JP2006333850A - Base material for separating biological particle - Google Patents

Base material for separating biological particle Download PDF

Info

Publication number
JP2006333850A
JP2006333850A JP2005166039A JP2005166039A JP2006333850A JP 2006333850 A JP2006333850 A JP 2006333850A JP 2005166039 A JP2005166039 A JP 2005166039A JP 2005166039 A JP2005166039 A JP 2005166039A JP 2006333850 A JP2006333850 A JP 2006333850A
Authority
JP
Japan
Prior art keywords
polymer
substrate
charge
biological particle
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005166039A
Other languages
Japanese (ja)
Inventor
Masaya Sumida
政哉 澄田
Takayuki Kusaka
孝之 草加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2005166039A priority Critical patent/JP2006333850A/en
Publication of JP2006333850A publication Critical patent/JP2006333850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • External Artificial Organs (AREA)
  • Electrostatic Separation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base material for separating biological particles, capable of conducting separation and/or removal of the biological particles from a suspension containing the biological particles by a simple and safe operation conducted at a low cost in a short time, and to provide a method for producing the same. <P>SOLUTION: This method for producing the base material for separating the biological particles comprises sequentially conducting processes (1) to (3) as follows: (1) a process for preparing a water-insoluble surface of the base material having negative electric charge or positive electric charge; (2) a process for soaking the base material prepared in the process (1) in an aqueous solution of a polymer having electric charge opposite to the surface of the base material prepared in the process (1); and (3) a process for washing the base material with an aqueous solution not containing a polymer having electric charge. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、生物粒子分離用基材の製造方法、あるいはそれを用いた生物粒子分離フィルターに関する。本発明により製造された生物粒子分離用基材を用いた生物粒子分離フィルターは基礎科学実験用器具や臨床医学における医療器具に用いることができる。   The present invention relates to a method for producing a bioparticle separation substrate or a bioparticle separation filter using the same. The bioparticle separation filter using the bioparticle separation substrate produced according to the present invention can be used for a basic scientific experimental instrument or a medical instrument in clinical medicine.

近年、細胞を積極的に活用して、生体の臓器組織の病変および/または欠損を治療する、いわゆる再生医療が大変注目を集めており、世界各国で研究開発が盛んに行われている(たとえば非特許文献1)。通常、これらの細胞が存在する部位には、しばしば不要な夾雑細胞が混在しており、夾雑細胞を除去し有用な細胞を濃縮分離する必要がある。通常、これらの細胞分離にはFicoll-Hypaque等を用いる比重遠心法や抗原抗体反応を利用し、磁性粒子などに固定されたモノクローナル抗体を用いる方法が用いられているが、いずれも操作が煩雑という問題点を有し、また、後者はさらにコスト高、当該抗体が市販されていなければ、新たに抗体を作成しなければならない等の問題点も有する。さらに、通常これらの細胞分離法はクリーンベンチ内で行われるものの、完全開放系の操作のため無菌性に難がありヒトへの臨床応用には安全上、問題を有する。モノクローナル抗体を用いる方法ではさらに、通常、モノクローナル抗体はヒト以外の動物タンパクであることによる安全上の問題点も有する。   In recent years, so-called regenerative medicine that actively uses cells to treat lesions and / or defects in living organ tissues has attracted a great deal of attention, and research and development has been actively conducted in various countries around the world (for example, Non-patent document 1). Usually, unnecessary contaminating cells are often mixed in a site where these cells exist, and it is necessary to remove the contaminating cells and concentrate and separate useful cells. Usually, these cells are separated by a specific gravity centrifugation method using Ficoll-Hypaque or the like, or a method using a monoclonal antibody immobilized on magnetic particles or the like using an antigen-antibody reaction. The latter also has problems such as higher costs and the need to create a new antibody if the antibody is not commercially available. Furthermore, although these cell separation methods are usually carried out in a clean bench, they are difficult to sterilize due to the operation of a completely open system, and thus have a safety problem for clinical application to humans. Further, the method using a monoclonal antibody usually has a safety problem due to the fact that the monoclonal antibody is a non-human animal protein.

一方、これらの問題点を克服するための技術開発も近年、散見されるようになった。たとえば特許文献1では繊維で構成された不織布にカルボキシル基および親水性鎖を導入した担体に、幹細胞の膜表面の抗原に対する抗体を固定化してなる幹細胞分離材が開示されている。確かに、本技術の幹細胞分離材を容器に詰め、フィルターを作成し細胞分離に用いれば操作が煩雑という問題点は解消されるが、抗体を用いるという点でコスト高、安全性という面の問題は未解決である。また特許文献2では平均孔径10〜1000μmの連続気孔を有するポリビニルアセタール樹脂から成ることを特徴とするリンパ球からT細胞を分離回収する細胞分離材が開示されている。本技術は安全性に問題のある抗体を用いず合成高分子を用いるという点で画期的であり、Tリンパ球の分離という点に限って言えば大変優れた技術と言えるが、逆に、Tリンパ球にしか応用できず、他の細胞分離への汎用性の無い技術である。   On the other hand, in recent years, technological development for overcoming these problems has become common. For example, Patent Document 1 discloses a stem cell separation material obtained by immobilizing an antibody against an antigen on the membrane surface of a stem cell on a carrier in which a carboxyl group and a hydrophilic chain are introduced into a nonwoven fabric composed of fibers. Certainly, if the stem cell separation material of this technology is packed in a container and a filter is made and used for cell separation, the problem of complicated operation is solved, but the problem of high cost and safety in terms of using antibodies Is unresolved. Patent Document 2 discloses a cell separation material for separating and recovering T cells from lymphocytes, characterized by comprising a polyvinyl acetal resin having continuous pores having an average pore diameter of 10 to 1000 μm. This technology is epoch-making in that it uses a synthetic polymer without using an antibody that has a safety problem, and it can be said that it is a very excellent technology in terms of T lymphocyte separation. This technique can only be applied to T lymphocytes and is not versatile for other cell separations.

ところで、輸血医療の分野では、比較的、簡便・安全な操作のため、フィルターを用いた細胞分離技術は発達しており、例えば、特許文献3には疎水性重合性モノマー由来のユニットと塩基性含窒素部分を含む重合性モノマー由来のユニットとプロトン性中性親水性部分を含む重合性モノマー由来のユニットから構成されてなる白血球除去フィルター素材コート用ポリマーが開示されている。同発明はやはり安全性に問題のある抗体を用いず合成高分子を用いるという点では優れているが、なにより白血球の除去にだけに言及したもので、広く細胞一般に通用する製造方法について言及したものではないため、本発明とは全く技術的思想を異にする。また新規機能性ポリマー(ここでは白血球除去用)の発明による技術の最大の問題点は、検討のためにコート用ポリマーとして共重合組成を変化させたものを多種類新たに合成せねばならない点であり、これはコストや労力の点で非常に問題がある。   By the way, in the field of transfusion medicine, cell separation technology using a filter has been developed for relatively simple and safe operation. For example, Patent Document 3 discloses a unit derived from a hydrophobic polymerizable monomer and a basic property. A leukocyte removal filter material coating polymer comprising a unit derived from a polymerizable monomer containing a nitrogen-containing portion and a unit derived from a polymerizable monomer containing a protic neutral hydrophilic portion is disclosed. The invention is superior in that it uses a synthetic polymer without using an antibody that is still problematic in terms of safety, but it refers only to the removal of leukocytes, and refers to a production method that is widely accepted by cells in general. Therefore, the technical idea is completely different from the present invention. In addition, the biggest problem of the technology according to the invention of a novel functional polymer (in this case, for leukocyte removal) is that for the purpose of investigation, it is necessary to synthesize a variety of new polymers with different copolymer compositions for coating. Yes, this is very problematic in terms of cost and effort.

