JP2006352464A - Acoustic vibration generating element - Google Patents

Acoustic vibration generating element Download PDF

Info

Publication number
JP2006352464A
JP2006352464A JP2005175367A JP2005175367A JP2006352464A JP 2006352464 A JP2006352464 A JP 2006352464A JP 2005175367 A JP2005175367 A JP 2005175367A JP 2005175367 A JP2005175367 A JP 2005175367A JP 2006352464 A JP2006352464 A JP 2006352464A
Authority
JP
Japan
Prior art keywords
vibration generating
acoustic vibration
generating element
piezoelectric
bone conduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005175367A
Other languages
Japanese (ja)
Inventor
Mitsuo Tamura
光男 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2005175367A priority Critical patent/JP2006352464A/en
Publication of JP2006352464A publication Critical patent/JP2006352464A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To remedy the lowering of the band of the frequency of an acoustic vibration generating element for a loudspeaker for bone conduction, the deterioration of a mechanical Q, and a sound leakage. <P>SOLUTION: A piezoelectric bimorph element 1 or a piezoelectric unimorph element 1 and a flexible substance 2 are compounded, and the reduction of a generating vibrating force associated with the compounding can be prevented by forming notches 3 to the flexible substance. A countermeasure for the sound leakage is more effective by fitting an air chamber near a surface. When a vibration generating part and a hunger to an ear are constituted integrally, the lightweight acoustic vibration generating element can be provided for the loudspeaker for the bone conduction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、音響電気信号を音響振動に変換して頭骨や腕に伝搬させ、それを聴覚神経で聴取する骨伝導スピーカー等の骨伝導応用の音響振動発生素子に関するものである。   The present invention relates to an acoustic vibration generating element for bone conduction application such as a bone conduction speaker for converting an acoustoelectric signal into acoustic vibration and propagating it to a skull or arm and listening to it with an auditory nerve.

従来、骨伝導用の電気−機械トランスデューサとしては、主に電磁式が用いられダイナミックスピーカと同じ原理のコイルを流れる電流とマグネットとの相互作用で発生する駆動力を機械振動に変えるもので、特許文献1や特許文献2等のいくつかの提案がなされている。電磁方式の発生力は電磁力であり、電流を必要とするが、巻線の有する抵抗でエネルギー損失を生じ、電源から供給されるエネルギーの大半はジュール熱として散失し、音響エネルギーとして使用される分は、わずかに1%にすぎないという欠点があった。また、低音領域では、低インピーダンスのために、電流が過剰になりやすく電源側の負荷が大きく、結果的に低音域では出力を制限せざるを得ないために、低音が音響出力不足になりやすいという欠点があった。   Conventionally, as an electro-mechanical transducer for bone conduction, the electromagnetic type is mainly used, and the driving force generated by the interaction between the magnet and the current flowing through the coil of the same principle as the dynamic speaker is changed to mechanical vibration. Several proposals such as Document 1 and Patent Document 2 have been made. The generated force of the electromagnetic system is an electromagnetic force and requires an electric current, but energy loss is caused by the resistance of the winding, and most of the energy supplied from the power source is lost as Joule heat and used as acoustic energy There was a drawback that the minute was only 1%. Also, in the low frequency range, due to the low impedance, the current tends to be excessive and the load on the power supply side is large. As a result, the output must be limited in the low frequency range, so the low frequency range tends to be insufficient in sound output. There was a drawback.

一方、少数ではあるが、例えば、特許文献3および特許文献4のように圧電素子を用いた骨伝導用トランスデユーサの提案がある。この場合は、圧電発音体として多く用いられる金属板と圧電材料を貼りあわせた圧電ユニモルフ素子を音響振動発生素子として用いているが、実用のサイズでは、共振周波数が1kHz以上になるために、共振周波数より下の低音域の再生が不充分になり易い欠点があった。また、振動系の機械的品質係数Qが高いために特定の周波数で振動の発生が強調されたり、逆に減衰したりするために自然な音の再生ができないという欠点もあった。   On the other hand, although there are a few, for example, there are proposals of bone conduction transducers using piezoelectric elements as in Patent Documents 3 and 4. In this case, a piezoelectric unimorph element in which a metal plate and a piezoelectric material often used as a piezoelectric sounding body are bonded is used as an acoustic vibration generating element. However, in a practical size, the resonance frequency is 1 kHz or more, so that resonance occurs. There was a drawback that reproduction in the low frequency range below the frequency tends to be insufficient. In addition, since the mechanical quality factor Q of the vibration system is high, the occurrence of vibration at a specific frequency is emphasized, and conversely, the natural sound cannot be reproduced because the vibration is attenuated.

更に、対象が難聴者でなく健聴者を対象とするような骨伝導応用において、骨伝導スピーカーに要求される要求条件として、使用者以外には音声が漏れないことであるが、従来の構成では、振動を受ける構造体の振動が音声として周囲に伝播するという欠点があった。   Furthermore, in bone conduction applications where the target is not a hearing impaired person but a normal hearing person, the requirement for the bone conduction speaker is that no sound is leaked to anyone other than the user. There is a drawback that the vibration of the structure receiving the vibration propagates to the surroundings as sound.

特許第2967777号公報Japanese Patent No. 2967777 特許第3358086号公報Japanese Patent No. 3358086 特開昭59−140796号公報JP 59-140796 A 特開昭59−178895号公報JP 59-178895 A

圧電素子の骨伝導への応用において、低音域を重視する場合は圧電振動子側の共振周波数をできるだけ低くする必要がある。圧電素子の共振周波数を低下させる手段としては、振動を決める素子の直径や長さを大きく取る、素子の曲げ弾性係数を下げる、振動の腹の部分に質量を付加する、等の方法が考えられる。しかし、対象が携帯機器で大きさに制限がある場合、素子の寸法を大きくする方法には限界が出てくる。   In the application of the piezoelectric element to bone conduction, when the low sound range is important, the resonance frequency on the piezoelectric vibrator side needs to be as low as possible. As means for lowering the resonance frequency of the piezoelectric element, there are methods such as increasing the diameter and length of the element that determines vibration, lowering the bending elastic modulus of the element, and adding mass to the antinode portion of the vibration. . However, when the target is a portable device and the size is limited, there is a limit to the method of increasing the element size.

曲げ弾性係数を下げる別の手段としては、圧電セラミックスもしくは中央に挟まれる金属板(シム板)の厚さを薄くすることでも達成できるが、同時に機械的な強度を下げることと、それ自体の重量が軽くなることで共振周波数が上がるため実質的な効果が伴わない。また、有機物系の弾性係数の小さな材料をシムに選ぶことで、ある程度曲げの弾性係数を下げることは可能であるが、一般にこれらの材料の比重が小さいために、振動子全体の重量が下がり、共振周波数が上がりやすくなる。また、質量を付加する場合は衝撃的振動に対して強度が弱くなりやすいという問題点がある。   Another way to lower the flexural modulus can be achieved by reducing the thickness of the piezoelectric ceramic or metal plate (shim plate) sandwiched in the center, but at the same time lowering the mechanical strength and its own weight Since the resonance frequency is increased by reducing the weight, there is no substantial effect. In addition, it is possible to lower the elastic modulus of bending to some extent by selecting a material with a small elastic modulus of organic matter as a shim.However, since the specific gravity of these materials is generally small, the weight of the entire vibrator decreases, The resonance frequency tends to increase. Moreover, when adding mass, there exists a problem that intensity | strength becomes weak easily with respect to an impact vibration.

