterocyclic groups, substituted or nonsubstituted condensed polycyclic aromatic groups, substituted or nonsubstituted condensed polyheterocyclic groups, substituted or nonsubstituted aryloxy groups, substituted amino groups, halogen atoms, trifluoromethyl group and cyano group and may be the same or different. At least one of R<SB>1</SB>to R<SB>7</SB>is selected from the substituted or nonsubstituted aryl groups, the substituted or nonsubstituted heterocyclic groups, the substituted or nonsubstituted condensed polycyclic aromatic groups or the substituted or nonsubstituted condensed polyheterocyclic groups. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、新規な有機化合物およびそれを用いた有機発光素子に関する。   The present invention relates to a novel organic compound and an organic light-emitting device using the same.

有機発光素子は、陽極と陰極間に蛍光性有機化合物または燐光性有機化合物を含む薄膜を挟持した素子である。各電極から電子およびホール(正孔)を注入することにより、蛍光性化合物または燐光性化合物の励起子を生成させ、この励起子が基底状態にもどる際に放射される光を利用する素子である。   An organic light emitting element is an element in which a thin film containing a fluorescent organic compound or a phosphorescent organic compound is sandwiched between an anode and a cathode. It is an element that uses light emitted when excitons of fluorescent compounds or phosphorescent compounds are generated by injecting electrons and holes (holes) from each electrode, and these excitons return to the ground state. .

有機発光素子における最近の進歩は著しく、低印加電圧で高輝度、発光波長の多様性、高速応答性、薄型、軽量の発光デバイス化が可能であることから、広汎な用途への可能性を示唆している。しかしながら、現状では発光効率などの初期特性や長時間の発光による輝度劣化などの耐久特性の更なる向上が必要である。これらの初期特性や耐久特性は、素子を構成するホール注入層、ホール輸送層、発光層、ホールブロック層、電子輸送層や電子注入層などのすべての層が起因している。   Recent progress in organic light-emitting devices is remarkable, suggesting the possibility of a wide range of applications because it is possible to make light-emitting devices with high brightness, variety of emission wavelengths, high-speed response, thin and light weight at low applied voltage. is doing. However, at present, it is necessary to further improve the initial characteristics such as light emission efficiency and the durability characteristics such as luminance deterioration due to long-time light emission. These initial characteristics and durability characteristics are attributed to all layers such as a hole injection layer, a hole transport layer, a light emitting layer, a hole block layer, an electron transport layer, and an electron injection layer constituting the device.

これまで知られているホールブロック層、電子輸送層、電子注入層に用いる材料としては、フェナントロリン化合物、アルミニウムキノリノール錯体、オキサジアゾール化合物やトリアゾール化合物などが挙げられる。これらの材料を発光層または電子輸送層に用いた例としては、特許文献1〜9が挙げられるが、これらのEL素子の初期特性および耐久特性は十分ではない。   Examples of materials used for the hole block layer, the electron transport layer, and the electron injection layer that have been known so far include phenanthroline compounds, aluminum quinolinol complexes, oxadiazole compounds, and triazole compounds. Examples of using these materials for the light-emitting layer or the electron transport layer include Patent Documents 1 to 9, but the initial characteristics and durability characteristics of these EL elements are not sufficient.

特開平5−331459号公報JP-A-5-331459 特開平7−82551号公報Japanese Patent Laid-Open No. 7-82551 特開2001−267080号公報JP 2001-267080 A 特開2001−131174号公報JP 2001-131174 A 特開平2−216791号公報JP-A-2-216791 特開平10−233284号公報JP-A-10-233284 米国特許4,539,507号明細書US Pat. No. 4,539,507 米国特許4,720,432号明細書US Pat. No. 4,720,432 米国特許4,885,211号明細書US Pat. No. 4,885,211

本発明の目的は、新規な1,9,10−アンスリジン化合物を提供することにある。   An object of the present invention is to provide a novel 1,9,10-anthridine compound.

また本発明の目的は、新規な1,9,10−アンスリジン化合物を用い、高発光輝度で高発光効率な有機発光素子を提供することにある。さらに耐久性が高く、長時間の発光による輝度劣化が小さい有機発光素子を提供することにある。   Another object of the present invention is to provide an organic light-emitting device that uses a novel 1,9,10-anthridine compound and has high emission luminance and high emission efficiency. It is another object of the present invention to provide an organic light emitting device that has high durability and little luminance deterioration due to long-time light emission.

また本発明の目的は、製造が容易でかつ比較的安価に作成可能な有機発光素子を提供することにある。   Another object of the present invention is to provide an organic light emitting device that can be easily manufactured and can be produced at a relatively low cost.

すなわち、本発明の1,9,10−アンスリジン化合物は、下記一般式[I]〜[III]で示されることを特徴とする。   That is, the 1,9,10-anthridine compound of the present invention is represented by the following general formulas [I] to [III].

Figure 2007001879
Figure 2007001879

(式中、R1〜R7は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基,置換あるいは無置換の複素環基、置換あるいは無置換の縮合多環芳香族基、置換あるいは無置換の縮合多環複素環基、置換あるいは無置換のアリールオキシ基、置換アミノ基、ハロゲン原子、トリフルオロメチル基、シアノ基から選ばれる基を表わし、同じであっても異なっていてもよい。但し、R1〜R7の少なくとも1つは、置換あるいは無置換のアリール基,置換あるいは無置換の複素環基、置換あるいは無置換の縮合多環芳香族基、置換あるいは無置換の縮合多環複素環基から選ばれる。) Wherein R 1 to R 7 are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted Represents a group selected from a substituted fused polycyclic aromatic group, a substituted or unsubstituted fused polycyclic heterocyclic group, a substituted or unsubstituted aryloxy group, a substituted amino group, a halogen atom, a trifluoromethyl group, and a cyano group. These may be the same or different, provided that at least one of R 1 to R 7 is a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted condensed polycycle. (Selected from an aromatic group, a substituted or unsubstituted condensed polycyclic heterocyclic group)

Figure 2007001879
Figure 2007001879

(式中、R13、R14は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基,置換あるいは無置換の複素環基、置換あるいは無置換の縮合多環芳香族基、置換あるいは無置換の縮合多環複素環基、置換あるいは無置換のアリールオキシ基、置換アミノ基、ハロゲン原子、トリフルオロメチル基、シアノ基から選ばれる基を表わし、同じであっても異なっていてもよい。 (Wherein R 13 and R 14 are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, substituted or unsubstituted Represents a group selected from a substituted fused polycyclic aromatic group, a substituted or unsubstituted fused polycyclic heterocyclic group, a substituted or unsubstituted aryloxy group, a substituted amino group, a halogen atom, a trifluoromethyl group, and a cyano group. , May be the same or different.

Ar3は、2価の置換あるいは無置換の芳香環基,2価の置換あるいは無置換の複素環基、2価の置換あるいは無置換の縮合多環芳香族基、2価の置換あるいは無置換の縮合多環複素環基から選ばれる基を表わす。) Ar 3 is a divalent substituted or unsubstituted aromatic ring group, a divalent substituted or unsubstituted heterocyclic group, a divalent substituted or unsubstituted condensed polycyclic aromatic group, a divalent substituted or unsubstituted Represents a group selected from the group consisting of condensed polycyclic heterocyclic groups. )

Figure 2007001879
Figure 2007001879

(式中、R15〜R17は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基,置換あるいは無置換の複素環基、置換あるいは無置換の縮合多環芳香族基、置換あるいは無置換の縮合多環複素環基、置換あるいは無置換のアリールオキシ基、置換アミノ基、ハロゲン原子、トリフルオロメチル基、シアノ基から選ばれる基を表わし、同じであっても異なっていてもよい。 Wherein R 15 to R 17 are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, substituted or unsubstituted Represents a group selected from a substituted fused polycyclic aromatic group, a substituted or unsubstituted fused polycyclic heterocyclic group, a substituted or unsubstituted aryloxy group, a substituted amino group, a halogen atom, a trifluoromethyl group, and a cyano group. , May be the same or different.