さらに、特許文献4は、静電荷パターンによる血液、体液等の成分分離方法が記載されており、このなかには、次のことが記載されている;「細胞は、細胞膜上のムコ多糖タンパク質複合体、或いは糖鎖末端のシアル酸などにもとづき、全体として負電荷、上皮細胞系で−30〜−40mVを有することが知られており、基質の荷電状態がその接着と増殖に影響を及ぼすと言われている」(2頁15〜20行)。しかしながら、同発明は、細胞分離材の製造方法に言及したものではなく、特許請求の範囲の「(1)導電性層を介在させて支持体上に光導電性層を形成した感光体と、導電性層を介在させて支持体上に絶縁層を形成した電荷保持媒体とを対向配置し、感光体および電荷保持媒体の導電性層間に電圧を印加しながら感光体側から画像露光を行って電荷保持媒体に画像状に電荷を蓄積させ、電荷保持媒体の電荷パターンに応じて細胞を増殖させることにより成分分離を行うことを特徴とする静電荷パターンによる血液、体液等の成分分離方法。」という記載から分かるように新規な細胞分離方法に関する発明であり、本発明のような細胞分離用基材の製造方法については一切記載が無く、技術思想は全く異なる。   Furthermore, Patent Document 4 describes a method for separating components such as blood and body fluid by an electrostatic charge pattern, in which the following is described: “The cell is a mucopolysaccharide protein complex on a cell membrane, Alternatively, it is known that it has a negative charge as a whole based on sialic acid at the end of the sugar chain, and has −30 to −40 mV in the epithelial cell system, and the charged state of the substrate is said to affect its adhesion and proliferation. (2 pages 15-20 lines). However, the present invention does not refer to a method for producing a cell separation material, but claims `` (1) a photoreceptor having a photoconductive layer formed on a support with a conductive layer interposed therebetween, '' A charge holding medium in which an insulating layer is formed on a support with a conductive layer interposed therebetween is arranged oppositely, and image exposure is performed from the photoreceptor side while applying a voltage between the photosensitive layer and the conductive layer of the charge holding medium. A method for separating components such as blood and body fluids by means of an electrostatic charge pattern, wherein charge separation is performed by accumulating charges in a holding medium in an image-like manner and growing cells according to the charge pattern of the charge holding medium. As can be seen from the description, the present invention relates to a novel cell separation method, and there is no description of a method for producing a cell separation substrate as in the present invention, and the technical idea is completely different.

一方、陽性荷電を有する高分子電解質と陰性荷電を有する高分子電解質を反応させて生成する高分子電解質錯体は医学・生物学の分野では古くから用いられており、たとえば、非特許文献2には糖尿病治療のための人工膵島用に、陽性荷電を有する高分子電解質たるポリ−L−リジンと、陰性荷電を有する高分子電解質たるアルギン酸を反応させて作成した免疫隔離膜が開示されているが、本技術は移植された細胞(この場合は膵島)を免疫反応から遮蔽するために細胞をマイクロカプセル化するためのものであり、細胞分離基材とは一切関係が無い。また、特許文献5には陽性荷電を有する高分子電解質たるキトサンに陰性荷電を有する高分子電解質たるセルロース誘導体を反応させて作成した細胞培養基材が開示されている。そして、明細書には以下の記載がある(ここでPECとは高分子電解質錯体polyelectrolyte complexの略である)「本発明においては、キトサンとセルロース誘導体との組合せや配合比を変化させることにより、生成するPECの荷電バランスを容易に変更し、調整することができる。即ち、種々の荷電バランスを有するPECを用いることで、細胞培養基材の表面電荷を調整し、その使用条件に従って表面特性を適宜選択することが可能となる」。これは本発明にも一部取り入れられている考え方であるが、同発明では細胞培養基材への言及のみで、細胞分離基材への応用の言及は見あたらない。

特開平08-033708号公報 特開平02-227070号公報 WO2003/011924(再表03/011924)号公報 特開平02-245182号公報 特開平06-277038号公報 (株)シーエムシー出版、「再生医療工学の最先端」、2002年 (株)化学同人、「化学フロンティア3 再生医工学」、2001年
On the other hand, polyelectrolyte complexes formed by reacting a positively charged polyelectrolyte with a negatively charged polyelectrolyte have been used for a long time in the fields of medicine and biology. An immunoisolation membrane prepared by reacting poly-L-lysine, which is a polyelectrolyte having a positive charge, with alginic acid, which is a polyelectrolyte having a negative charge, is disclosed for artificial islets for the treatment of diabetes. This technique is for microencapsulating cells in order to shield transplanted cells (in this case, islets) from immune reactions and has nothing to do with the cell separation substrate. Patent Document 5 discloses a cell culture substrate prepared by reacting chitosan as a polyelectrolyte having a positive charge with a cellulose derivative as a polyelectrolyte having a negative charge. And in the specification, there is the following description (here PEC is an abbreviation for polyelectrolyte complex) "In the present invention, by changing the combination and blending ratio of chitosan and cellulose derivative, The charge balance of the produced PEC can be easily changed and adjusted, that is, by using the PEC having various charge balances, the surface charge of the cell culture substrate can be adjusted, and the surface characteristics can be adjusted according to the use conditions. It becomes possible to select appropriately. This is a concept that is partially incorporated in the present invention, but in the present invention, only a reference to a cell culture substrate is found, and no reference to an application to a cell separation substrate is found.

JP 08-033708 Japanese Patent Laid-Open No. 02-227070 WO2003 / 011924 (Reprinted 03/011924) Publication Japanese Patent Laid-Open No. 02-245182 Japanese Unexamined Patent Publication No. 06-277038 SMC Publishing Co., Ltd., “Cutting-edge of Regenerative Medical Engineering”, 2002 Chemical Dojin, "Chemical Frontier 3 Regenerative Medical Engineering", 2001

本発明の目的は、簡便で安全な細胞など生物粒子の分離を行うための生物粒子分離用基材の簡便で低コストの製造方法及びそれを用いた生物粒子分離フィルターを提供することにある。   An object of the present invention is to provide a simple and low-cost production method of a biological particle separation substrate for separating biological particles such as simple and safe cells, and a biological particle separation filter using the same.

本発明者らは前記課題を解決すべく鋭意検討を進めた。まずは、安全性に問題のある抗体を用いることなく人工物を用いることをあらかじめ決定し、その人工物の中でも、生物粒子表面の荷電差を認識する材料を用いることを次に決定した。ここで、本発明者らは荷電を有する官能基の組み合わせを検討し、新規重合体の設計・合成を行い、生物粒子分離用基材を作成するという従来の常套手段では、簡便な製造方法に到達できないと考え、さらに検討を重ねた。その結果、生物粒子分離用基材においては前例の無い技術である高分子電解質錯体の利用に到達し、実際に同方法で種々の表面荷電を有し、電荷に応じた種々の生物粒子分離挙動を有する生物粒子分離用基材の作成に成功し、本発明を完成させたものである。   The present inventors have intensively studied to solve the above problems. First, it was determined in advance that an artificial object would be used without using an antibody having a safety problem, and among these artificial objects, it was next determined to use a material that recognizes the charge difference on the surface of a biological particle. Here, the present inventors have studied a combination of charged functional groups, designed and synthesized a novel polymer, and used a conventional method of creating a biological particle separation base material in a simple manufacturing method. We thought that it was not possible to reach it and further studied. As a result, the use of polyelectrolyte complex, which is an unprecedented technology in the base material for biological particle separation, has been achieved. In fact, the same method has various surface charges, and various biological particle separation behaviors according to the charge. The present invention has been completed by successfully producing a substrate for separating biological particles having