しかしながら、圧電方式は、機械振動の駆動力源が圧電歪みにあり、電圧で駆動されるため、電磁式のような巻線によるジュール熱の散失が伴わないため、省エネルギーになることや、マグネットやヨークのような金具類を必要としないことから軽量化ができることと、薄型化が可能になることなど利点も多く、共振周波数の高いこと、機械的Qが高いなどの欠点を克服することが課題であった。また、周囲への音声漏れの対策については、電磁式、圧電式に係らず骨伝導の実用上は避けられない重要な課題である。なお、圧電式の特徴をさらに発揮するためには、駆動のための入力電圧を可能な限り低くできるようにすると回路側のエネルギー損失が抑えられるという効果もある。   However, in the piezoelectric method, since the driving force source of mechanical vibration is in piezoelectric distortion and driven by voltage, there is no loss of Joule heat due to winding like the electromagnetic method, which saves energy, Since there is no need for metal fittings such as a yoke, there are many advantages such as being able to be reduced in weight and being able to be thinned, and there are problems in overcoming the drawbacks such as high resonance frequency and high mechanical Q. Met. In addition, countermeasures against sound leakage to the surroundings are an important issue that cannot be avoided in practical use of bone conduction regardless of electromagnetic type or piezoelectric type. In order to further exhibit the piezoelectric characteristics, the energy loss on the circuit side can be suppressed by making the input voltage for driving as low as possible.

更に、骨伝導スピーカーは主に、人体の頭部に装着して用いるものであるが、なるべく軽量でかつ簡便であることが使用者にとって望ましい。   Furthermore, the bone conduction speaker is mainly used by being mounted on the head of a human body, but it is desirable for the user to be as light and simple as possible.

従って、本発明の技術的課題は、骨伝導用スピーカーの周波数の低域化や、機械的Qの低下、さらに音漏れを改善することにある。   Therefore, the technical problem of the present invention is to reduce the frequency of the bone conduction speaker, lower the mechanical Q, and improve sound leakage.

本発明によれば、圧電バイモルフ素子または圧電ユニモルフ素子の厚さ方向に垂直な二面のうち、少なくとも一面以上に可とう性物質部材を配した構造であって、前記、可とう性物質部材に切り込みが形成されていることを特徴とする骨伝導応用の音響振動発生素子が得られる。   According to the present invention, a flexible material member is arranged on at least one of two surfaces perpendicular to the thickness direction of the piezoelectric bimorph element or the piezoelectric unimorph element, and the flexible material member is provided with the flexible material member. An acoustic vibration generating element for bone conduction application, characterized in that a cut is formed, is obtained.

また、本発明によれば、圧電バイモルフ素子または圧電ユニモルフ素子の全体を可とう性物質部材で被覆した構造であって、前記、可とう性物質部材に切り込みが形成されていることを特徴とする骨伝導応用の音響振動発生素子が得られる。   According to the present invention, the piezoelectric bimorph element or the piezoelectric unimorph element is entirely covered with a flexible material member, and the flexible material member is cut. An acoustic vibration generating element for bone conduction application is obtained.

また、本発明によれば、前記切り込みは、音響振動発生素子の振動変位量が等しい部分を結んだ線と平行に形成されていることを特徴とする骨伝導応用の音響振動発生素子が得られる。   Further, according to the present invention, there is obtained an acoustic vibration generating element for bone conduction application, wherein the cut is formed in parallel with a line connecting portions having equal vibration displacements of the acoustic vibration generating element. .

また、本発明によれば、前記切り込みは、加工機での加工、或いは、成型用金型で形成してなる特徴とする骨伝導応用の音響振動発生素子が得られる。   Further, according to the present invention, an acoustic vibration generating element for bone conduction can be obtained, wherein the incision is processed by a processing machine or formed by a molding die.

更に、本発明によれば、圧電バイモルフ素子または圧電ユニモルフ素子の厚さ方向に垂直な一面のみに可とう性物質部材を配した構造であって、前記可とう性物質部材に溝が形成されていることを特徴とする骨伝導応用の音響振動発生素子が得られる。   Further, according to the present invention, the flexible material member is arranged only on one surface perpendicular to the thickness direction of the piezoelectric bimorph element or the piezoelectric unimorph element, and the flexible material member is formed with a groove. Thus, an acoustic vibration generating element for bone conduction application can be obtained.

更に、本発明によれば、前記溝は音響振動発生素子の振動変位量が等しい部分を結んだ線と平行に形成されていることを特徴とする音響振動発生素子が得られる。   Further, according to the present invention, there is obtained an acoustic vibration generating element characterized in that the groove is formed in parallel with a line connecting portions having equal vibration displacements of the acoustic vibration generating element.

更に、本発明によれば、前記溝の形成は、加工機での加工、或いは、可とう性物質の成型用の金型で形成したことを特徴とする骨伝導応用の音響振動発生素子が得られる。   Further, according to the present invention, an acoustic vibration generating element for bone conduction application is obtained, wherein the groove is formed by a processing machine or a mold for molding a flexible substance. It is done.

更に、本発明によれば、前記圧電バイモルフ素子または圧電ユニモルフ素子が、圧電セラミックスと内部電極の積層構造体であることを特徴とする骨伝導応用の音響振動発生素子が得られる。   Furthermore, according to the present invention, an acoustic vibration generating element for bone conduction application is obtained, wherein the piezoelectric bimorph element or the piezoelectric unimorph element is a laminated structure of piezoelectric ceramics and internal electrodes.

更に、本発明によれば、前記可とう性物質部材表面に空気室を設けたことを特徴とする骨伝導応用の音響振動発生素子が得られる。   Furthermore, according to the present invention, an acoustic vibration generating element for bone conduction application, wherein an air chamber is provided on the surface of the flexible material member, is obtained.

更に、本発明によれば、前記可とう性物質部材の一部が、耳かけ部分を構成していることを特徴とする骨伝導応用の音響振動発生素子が得られる。   Furthermore, according to the present invention, there is obtained an acoustic vibration generating element for bone conduction application, wherein a part of the flexible material member constitutes an ear hook portion.

本発明によれば、骨伝導用スピーカーの共振周波数を低域化し、機械的Qを低下することができる。さらに音漏れを改善し、同時に音域が広い骨伝導スピーカー用の音響振動発生素子の提供が可能である。また、落下時の衝撃を軽減でき、構造が堅牢で、軽量な骨伝導スピーカー用の音響振動発生素子の提供が可能となった。   According to the present invention, the resonance frequency of the bone conduction speaker can be lowered, and the mechanical Q can be lowered. Furthermore, it is possible to provide an acoustic vibration generating element for a bone conduction speaker that improves sound leakage and at the same time has a wide sound range. In addition, it is possible to provide an acoustic vibration generating element for a bone conduction speaker that can reduce the impact at the time of dropping, has a robust structure, and is lightweight.

次に、本発明による音響振動発生素子の実施の形態について、図面に基づいて具体的に説明する。   Next, an embodiment of an acoustic vibration generating element according to the present invention will be specifically described based on the drawings.