Ar4は、3価の置換あるいは無置換の芳香環基,3価の置換あるいは無置換の複素環基、3価の置換あるいは無置換の縮合多環芳香族基、3価の置換あるいは無置換の縮合多環複素環基から選ばれる基を表わす。) Ar 4 is a trivalent substituted or unsubstituted aromatic ring group, a trivalent substituted or unsubstituted heterocyclic group, a trivalent substituted or unsubstituted condensed polycyclic aromatic group, a trivalent substituted or unsubstituted group Represents a group selected from the group consisting of condensed polycyclic heterocyclic groups. )

また、本発明の有機発光素子は、陽極及び陰極からなる一対の電極と、該一対の電極間に挟持された一または複数の有機化合物を含む層を少なくとも有する有機発光素子において、前記有機化合物を含む層の少なくとも一層が上記1,9,10−アンスリジン化合物の少なくとも一種を含有することを特徴とする。   The organic light-emitting device of the present invention is an organic light-emitting device having at least a layer containing a pair of electrodes composed of an anode and a cathode, and one or a plurality of organic compounds sandwiched between the pair of electrodes. At least one of the containing layers contains at least one of the 1,9,10-anthridine compounds.

本発明の1,9,10−アンスリジン化合物を用いた有機発光素子は、低い印加電圧で高輝度な発光が得られ、耐久性にも優れている。特に、本発明の1,9,10−アンスリジン化合物を含有する有機層は、電子輸送層として優れ、かつ発光層としても優れている。   The organic light-emitting device using the 1,9,10-anthridine compound of the present invention can emit light with high luminance at a low applied voltage and has excellent durability. In particular, the organic layer containing the 1,9,10-anthridine compound of the present invention is excellent as an electron transport layer and also as a light emitting layer.

さらに、素子の作成も真空蒸着あるいはキャステイング法等を用いて作成可能であり、比較的安価で大面積の素子を容易に作成できる。   Furthermore, the device can be formed using vacuum deposition, casting method, or the like, and a device with a large area can be easily manufactured at a relatively low cost.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、本発明の1,9,10−アンスリジン化合物について説明する。   First, the 1,9,10-anthridine compound of the present invention will be described.

本発明の1,9,10−アンスリジン化合物は、上記一般式[I]〜[III]で示される。   The 1,9,10-anthridine compound of the present invention is represented by the above general formulas [I] to [III].

一般式[I]で示される1,9,10−アンスリジン化合物としては、R2〜R6が、水素原子、置換あるいは無置換のアルキル基、ハロゲン原子、トリフルオロメチル基、シアノ基から選ばれる基を表わし、R1、R7が、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置換あるいは無置換の縮合多環芳香族基、置換あるいは無置換の縮合多環複素環基、置換あるいは無置換のアリールオキシ基、置換アミノ基から選ばれる基を表わす化合物が好ましい。 In the 1,9,10-anthridine compound represented by the general formula [I], R 2 to R 6 are selected from a hydrogen atom, a substituted or unsubstituted alkyl group, a halogen atom, a trifluoromethyl group, and a cyano group. R 1 and R 7 are a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted condensed polycyclic aromatic group, substituted or A compound representing a group selected from an unsubstituted condensed polycyclic heterocyclic group, a substituted or unsubstituted aryloxy group, and a substituted amino group is preferred.

上記一般式[I]〜[III]における置換基の具体例を以下に示す。   Specific examples of the substituents in the general formulas [I] to [III] are shown below.

アルキル基としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、ter−ブチル基、オクチル基などが挙げられる。   Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a ter-butyl group, and an octyl group.

アラルキル基としては、ベンジル基、フェネチル基などが挙げられる。   Examples of the aralkyl group include a benzyl group and a phenethyl group.

アリール基としては、フェニル基、ビフェニル基、ターフェニル基などが挙げられる。   Examples of the aryl group include a phenyl group, a biphenyl group, and a terphenyl group.

複素環基としては、チエニル基、ピロリル基、ピリジル基、ビピリジル基、ターピリジル基、オキサゾリル基、オキサジアゾリル基、チアゾリル基、チアジアゾリル基などが挙げられる。   Examples of the heterocyclic group include thienyl group, pyrrolyl group, pyridyl group, bipyridyl group, terpyridyl group, oxazolyl group, oxadiazolyl group, thiazolyl group, and thiadiazolyl group.

縮合多環芳香族基としては、フルオレニル基、ナフチル基、フルオランテニル基、アンスリル基、フェナンスリル基、ピレニル基、テトラセニル基、ペンタセニル基、ペリレニル基、トリフェニレニル基などが挙げられる。   Examples of the condensed polycyclic aromatic group include a fluorenyl group, a naphthyl group, a fluoranthenyl group, an anthryl group, a phenanthryl group, a pyrenyl group, a tetracenyl group, a pentacenyl group, a perylenyl group, and a triphenylenyl group.

縮合多環複素環基としては、キノリル基、カルバゾリル基、アクリジニル基、フェナジル基、フェナントロリル基などが挙げられる。   Examples of the condensed polycyclic heterocyclic group include a quinolyl group, a carbazolyl group, an acridinyl group, a phenazyl group, and a phenanthroyl group.

アリールオキシ基としては、フェノキシル基、フルオレノキシル基、ナフトキシル基などが挙げられる。   Examples of the aryloxy group include a phenoxyl group, a fluorenoxyl group, and a naphthoxyl group.

置換アミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ジアニソリルアミノ基、フルオレニルフェニルアミノ基、ジフルオレニル基、ナフチルフェニルアミノ基、ジナフチルアミノ基などが挙げられる。   Examples of substituted amino groups include dimethylamino group, diethylamino group, dibenzylamino group, diphenylamino group, ditolylamino group, dianisolylamino group, fluorenylphenylamino group, difluorenyl group, naphthylphenylamino group, dinaphthylamino group. Etc.

ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素などが挙げられる。   Examples of the halogen atom include fluorine, chlorine, bromine and iodine.

2価または3価の芳香環基、複素環基、縮合多環芳香族基、縮合多環複素環基としては、上記アリール基、複素環基、縮合多環芳香族基、縮合多環複素環基を2価または3価としたものなどが挙げられる。   Examples of the divalent or trivalent aromatic ring group, heterocyclic group, condensed polycyclic aromatic group, and condensed polycyclic heterocyclic group include the aryl group, heterocyclic group, condensed polycyclic aromatic group, and condensed polycyclic heterocyclic ring. Examples thereof include those in which the group is divalent or trivalent.