すなわち、本発明は
(1)下記の工程を順次行うことを特徴とする、生物粒子分離用基材の製造方法。(a)陰性荷電または陽性荷電を有する水不溶性の基材表面を調製する工程、(b)前記(a)で調製した基材表面とは逆の荷電を有する重合体の水性溶液に前記(a)で調製した基材を浸漬する工程、(c)荷電を有する重合体を含まない水性溶液で基材を洗浄する工程
(2)さらに(c)の工程の終了後に、(d)前記(b)の工程に用いた重合体とは逆の荷電を有する重合体の水溶液に浸漬、(e)荷電を有する重合体を含まない水性溶液で基材を洗浄する工程を行う(1)に記載の生物粒子分離用基材の製造方法
(3)(d)及び(e)の工程を複数回繰り返すことを特徴とする(2)に記載の生物粒子分離用基材の製造方法
(4)前記(a)で調製する基材表面の荷電が陰性荷電であることを特徴とする(1)に記載の生物粒子分離用基材の製造方法
(5)前記(a)で調製する基材表面の荷電が陽性荷電であることを特徴とする(2)に記載の生物粒子分離用基材の製造方法
(6)(1)から(4)のいずれかに記載の方法によって製造される生物粒子分離用基材であって、陽性荷電を有する重合体が、ポリイオンコンプレックスを形成して基材表面上に結合しており、且つ、コロイド滴定法により表面荷電を測定した時の表面荷電が−200μ当量/m2 〜+100μ当量/m2であることを特徴とする、生物粒子分離用基材。
(7)コロイド滴定法により表面荷電を測定した時の表面荷電が−30μ当量/m2 〜 +10μ当量/m2であることを特徴とする、(6)に記載の生物粒子分離用基材。
(8)液体導入口と液体導出口を有する容器内に(6)または(7)に記載の生物粒子分離用基材を収納した生物粒子分離フィルター
(9)生物粒子含有液を、(8)に記載の生物粒子分離フィルターで濾過することを特徴とする生物粒子の分離方法
である。
That is, the present invention
(1) A method for producing a biological particle separating base material, comprising sequentially performing the following steps. (A) a step of preparing a water-insoluble substrate surface having a negative charge or a positive charge, (b) the aqueous solution of the polymer having a charge opposite to that of the substrate surface prepared in (a) above (a ) Step of immersing the substrate prepared in (c), (c) washing the substrate with an aqueous solution not containing a charged polymer.
(2) Further, after the completion of the step (c), (d) the polymer having the opposite charge to the polymer used in the step (b) is immersed in an aqueous solution of the polymer (e) having the charge. The method for producing a bioparticle separation substrate according to (1), wherein the substrate is washed with an aqueous solution not containing the aqueous solution
(3) The method for producing a bioparticle separation substrate according to (2), wherein the steps (d) and (e) are repeated a plurality of times.
(4) The method for producing a bioparticle separation substrate according to (1), wherein the substrate surface prepared in (a) is negatively charged.
(5) The method for producing a bioparticle separation substrate according to (2), wherein the substrate surface prepared in (a) has a positive charge.
(6) A bioparticle separation substrate produced by the method according to any one of (1) to (4), wherein a polymer having a positive charge forms a polyion complex on the surface of the substrate. bound and, and, and wherein the surface charge when measuring surface charge by the colloid titration method is -200μ equivalent / m 2 ~ + 100μ equivalents / m 2, the biological particle separation base material.
(7), wherein the surface charge when measuring the surface charge is -30μ equivalent / m 2 ~ + 10 [mu] eq / m 2 by the colloid titration method, the biological particle separation substrate according to (6) .
(8) A biological particle separation filter in which the biological particle separation substrate according to (6) or (7) is housed in a container having a liquid inlet and a liquid outlet.
(9) A biological particle separation method, wherein the biological particle-containing liquid is filtered with the biological particle separation filter according to (8).

本発明によれば、簡便で安全な生物粒子の分離を行うための生物粒子分離用基材の簡便、低コストな製造方法を提供することが出来る。   ADVANTAGE OF THE INVENTION According to this invention, the simple and low-cost manufacturing method of the base material for biological particle separation for performing simple and safe biological particle separation can be provided.

本発明について以下、具体的に説明する。
本発明でいう生物粒子分離用基材とは、生物粒子の分離に用いる材料のことであるが、ここでいう生物粒子とはヒトや動物の細胞(細菌や真菌を含む)とウイルスのことを言う。また、生きている細胞やウイルスに限らず、死細胞や不活性化したウイルスやそれらの断片(たとえば細胞の断片であるDNAや細菌の断片であるリポ多糖)も含まれる。本発明でいう細胞の例は以下のものがあげられるがこれらに限定されるものではない。有核細胞、単核球、多核細胞、白血球、赤血球、顆粒球、好中球、好塩基球、好酸球、骨髄球、赤芽球、リンパ球、Tリンパ球、ヘルパーTリンパ球、細胞傷害性Tリンパ球、サプレッサーTリンパ球、Bリンパ球、NK細胞、NKT細胞、単球、マクロファージ、樹状細胞、破骨細胞、骨芽細胞、骨細胞、造血幹/前駆細胞(以下、造血幹細胞と略す)、線維芽細胞、軟骨芽細胞、間葉系幹/前駆細胞(stroma stem cellまたはmesenchymal stem cell)、巨核球、血小板、脂肪細胞、肝実質細胞、肝非実質細胞、内皮細胞、上皮細胞、平滑筋細胞、筋芽細胞、内分泌細胞、外分泌細胞、膵β細胞、膵α細胞、膵δ細胞、膵PP細胞、腎メサンギウム細胞、腎尿細管細胞、腎糸球体細胞、神経細胞、成人幹細胞(SP細胞、MAPCなど)、ES細胞、各種腫瘍細胞などがあげられる。また、単一の細胞だけでなく、細胞の集合体、たとえば内分泌細胞の集合体である膵島も含まれる。
The present invention will be specifically described below.
The biological particle separation substrate referred to in the present invention is a material used for separation of biological particles, but the biological particles referred to here are human and animal cells (including bacteria and fungi) and viruses. To tell. Moreover, not only living cells and viruses, but also dead cells, inactivated viruses, and fragments thereof (for example, DNA as a cell fragment and lipopolysaccharide as a bacterial fragment) are included. Examples of cells referred to in the present invention include the following, but are not limited thereto. Nucleated cells, mononuclear cells, multinucleated cells, leukocytes, erythrocytes, granulocytes, neutrophils, basophils, eosinophils, myelospheres, erythroblasts, lymphocytes, T lymphocytes, helper T lymphocytes, cells Injury T lymphocytes, suppressor T lymphocytes, B lymphocytes, NK cells, NKT cells, monocytes, macrophages, dendritic cells, osteoclasts, osteoblasts, bone cells, hematopoietic stem / progenitor cells (hereinafter hematopoietic cells) Abbreviated stem cells), fibroblasts, chondroblasts, mesenchymal stem / progenitor cells (stroma stem cells or mesenchymal stem cells), megakaryocytes, platelets, adipocytes, liver parenchymal cells, liver non-parenchymal cells, endothelial cells, Epithelial cells, smooth muscle cells, myoblasts, endocrine cells, exocrine cells, pancreatic β cells, pancreatic α cells, pancreatic δ cells, pancreatic PP cells, renal mesangial cells, renal tubular cells, renal glomerular cells, nerve cells, Adult stem cells (SP cells, MAPC, etc.), ES cells, various tumor cells Etc. Also included are not only single cells, but also islets that are aggregates of cells, such as aggregates of endocrine cells.