図1(a)及び図1(b)及び図1(c)は、本発明の音響振動発生素子の基本となる構成を示す斜視図である。図1(a)は、矩形状の圧電バイモルフまたは圧電ユニモルフ1の厚み方向に対して垂直な二面に可とう性物質2を貼りつけた構造の音響振動発生素子を示している。また、図1(b)は、矩形状の圧電バイモルフまたは圧電ユニモルフ1の全面を可とう性物質で被覆した構造の音響振動発生素子を示している。さらに、図1(c)は、円形の圧電バイモルフまたは圧電ユニモルフ1の全面を可とう性物質で被覆した構造の音響振動発生素子を示している。   FIG. 1A, FIG. 1B, and FIG. 1C are perspective views showing the basic configuration of the acoustic vibration generating element of the present invention. FIG. 1A shows an acoustic vibration generating element having a structure in which a flexible substance 2 is attached to two surfaces perpendicular to the thickness direction of a rectangular piezoelectric bimorph or piezoelectric unimorph 1. FIG. 1B shows an acoustic vibration generating element having a structure in which the entire surface of a rectangular piezoelectric bimorph or piezoelectric unimorph 1 is covered with a flexible material. Further, FIG. 1C shows an acoustic vibration generating element having a structure in which the entire surface of a circular piezoelectric bimorph or piezoelectric unimorph 1 is covered with a flexible material.

図2は、図1(a)〜図1(c)に示した本発明の音響振動発生素子の厚み方向における断面図である。なお、音響振動発生素子として圧電バイモルフを用いた場合を示している。圧電バイモルフ1は、シム材1bを圧電セラミクス1aで挟持されてなり、さらにその外層を可とう性物質2が覆う層状構成となる。この場合、音響振動発生素子の共振周波数Frは、形状や支持形式でも異なるが、例えば、矩形で且つ両端自由の場合には数1で示される。αは振動形式で決まる数値で、1次の共振では4.73となる。l(エル)は圧電バイモルフ素子の長さであり、Kは曲げの弾性係数、ρSは単位長さ当たりの重さである。   FIG. 2 is a cross-sectional view in the thickness direction of the acoustic vibration generating element of the present invention shown in FIGS. 1 (a) to 1 (c). In addition, the case where a piezoelectric bimorph is used as an acoustic vibration generating element is shown. The piezoelectric bimorph 1 has a layered structure in which a shim 1b is sandwiched between piezoelectric ceramics 1a and the outer layer is covered with a flexible material 2. In this case, the resonance frequency Fr of the acoustic vibration generating element is different depending on the shape and the support type. α is a numerical value determined by the vibration type, and is 4.73 in the first-order resonance. l is the length of the piezoelectric bimorph element, K is the elastic modulus of bending, and ρs is the weight per unit length.

Figure 2006352464
Figure 2006352464

また、音響振動発生素子の曲げの弾性係数Kは、圧電バイモルフ素子を構成する圧電セラミックス及びシム板の幅寸法w、およびそれぞれの厚みtc、2tsとそれぞれの弾性係数Ec,Esのほかに両面に付加される可とう性物質の厚みtp、弾性係数Ep等に支配され、数2で表現される。   The elastic modulus K of the bending of the acoustic vibration generating element is determined on both sides in addition to the width w of the piezoelectric ceramic and shim plate constituting the piezoelectric bimorph element, the thicknesses tc and 2ts, and the elastic coefficients Ec and Es. It is governed by the thickness tp of the flexible material to be added, the elastic modulus Ep, and the like, and is expressed by Equation 2.

Figure 2006352464
Figure 2006352464

さらに、単位長さあたりの重さρSは音響振動発生素子を構成する圧電セラミックス、シム板及び可とう性物質の厚みtc、2ts、tpと比重ρc,ρs、ρpさらにバイモルフ素子の幅wに支配され、式(1)で表現される。   Further, the weight ρ S per unit length is governed by the thicknesses tc, 2ts, tp and specific gravity ρc, ρs, ρp of the piezoelectric ceramic, shim plate and flexible material constituting the acoustic vibration generating element, and the width w of the bimorph element. And expressed by equation (1).

ρS=2w(ρptp+ρctc+ρsts) ・・・・・・・・・・(1)   ρS = 2w (ρptp + ρctc + ρsts) (1)

従って、圧電バイモルフ素子の両面に可とう性の物質からなる層が新たに加わると、結果として曲げ弾性係数Kと単位長さ当たりの重さρSが変わるために、共振周波数が影響を受ける。選択する可とう性の物質によっては共振周波数の増大になる場合もあるが、弾性係数が一定以下、例えばゴムのような3〜8×106Pa程度の弾性係数の小さな可とう性の物質を用いた場合、新たな層が加わることで全体の曲げ弾性係数Kは増加するが、その増加率は、単位長さ当たりの重さρSの増大率に比べると少なく、結果として音響振動発生素子の共振周波数は低下する。 Therefore, when a layer made of a flexible material is newly added to both surfaces of the piezoelectric bimorph element, the bending elastic modulus K and the weight ρS per unit length are changed as a result, so that the resonance frequency is affected. Depending on the flexible material selected, the resonance frequency may increase. However, a flexible material having a small elastic coefficient of about 3 to 8 × 10 6 Pa, such as rubber, may be used. When used, the total flexural modulus K increases with the addition of a new layer, but the rate of increase is small compared to the rate of increase in weight ρS per unit length. The resonance frequency decreases.

この様子を示したグラフが図3である。図3は、貼り付けた可とう性物質の厚みと音響振動発生素子の共振周波数の関係を示すグラフである。グラフは横軸に可とう性物質の厚み、縦軸に共振周波数を示してある。また、図3には貼り付けた可とう性物質としてシリコンゴムを用いた場合を示してある。図3からは、圧電バイモルフ素子に可とう性物質を貼り付けることにより音響振動発生素子の共振周波数が低下することが判る。   FIG. 3 is a graph showing this state. FIG. 3 is a graph showing the relationship between the thickness of the attached flexible material and the resonance frequency of the acoustic vibration generating element. In the graph, the horizontal axis indicates the thickness of the flexible material, and the vertical axis indicates the resonance frequency. FIG. 3 shows the case where silicon rubber is used as the flexible material pasted. FIG. 3 shows that the resonance frequency of the acoustic vibration generating element is lowered by applying a flexible substance to the piezoelectric bimorph element.

また、骨伝導応用の音響出力は、人間の皮膚に密着して音声エネルギーが放射されるので、音響振動発生素子と人間の皮膚との音響インピーダンスの整合が必要となる。前記可とう性物質はこの音響インピーダンスの整合という点でも有効である。   In addition, since sound energy for bone conduction application is radiated in close contact with human skin, it is necessary to match the acoustic impedance between the acoustic vibration generating element and human skin. The flexible material is also effective in terms of matching this acoustic impedance.

上記の原理を利用し、本発明による音響振動発生素子は、上記の基本となる構造に加え、前記可とう性物質に切り込み、或いは溝を形成する構造とした。図4(a)は、本発明による音響振動発生素子の実施の形態を示す斜視図である。圧電バイモルフまたは圧電ユニモルフ素子1の厚み方向に垂直な2面に、可とう性物質2を貼り合わせ、前記可とう性物質2に切り込み3が形成されている。   Using the above principle, the acoustic vibration generating element according to the present invention has a structure in which a slit is formed in the flexible material or a groove is formed in addition to the basic structure described above. FIG. 4A is a perspective view showing an embodiment of an acoustic vibration generating element according to the present invention. A flexible material 2 is bonded to two surfaces perpendicular to the thickness direction of the piezoelectric bimorph or piezoelectric unimorph element 1, and a cut 3 is formed in the flexible material 2.