上記置換基が有してもよい置換基としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、ter−ブチル基、オクチル基などのアルキル基、ベンジル基、フェネチル基などのアラルキル基、フェニル基、ビフェニル基、ターフェニル基などのアリール基、チエニル基、ピロリル基、ピリジル基、ビピリジル基、ターピリジル基、オキサゾリル基、オキサジアゾリル基、チアゾリル基、チアジアゾリル基などの複素環基、フルオレニル基、ナフチル基、フルオランテニル基、アンスリル基、フェナンスリル基、ピレニル基、テトラセニル基、ペンタセニル基、ペリレニル基、トリフェニレニル基などの縮合多環芳香族基、キノリル基、カルバゾリル基、アクリジニル基、フェナジル基、フェナントロリル基などの縮合多環複素環基、フェノキシル基、フルオレノキシル基、ナフトキシル基などのアリールオキシ基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ジアニソリルアミノ基、フルオレニルフェニルアミノ基、ジフルオレニル基、ナフチルフェニルアミノ基、ジナフチルアミノ基などの置換アミノ基、フッ素、塩素、臭素、ヨウ素などのハロゲン原子、トリフルオロメチル基、シアノ基などが挙げられる。   Examples of the substituent that the substituent may have include an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a ter-butyl group, and an octyl group, a benzyl group, Aralkyl groups such as phenethyl groups, aryl groups such as phenyl groups, biphenyl groups, and terphenyl groups, thienyl groups, pyrrolyl groups, pyridyl groups, bipyridyl groups, terpyridyl groups, oxazolyl groups, oxadiazolyl groups, thiazolyl groups, and thiadiazolyl groups Ring group, fluorenyl group, naphthyl group, fluoranthenyl group, anthryl group, phenanthryl group, pyrenyl group, tetracenyl group, pentacenyl group, perylenyl group, triphenylenyl group and other condensed polycyclic aromatic groups, quinolyl group, carbazolyl group, acridinyl Group, phenazyl group, phenanthryl group, etc. Fused polycyclic heterocyclic group, aryloxy group such as phenoxyl group, fluorenoxyl group, naphthoxyl group, dimethylamino group, diethylamino group, dibenzylamino group, diphenylamino group, ditolylamino group, dianisolylamino group, full Examples thereof include substituted amino groups such as oleenylphenylamino group, difluorenyl group, naphthylphenylamino group and dinaphthylamino group, halogen atoms such as fluorine, chlorine, bromine and iodine, trifluoromethyl group and cyano group.

次に、本発明の1,9,10−アンスリジン化合物の代表例を以下に挙げるが、本発明はこれらに限定されるものではない。   Next, typical examples of the 1,9,10-anthridine compound of the present invention are listed below, but the present invention is not limited thereto.

Figure 2007001879
Figure 2007001879

Figure 2007001879
Figure 2007001879

Figure 2007001879
Figure 2007001879

Figure 2007001879
Figure 2007001879

Figure 2007001879
Figure 2007001879

Figure 2007001879
Figure 2007001879

Figure 2007001879
Figure 2007001879

本発明の1,9,10−アンスリジン化合物は、一般的に知られている方法で合成できる。例えば、J.Org.Chem.,46,833(1981)、J.Heterocycl.Chem.,13,961(1976)、Z.Chem.18,382(1978)などに記載の方法である。1,9,10−アンスリジン化合物中間体を得て、さらにパラジウム触媒を用いたSuzuki Coupling法(例えばChem.Rev.,95,2457,(1995)などの合成法で得ることができる。   The 1,9,10-anthridine compound of the present invention can be synthesized by a generally known method. For example, J. et al. Org. Chem. 46, 833 (1981); Heterocycl. Chem. , 13, 961 (1976), Z. Chem. 18, 382 (1978). A 1,9,10-anthridine compound intermediate can be obtained, and further obtained by a synthesis method such as Suzuki Coupling using a palladium catalyst (for example, Chem. Rev., 95, 2457, (1995)).

本発明の1,9,10−アンスリジン化合物は、従来の化合物に比べ電子輸送性、発光性および耐久性の優れた化合物である。これは有機発光素子の有機化合物を含む層、特に、電子輸送層、発光層として有用である。また真空蒸着法や溶液塗布法などによって形成した層は結晶化などが起こりにくく経時安定性に優れている。特に、本発明の1,9,10−アンスリジン化合物の中で、比較的HOMOが低いものはホールブロック性が高く、ホールブロック層や電子輸送層として特に好ましい。   The 1,9,10-anthridine compound of the present invention is a compound having excellent electron transport properties, light emitting properties and durability compared to conventional compounds. This is useful as a layer containing an organic compound of an organic light emitting device, particularly as an electron transport layer and a light emitting layer. In addition, a layer formed by a vacuum deposition method or a solution coating method is hardly crystallized and has excellent stability over time. In particular, among the 1,9,10-anthridine compounds of the present invention, those having a relatively low HOMO have a high hole blocking property and are particularly preferable as a hole blocking layer and an electron transporting layer.

次に、本発明の有機発光素子について詳細に説明する。   Next, the organic light emitting device of the present invention will be described in detail.

本発明の有機発光素子は、陽極及び陰極からなる一対の電極と、該一対の電極間に狭持された一または複数の有機化合物を含む層を少なくとも有する有機発光素子である。そして、前記有機化合物を含む層の少なくとも一層が上記本発明の1,9,10−アンスリジン化合物の少なくとも一種を含有する。   The organic light-emitting device of the present invention is an organic light-emitting device having at least a layer containing a pair of electrodes composed of an anode and a cathode and one or more organic compounds sandwiched between the pair of electrodes. At least one of the layers containing the organic compound contains at least one of the 1,9,10-anthridine compounds of the present invention.

本発明の有機発光素子は、1,9,10−アンスリジン化合物の少なくとも一種を含有する層が、ホールブロック層、電子輸送層、発光層または電子注入層であることが好ましい。   In the organic light-emitting device of the present invention, the layer containing at least one 1,9,10-anthridine compound is preferably a hole block layer, an electron transport layer, a light-emitting layer, or an electron injection layer.

本発明の有機発光素子においては、本発明の1,9,10−アンスリジン化合物を真空蒸着法や溶液塗布法により陽極及び陰極の間に形成することができる。その有機層の厚みは10μmより薄く、好ましくは0.5μm以下、より好ましくは0.01〜0.5μmの厚みに薄膜化することが好ましい。   In the organic light emitting device of the present invention, the 1,9,10-anthridine compound of the present invention can be formed between the anode and the cathode by a vacuum deposition method or a solution coating method. The thickness of the organic layer is less than 10 μm, preferably 0.5 μm or less, more preferably 0.01 to 0.5 μm.

図1〜図6に本発明の有機発光素子の好ましい例を示す。   1 to 6 show preferred examples of the organic light emitting device of the present invention.

図1は本発明の有機発光素子の一例を示す断面図である。図1は基板1上に陽極2、発光層3及び陰極4を順次設けた構成のものである。ここで使用する発光素子はそれ自体でホール輸送能、エレクトロン輸送能及び発光性の性能を単一で有している場合や、それぞれの特性を有する化合物を混ぜて使う場合に有用である。   FIG. 1 is a cross-sectional view showing an example of the organic light emitting device of the present invention. FIG. 1 shows a structure in which an anode 2, a light emitting layer 3 and a cathode 4 are sequentially provided on a substrate 1. The light-emitting element used here is useful when it has a single hole transport ability, electron transport ability, and light-emitting performance, or when a compound having each characteristic is mixed.

図2は本発明の有機発光素子における他の例を示す断面図である。図2は基板1上に陽極2、ホール輸送層5、電子輸送層6及び陰極4を順次設けた構成のものである。この場合は発光物質はホール輸送性かあるいは電子輸送性のいづれかあるいは両方の機能を有している材料をそれぞれの層に用いる。そしてこの場合は発光性の無い単なるホール輸送物質あるいは電子輸送物質と組み合わせて用いる場合に有用である。また、この場合、発光層はホール輸送層5あるいは電子輸送層6のいずれかから成る。   FIG. 2 is a cross-sectional view showing another example of the organic light emitting device of the present invention. FIG. 2 shows a configuration in which an anode 2, a hole transport layer 5, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. In this case, the light-emitting substance is a material having either a hole transporting property, an electron transporting property, or both functions, for each layer. In this case, it is useful when used in combination with a simple hole transport material or electron transport material having no light emission. In this case, the light emitting layer is composed of either the hole transport layer 5 or the electron transport layer 6.