本発明でいう生物粒子の分離とは、少なくとも一種類以上の生物粒子を含有する生物粒子含有液から、所望の生物粒子を分離回収することまたは除去することを言う。所望の生物粒子は一種類の場合と複数種の場合がある。生物粒子含有液の例としては生体由来か否かで分けられる。生体由来の例としては骨髄、臍帯血(臍帯血だけでなく胎盤血管から採取されたものも含む)、末梢血(顆粒球コロニー刺激因子等の造血因子を投与して採血されたものも含む)およびこれらに遠心分離、培養(分化誘導、増幅)、凍結解凍、遺伝子導入等の何らかの処理を施したもの、あるいは膵臓、肝臓、腎臓、心臓、胃、腸、脾臓等の各種臓器や筋肉、血管、骨、皮膚等の各種組織から酵素消化法等により抽出した細胞を何らかの液体に再浮遊したもの及びこれらに何らかの前述の処理を施したものがあげられる。   The separation of biological particles as used in the present invention refers to separation / recovery or removal of desired biological particles from a biological particle-containing liquid containing at least one kind of biological particles. The desired biological particle may be one type or plural types. Examples of biological particle-containing liquids are classified according to whether they are derived from living organisms. Examples of biological sources include bone marrow, umbilical cord blood (including not only cord blood but also collected from placental blood vessels), peripheral blood (including blood collected by administration of hematopoietic factors such as granulocyte colony-stimulating factor) Those subjected to any treatment such as centrifugation, culture (differentiation induction, amplification), freeze-thawing, gene transfer, etc., or various organs, muscles, blood vessels such as pancreas, liver, kidney, heart, stomach, intestine, spleen In addition, there are those obtained by resuspending cells extracted from various tissues such as bone and skin by an enzyme digestion method or the like in some liquid, and those obtained by subjecting them to any of the aforementioned treatments.

また生体由来でないものの例としては、たとえば細胞が産生する有用物質を用いて医薬品や食品などを生産する場合、細胞が産生する有用物質を含む溶液があげられる(特に、細菌、真菌、ウイルスが分離対象はこの場合が多い。この場合、細菌、真菌、ウイルスなどの生物粒子が含有されているかどうかは明らかではないが、ここでは生物粒子含有液として扱う)。したがって、生物粒子の分離に用いる材料、すなわち、本発明で言う生物粒子分離用基材とは、生物粒子含有液に含まれる生物粒子に接触し分離動作を実現する材料のことを言う。また、生物粒子分離動作の形式としては、所望の生物粒子を吸着させ、それ以外の生物粒子を吸着させずに通過させ、その後、吸着している所望の生物粒子を何らかの方法により回収するものと、不要な生物粒子を吸着させ、それ以外の生物粒子(所望の生物粒子を含む)を通過させて回収するものの両方を含む。   Examples of those that are not derived from living organisms include solutions containing useful substances produced by cells (especially bacteria, fungi, and viruses are separated) when, for example, pharmaceuticals and foods are produced using useful substances produced by cells. The subject is often this, in which case it is not clear whether it contains bioparticles such as bacteria, fungi or viruses, but here it is treated as a bioparticle-containing fluid). Therefore, the material used for the separation of the biological particles, that is, the biological particle separation substrate referred to in the present invention refers to a material that comes into contact with the biological particles contained in the biological particle-containing liquid and realizes the separation operation. In addition, as a form of the biological particle separation operation, the desired biological particles are adsorbed, the other biological particles are allowed to pass through without being adsorbed, and then the adsorbed desired biological particles are recovered by some method. In addition, both of those which adsorb unnecessary biological particles and collect other biological particles (including desired biological particles) are collected.

本発明による製造方法においてはまず、陰性荷電または陽性荷電を有する水不溶性の基材表面を調製するが、この調整法としては、陰性荷電または陽性荷電を有する材料そのものにより基材を作成する方法または、原料基材そのものを構成している材料は陰性荷電または陽性荷電を有しないが、何らかの表面処理により陰性荷電または陽性荷電を導入する方法がある。前者の例としては、陰性荷電であれば、カルボキシル基、スルホン酸基、硫酸エステル基、リン酸基を含有するモノマーから重合された重合体やこれらの基を含有する天然高分子、陽性荷電であれば、1級アミノ基、2級アミノ基、3級アミノ基、イミノ基、4級アンモニウム基、4級ホスホニウム基を含有するモノマーから重合された重合体やこれらの基を含有する天然高分子があげられる。また、後者の例としては、たとえば、ポリエチレンのような、陰性荷電も陽性荷電も有しない重合体上にグラフト重合やシランカップリング剤、硫化水素ガスや塩化水素ガスなどによる化学的処理、プラズマ処理やコロナ処理による物理的処理により表面を陰性荷電または陽性荷電に改質することがあげられる。次に、ここで調製した基材表面とは逆の荷電を有する重合体の水溶液に基材を浸漬する。   In the production method according to the present invention, first, a water-insoluble substrate surface having a negative charge or a positive charge is prepared, and as this adjustment method, a method of creating a substrate with a material itself having a negative charge or a positive charge or The material constituting the raw material substrate itself does not have negative charge or positive charge, but there is a method of introducing negative charge or positive charge by some surface treatment. As an example of the former, in the case of a negative charge, a polymer polymerized from a monomer containing a carboxyl group, a sulfonic acid group, a sulfate ester group or a phosphate group, a natural polymer containing these groups, a positive charge If present, polymers polymerized from monomers containing primary amino groups, secondary amino groups, tertiary amino groups, imino groups, quaternary ammonium groups, quaternary phosphonium groups, and natural polymers containing these groups Is given. Examples of the latter include graft polymerization, chemical treatment with a silane coupling agent, hydrogen sulfide gas or hydrogen chloride gas, or plasma treatment on a polymer having no negative charge or positive charge, such as polyethylene. And surface modification to negative charge or positive charge by physical treatment by corona treatment. Next, the substrate is immersed in an aqueous solution of a polymer having a charge opposite to the surface of the substrate prepared here.

逆の荷電を有する重合体とは、たとえば、最初に調製した基材表面が陰性荷電を有していたら、ここで用いる重合体は陽性荷電、最初に調製した基材表面が陽性荷電を有していたら、ここで用いる重合体は陰性荷電という具合である。陰性荷電を有する重合体の例としては、カルボキシル基、スルホン酸基、硫酸エステル基、リン酸基を含有するモノマーから重合された重合体やこれらの基を含有する天然高分子があげられる。   For example, if the first prepared substrate surface has a negative charge, the polymer used here has a positive charge, and the first prepared substrate surface has a positive charge. If so, the polymer used here is negatively charged. Examples of polymers having negative charges include polymers polymerized from monomers containing carboxyl groups, sulfonic acid groups, sulfate ester groups, and phosphoric acid groups, and natural polymers containing these groups.