また、図4(b)は、本発明による音響振動発生素子の別な実施の形態を示す斜視図である。圧電バイモルフまたは圧電ユニモルフ素子1の全面を可とう性物質2で覆い、厚み方向に垂直な2面の前記可とう性物質2に切り込み3が形成されている。   FIG. 4B is a perspective view showing another embodiment of the acoustic vibration generating element according to the present invention. The entire surface of the piezoelectric bimorph or piezoelectric unimorph element 1 is covered with a flexible material 2, and a cut 3 is formed in the flexible material 2 on two surfaces perpendicular to the thickness direction.

この切り込み3は、圧電バイモルフまたは圧電ユニモルフ素子1を駆動した際の変位量が等しい部分を結んだ線と平行に形成されている。図5は、圧電バイモルフまたは圧電ユニモルフ素子1を駆動した時の変位の状態を示す斜視図である。圧電バイモルフまたは圧電ユニモルフ素子1に電圧が印加されているある瞬間は、図5に示すように、電圧が印加されていない状態を基準4とすると、中央部は変位方向6の示すように基準4に対し上方向へ、左右の端部は変位方向7の示すように基準4に対し下方向へ変位する。このとき、圧電バイモルフまたは圧電ユニモルフ素子1の厚み方向に対し垂直な面上に、前記変位量が等しくなる部分を線で結ぶと等変位量線5が引ける。本発明は、前記切り込みをこの等変位量線5と平行になるように形成したものである。   This notch 3 is formed in parallel to a line connecting portions having the same displacement when the piezoelectric bimorph or piezoelectric unimorph element 1 is driven. FIG. 5 is a perspective view showing a displacement state when the piezoelectric bimorph or piezoelectric unimorph element 1 is driven. At a certain moment when a voltage is applied to the piezoelectric bimorph or piezoelectric unimorph element 1, as shown in FIG. 5, assuming that no voltage is applied as a reference 4, the central portion is a reference 4 as indicated by a displacement direction 6. In contrast, the left and right end portions are displaced downward relative to the reference 4 as indicated by the displacement direction 7. At this time, an equal displacement amount line 5 can be drawn by connecting the portions where the displacement amounts are equal to each other on a plane perpendicular to the thickness direction of the piezoelectric bimorph or piezoelectric unimorph element 1. In the present invention, the cut is formed so as to be parallel to the equal displacement amount line 5.

この切り込みにより、可とう性物質層の弾性係数Kが見かけ上、小さくなり、前述した原理により、共振周波数の低下を図ることができる。   By this cutting, the elastic coefficient K of the flexible material layer is apparently reduced, and the resonance frequency can be lowered according to the principle described above.

さらに、振動体の機械的Qも低下し、音域が広くなり、加えて、可とう性の物質で圧電バイモルフ素子を被覆した場合、不要な音声を周囲に放射する音漏れの低下効果も得られる。   Furthermore, the mechanical Q of the vibrating body is reduced, the sound range is widened, and in addition, when the piezoelectric bimorph element is covered with a flexible material, an effect of reducing sound leakage that radiates unnecessary sound to the surroundings can be obtained. .

以上は矩形の音響振動発生素子を例にして説明したが、円形の圧電バイモルフ素子や圧電ユニモルフ素子を用いた場合でも当然同様の効果が得られる。   The rectangular acoustic vibration generating element has been described above as an example, but naturally the same effect can be obtained even when a circular piezoelectric bimorph element or piezoelectric unimorph element is used.

図4(c)は、本発明において、円形の圧電バイモルフ素子または圧電ユニモルフ素子を用いた音響振動発生素子の実施の形態を示す斜視図である。円形の圧電バイモルフ素子または圧電ユニモルフ素子1の全面を可とう性物質2で覆い、厚み方向に垂直な2面にある前記可とう性物質2に切り込み3が形成されている。前記切り込み3は、前述したように、前記圧電バイモルフ素子や圧電ユニモルフ素子1を駆動した際の変位量が等しい部分を結んだ線と並行となるように形成してある。この場合、前記変位量が等しい部分を結んだ線は、前記圧電バイモルフ素子や圧電ユニモルフ素子1の厚み方向に垂直な2面上に同心円を描くので、それに対して平行に形成した切り込み3も同心円を描く。   FIG. 4C is a perspective view showing an embodiment of an acoustic vibration generating element using a circular piezoelectric bimorph element or a piezoelectric unimorph element in the present invention. The entire surface of the circular piezoelectric bimorph element or piezoelectric unimorph element 1 is covered with a flexible material 2, and a cut 3 is formed in the flexible material 2 on two surfaces perpendicular to the thickness direction. As described above, the notch 3 is formed so as to be parallel to a line connecting portions having the same displacement when the piezoelectric bimorph element or the piezoelectric unimorph element 1 is driven. In this case, the line connecting the portions having the same amount of displacement draws a concentric circle on two surfaces perpendicular to the thickness direction of the piezoelectric bimorph element or the piezoelectric unimorph element 1, and therefore the notch 3 formed parallel to the concentric circle is also drawn. Draw.

前記切り込みは、刃物や切断機等の加工機で形成してもよいが、可とう性物質を成型する際に使用する金型に予め、切り込みとなるような加工を施した金型で成型しても良い。   The incision may be formed by a processing machine such as a blade or a cutting machine, but it is molded by a mold that has been cut in advance in a mold used for molding a flexible substance. May be.

さらに、本発明は、前記実施の形態の他にも同様の効果が得られる形態の音響振動発生素子も提案している。   Furthermore, the present invention also proposes an acoustic vibration generating element that can obtain the same effect as the above-described embodiment.

図6は、本発明による音響振動発生素子のさらなる実施の形態を示す斜視図である。圧電バイモルフまたは圧電ユニモルフ素子1の厚み方向に垂直な一面のみに、可とう性物質2を貼り合わせ、前記可とう性物質2に溝8が形成されている。前記溝8は前述の切り込み同様に圧電バイモルフまたは圧電ユニモルフ素子1を駆動した際の変位量が等しい部分を結んだ線と平行に形成されている。また、前記溝8と前述の切り込みとの違いは、その断面形状にある。即ち、前述の切り込みの断面は面積を持たない線状に形成されているのに対し、溝8の断面は面積を持つように形成されている。図6では、溝8の断面形状がV字状で三角形の面積を持った溝を形成した実施の形態となっている。   FIG. 6 is a perspective view showing a further embodiment of the acoustic vibration generating element according to the present invention. A flexible material 2 is bonded to only one surface perpendicular to the thickness direction of the piezoelectric bimorph or piezoelectric unimorph element 1, and a groove 8 is formed in the flexible material 2. The groove 8 is formed in parallel to a line connecting portions having the same amount of displacement when the piezoelectric bimorph or piezoelectric unimorph element 1 is driven, as in the case of the above-described notches. The difference between the groove 8 and the above-described notch is in its cross-sectional shape. That is, the cross section of the above-described notch is formed in a linear shape having no area, whereas the cross section of the groove 8 is formed so as to have an area. FIG. 6 shows an embodiment in which the groove 8 has a V-shaped cross section and has a triangular area.

前記溝8は、前述の切り込み同様に刃物や切断機等の加工機で形成してもよいが、可とう性物質を成型する際に使用する金型に予め、切り込みとなるような加工を施した金型で成型しても良い。   The groove 8 may be formed by a processing machine such as a blade or a cutting machine, as in the case of the above-described cutting. However, the groove 8 is preliminarily processed to be cut into a mold used for molding a flexible material. You may shape | mold with the mold which did it.