図3は本発明の有機発光素子における他の例を示す断面図である。図3は基板1上に陽極2、ホール輸送層5、発光層3,電子輸送層6及び陰極4を順次設けた構成のものである。これはキャリヤ輸送と発光の機能を分離したものである。そしてこれはホール輸送性、電子輸送性、発光性の各特性を有した化合物と適時組み合わせて用いられ極めて材料選択の自由度が増すとともに、発光波長を異にする種々の化合物が使用できる。そのため発光色相の多様化が可能になる。さらに、中央の発光層3に各キャリヤあるいは励起子を有効に閉じこめて発光効率の向上を図ることも可能になる。   FIG. 3 is a cross-sectional view showing another example of the organic light emitting device of the present invention. FIG. 3 shows a structure in which an anode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. This separates the functions of carrier transport and light emission. This is used in combination with compounds having hole transporting properties, electron transporting properties, and luminescent properties in a timely manner, so that the degree of freedom of material selection is greatly increased and various compounds having different emission wavelengths can be used. This makes it possible to diversify the emission hue. Further, it is possible to effectively confine each carrier or exciton in the central light emitting layer 3 to improve the light emission efficiency.

図4は本発明の有機発光素子における他の例を示す断面図である。図4は図3に対してホール注入層7を陽極2側に挿入した構成であり、陽極2とホール輸送層5の密着性改善あるいはホールの注入性改善に効果があり、低電圧化に効果的である。   FIG. 4 is a cross-sectional view showing another example of the organic light emitting device of the present invention. FIG. 4 shows a structure in which a hole injection layer 7 is inserted on the anode 2 side with respect to FIG. 3, which is effective in improving the adhesion between the anode 2 and the hole transport layer 5 or improving the hole injection property, and is effective in lowering the voltage. Is.

図5および図6は本発明の有機発光素子における他の例を示す断面図である。図5および図6は、図3および図4に対してホールあるいは励起子(エキシトン)を陰極側に抜けることを阻害する層(ホール/エキシトンブロッキング層8)がある。そしてこれらの図はこの層を発光層3、電子輸送層6間に挿入した構成である。イオン化ポテンシャルの非常に高い化合物をホール/エキシトンブロッキング層8として用いる事により、発光効率の向上に効果的な構成である。   5 and 6 are cross-sectional views showing other examples of the organic light-emitting device of the present invention. 5 and 6 have a layer (hole / exciton blocking layer 8) that blocks holes or excitons (excitons) from passing to the cathode side as compared to FIGS. In these figures, this layer is inserted between the light emitting layer 3 and the electron transport layer 6. By using a compound having a very high ionization potential as the hole / exciton blocking layer 8, the structure is effective in improving the light emission efficiency.

ただし、図1〜図6はあくまでごく基本的な素子構成であり、本発明の化合物を用いた有機発光素子の構成はこれらに限定されるものではない。例えば、電極と有機層界面に絶縁性層を設ける、接着層あるいは干渉層を設ける、ホール輸送層がイオン化ポテンシャルの異なる2層から構成される、など多様な層構成をとることができる。   However, FIGS. 1 to 6 are very basic device configurations, and the configuration of the organic light-emitting device using the compound of the present invention is not limited thereto. For example, various layer configurations such as providing an insulating layer at the interface between the electrode and the organic layer, providing an adhesive layer or an interference layer, and the hole transport layer including two layers having different ionization potentials can be employed.

本発明の1,9,10−アンスリジン化合物は、従来の化合物に比べ電子輸送性、発光性および耐久性の優れた化合物であり、図1〜図6のいずれの形態でも使用することができる。   The 1,9,10-anthridine compound of the present invention is a compound excellent in electron transporting property, light emitting property and durability as compared with conventional compounds, and can be used in any form of FIGS.

本発明の有機発光素子は、好ましくは電子輸送層、発光層の構成成分として本発明の1,9,10−アンスリジン化合物を用いるものである。そしてこれまで知られているホール輸送性化合物、発光性化合物あるいは電子輸送性化合物などを必要に応じて一緒に使用することもできる。   The organic light emitting device of the present invention preferably uses the 1,9,10-anthridine compound of the present invention as a constituent component of the electron transport layer and the light emitting layer. In addition, a hole transporting compound, a light emitting compound, an electron transporting compound or the like known so far can be used together as necessary.

以下にこれらの化合物例を挙げる。   Examples of these compounds are given below.

Figure 2007001879
Figure 2007001879

Figure 2007001879
Figure 2007001879

Figure 2007001879
Figure 2007001879

Figure 2007001879
Figure 2007001879

Figure 2007001879
Figure 2007001879

Figure 2007001879
Figure 2007001879

本発明の有機発光素子において、本発明の1,9,10−アンスリジン化合物を含有する層および他の有機化合物を含有する層は、一般には真空蒸着法あるいは、適当な溶媒に溶解させて塗布法により薄膜を形成する。特に塗布法で成膜する場合は、適当な結着樹脂と組み合わせて膜を形成することもできる。   In the organic light-emitting device of the present invention, the layer containing the 1,9,10-anthridine compound of the present invention and the layer containing another organic compound are generally applied by vacuum deposition or coating by dissolving in an appropriate solvent. To form a thin film. In particular, when a film is formed by a coating method, the film can be formed in combination with an appropriate binder resin.

上記結着樹脂としては広範囲な結着性樹脂より選択でき、たとえばポリビニルカルバゾール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ブチラール樹脂、ポリビニルアセタール樹脂、ジアリルフタレート樹脂、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、ポリスルホン樹脂、尿素樹脂等が挙げられるが、これらに限定されるものではない。また、これらは単独または共重合体ポリマーとして1種または2種以上混合してもよい。   The binder resin can be selected from a wide range of binder resins such as polyvinyl carbazole resin, polycarbonate resin, polyester resin, polyarylate resin, polystyrene resin, acrylic resin, methacrylic resin, butyral resin, polyvinyl acetal resin, diallyl phthalate resin. , Phenol resin, epoxy resin, silicone resin, polysulfone resin, urea resin and the like, but are not limited thereto. Moreover, you may mix these 1 type, or 2 or more types as a single or copolymer polymer.

陽極材料としては仕事関数がなるべく大きなものがよく、例えば、金、銀、白金、ニッケル、パラジウム、コバルト、セレン、バナジウム等の金属単体あるいはこれらの合金、酸化錫、酸化亜鉛、酸化錫インジウム(ITO),酸化亜鉛インジウム等の金属酸化物が使用できる。また、ポリアニリン、ポリピロール、ポリチオフェン、ポリフェニレンスルフィド等の導電性ポリマーも使用できる。これらの電極物質は単独で用いてもよく、複数併用することもできる。   As the anode material, a material having a work function as large as possible is preferable. For example, simple metals such as gold, silver, platinum, nickel, palladium, cobalt, selenium, vanadium or alloys thereof, tin oxide, zinc oxide, indium tin oxide (ITO) ), Metal oxides such as indium zinc oxide can be used. In addition, conductive polymers such as polyaniline, polypyrrole, polythiophene, and polyphenylene sulfide can also be used. These electrode materials may be used alone or in combination.

一方、陰極材料としては仕事関数の小さなものがよく、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウム、アルミニウム、インジウム、銀、鉛、錫、クロム等の金属単体あるいは複数の合金またはこれらの塩などを用いることができる。酸化錫インジウム(ITO)等の金属酸化物の利用も可能である。また、陰極は一層構成でもよく、多層構成をとることもできる。   On the other hand, the cathode material preferably has a small work function, such as lithium, sodium, potassium, cesium, calcium, magnesium, aluminum, indium, silver, lead, tin, chromium, or a simple metal or a plurality of alloys or salts thereof. Can be used. A metal oxide such as indium tin oxide (ITO) can also be used. Further, the cathode may have a single layer structure or a multilayer structure.