また、陽性荷電を有する重合体の例としては1級アミノ基、2級アミノ基、3級アミノ基、イミノ基、4級アンモニウム基、4級ホスホニウム基を含有するモノマーから重合された重合体やこれらの基を含有する天然高分子があげられる。これらの重合体は水性溶液にして前記の基材を浸漬するのであるが、ここでいう水性溶液とは、少なくとも50重量%は水を溶媒として含むものをいう。また、均一の溶液が得られるならば有機溶媒を含んでも良い。さらに必要に応じ、水溶性の無機物質、有機物質を添加してもよい。たとえば、キトサンは純水には不溶であるので塩酸、硫酸、硝酸などの無機酸やクエン酸、酢酸、リンゴ酸などの有機酸を水に添加して溶解させ水性溶液とする。本発明による製造方法においては次に荷電を有する重合体を含まない水性溶液で基材を洗浄する。ここで、荷電を有する重合体を含まない水性溶液としては、純水が一般的に用いられるが、洗浄のため必要に応じ非イオン性の界面活性剤などの水溶性物質を含有した溶液でも良い。   Examples of positively charged polymers include polymers polymerized from monomers containing primary amino groups, secondary amino groups, tertiary amino groups, imino groups, quaternary ammonium groups, and quaternary phosphonium groups. Examples include natural polymers containing these groups. These polymers are made into an aqueous solution and the above-mentioned base material is immersed therein. The aqueous solution here means a solution containing at least 50% by weight of water as a solvent. Further, an organic solvent may be included as long as a uniform solution can be obtained. Furthermore, if necessary, a water-soluble inorganic substance or organic substance may be added. For example, since chitosan is insoluble in pure water, an inorganic acid such as hydrochloric acid, sulfuric acid or nitric acid or an organic acid such as citric acid, acetic acid or malic acid is added to water and dissolved to obtain an aqueous solution. In the production method according to the present invention, the substrate is then washed with an aqueous solution not containing a charged polymer. Here, pure water is generally used as an aqueous solution that does not include a charged polymer, but a solution containing a water-soluble substance such as a nonionic surfactant may be used as necessary for cleaning. .

本発明による製造方法においては、必要に応じ、その後、さらなる浸漬工程を繰り返してもよい。たとえば、最初に陰性荷電表面を有する基材を調製し、そこに前記基材の表面とは逆の荷電たる陽性荷電を有する重合体の水性溶液に浸漬し、荷電を有する重合体を含まない水性溶液で基材を洗浄した後に、浸漬した重合体とは逆の荷電たる陰性荷電を有する重合体の水溶液に浸漬し、荷電を有する重合体を含まない水性溶液で基材を洗浄するという具合である。これらは必要に応じ複数回繰り返してもよい。複数回繰り返すことの長所としては積層により膜厚が厚くなり強固になることが考えられるが、一方で、操作を繰り返すことで煩雑になるので、適宜選択する。   In the production method according to the present invention, if necessary, further dipping steps may be repeated thereafter. For example, a substrate having a negatively charged surface is first prepared, and the substrate is immersed in an aqueous solution of a polymer having a positive charge opposite to the surface of the substrate, so that the aqueous solution does not contain a charged polymer. After washing the substrate with the solution, the substrate is immersed in an aqueous solution of a negatively charged polymer opposite to the immersed polymer, and the substrate is washed with an aqueous solution that does not contain a charged polymer. is there. These may be repeated a plurality of times as necessary. As an advantage of repeating a plurality of times, it is conceivable that the film thickness becomes thicker and stronger due to the lamination, but on the other hand, it becomes complicated by repeating the operation, so it is appropriately selected.

次に本発明による生物粒子分離用基材について説明する。本発明の製法方法では最表面が陰性荷電を有する生物粒子分離用基材と陽性荷電を有する生物粒子分離用基材の両方を簡便に製造することができるが、中でも最表面の形成に用いる重合体は陽性荷電を有する重合体である場合が、より好ましいと考えている。この場合、陽性荷電を有する重合体はいわゆるポリイオンコンプレックスを形成して基材表面(複数積層をしない場合は陰性荷電を有する最初の基材、複数積層をする場合は直近に陰性荷電を有する重合体の浸漬により形成した表面)と結合しているが、ここでいうポリイオンコンプレックスとは陰性荷電を有する重合体と陽性荷電を有する重合体がイオン結合により結合して形成される水不溶性の物質を言う。また、本発明においてポリイオンコンプレックス(polyioncomplex:PIC)と高分子電解質錯体(polyelectrolyte complex:PEC)は同様の意味として用いる。   Next, the bioparticle separation substrate according to the present invention will be described. In the production method of the present invention, both a biological particle separation substrate having a negative charge on the outermost surface and a biological particle separation substrate having a positive charge on the outermost surface can be easily produced. It is considered that the combination is more preferably a polymer having a positive charge. In this case, the polymer having a positive charge forms a so-called polyion complex, and the surface of the substrate (the first substrate having a negative charge if not laminated, the polymer having the most negative charge in the case of multiple lamination) The polyion complex referred to here is a water-insoluble substance formed by binding a negatively charged polymer and a positively charged polymer by ionic bonds. . In the present invention, polyion complex (PIC) and polyelectrolyte complex (PEC) are used as the same meaning.

本発明による生物粒子分離用基材の表面荷電はコロイド滴定法により測定した時に表面荷電が−200μ当量/m2〜+100μ当量/m2であることが好ましく、より好ましくは−30μ当量/m2〜+10μ当量/m2 である。ここでいうコロイド滴定法とは、1946年に寺山により創案された高分子電解質の滴定法である。その原理は陽性荷電を有する重合体と陰性荷電を有する重合体がイオン会合し、瞬時に複合体(前述のポリイオンコンプレックス)を形成することに基づいている。滴定の終点検出には、陽性荷電重合体の標準物質としては塩化ポリジアルジメチルアンモニウム、陰性荷電重合体の標準物質としてはポリビニル硫酸カリウムが使用されることが多い。たとえば、1/400 Nの塩化ポリジアルジメチルアンモニウム溶液を、1/400 Nのポリビニル硫酸カリウム標準液で滴定すると、徐々に白濁し、滴定の終点では指示薬として加えたトルイジンブルーが青色から赤紫色に変色する。TBは陽性荷電色素であり、液性が陽性荷電コロイドである限り、元の青色を保っているが、滴定終点でポリビニル硫酸カリウムが一滴でも過剰になると、陰性荷電コロイドに吸着され赤紫色に鋭敏に変色する。この原理により、荷電量を測定するものである。
本発明による生物粒子分離用基材の荷電量を規定するにはコロイド滴定法のほかにも、ゼータ電位測定装置や電気泳動装置を用いる方法などがあるが、本発明者らは、特別な装置を必要としない、不織布や粒子といった材料表面の性状に左右されず測定できる、という理由で、コロイド滴定法が最も好ましいと考えている。
Preferably the surface charge is -200μ equivalent / m 2 ~ + 100 microns equivalent / m 2 when the surface charge of the biological particle separation base material measured by the colloid titration method according to the invention, more preferably -30μ equivalent / m 2 ˜ + 10 μeq / m 2 . The colloidal titration method used here is a titration method of a polymer electrolyte created by Terayama in 1946. The principle is based on the fact that a polymer having a positive charge and a polymer having a negative charge are ionically associated to form a complex (the aforementioned polyion complex) instantaneously. To detect the end point of titration, polydidimethylammonium chloride is often used as a standard substance for a positively charged polymer, and potassium polyvinyl sulfate is often used as a standard substance for a negatively charged polymer. For example, when a 1/400 N polydidimethylammonium chloride solution is titrated with a 1/400 N potassium polyvinyl sulfate standard solution, it gradually becomes cloudy, and at the end of the titration, toluidine blue added as an indicator changes from blue to reddish purple. Discolor. TB is a positively charged dye and maintains its original blue color as long as it is a positively charged colloid. However, when even one drop of potassium potassium sulfate is excessive at the end of titration, it is adsorbed by the negatively charged colloid and sensitive to reddish purple. The color changes. Based on this principle, the charge amount is measured.
In addition to the colloid titration method, there are methods using a zeta potential measuring device and an electrophoresis device to define the charge amount of the biological particle separation substrate according to the present invention. The colloid titration method is most preferable because it can be measured regardless of the properties of the surface of the material such as nonwoven fabric or particles.