以下、具体的な例を挙げ本発明の音響振動発生素子についてさらに詳しく説明する。   Hereinafter, the acoustic vibration generating element of the present invention will be described in more detail with specific examples.

NECトーキン製圧電セラミックス(商品名ネペック10)を用いた長さ30mm、幅8mm、厚さ0.15mmの圧電素子2枚と、外形寸法が同じで厚みが50μmの真鍮製のシム板をエポキシ系接着剤で貼り合わせた構造の圧電バイモルフ素子と、前記圧電素子の代わりに、厚み方向に50μmの圧電セラミックス層が3層と薄い内部電極層が積層された圧電素子2枚を用いて同様に作製した圧電バイモルフ素子を準備した。前者を単板構造、後者を積層構造と称する。おのおのの圧電バイモルフ素子について、シムと両面のセラミックの外面にリード線を設け、片方の圧電素子に分極方向と同じ電界が加わる場合に他の圧電素子には逆の電界が加わるように結線してある。   Two piezoelectric elements with a length of 30 mm, a width of 8 mm, and a thickness of 0.15 mm using NEC TOKIN piezoelectric ceramics (trade name Nepec 10) and a brass shim plate with the same outer dimensions and a thickness of 50 μm are epoxy-based. A piezoelectric bimorph element having a structure bonded with an adhesive, and two piezoelectric elements in which three piezoelectric ceramic layers having a thickness of 50 μm and a thin internal electrode layer are stacked in the thickness direction are used instead of the piezoelectric element. A piezoelectric bimorph element was prepared. The former is called a single plate structure, and the latter is called a laminated structure. For each piezoelectric bimorph element, a lead wire is provided on the outer surface of the shim and both sides of the ceramic, and when the same electric field as the polarization direction is applied to one piezoelectric element, the other piezoelectric element is connected so that the opposite electric field is applied. is there.

次に、真鍮製の金型を用いてバイモルフ素子の全面にシリコンゴムの溶液を流し込み、硬化処理により、厚み方向の二面は厚さ2mm、幅方向は厚さ1mmでバイモルフ素子をゴム被膜で覆い、切り込みの無い、図1(b)に示す構造の音響振動発生素子を作製した。これらについては、単板構造では18Vrms程度の音響信号を入力して、これらの片面を頭部に押し付けると、明瞭な骨伝導による音声が確認できた。積層構造では、約1/3の入力にあたる6Vrmsで同程度の出力が得られた。さらに、この場合に外部に漏れる音声について評価するために、無響室内で50cmの距離で100Hz〜10kHzの音圧を計測したところ50dB以下であり、音漏れは、きわめて少ないことを確認した。   Next, a silicon rubber solution is poured onto the entire surface of the bimorph element using a brass mold, and by curing, the two surfaces in the thickness direction are 2 mm thick, the width direction is 1 mm thick, and the bimorph element is covered with a rubber coating. An acoustic vibration generating element having a structure shown in FIG. 1B without covering and notching was produced. As for these, in the case of a single plate structure, when an acoustic signal of about 18 Vrms is inputted and one of these is pressed against the head, a clear bone conduction voice can be confirmed. In the laminated structure, the same level of output was obtained at 6 Vrms, which is about 1/3 of the input. Further, in order to evaluate the sound leaking to the outside in this case, the sound pressure of 100 Hz to 10 kHz was measured at a distance of 50 cm in an anechoic chamber and found to be 50 dB or less, and it was confirmed that sound leakage was extremely small.

次に、可とう性の物質の音響効果を定量的に確認するために、人工内耳(B&K社製 Artificial Mastoid Type 4930)を用いて人体の聴覚神経に相当する位置での加速度を、被覆しない状態と被覆後について測定し両者を比較した。内耳における加速度の大きさは、聴覚神経が受け取る音響信号の強さに比例するものとされている。   Next, in order to quantitatively confirm the acoustic effect of a flexible substance, the acceleration at the position corresponding to the auditory nerve of the human body is not covered using a cochlear implant (Artificial Mastoid Type 4930 manufactured by B & K). And after coating, the two were compared. The magnitude of acceleration in the inner ear is proportional to the intensity of the acoustic signal received by the auditory nerve.

図7は、人工内耳で測定した加速度の測定結果示すグラフである。横軸は周波数、縦軸は加速度を示している。図7のグラフから明らかなように、シリコンで覆った音響振動発生素子の加速度は、シリコンで覆わない音響振動発生素子に比べて低周波数域での出力が大きくなって、改善されていると供に、共振部の鋭さが無くなり、大きく緩和されていることが確認できる。   FIG. 7 is a graph showing measurement results of acceleration measured with the cochlear implant. The horizontal axis represents frequency and the vertical axis represents acceleration. As is clear from the graph of FIG. 7, the acceleration of the acoustic vibration generating element covered with silicon is improved by increasing the output in the low frequency range as compared with the acoustic vibration generating element not covered with silicon. Further, it can be confirmed that the sharpness of the resonance part is lost and the resonance part is greatly relaxed.

そこで、前記、音響振動発生素子の厚み方向に対し垂直な2面のシリコンゴム部に機械加工で深さ0.5mmの切り込みを2mm間隔で形成し、図4(b)に示す構造の音響振動発生素子を作製した。   Therefore, incisions having a depth of 0.5 mm are formed at intervals of 2 mm in the two silicon rubber portions perpendicular to the thickness direction of the acoustic vibration generating element by machining, and the acoustic vibration having the structure shown in FIG. A generating element was produced.

この音響振動発生素子についても同様に人工内耳で加速度を測定した。図8は、加速度の測定結果を示すグラフである。図8のグラフから判るように、本発明による、切り込みを形成した音響振動発生素子の加速度は、切り込みの無い音響振動発生素子に比べて、大きくなっており、低周波側の加速度も大きくなっていることが判る。   Similarly, the acceleration of the acoustic vibration generating element was measured using a cochlear implant. FIG. 8 is a graph showing the measurement results of acceleration. As can be seen from the graph of FIG. 8, the acceleration of the acoustic vibration generating element having the cut according to the present invention is larger than that of the acoustic vibration generating element having no cut, and the acceleration on the low frequency side is also increased. I know that.

NECトーキン製圧電セラミックス(商品名ネペック10)を用いた直径30mmφ、厚さ0.15mmの圧電素子2枚と、外形寸法が同じで厚みが50μmの真鍮製のシムをエポキシ系接着剤で貼り合わせた構造の圧電バイモルフ素子と、前記圧電素子の代わりに、厚み方向に50μmの圧電セラミックス層が3層と薄い内部電極層が積層された圧電素子2枚を用いて同様に作製した圧電バイモルフ素子を準備した。前者を単板構造、後者を積層構造と称する。おのおのの圧電バイモルフ素子についてシム板と両面のセラミックの外面にリード線を設け、片方の圧電素子に分極方向と同じ電界が加わる場合に他の圧電素子には逆の電界が加わるように結線してある。   Two piezoelectric elements with a diameter of 30 mmφ and a thickness of 0.15 mm using NEC TOKIN piezoelectric ceramics (trade name Nepec 10) and a brass shim with the same outer dimensions and a thickness of 50 μm are bonded together with an epoxy adhesive. A piezoelectric bimorph element having the structure described above and two piezoelectric elements in which three piezoelectric ceramic layers having a thickness of 50 μm and a thin internal electrode layer are laminated in the thickness direction are used instead of the piezoelectric element. Got ready. The former is called a single plate structure, and the latter is called a laminated structure. For each piezoelectric bimorph element, a lead wire is provided on the outer surface of the shim plate and the ceramics on both sides, and when the same electric field as the polarization direction is applied to one piezoelectric element, the other piezoelectric elements are connected so that the opposite electric field is applied. is there.