本発明で用いる基板としては、特に限定するものではないが、金属製基板、セラミックス製基板等の不透明性基板、ガラス、石英、プラスチックシート等の透明性基板が用いられる。また、基板にカラーフィルター膜、蛍光色変換フィルター膜、誘電体反射膜などを用いて発色光をコントロールする事も可能である。   Although it does not specifically limit as a board | substrate used by this invention, Transparent substrates, such as opaque board | substrates, such as a metal board | substrate and a ceramic board | substrate, glass, quartz, a plastic sheet, are used. It is also possible to control the color light by using a color filter film, a fluorescent color conversion filter film, a dielectric reflection film, or the like on the substrate.

なお、作成した素子に対して、酸素や水分等との接触を防止する目的で保護層あるいは封止層を設けることもできる。保護層としては、ダイヤモンド薄膜、金属酸化物、金属窒化物等の無機材料膜、フッソ樹脂、ポリパラキシレン、ポリエチレン、シリコーン樹脂、ポリスチレン樹脂等の高分子膜、さらには、光硬化性樹脂等が挙げられる。また、ガラス、気体不透過性フィルム、金属などをカバーし、適当な封止樹脂により素子自体をパッケージングすることもできる。   Note that a protective layer or a sealing layer can be provided on the prepared element for the purpose of preventing contact with oxygen or moisture. Examples of protective layers include diamond thin films, inorganic material films such as metal oxides and metal nitrides, polymer films such as fluorine resins, polyparaxylene, polyethylene, silicone resins, and polystyrene resins, and photocurable resins. Can be mentioned. Further, it is possible to cover glass, a gas impermeable film, a metal, etc., and to package the element itself with an appropriate sealing resin.

以下、実施例により本発明をさらに具体的に説明していくが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

<合成例1[例示化合物No.5の合成]>   <Synthesis Example 1 [Exemplary Compound No. Synthesis of 5] >>

Figure 2007001879
Figure 2007001879

J.Org.Chem.,46,833(1981)に記載の合成法に準じ、2,8−ジクロロ−1,9,10−アンスリジン[4](白色結晶)を[1]からのトータル収率11%で得た。   J. et al. Org. Chem. 46,833 (1981), 2,8-dichloro-1,9,10-anthridine [4] (white crystals) was obtained in a total yield of 11% from [1].

Figure 2007001879
Figure 2007001879

500ml三ツ口フラスコに、2,8−ジクロロ−1,9,10−アンスリジン[4]1.0g(4.00mmol)、9,9−ジメチルフルオレン−2−ボロン酸[5]2.9g(12.0mmol)、トルエン160mlおよびエタノール80mlを入れ、窒素雰囲気中、室温で攪拌下、炭酸ナトリウム16g/水80mlの水溶液を滴下した。次いでテトラキス(トリフェニルホスフィン)パラジウム(0)0.23g(0.20mmol)を添加した。室温で30分攪拌した後77度に昇温し4時間攪拌した。反応後、有機層をクロロホルムで抽出し無水硫酸ナトリウムで乾燥後、アルミナカラム(クロロホルム展開溶媒)で精製し、例示化合物No.5(白色結晶)1.8g(収率80%)を得た。   In a 500 ml three-necked flask, 1.0 g (4.00 mmol) of 2,8-dichloro-1,9,10-anthridine [4] and 2.9 g of 9,9-dimethylfluorene-2-boronic acid [5] (12. 0 mmol), 160 ml of toluene and 80 ml of ethanol were added, and an aqueous solution of 16 g of sodium carbonate / 80 ml of water was added dropwise with stirring at room temperature in a nitrogen atmosphere. Next, 0.23 g (0.20 mmol) of tetrakis (triphenylphosphine) palladium (0) was added. After stirring at room temperature for 30 minutes, the temperature was raised to 77 degrees and stirred for 4 hours. After the reaction, the organic layer was extracted with chloroform, dried over anhydrous sodium sulfate, and purified with an alumina column (chloroform developing solvent). Thus, 1.8 g (yield 80%) of 5 (white crystals) was obtained.

<合成例2[例示化合物No.9の合成]>   <Synthesis Example 2 [Exemplary Compound No. Synthesis of 9] >>

Figure 2007001879
Figure 2007001879

500ml三ツ口フラスコに、2,8−ジクロロ−1,9,10−アンスリジン[4]1.0g(4.00mmol)、フェナンスレン−9−ボロン酸[6]2.7g(12.2mmol)、トルエン160mlおよびエタノール80mlを入れた。窒素雰囲気中、室温で攪拌下、炭酸ナトリウム16g/水80mlの水溶液を滴下し、次いでテトラキス(トリフェニルホスフィン)パラジウム(0)0.23g(0.20mmol)を添加した。室温で30分攪拌した後77度に昇温し4時間攪拌した。反応後有機層をクロロホルムで抽出し無水硫酸ナトリウムで乾燥後、アルミナカラム(クロロホルム展開溶媒)で精製し、例示化合物No.9(白色結晶)1.6g(収率73%)を得た。   In a 500 ml three-necked flask, 1.0 g (4.00 mmol) of 2,8-dichloro-1,9,10-anthridine [4], 2.7 g (12.2 mmol) of phenanthrene-9-boronic acid [6], 160 ml of toluene. And 80 ml of ethanol. While stirring at room temperature in a nitrogen atmosphere, an aqueous solution of 16 g of sodium carbonate / 80 ml of water was added dropwise, and then 0.23 g (0.20 mmol) of tetrakis (triphenylphosphine) palladium (0) was added. After stirring at room temperature for 30 minutes, the temperature was raised to 77 degrees and stirred for 4 hours. After the reaction, the organic layer was extracted with chloroform, dried over anhydrous sodium sulfate, and purified with an alumina column (chloroform developing solvent). 1.6 g (yield 73%) of 9 (white crystals) was obtained.

<合成例3[例示化合物No.22の合成]>   <Synthesis Example 3 [Exemplary Compound No. Synthesis of 22] >>

Figure 2007001879
Figure 2007001879

500ml三ツ口フラスコに、2,8−ジクロロ−1,9,10−アンスリジン[4]5.0g(20.0mmol)、フェニルボロン酸2.0g(16.0mmol)、トルエン200mlおよびエタノール100mlを入れた。窒素雰囲気中、室温で攪拌下、炭酸ナトリウム30g/水150mlの水溶液を滴下し、次いでテトラキス(トリフェニルホスフィン)パラジウム(0)1.16g(1.00mmol)を添加した。室温で30分攪拌した後77度に昇温し1時間攪拌した。反応後有機層をクロロホルムで抽出し無水硫酸ナトリウムで乾燥後、アルミナカラム(クロロホルム展開溶媒)で精製し、2−クロロ−8−フェニル−1,9,10−アンスリジン[7](白色結晶)1.8g(収率31%)を得た。   A 500 ml three-necked flask was charged with 5.0 g (20.0 mmol) of 2,8-dichloro-1,9,10-anthridine [4], 2.0 g (16.0 mmol) of phenylboronic acid, 200 ml of toluene and 100 ml of ethanol. . An aqueous solution of 30 g of sodium carbonate / 150 ml of water was added dropwise with stirring at room temperature in a nitrogen atmosphere, and then 1.16 g (1.00 mmol) of tetrakis (triphenylphosphine) palladium (0) was added. After stirring at room temperature for 30 minutes, the temperature was raised to 77 degrees and stirred for 1 hour. After the reaction, the organic layer was extracted with chloroform, dried over anhydrous sodium sulfate, and purified with an alumina column (chloroform developing solvent) to give 2-chloro-8-phenyl-1,9,10-anthridine [7] (white crystals) 1 0.8 g (yield 31%) was obtained.