陽性荷電を有するとは、有機溶媒の含有量が50%未満の水溶液、および湿度10%RHから100%RHの通常大気中において、動物細胞が生存できるpHすなわちpHが5〜10、より望ましくはpHが6.5〜8.5の範囲において重合体の荷電が陽性である状態をいう。該水溶液中には塩化ナトリウムなどの無機塩類が存在していてもかまわない。陰性荷電を有するとは上述の条件に置いて重合体の荷電が陰性である状態をいう。   Having a positive charge means that an animal cell can survive in an aqueous solution having an organic solvent content of less than 50% and in a normal atmosphere with a humidity of 10% RH to 100% RH, that is, a pH of 5 to 10, more preferably A state in which the charge of the polymer is positive when the pH is in the range of 6.5 to 8.5. In the aqueous solution, inorganic salts such as sodium chloride may be present. Having negative charge means a state in which the polymer is negatively charged under the above-mentioned conditions.

本発明において、不織布表面の理論的実効表面積の算出方法は、不織布を構成する繊維を円柱と仮定した場合の表面積であり、以下の式[式1]で示される。

実効表面積(m2/g)= 4 / 不織布素材の比重(d)×不織布平均繊維径(μm) [式1]
In this invention, the calculation method of the theoretical effective surface area of the nonwoven fabric surface is a surface area when the fiber which comprises a nonwoven fabric is assumed to be a cylinder, and is shown by the following formula | equation [Formula 1].

Effective surface area (m 2 / g) = 4 / Specific gravity of nonwoven material (d) × Average fiber diameter of nonwoven fabric (μm) [Formula 1]

以下に実施例により本発明をより詳細に説明するが、本発明はこれらにより限定されるものではない。   EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

(陽性荷電を有する重合体の調整)
N,N,N',N-tetramethylethylenediamine(2.32g,20mmol)と、α-α'-dichloro-p-xylene(3.50g,20mmol)をDMSO 100mlに溶解し室温で12時間撹拌した。得られた白色沈殿をグラスフィルターでろ別し、アセトンで洗浄後、減圧乾燥することによって第4級アンモニウム基含有重合体であるpoly[(dimethylimino)ethylene(dimethylimino)methylene-1,4-phenylenemethylenedichloride] (以下、重合体1と表記)4.37gを得た。この重合体1の分子量はNMRより重合末端のプロトン量を求め、Mw=12,500であった。
(Preparation of positively charged polymer)
N, N, N ′, N-tetramethylethylenediamine (2.32 g, 20 mmol) and α-α′-dichloro-p-xylene (3.50 g, 20 mmol) were dissolved in 100 ml of DMSO and stirred at room temperature for 12 hours. The resulting white precipitate was filtered off with a glass filter, washed with acetone, and then dried under reduced pressure to obtain poly [(dimethylimino) ethylene (dimethylimino) methylene-1,4-phenylenemethylenedichloride] (quaternary ammonium group-containing polymer). (Hereinafter referred to as polymer 1) 4.37 g was obtained. The molecular weight of this polymer 1 was Mw = 12,500 as determined from the amount of proton at the polymerization terminal by NMR.

ジメチルアミノエチルメタクリレート:DMAEMA(6.29g,40mmol)をエタノール20gに溶解し、アゾビスイソブチロニトリル:AIBN(33mg,0.20mmol)を添加し氷冷下溶解させながら、容器内をアルゴン置換した。容器を密栓後70℃で8時間反応した。反応液を多量のn−ヘキサンに加え生じた沈殿を減圧下乾燥し、第3級アミノ基含有単独重合体であるポリジメチルアミノエチルメタクリレート(以下、重合体2と表記)4.70gを得た。この重合体2の分子量はPMMA換算でMw=88,000であった。   Dimethylaminoethyl methacrylate: DMAEMA (6.29 g, 40 mmol) was dissolved in 20 g of ethanol, azobisisobutyronitrile: AIBN (33 mg, 0.20 mmol) was added, and the inside of the container was purged with argon while dissolving under ice cooling. The container was sealed and reacted at 70 ° C. for 8 hours. The reaction solution was added to a large amount of n-hexane, and the resulting precipitate was dried under reduced pressure to obtain 4.70 g of polydimethylaminoethyl methacrylate (hereinafter referred to as polymer 2) which is a tertiary amino group-containing homopolymer. The molecular weight of this polymer 2 was Mw = 88,000 in terms of PMMA.

上記と同様にジメチルアミノエチルメタクリレート:DMAEMA(6.29g,40mmol)をエタノール20gに溶解し、アゾビスイソブチロニトリル:AIBN(2mg,0.01mmol)を添加し氷冷下溶解させながら、容器内をアルゴン置換した。容器を密栓後70℃で8時間反応した。反応液を多量のn−ヘキサンに加え生じた沈殿を減圧下乾燥し、第3級アミノ基含有単独重合体であるポリジメチルアミノエチルメタクリレート(以下、重合体3と表記)4.70gを得た。この重合体3の分子量はPMMA換算でMw=500,000であった。   In the same manner as above, dimethylaminoethyl methacrylate: DMAEMA (6.29 g, 40 mmol) is dissolved in 20 g of ethanol, azobisisobutyronitrile: AIBN (2 mg, 0.01 mmol) is added, and the mixture is dissolved under ice cooling. Argon substitution was performed. The container was sealed and reacted at 70 ° C. for 8 hours. The reaction solution was added to a large amount of n-hexane and the resulting precipitate was dried under reduced pressure to obtain 4.70 g of polydimethylaminoethyl methacrylate (hereinafter referred to as polymer 3) which is a tertiary amino group-containing homopolymer. The molecular weight of this polymer 3 was Mw = 500,000 in terms of PMMA.

(生物粒子分離用基材の作製)
ポリプロピレン不織布P03040(旭化成せんい社製、平均繊維系20μm)を特開平3−269160に記載のスルホン化装置を用いてSO3ガスによりスルホン酸基を表面に導入した。このときのスルホン酸の含有量は、蛍光X線分析装置により全硫黄(S)量として、0.54%であった。このスルホン化ポリプロピレン不織布を、1N NaOH液に30分浸漬し表面のスルホン酸基をNa型とした。脱イオン水で6回洗浄後、洗浄液のpHが中性であることを確認してから、終濃度0.2wt%になるように重合体1を脱イオン水に溶解しpH=6〜8の間に調整した水溶液に浸漬し、室温で1時間反応した。脱イオン水で4回洗浄後、該不織布を凍結乾燥することによって、陽性荷電を有する重合体1がポリイオンコンプレックスによって表面に固定化された生物粒子分離用基材を製造した。
(Preparation of biological particle separation substrate)
Polypropylene nonwoven fabric P03040 (manufactured by Asahi Kasei Fibers Co., Ltd., average fiber type 20 μm) was introduced with sulfonic acid groups on the surface by SO 3 gas using a sulfonation apparatus described in JP-A-3-269160. The sulfonic acid content at this time was 0.54% as the total sulfur (S) content by a fluorescent X-ray analyzer. This sulfonated polypropylene non-woven fabric was immersed in 1N NaOH solution for 30 minutes to make the surface sulfonic acid group Na type. After washing 6 times with deionized water, after confirming that the pH of the washing solution is neutral, polymer 1 is dissolved in deionized water so that the final concentration is 0.2 wt%. It was immersed in the aqueous solution adjusted to 1 and reacted at room temperature for 1 hour. After washing with deionized water four times, the nonwoven fabric was freeze-dried to produce a bioparticle separation base material on which the positively charged polymer 1 was immobilized on the surface by a polyion complex.