次に、真鍮製の金型を用いてバイモルフ素子の全面にシリコンゴムの溶液を流し込み、硬化処理により、厚み方向の二面は厚さ2mm、幅方向は厚さ1mmでバイモルフ素子をゴム被膜で覆い、さらに機械加工により深さ0.5mmで2mm間隔の同心円状に切り込みを形成し、図4(c)に示す構造の音響振動発生素子を作製した。これらについては単板構造では18Vrms、積層構造では6Vrms程度の音響信号を入力してこれらの片面を頭部に押し付けると明瞭な骨伝導による音声が確認できた。また、この場合についても外部に漏れる音声について評価するため無響室内で50cmの距離で100Hz〜10kHzの音圧を計測したところ50dB以下であり、音漏れはきわめて少ないことを確認した。   Next, a silicon rubber solution is poured onto the entire surface of the bimorph element using a brass mold, and by curing, the two surfaces in the thickness direction are 2 mm thick, the width direction is 1 mm thick, and the bimorph element is covered with a rubber coating. Covering and further machining were performed to form concentric cuts at a depth of 0.5 mm and at intervals of 2 mm, thereby producing an acoustic vibration generating element having the structure shown in FIG. With regard to these, when an acoustic signal of about 18 Vrms is input for the single plate structure and about 6 Vrms for the laminated structure and these one side is pressed against the head, a sound by clear bone conduction can be confirmed. Also in this case, in order to evaluate the sound leaking to the outside, the sound pressure of 100 Hz to 10 kHz was measured at a distance of 50 cm in an anechoic chamber and found to be 50 dB or less, and it was confirmed that the sound leakage was extremely small.

次に、可とう性の物質及び切り込みの効果を確認するために人工内耳(B&K製Artificial Mastoid Type 4930)を用いて人体の聴覚神経に相当する位置での加速度を被覆しない状態と被覆後切り込みを形成したものについて測定し両者を比較した。   Next, in order to confirm the effect of the flexible substance and the incision, using the cochlear implant (Artificial Mastoid Type 4930 made by B & K), the state where the acceleration corresponding to the auditory nerve of the human body is not covered and the incision after the covering is performed. What was formed was measured and compared.

図9は、人工内耳での加速度の測定結果を示すグラフである。横軸は周波数、縦軸は加速度を示している。図9から明らかなように、本発明による音響振動発生素子の加速度は、低周波数域でも伸びていること、共振部の鋭さが大きく緩和されていることが確認できた。なお、可とう性物質の切り込みによる周波数低減、Qの緩和、音漏れ防止の効果は、実施例のシリコンゴムでのモールド成形の他に、可とう性の物質を表面に貼り付ける図4(a)に示す構成や、或いは一面のみに形成しても同様の効果が得られる。   FIG. 9 is a graph showing measurement results of acceleration in the cochlear implant. The horizontal axis represents frequency and the vertical axis represents acceleration. As is clear from FIG. 9, it was confirmed that the acceleration of the acoustic vibration generating element according to the present invention was extended even in a low frequency range and the sharpness of the resonance part was greatly relaxed. Note that the effects of frequency reduction, Q relaxation, and sound leakage prevention by cutting a flexible material are shown in FIG. The same effect can be obtained even when the structure shown in FIG.

NECトーキン製圧電セラミックス(商品名ネペック10)を用いた長さ30mm、幅8mm、厚さ0.15mmの圧電素子2枚と、外形寸法が同じで厚みが50μmの真鍮製のシム板をエポキシ系接着剤で貼り合わせた構造の圧電バイモルフ素子と、前記圧電素子の代わりに、厚み方向に50μmの圧電セラミックス層が3層と薄い内部電極層が積層された圧電素子2枚を用いて同様に作製した圧電バイモルフ素子を準備した。前者を単板構造、後者を積層構造と称する。おのおのの圧電バイモルフ素子について、シムと両面のセラミックの外面にリード線を設け、片方の圧電素子に分極方向と同じ電界が加わる場合に他の圧電素子には逆の電界が加わるように結線してある。   Two piezoelectric elements with a length of 30 mm, a width of 8 mm, and a thickness of 0.15 mm using NEC TOKIN piezoelectric ceramics (trade name NEPEC 10) and a brass shim plate with the same outer dimensions and thickness of 50 μm are epoxy-based. A piezoelectric bimorph element having a structure bonded with an adhesive, and two piezoelectric elements in which three piezoelectric ceramic layers having a thickness of 50 μm and a thin internal electrode layer are stacked in the thickness direction are used instead of the piezoelectric element. A piezoelectric bimorph element was prepared. The former is called a single plate structure, and the latter is called a laminated structure. For each piezoelectric bimorph element, a lead wire is provided on the outer surface of the shim and both sides of the ceramic, and when the same electric field as the polarization direction is applied to one piezoelectric element, the other piezoelectric element is connected so that the opposite electric field is applied. is there.

次に、外形寸法が同じで厚みが2mmのシリコンゴムを作製し、バイモルフルフ素子の厚さ方向に垂直な一面のみ貼り付けた後、シリコンゴム部に機械加工で断面がV字となる深さ2mmの溝を形成し、図6に示す構造の音響振動発生素子を作製した。これらについては、単板構造では18Vrms程度の音響信号を入力して、これらの片面を頭部に押し付けると、明瞭な骨伝導による音声が確認できた。積層構造では、約1/3の入力にあたる6Vrmsで同程度の出力が得られた。さらに、この場合に外部に漏れる音声について評価するために、無響室内で50cmの距離で100Hz〜10kHzの音圧を計測したところ50dB以下であり、音漏れは、きわめて少ないことを確認した。   Next, silicon rubber having the same outer dimensions and a thickness of 2 mm is prepared, and only one surface perpendicular to the thickness direction of the bimorph element is pasted, and then the depth at which the cross section becomes V-shaped by machining in the silicon rubber portion A 2 mm groove was formed to produce an acoustic vibration generating element having the structure shown in FIG. As for these, in the case of a single plate structure, when an acoustic signal of about 18 Vrms is inputted and one of these is pressed against the head, a clear bone conduction voice can be confirmed. In the laminated structure, the same level of output was obtained at 6 Vrms, which is about 1/3 of the input. Further, in order to evaluate the sound leaking to the outside in this case, the sound pressure of 100 Hz to 10 kHz was measured at a distance of 50 cm in an anechoic chamber and found to be 50 dB or less, and it was confirmed that sound leakage was extremely small.

さらにこの音響振動発生素子について、前述の実施例で説明した人工内耳による計測を行った。   Further, the acoustic vibration generating element was measured by the cochlear implant described in the above-described embodiment.

図10は、人工内耳で測定した加速度の測定結果示すグラフである。横軸は周波数、縦軸は加速度を示している。図10から明らかなように、本発明による音響振動発生素子の加速度の値は従来の音響振動発生素子に比べ大きくなっており、低周波側の加速度も大きくなっていることが判る。   FIG. 10 is a graph showing measurement results of acceleration measured with the cochlear implant. The horizontal axis represents frequency and the vertical axis represents acceleration. As is apparent from FIG. 10, the acceleration value of the acoustic vibration generating element according to the present invention is larger than that of the conventional acoustic vibration generating element, and the acceleration on the low frequency side is also increased.