Figure 2007001879
Figure 2007001879

200ml三ツ口フラスコに、2−クロロ−8−フェニル−1,9,10−アンスリジン[7]1.0g(3.44mmol)、4,4‘−ビフェニルジボロニックアシッド[8]0.33g(1.37mmol)、トルエン60mlおよびエタノール30mlを入れた。窒素雰囲気中、室温で攪拌下、炭酸ナトリウム6g/水30mlの水溶液を滴下し、次いでテトラキス(トリフェニルホスフィン)パラジウム(0)0.08g(0.07mmol)を添加した。室温で30分攪拌した後77度に昇温し4時間攪拌した。反応後有機層をクロロホルムで抽出し無水硫酸ナトリウムで乾燥後、アルミナカラム(クロロホルム展開溶媒)で精製し、例示化合物No.22(黄色結晶)0.68g(収率75%)を得た。   In a 200 ml three-necked flask, 1.0 g (3.44 mmol) of 2-chloro-8-phenyl-1,9,10-anthridine [7] and 0.33 g of 4,4′-biphenyldiboronic acid [8] (1 37 mmol), 60 ml of toluene and 30 ml of ethanol. While stirring at room temperature in a nitrogen atmosphere, an aqueous solution of 6 g of sodium carbonate / 30 ml of water was added dropwise, and then 0.08 g (0.07 mmol) of tetrakis (triphenylphosphine) palladium (0) was added. After stirring at room temperature for 30 minutes, the temperature was raised to 77 degrees and stirred for 4 hours. After the reaction, the organic layer was extracted with chloroform, dried over anhydrous sodium sulfate, and purified with an alumina column (chloroform developing solvent). Thus, 0.68 g (yield 75%) of 22 (yellow crystals) was obtained.

<実施例1>
図3に示す構造の素子を作成した。
<Example 1>
An element having the structure shown in FIG. 3 was prepared.

基板1としてのガラス基板上に、陽極2としての酸化錫インジウム(ITO)をスパッタ法にて120nmの膜厚で成膜したものを透明導電性支持基板として用いた。これをアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後乾燥した。さらに、UV/オゾン洗浄したものを透明導電性支持基板として使用した。   What formed indium tin oxide (ITO) as an anode 2 with a film thickness of 120 nm on a glass substrate as a substrate 1 by a sputtering method was used as a transparent conductive support substrate. This was ultrasonically washed successively with acetone and isopropyl alcohol (IPA), then boiled and washed with IPA and then dried. Furthermore, what was UV / ozone cleaned was used as a transparent conductive support substrate.

透明導電性支持基板上に下記構造式で示される化合物のクロロホルム溶液をスピンコート法により20nmの膜厚で成膜しホール輸送層5を形成した。   A hole transport layer 5 was formed by depositing a chloroform solution of a compound represented by the following structural formula on a transparent conductive support substrate with a film thickness of 20 nm by spin coating.

Figure 2007001879
Figure 2007001879

さらに下記構造式で示されるIr錯体およびCBP(重量比8:100)を真空蒸着法により20nmの膜厚で成膜し発光層3を形成した。蒸着時の真空度は1.0×10-4Pa、成膜速度は0.2〜0.3nm/secの条件で成膜した。 Further, an Ir complex represented by the following structural formula and CBP (weight ratio 8: 100) were formed into a film with a thickness of 20 nm by a vacuum deposition method to form the light emitting layer 3. The degree of vacuum at the time of vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 0.2 to 0.3 nm / sec.

Figure 2007001879
Figure 2007001879

さらに、例示化合物No.1を真空蒸着法により30nmの膜厚で成膜し電子輸送層6を形成した。蒸着時の真空度は1.0×10-4Pa、成膜速度は0.2〜0.3nm/secの条件で成膜した。 Furthermore, Exemplified Compound No. 1 was formed into a film with a thickness of 30 nm by a vacuum vapor deposition method to form an electron transport layer 6. The degree of vacuum at the time of vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 0.2 to 0.3 nm / sec.

次に、陰極4として、アルミニウムとリチウム(リチウム濃度1原子%)からなる蒸着材料を用いて、上記有機層の上に真空蒸着法により厚さ50nmの金属層膜を形成し、さらに真空蒸着法により厚さ150nmのアルミニウム層を形成した。蒸着時の真空度は1.0×10-4Pa、成膜速度は1.0〜1.2nm/secの条件で成膜した。 Next, a metal layer film having a thickness of 50 nm is formed on the organic layer by a vacuum deposition method using a deposition material composed of aluminum and lithium (lithium concentration: 1 atomic%) as the cathode 4, and further a vacuum deposition method. Thus, an aluminum layer having a thickness of 150 nm was formed. The degree of vacuum at the time of vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 1.0 to 1.2 nm / sec.

さらに、窒素雰囲気中で保護用ガラス板をかぶせ、アクリル樹脂系接着材で封止した。   Further, a protective glass plate was placed in a nitrogen atmosphere and sealed with an acrylic resin adhesive.

この様にして得られた素子に、ITO電極(陽極2)を正極、Al−Li電極(陰極4)を負極にして、10Vの直流電圧を印加すると22mA/cm2の電流密度で電流が素子に流れ、5100cd/m2の輝度で緑色の発光が観測された。 When a 10V DC voltage was applied to the device thus obtained with the ITO electrode (anode 2) as the positive electrode and the Al-Li electrode (cathode 4) as the negative electrode, the current flowed at a current density of 22 mA / cm 2. A green light emission was observed at a luminance of 5100 cd / m 2 .

さらに、電流密度を6.0mA/cm2に保ち100時間電圧を印加したところ、初期輝度910cd/m2から100時間後870cd/m2と輝度劣化は小さかった。 Further, when a voltage was applied for 100 hours while maintaining the current density at 6.0 mA / cm 2 , the luminance deterioration was small, that is, 870 cd / m 2 after 100 hours from the initial luminance of 910 cd / m 2 .

<実施例2〜12>
例示化合物No.1に代えて、表1に示す化合物を用いた他は実施例1と同様に素子を作成し、同様な評価を行った。結果を表1に示す。
<Examples 2 to 12>
Exemplified Compound No. A device was prepared in the same manner as in Example 1 except that the compounds shown in Table 1 were used in place of 1, and the same evaluation was performed. The results are shown in Table 1.

<比較例1〜3>
例示化合物No.1に代えて、下記構造式で示される化合物を用いた他は実施例1と同様に素子を作成し、同様な評価を行った。結果を表1に示す。
<Comparative Examples 1-3>
Exemplified Compound No. A device was prepared in the same manner as in Example 1 except that a compound represented by the following structural formula was used instead of 1, and the same evaluation was performed. The results are shown in Table 1.

Figure 2007001879
Figure 2007001879

Figure 2007001879
Figure 2007001879

<実施例13>
図3に示す構造の素子を作成した。
<Example 13>
An element having the structure shown in FIG. 3 was prepared.

実施例1と同様に、透明導電性支持基板上にホール輸送層5を形成した。   In the same manner as in Example 1, a hole transport layer 5 was formed on a transparent conductive support substrate.

さらに下記構造式で示されるフルオレン化合物を真空蒸着法により20nmの膜厚で成膜し発光層3を形成した。蒸着時の真空度は1.0×10-4Pa、成膜速度は0.2〜0.3nm/secの条件で成膜した。 Further, a fluorene compound represented by the following structural formula was formed into a film with a thickness of 20 nm by a vacuum vapor deposition method to form the light emitting layer 3. The degree of vacuum at the time of vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 0.2 to 0.3 nm / sec.

Figure 2007001879
Figure 2007001879

さらに例示化合物No.5を真空蒸着法により20nmの膜厚で成膜し電子輸送層6を形成した。蒸着時の真空度は1.0×10-4Pa、成膜速度は0.2〜0.3nm/secの条件で成膜した。 Furthermore, Exemplified Compound No. 5 was formed into a film with a thickness of 20 nm by a vacuum evaporation method, and an electron transport layer 6 was formed. The degree of vacuum at the time of vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 0.2 to 0.3 nm / sec.