(コロイド滴定法による基材表面荷電の定量)
実施例2ようにして作製した生物粒子分離用基材を12mmφに打ち抜き、透明な試験管に入れ、1/4000 Nに調整した標準ポリカチオン液polydiallyldimethylammoniumchloride:PDAC(和光純薬)を1ml添加後、トルイジンブルー指示薬液(和光純薬)30μlを加えた。1/4000 Nに調整した標準ポリアニオン液potassiumpolyvinylsulfate:PVSK(和光純薬)にて滴定を行った。滴定の終点はトルイジンブルーの液の色が青色から赤紫色に変化したところとした。PVSK液の滴定量と予め添加したPDAC液の差異から、本発明の生物粒子分離用基材12mmφの表面荷電を算出し、更に不織布表面の理論的実効表面積当たりで規格化することによって、基材表面荷電を定量化した。実施例2のスルホン化ポリプロピレン不織布の表面荷電は−51.18μ当量/m2であり、更に実施例2で作製した陽性荷電を有する重合体1がポリイオンコンプレックスによって表面に固定化された生物粒子分離用基材の表面荷電は−13.72μ当量/m2であった。
(Quantification of substrate surface charge by colloid titration method)
The biological particle separation base material produced as in Example 2 was punched out to 12 mmφ, placed in a transparent test tube, and after adding 1 ml of standard polycation liquid polydiallyldimethylammonium chloride: PDAC (Wako Pure Chemical Industries) adjusted to 1/4000 N, 30 μl of toluidine blue indicator solution (Wako Pure Chemical Industries) was added. Titration was performed with a standard polyanion solution adjusted to 1/4000 N: potassium polyvinylsulfate: PVSK (Wako Pure Chemical Industries, Ltd.). The end point of the titration was that the toluidine blue liquid color changed from blue to reddish purple. By calculating the surface charge of the bioparticle separation substrate 12mmφ of the present invention from the difference between the titration amount of the PVSK solution and the pre-added PDAC solution, and further normalizing it per theoretical effective surface area of the nonwoven fabric surface, The surface charge was quantified. The surface charge of the sulfonated polypropylene nonwoven fabric of Example 2 is −51.18 μequivalent / m 2 , and the biologically charged polymer 1 having the positive charge prepared in Example 2 immobilized on the surface by a polyion complex is used. The surface charge of the substrate was -13.72 μeq / m 2 .

(生物粒子分離用基材充填フィルターの作製)
実施例2ようにして作製した生物粒子分離用基材を直径8.5mmに打ち抜き、2.5mlのシリンジ筒(テルモ社製)に10枚重ねて充填することによって、液体導入口と液体導出口を有する容器内に生物粒子分離用基材を収納した。以上の操作によって生物粒子分離用基材充填フィルターを作製した。
(Production of base material-filled filter for bioparticle separation)
A biological particle separation base material prepared as in Example 2 is punched out to a diameter of 8.5 mm and filled with 10 pieces in a 2.5 ml syringe cylinder (manufactured by Terumo), thereby having a liquid inlet and a liquid outlet. The base material for biological particle separation was accommodated in the container. By the above operation, a substrate-filled filter for separating biological particles was produced.

(線維芽細胞除去実験)
NIH-3T3(ATCC:CRL-1658;マウス株化線維芽細胞)、HEPES-NaOH(20mM)(Sigma社製)、ペニシリン−ストレプトマイシン(米国、GIBCO-BRL社製)、および10%のFBS(GIBCO-BRL社製)を含むDMEM培地(pH7.4)(GIBCO BRL社製11995-065)で継代培養した。実験時は組織培養用dish上の両細胞を、生理的リン酸緩衝食塩液pH=7.4 (以下PBS(-)と記載)で洗浄後、37℃に保温した0.05%トリプシン−0.53mM EDTA-4Na液(以下:トリプシン液と記載;GIBCO-BRL社製)を添加し、タンパク分解酵素であるトリプシン消化条件を(2min ; 37℃)処理した。その後、血清(FBS)含有培地を添加することによって、トリプシンの作用を止め、さらにピペットによる水流(以下ピペッティングと記載)で組織培養用dish底面の細胞を剥離し回収した。
(Fibroblast removal experiment)
NIH-3T3 (ATCC: CRL-1658; mouse cell line fibroblast), HEPES-NaOH (20 mM) (Sigma), penicillin-streptomycin (GIBCO-BRL, USA), and 10% FBS (GIBCO Subcultured in DMEM medium (pH 7.4) (GIBCO BRL 11995-065) containing -BRL. At the time of the experiment, both cells on the tissue culture dish were washed with physiological phosphate buffered saline pH = 7.4 (hereinafter referred to as PBS (−)), and then kept at 37 ° C. 0.05% trypsin-0.53 mM EDTA-4Na A solution (hereinafter referred to as trypsin solution; manufactured by GIBCO-BRL) was added and treated with trypsin digestion conditions (2 min; 37 ° C.) as a proteolytic enzyme. Thereafter, serum (FBS) -containing medium was added to stop the action of trypsin, and the cells on the bottom surface of the tissue culture dish were detached and collected with a water flow using a pipette (hereinafter referred to as pipetting).

上記で作製したフィルターに、線維芽細胞であるNIH-3T3細胞を10%FBS入りDMEM培地に懸濁した細胞懸濁液(5×10E5 cells/ml) 2.5mlずつを自然落下により通液し、そのフィルター通過液を回収した。このフィルターに要した時間は1分未満であり、重力による落下という簡便な方法且つ短時間で処理することが可能であった。
フィルター通過前後の細胞数をCyQUANT(モレキュラープローブ社)により、説明書に従って算出した。これをもとに算出した細胞の除去率は、陽性荷電を有する重合体1がポリイオンコンプレックスによって表面に固定化された生物粒子分離用基材充填フィルターで73.2%であった。比較のために重合体1を表面に固定化していない、スルホン化ポリプロピレン不織布を充填したフィルターで同様の実験を行ったものでは、24.7%であった。 このように本発明の陽性荷電を有する重合体1がポリイオンコンプレックスによって表面に固定化された生物粒子分離用基材充填フィルターにより、線維芽細胞であるNIH-3T3細胞を効果的に除去出来ることが明らかとなった。また、実施例3の表面荷電の定量値と併せて考えると、コロイド滴定法により表面荷電を測定した時の表面荷電が−30μ当量/m2 〜+10μ当量/m2であることを特徴とする、生物粒子分離用基材が特に好ましいことが明らかとなった。
To the filter prepared above, NIH-3T3 cells, which are fibroblasts, were suspended in DMEM medium containing 10% FBS, 2.5 ml each of the cell suspension (5 × 10E5 cells / ml) passed by natural dropping, The filtered solution was collected. The time required for this filter was less than 1 minute, and it was possible to perform processing in a short time and a simple method of dropping by gravity.
The number of cells before and after passing through the filter was calculated with CyQUANT (Molecular Probes) according to the instructions. The cell removal rate calculated on the basis of this was 73.2% for a bioparticle-separating base material-filled filter in which polymer 1 having a positive charge was immobilized on the surface by a polyion complex. For comparison, 24.7% was obtained when a similar experiment was performed using a filter filled with a sulfonated polypropylene nonwoven fabric in which the polymer 1 was not immobilized on the surface. Thus, the NIH-3T3 cells, which are fibroblasts, can be effectively removed by the substrate-filled filter for separating bioparticles in which the positively charged polymer 1 of the present invention is immobilized on the surface by a polyion complex. It became clear. Also, when considered in conjunction with the quantitative value of the surface charge of Example 3, and wherein the surface charge when measuring surface charge by the colloid titration method is -30μ equivalent / m 2 ~ + 10 [mu] eq / m 2 It has been found that a biological particle separating substrate is particularly preferable.