図11は、本発明による空気室を設けた音響振動発生素子の断面図である。実施例2で試作した音響振動発生素子について、片側の面に同一直径の軟質ゴム製の円形リング(30mmφ×25mmφ×1mm)と同材質の円板(30mmφ×1mm)を順番にゴム系の接着剤を用いて貼り付け片側の面に25mmφ×1mmの空気室9を設けた。空気室9を形成しない側の面を出力面として顔の一部に押し付けて音声信号を入力した場合、空気室9の存在により片側の開放面からの音漏れが減少した。   FIG. 11 is a cross-sectional view of an acoustic vibration generating element provided with an air chamber according to the present invention. For the acoustic vibration generating element prototyped in Example 2, a rubber-based circular ring (30 mmφ × 25 mmφ × 1 mm) of the same diameter and a disc (30 mmφ × 1 mm) of the same material are sequentially bonded to one surface. An air chamber 9 of 25 mmφ × 1 mm was provided on the surface on one side of the pasting using an agent. When an audio signal is input by pressing the surface on the side where the air chamber 9 is not formed as an output surface against a part of the face, sound leakage from the open surface on one side is reduced due to the presence of the air chamber 9.

本実施例では、空気室9の形成にゴム製のリングと円板を用いたが、被覆する可とう性物質と一体に成形することも可能であり、このときの過程で空気室が外気とつながる構造になる場合でも効果は同じである。また、この効果は圧電バイモルフ素子の形状によらず矩形の場合でも同様であることは言うまでもない。   In the present embodiment, a rubber ring and a disk are used to form the air chamber 9, but it is also possible to form the air chamber 9 integrally with the flexible material to be coated. The effect is the same even if it becomes a connected structure. Needless to say, this effect is the same in the case of a rectangular shape regardless of the shape of the piezoelectric bimorph element.

図12は、本発明による圧電バイモルフまたは圧電ユニモルフを被覆する可とう性物質の一部で、耳かけ部分を一体成形した音響振動発生素子を示す図である。実施例1で用いた圧電バイモルフ素子1と被覆用シリコンゴムで耳かけを一体成形した音響振動発生素子10である。また、図13は、人体の耳に装着した状態を示す。図13に示すように、装着し、電気信号を入力すると、外耳の軟骨と耳の後ろの頭骨を同時に刺激することができ、骨伝導による音声をより明瞭に聴き取ることが可能となった。   FIG. 12 is a view showing an acoustic vibration generating element in which an ear hook portion is integrally formed as a part of a flexible material covering a piezoelectric bimorph or a piezoelectric unimorph according to the present invention. This is an acoustic vibration generating element 10 in which an ear hook is integrally formed of the piezoelectric bimorph element 1 used in Example 1 and a covering silicon rubber. Moreover, FIG. 13 shows the state with which it was mounted | worn with the ear | edge of a human body. As shown in FIG. 13, when wearing and inputting an electrical signal, the cartilage of the outer ear and the skull behind the ear can be simultaneously stimulated, and the sound due to bone conduction can be heard more clearly.

上記のごとく、本発明により骨伝導用スピーカーの周波数の低域化、機械的Qの低下、さらに音漏れが改善でき音圧の大きな音響振動発生素子が得られた。   As described above, according to the present invention, an acoustic vibration generating element having a high sound pressure capable of reducing the frequency of the bone conduction speaker, lowering the mechanical Q, and further improving sound leakage can be obtained.

本発明の基本構成を示す斜視図。図1(a)は可とう性物質を両面に貼りつけた構成の斜視図、図1(b)は圧電素子を可とう性物質で前面被覆した構成の斜視図、図1(c)は円形圧電素子を可とう性物質で前面被覆した構成の斜視図。The perspective view which shows the basic composition of this invention. 1A is a perspective view of a configuration in which a flexible material is attached to both sides, FIG. 1B is a perspective view of a configuration in which a piezoelectric element is covered with a flexible material, and FIG. 1C is a circular shape. The perspective view of the structure which covered the piezoelectric element front surface with the flexible substance. 本発明の音響振動発生素子の断面図。Sectional drawing of the acoustic vibration generating element of this invention. 本発明の音響振動発生素子の共振周波数変化を示すグラフ。The graph which shows the resonant frequency change of the acoustic vibration generating element of this invention. 本発明の音響振動発生素子を示す斜視図。図4(a)は可とう性物質を両面に貼りつけた構成の斜視図、図4(b)は圧電素子を可とう性物質で全面被覆した構成の斜視図、図4(c)は円形圧電素子を可とう性物質で全面被覆した構成の斜視図。The perspective view which shows the acoustic vibration generating element of this invention. 4A is a perspective view of a configuration in which a flexible material is attached to both surfaces, FIG. 4B is a perspective view of a configuration in which a piezoelectric element is entirely covered with a flexible material, and FIG. 4C is a circular shape. The perspective view of the structure which covered the piezoelectric element entirely with the flexible substance. 圧電バイモルフ素子または圧電ユニモルフ素子の変位を説明する斜視図。The perspective view explaining the displacement of a piezoelectric bimorph element or a piezoelectric unimorph element. 本発明の音響振動発生素子を示す斜視図。The perspective view which shows the acoustic vibration generating element of this invention. 基本構成による音響振動発生素子の人工内耳での加速度を示すグラフ。The graph which shows the acceleration in the cochlear implant of the acoustic vibration generating element by basic composition. 実施例1の人工内耳での加速度を示すグラフ。3 is a graph showing acceleration in the cochlear implant of Example 1. 実施例2の人工内耳での加速度を示すグラフ。6 is a graph showing acceleration in the cochlear implant of Example 2. 実施例3の人工内耳での加速度を示すグラフ。10 is a graph showing acceleration in the cochlear implant of Example 3. 実施例4の空気室を設けた音響振動発生素子の断面図。Sectional drawing of the acoustic vibration generating element which provided the air chamber of Example 4. FIG. 実施例5の耳かけ部分を一体成形した音響振動発生素子を示す図。The figure which shows the acoustic-vibration generating element which integrally molded the ear hook part of Example 5. FIG. 実施例5の人体の耳に装着した状態を示す図。The figure which shows the state with which the human body of Example 5 was mounted | worn.

符号の説明Explanation of symbols

1 圧電バイモルフ素子または圧電ユニモルフ素子
2 可とう性物質
3 切り込み
4 基準
5 等変位量線
6 変位方向
7 変位方向
8 溝
9 空気室
10 可とう性物質で耳かけ構造を持った音響振動発生素子
1a 圧電セラミクス
1b シム材
1 Piezoelectric bimorph element or piezoelectric unimorph element 2 Flexible material 3 Cutting
4 Reference 5 Equal displacement curve 6 Displacement direction 7 Displacement direction 8 Groove 9 Air chamber 10 Acoustic vibration generating element 1a having a hooked structure made of a flexible substance Piezoelectric ceramics 1b Shim material

Claims (10)