次に、実施例1と同様にして、陰極4を形成後、封止した。   Next, in the same manner as in Example 1, the cathode 4 was formed and then sealed.

この様にして得られた素子に、ITO電極(陽極2)を正極、Al−Li電極(陰極4)を負極にして、5Vの直流電圧を印加すると75mA/cm2の電流密度で電流が素子に流れ、3500cd/m2の輝度で青色の発光が観測された。 When a 5V DC voltage was applied to the device obtained in this manner, with the ITO electrode (anode 2) as the positive electrode and the Al-Li electrode (cathode 4) as the negative electrode, the current flowed at a current density of 75 mA / cm 2. A blue emission was observed at a luminance of 3500 cd / m 2 .

さらに、電流密度を30mA/cm2に保ち100時間電圧を印加したところ、初期輝度1800cd/m2から100時間後1200cd/m2と輝度劣化は小さかった。 Further, when a voltage was applied for 100 hours while maintaining the current density at 30 mA / cm 2 , the luminance deterioration was small, from the initial luminance of 1800 cd / m 2 to 1200 cd / m 2 after 100 hours.

<実施例14〜22>
例示化合物No.5に代えて、表2に示す化合物を用いた他は実施例13と同様に素子を作成し、同様な評価を行った。結果を表2に示す。
<Examples 14 to 22>
Exemplified Compound No. A device was prepared in the same manner as in Example 13 except that the compounds shown in Table 2 were used in place of 5, and the same evaluation was performed. The results are shown in Table 2.

<比較例4〜6>
例示化合物No.5に代えて、比較化合物No.1、2、3を用いた他は実施例13と同様に素子を作成し、同様な評価を行った。結果を表2に示す。
<Comparative Examples 4-6>
Exemplified Compound No. In place of Comparative compound No. 5 A device was prepared in the same manner as in Example 13 except that 1, 2, and 3 were used, and the same evaluation was performed. The results are shown in Table 2.

Figure 2007001879
Figure 2007001879

<実施例23>
図2に示す構造の素子を作成した。
<Example 23>
An element having the structure shown in FIG. 2 was produced.

実施例1と同様に、透明導電性支持基板上にホール輸送層5を形成した。   In the same manner as in Example 1, a hole transport layer 5 was formed on a transparent conductive support substrate.

さらに例示化合物No.3を真空蒸着法により40nmの膜厚で成膜し発光層兼電子輸送層6を形成した。蒸着時の真空度は1.0×10-4Pa、成膜速度は0.2〜0.3nm/secの条件で成膜した。 Furthermore, Exemplified Compound No. 3 was formed into a film having a thickness of 40 nm by a vacuum evaporation method to form a light emitting layer / electron transport layer 6. The degree of vacuum at the time of vapor deposition was 1.0 × 10 −4 Pa, and the film formation rate was 0.2 to 0.3 nm / sec.

次に、実施例1と同様にして、陰極4を形成後、封止した。   Next, in the same manner as in Example 1, the cathode 4 was formed and then sealed.

この様にして得られた素子に、ITO電極(陽極2)を正極、Al−Li電極(陰極4)を負極にして、5Vの直流電圧を印加すると40mA/cm2の電流密度で電流が素子に流れ、1600cd/m2の輝度で青色の発光が観測された。 When a 5V DC voltage was applied to the device thus obtained with the ITO electrode (anode 2) as the positive electrode and the Al-Li electrode (cathode 4) as the negative electrode, the current was applied at a current density of 40 mA / cm 2. A blue light emission was observed at a luminance of 1600 cd / m 2 .

さらに、電流密度を30mA/cm2に保ち100時間電圧を印加したところ、初期輝度1000cd/m2から100時間後750cd/m2と輝度劣化は小さかった。 Further, when a voltage was applied for 100 hours while a current density was kept to 30 mA / cm 2, after the initial luminance 1000 cd / m 2 100 hours 750 cd / m 2 and luminance degradation was small.

<実施例24〜27>
例示化合物No.3に代えて、表3に示す化合物を用いた他は実施例23と同様に素子を作成し、同様な評価を行った。結果を表3に示す。
<Examples 24-27>
Exemplified Compound No. A device was prepared in the same manner as in Example 23 except that the compounds shown in Table 3 were used in place of 3, and the same evaluation was performed. The results are shown in Table 3.

<比較例7〜9>
例示化合物No.3に代えて、比較化合物No.1、2、3を用いた他は実施例23と同様に素子を作成し、同様な評価を行った。結果を表3に示す。
<Comparative Examples 7-9>
Exemplified Compound No. In place of Comparative compound No. 3 A device was prepared in the same manner as in Example 23 except that 1, 2, and 3 were used, and the same evaluation was performed. The results are shown in Table 3.

Figure 2007001879
Figure 2007001879

本発明における有機発光素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic light emitting element in this invention. 本発明における有機発光素子の他の例を示す断面図である。It is sectional drawing which shows the other example of the organic light emitting element in this invention. 本発明における有機発光素子の他の例を示す断面図である。It is sectional drawing which shows the other example of the organic light emitting element in this invention. 本発明における有機発光素子の他の例を示す断面図である。It is sectional drawing which shows the other example of the organic light emitting element in this invention. 本発明における有機発光素子の他の例を示す断面図である。It is sectional drawing which shows the other example of the organic light emitting element in this invention. 本発明における有機発光素子の他の例を示す断面図である。It is sectional drawing which shows the other example of the organic light emitting element in this invention.

符号の説明Explanation of symbols

1 基板
2 陽極
3 発光層
4 陰極
5 ホール輸送層
6 電子輸送層
7 ホール注入層
8 ホール/エキシトンブロッキング層
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Light emitting layer 4 Cathode 5 Hole transport layer 6 Electron transport layer 7 Hole injection layer 8 Hole / exciton blocking layer

Claims (6)

下記一般式[I]で示されることを特徴とする1,9,10−アンスリジン化合物。
Figure 2007001879
(式中、R1〜R7は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基,置換あるいは無置換の複素環基、置換あるいは無置換の縮合多環芳香族基、置換あるいは無置換の縮合多環複素環基、置換あるいは無置換のアリールオキシ基、置換アミノ基、ハロゲン原子、トリフルオロメチル基、シアノ基から選ばれる基を表わし、同じであっても異なっていてもよい。但し、R1〜R7の少なくとも1つは、置換あるいは無置換のアリール基,置換あるいは無置換の複素環基、置換あるいは無置換の縮合多環芳香族基、置換あるいは無置換の縮合多環複素環基から選ばれる。)
A 1,9,10-anthridine compound represented by the following general formula [I]:
Figure 2007001879
Wherein R 1 to R 7 are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted Represents a group selected from a substituted fused polycyclic aromatic group, a substituted or unsubstituted fused polycyclic heterocyclic group, a substituted or unsubstituted aryloxy group, a substituted amino group, a halogen atom, a trifluoromethyl group, and a cyano group. These may be the same or different, provided that at least one of R 1 to R 7 is a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted condensed polycycle. (Selected from an aromatic group, a substituted or unsubstituted condensed polycyclic heterocyclic group)
2〜R6が、水素原子、置換あるいは無置換のアルキル基、ハロゲン原子、トリフルオロメチル基、シアノ基から選ばれる基を表わし、R1、R7が、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置換あるいは無置換の縮合多環芳香族基、置換あるいは無置換の縮合多環複素環基、置換あるいは無置換のアリールオキシ基、置換アミノ基から選ばれる基を表わすことを特徴とする請求項1に記載の1,9,10−アンスリジン化合物。 R 2 to R 6 is a hydrogen atom, a substituted or unsubstituted alkyl group, a halogen atom, a trifluoromethyl group, or a group selected from cyano group, R 1, R 7 is a substituted or unsubstituted aralkyl group, A substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted condensed polycyclic aromatic group, a substituted or unsubstituted condensed polycyclic heterocyclic group, a substituted or unsubstituted aryloxy group, The 1,9,10-anthridine compound according to claim 1, which represents a group selected from substituted amino groups. 下記一般式[II]で示されることを特徴とする1,9,10−アンスリジン化合物。
Figure 2007001879
(式中、R13、R14は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基,置換あるいは無置換の複素環基、置換あるいは無置換の縮合多環芳香族基、置換あるいは無置換の縮合多環複素環基、置換あるいは無置換のアリールオキシ基、置換アミノ基、ハロゲン原子、トリフルオロメチル基、シアノ基から選ばれる基を表わし、同じであっても異なっていてもよい。
Ar3は、2価の置換あるいは無置換の芳香環基,2価の置換あるいは無置換の複素環基、2価の置換あるいは無置換の縮合多環芳香族基、2価の置換あるいは無置換の縮合多環複素環基から選ばれる基を表わす。)
A 1,9,10-anthridine compound represented by the following general formula [II]:
Figure 2007001879
(Wherein R 13 and R 14 are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, substituted or unsubstituted Represents a group selected from a substituted fused polycyclic aromatic group, a substituted or unsubstituted fused polycyclic heterocyclic group, a substituted or unsubstituted aryloxy group, a substituted amino group, a halogen atom, a trifluoromethyl group, and a cyano group. , May be the same or different.
Ar 3 is a divalent substituted or unsubstituted aromatic ring group, a divalent substituted or unsubstituted heterocyclic group, a divalent substituted or unsubstituted condensed polycyclic aromatic group, a divalent substituted or unsubstituted Represents a group selected from the group consisting of condensed polycyclic heterocyclic groups. )
下記一般式[III]で示されることを特徴とする1,9,10−アンスリジン化合物。
Figure 2007001879
(式中、R15〜R17は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基,置換あるいは無置換の複素環基、置換あるいは無置換の縮合多環芳香族基、置換あるいは無置換の縮合多環複素環基、置換あるいは無置換のアリールオキシ基、置換アミノ基、ハロゲン原子、トリフルオロメチル基、シアノ基から選ばれる基を表わし、同じであっても異なっていてもよい。
Ar4は、3価の置換あるいは無置換の芳香環基,3価の置換あるいは無置換の複素環基、3価の置換あるいは無置換の縮合多環芳香族基、3価の置換あるいは無置換の縮合多環複素環基から選ばれる基を表わす。)
A 1,9,10-anthridine compound represented by the following general formula [III]:
Figure 2007001879
Wherein R 15 to R 17 are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, substituted or unsubstituted Represents a group selected from a substituted fused polycyclic aromatic group, a substituted or unsubstituted fused polycyclic heterocyclic group, a substituted or unsubstituted aryloxy group, a substituted amino group, a halogen atom, a trifluoromethyl group, and a cyano group. , May be the same or different.
Ar 4 is a trivalent substituted or unsubstituted aromatic ring group, a trivalent substituted or unsubstituted heterocyclic group, a trivalent substituted or unsubstituted condensed polycyclic aromatic group, a trivalent substituted or unsubstituted group Represents a group selected from the group consisting of condensed polycyclic heterocyclic groups. )
陽極及び陰極からなる一対の電極と、該一対の電極間に挟持された一または複数の有機化合物を含む層を少なくとも有する有機発光素子において、前記有機化合物を含む層の少なくとも一層が請求項1〜4のいずれかに記載の1,9,10−アンスリジン化合物の少なくとも一種を含有することを特徴とする有機発光素子。   In the organic light emitting device having at least one layer including an anode and a cathode, and at least one layer including one or more organic compounds sandwiched between the pair of electrodes, at least one of the layers including the organic compound is defined in claim 1. 5. An organic light-emitting device comprising at least one of the 1,9,10-anthridine compounds according to any one of 4 above. 前記1,9,10−アンスリジン化合物の少なくとも一種を含有する層が、ホールブロック層、電子輸送層、発光層または電子注入層であることを特徴とする請求項5に記載の有機発光素子。   6. The organic light emitting device according to claim 5, wherein the layer containing at least one of the 1,9,10-anthridine compounds is a hole block layer, an electron transport layer, a light emitting layer, or an electron injection layer.
JP2005180392A 2005-06-21 2005-06-21 1, 9, 10-anthridine compound and organic light emitting device using the same Withdrawn JP2007001879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005180392A JP2007001879A (en) 2005-06-21 2005-06-21 1, 9, 10-anthridine compound and organic light emitting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005180392A JP2007001879A (en) 2005-06-21 2005-06-21 1, 9, 10-anthridine compound and organic light emitting device using the same

Publications (1)

Publication Number Publication Date
JP2007001879A true JP2007001879A (en) 2007-01-11

Family

ID=37687805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180392A Withdrawn JP2007001879A (en) 2005-06-21 2005-06-21 1, 9, 10-anthridine compound and organic light emitting device using the same

Country Status (1)

Country Link
JP (1) JP2007001879A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8277957B2 (en) 2009-08-28 2012-10-02 Industrial Technology Research Institute Quinoxaline derivatives and organic light-emitting diodes comprising the same
US8486544B2 (en) 2009-08-28 2013-07-16 Industrial Technology Research Institute Quinoxaline derivatives and organic light-emitting diodes comprising the same
US11326096B2 (en) * 2018-12-17 2022-05-10 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Red light thermally activated delayed fluorescence material, method for preparing the same, and organic light emitting diode device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8277957B2 (en) 2009-08-28 2012-10-02 Industrial Technology Research Institute Quinoxaline derivatives and organic light-emitting diodes comprising the same
US8486544B2 (en) 2009-08-28 2013-07-16 Industrial Technology Research Institute Quinoxaline derivatives and organic light-emitting diodes comprising the same
US11326096B2 (en) * 2018-12-17 2022-05-10 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Red light thermally activated delayed fluorescence material, method for preparing the same, and organic light emitting diode device

Similar Documents

Publication Publication Date Title
JP4865258B2 (en) 1,8-naphthyridine compound and organic light-emitting device using the same
JP3902993B2 (en) Fluorene compound and organic light emitting device using the same
JP4065547B2 (en) Fluorene compound and organic light emitting device using the same
JP4261855B2 (en) Phenanthroline compound and organic light emitting device using the same
JP4585750B2 (en) Fused polycyclic compound and organic light emitting device using the same
JP4336483B2 (en) Diazafluorene compound and organic light-emitting device using the same
JP3848224B2 (en) Spiro compound and organic light emitting device using the same
JP3870102B2 (en) Organic light emitting device
JP4323935B2 (en) Organic light emitting device
JP5241256B2 (en) Fused ring aromatic compound and organic light emitting device using the same
JP5111135B2 (en) Organic light emitting device
JP2008127446A (en) 1,5-naphthyridine compound and organic light emitting device
JP4541809B2 (en) Organic compound and organic light emitting device
JP2008137978A (en) Carbazole derivative and organic light-emitting element using the same
JP2007204425A (en) Fluorene compound and organic light-emitting element obtained using the same
JP5043404B2 (en) Heterocyclic compounds and organic light emitting devices
JP4994802B2 (en) Pyrene compounds and organic light emitting devices
JP4065552B2 (en) Organic light emitting device
JP2007261969A (en) 2,6-fluorenyl-substituted pyridine compound and organic luminescent element using the same
JP4950460B2 (en) Organic light emitting device
JP2008127316A (en) Condensed heterocyclic compound and organic light emitting device using the same
JP2007001879A (en) 1, 9, 10-anthridine compound and organic light emitting device using the same
JP2008285450A (en) Condensed ring aromatic compound and organic light-emitting element using the same
JP4035499B2 (en) Organic light emitting device
JP4423022B2 (en) 2,1-Benzisothiazole compound and organic light emitting device using the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902