圧電バイモルフ素子または圧電ユニモルフ素子の厚さ方向に垂直な二面のうち、少なくとも一面以上に可とう性物質部材を配した構造であって、前記可とう性物質部材に切り込みが形成されていることを特徴とする骨伝導応用の音響振動発生素子。   A structure in which a flexible material member is arranged on at least one of two surfaces perpendicular to the thickness direction of the piezoelectric bimorph element or the piezoelectric unimorph element, and a cut is formed in the flexible material member. An acoustic vibration generating element for bone conduction application. 圧電バイモルフ素子または圧電ユニモルフ素子の全体を可とう性物質部材で被覆した構造であって、前記可とう性物質部材に切り込みが形成されていることを特徴とする骨伝導応用の音響振動発生素子。   An acoustic vibration generating element for bone conduction application, wherein a piezoelectric bimorph element or a piezoelectric unimorph element is covered with a flexible material member, and the flexible material member is cut. 前記切り込みは、音響振動発生素子の振動変位量が等しい部分を結んだ線と平行に形成されていることを特徴とする請求項1及び請求項2に記載の骨伝導応用の音響振動発生素子。   3. The acoustic vibration generating element for bone conduction application according to claim 1, wherein the cut is formed in parallel with a line connecting portions having equal vibration displacement amounts of the acoustic vibration generating element. 前記切り込みは、加工機での加工、或いは、成型用金型で形成してなることを特徴とする請求項1から請求項3のいずれかに記載の骨伝導応用の音響振動発生素子。   4. The acoustic vibration generating element for bone conduction application according to claim 1, wherein the cut is formed by a processing machine or a molding die. 5. 圧電バイモルフ素子または圧電ユニモルフ素子の厚さ方向に垂直な一面のみに可とう性物質部材を配した構造であって、前記可とう性物質部材に溝が形成されていることを特徴とする骨伝導応用の音響振動発生素子。   Bone conduction characterized in that a flexible material member is disposed only on one surface perpendicular to the thickness direction of the piezoelectric bimorph element or piezoelectric unimorph element, and a groove is formed in the flexible material member. Applied acoustic vibration generating element. 前記溝は音響振動発生素子の振動変位量が等しい部分を結んだ線と平行に形成されていることを特徴とする請求項5に記載の骨伝導応用の音響振動発生素子。   6. The acoustic vibration generating element for bone conduction application according to claim 5, wherein the groove is formed in parallel with a line connecting portions having equal vibration displacements of the acoustic vibration generating element. 前記溝は、加工機での加工、或いは、成型用金型で形成してなることを特徴とする請求項5及び請求項6に記載の骨伝導応用の音響振動発生素子。   The acoustic vibration generating element for bone conduction application according to claim 5 and 6, wherein the groove is formed by processing with a processing machine or by a molding die. 前記圧電バイモルフ素子または圧電ユニモルフ素子が、圧電セラミックスと内部電極の積層構造体であることを特徴とする請求項1から請求項7のいずれかに記載の骨伝導応用の音響振動発生素子。   The acoustic vibration generating element for bone conduction application according to any one of claims 1 to 7, wherein the piezoelectric bimorph element or piezoelectric unimorph element is a laminated structure of piezoelectric ceramics and internal electrodes. 前記可とう性物質部材表面に空気室を設けたことを特徴とする請求項1から請求項8のいずれかに記載の骨伝導応用の音響振動発生素子。   The acoustic vibration generating element for bone conduction application according to any one of claims 1 to 8, wherein an air chamber is provided on the surface of the flexible material member. 前記可とう性物質部材の一部が、耳かけ部分を構成していることを特徴とする請求項1から9のいずれかに記載の骨伝導応用の音響振動発生素子。   The acoustic vibration generating element for bone conduction application according to any one of claims 1 to 9, wherein a part of the flexible material member constitutes an ear hook portion.
JP2005175367A 2005-06-15 2005-06-15 Acoustic vibration generating element Pending JP2006352464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005175367A JP2006352464A (en) 2005-06-15 2005-06-15 Acoustic vibration generating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005175367A JP2006352464A (en) 2005-06-15 2005-06-15 Acoustic vibration generating element

Publications (1)

Publication Number Publication Date
JP2006352464A true JP2006352464A (en) 2006-12-28

Family

ID=37647830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005175367A Pending JP2006352464A (en) 2005-06-15 2005-06-15 Acoustic vibration generating element

Country Status (1)

Country Link
JP (1) JP2006352464A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103918283A (en) * 2011-06-16 2014-07-09 拜耳知识产权有限责任公司 Audio devices having electroactive polymer actuators
JP2015520963A (en) * 2012-04-23 2015-07-23 ハイウェイブ テクノロジーズ (ユーケー) リミテッド Transducer with improved impedance matching
CN114007161A (en) * 2021-11-16 2022-02-01 杭州声联智能科技有限公司 Bone conduction vibrator fixing member and bone conduction vibrator fixing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178895A (en) * 1983-03-30 1984-10-11 Shigeru Tsutsumi Earphone
JPS59209000A (en) * 1983-05-13 1984-11-27 Shigeru Tsutsumi Audiphone
JPH0477095A (en) * 1990-07-16 1992-03-11 Matsushita Electric Ind Co Ltd Diaphragm for speaker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178895A (en) * 1983-03-30 1984-10-11 Shigeru Tsutsumi Earphone
JPS59209000A (en) * 1983-05-13 1984-11-27 Shigeru Tsutsumi Audiphone
JPH0477095A (en) * 1990-07-16 1992-03-11 Matsushita Electric Ind Co Ltd Diaphragm for speaker

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103918283A (en) * 2011-06-16 2014-07-09 拜耳知识产权有限责任公司 Audio devices having electroactive polymer actuators
JP2015520963A (en) * 2012-04-23 2015-07-23 ハイウェイブ テクノロジーズ (ユーケー) リミテッド Transducer with improved impedance matching
US10714673B2 (en) 2012-04-23 2020-07-14 Google Llc Transducers with improved impedance matching
US11730061B2 (en) 2012-04-23 2023-08-15 Google Llc Transducers with improved impedance matching
CN114007161A (en) * 2021-11-16 2022-02-01 杭州声联智能科技有限公司 Bone conduction vibrator fixing member and bone conduction vibrator fixing method
CN114007161B (en) * 2021-11-16 2024-02-13 杭州声联智能科技有限公司 Bone conduction oscillator fixing piece and bone conduction oscillator fixing method

Similar Documents

Publication Publication Date Title
JP3958739B2 (en) Acoustic vibration generator
US7822215B2 (en) Bone-conduction hearing-aid transducer having improved frequency response
JP6240401B2 (en) Sound reproducing device and sound collecting type sound reproducing device
JP4683635B2 (en) Receiver
JP4548783B2 (en) headphone
JP6100730B2 (en) earphone
JP2007251358A (en) Bone conduction speaker
JP2007165938A (en) Earphone device
JP2006229647A (en) Acoustic vibrator for bone conduction
JP2007104548A (en) Ear receiving device
KR20050059075A (en) Vibration detectors, sound detectors, hearing aids, cochlear implants and related methods
WO2004010733A1 (en) Hearing aid system and hearing aid method
CN108419194B (en) Bone conduction hearing aid and bone conduction loudspeaker
JP2006352464A (en) Acoustic vibration generating element
JP2014216902A (en) Acoustic equipment
JP4309799B2 (en) Headphone
EP2991377B1 (en) Acoustic apparatus
JP6471393B2 (en) Inner ear type earphone
JP2007228610A (en) Acoustic vibration generating element
JP6250950B2 (en) Audio equipment
JP2002315098A (en) Electroacoustic transducer
WO2014061646A1 (en) Earphone
JP2005294986A (en) Acoustic vibration generation device
TWI653896B (en) Bone conduction hearing aid device and bone conduction speaker
JP2009055202A (en) Earphone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

A977 Report on retrieval

Effective date: 20100105

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100113

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100816

Free format text: JAPANESE INTERMEDIATE CODE: A02