(非線維芽細胞除去実験)
RINr細胞(ラット膵島腫瘍由来株化インスリノーマ細胞;参考文献:Proceedings National Academy of Science, USA 77(6) p3519-3523)は、HEPES-NaOH(20mM)(Sigma社製)、ペニシリン−ストレプトマイシン(GIBCO-BRL社製)、および5%のFBS(GIBCO-BRL社製)を含むRPMI1640培地(pH7.4)(SIGMA社製R-8758)で継代培養した。実験時は組織培養用dish上の細胞をPBS(−)で洗浄後、37℃に保温したトリプシン液で2分間処理後、血清(FBS)含有培地を添加することによって、トリプシンの作用を止め、ピペッティングを行い組織培養用dish底面の細胞を剥離し回収した。
(Non-fibroblast removal experiment)
RINr cells (rat pancreatic islet tumor-derived insulinoma cells; reference: Proceedings National Academy of Science, USA 77 (6) p3519-3523), HEPES-NaOH (20 mM) (Sigma), penicillin-streptomycin (GIBCO- BRL) and 5% FBS (GIBCO-BRL) RPMI1640 medium (pH 7.4) (SIGMA R-8758). During the experiment, the cells on the tissue culture dish were washed with PBS (−), treated with a trypsin solution kept at 37 ° C. for 2 minutes, and then the serum (FBS) -containing medium was added to stop the action of trypsin. Pipetting was performed to separate and collect the cells on the bottom of the tissue culture dish.

実施例4で作製した生物粒子分離用基材充填フィルターに、RINr細胞を10%FBS入りDMEM培地に懸濁した細胞懸濁液(5×10E5 cells/ml) 2.5mlずつを自然落下により通液し、そのフィルター通過液を回収した以外は実施例4と全く同様に操作を行った。   Cell suspension (5 × 10E5 cells / ml), in which RINr cells are suspended in DMEM medium containing 10% FBS, is passed through the substrate-filled filter for separating biological particles prepared in Example 4 by natural dropping. Then, the same operation as in Example 4 was performed except that the filtered solution was recovered.

これをもとに算出した細胞の除去率は、陽性荷電を有する重合体1がポリイオンコンプレックスによって表面に固定化された生物粒子分離用基材充填フィルターで29.6%であった。また、重合体1を表面に固定化していない、スルホン化ポリプロピレン不織布を充填したフィルターで同様の実験を行ったものでは、17.9%であった。このように本発明の陽性荷電を有する重合体1がポリイオンコンプレックスによって表面に固定化された生物粒子分離用基材充填フィルターでは、線維芽細胞ではない、インスリノーマ細胞であるRINr細胞を実質的に除去しない。これは実施例4の結果と併せ、線維芽細胞とインスリノーマ細胞との分離選択性が認められることを示しており、本発明の生物粒子分離用基材は、2種類の細胞を含む細胞懸濁液からの生物粒子の分離に、有用であることが明らかとなった。   The cell removal rate calculated based on this was 29.6% for the bioparticle-separating substrate-filled filter in which the positively charged polymer 1 was immobilized on the surface by a polyion complex. In addition, in the case where the same experiment was performed using a filter filled with a sulfonated polypropylene non-woven fabric in which the polymer 1 was not immobilized on the surface, it was 17.9%. In this way, the substrate-filled filter for separating biological particles in which the positively charged polymer 1 of the present invention is immobilized on the surface by a polyion complex substantially eliminates RINr cells that are not fibroblasts but are insulinoma cells. do not do. This indicates that the separation selectivity between fibroblasts and insulinoma cells is recognized together with the results of Example 4, and the biological particle separation substrate of the present invention is a cell suspension containing two types of cells. It proved useful for the separation of biological particles from the liquid.

(生物粒子分離用基材の作製)
実施例2と同様に、ポリプロピレン不織布P03040(旭化成せんい社製、平均繊維系20μm)を特開平3−269160に記載のスルホン化装置を用いてSO3ガスによりスルホン酸基を表面に導入した。このスルホン化ポリプロピレン不織布を、1N NaOH液に30分浸漬し表面のスルホン酸基をNa型とした。脱イオン水で6回洗浄後、洗浄液のpHが中性であることを確認してから、終濃度0.2wt%になるように、実施例1で作製した第3級アミノ基含有単独重合体である、重合体2または重合体3を脱イオン水に溶解しpH=6〜8の間に調整した水溶液に浸漬し、室温で1時間反応した。脱イオン水で4回洗浄後、該不織布を凍結乾燥することによって、陽性荷電を有する重合体2または重合体3がポリイオンコンプレックスによって表面に固定化された生物粒子分離用基材を製造した。
(Preparation of biological particle separation substrate)
As in Example 2, polypropylene nonwoven fabric P03040 (manufactured by Asahi Kasei Fibers Co., Ltd., average fiber system: 20 μm) was introduced with sulfonic acid groups on the surface by SO 3 gas using a sulfonation apparatus described in JP-A-3-269160. This sulfonated polypropylene non-woven fabric was immersed in 1N NaOH solution for 30 minutes to make the surface sulfonic acid group Na type. After confirming that the pH of the cleaning solution is neutral after washing 6 times with deionized water, the tertiary amino group-containing homopolymer prepared in Example 1 was used so that the final concentration was 0.2 wt%. A certain polymer 2 or 3 was dissolved in deionized water and immersed in an aqueous solution adjusted between pH = 6 and 8, and reacted at room temperature for 1 hour. After washing with deionized water four times, the nonwoven fabric was freeze-dried to produce a bioparticle separation base material on which the positively charged polymer 2 or polymer 3 was immobilized on the surface by a polyion complex.

(コロイド滴定法による基材表面荷電の定量)
実施例6で作製した、生物粒子分離用基材を12mmφに打ち抜き、透明な試験管に入れ、実施例3と同様にコロイド滴定法により、基材表面荷電を定量化した。実施例6で作製したスルホン化ポリプロピレン不織布の表面荷電は−34.98μ当量/m2であり、実施例6で作製した陽性荷電を有する重合体2がポリイオンコンプレックスによって表面に固定化された生物粒子分離用基材の表面荷電は-4.58μ当量/m2であり、更に陽性荷電を有する重合体3がポリイオンコンプレックスによって表面に固定化された生物粒子分離用基材の表面荷電は−8.02μ当量/m2であった。
(Quantification of substrate surface charge by colloid titration method)
The biological particle separation base material produced in Example 6 was punched out to 12 mmφ, placed in a transparent test tube, and the substrate surface charge was quantified by the colloid titration method in the same manner as in Example 3. The surface charge of the sulfonated polypropylene non-woven fabric prepared in Example 6 is −34.98 μeq / m 2 , and the biological particle separation in which the positively charged polymer 2 prepared in Example 6 is immobilized on the surface by a polyion complex. The surface charge of the base material for bioparticles is −4.58 μequivalent / m 2 , and the surface charge of the base material for biological particle separation in which the polymer 3 having positive charge is immobilized on the surface by the polyion complex is −8.02 μequivalent / m 2 .

(生物粒子分離用基材充填フィルターの作製)
実施例4と同様にして、実施例6で作製した生物粒子分離用基材を直径8.5mmに打ち抜き、2.5mlのシリンジ筒(テルモ社製)に10枚重ねて充填することによって、液体導入口と液体導出口を有する容器内に生物粒子分離用基材を収納した。以上の操作によって生物粒子分離用基材充填フィルターを作製した。
(Production of base material-filled filter for bioparticle separation)
In the same manner as in Example 4, the biological particle separation base material produced in Example 6 was punched out to a diameter of 8.5 mm, and 10 sheets were filled in a 2.5 ml syringe cylinder (manufactured by Terumo) to fill the liquid inlet. And a biological particle separation base material in a container having a liquid outlet. By the above operation, a substrate-filled filter for separating biological particles was produced.

(線維芽細胞除去実験)
実施例4と同様に、上記で作製したフィルターに、線維芽細胞であるNIH-3T3細胞を10%FBS入りDMEM培地に懸濁した細胞懸濁液(5×10E5 cells/ml) 2.5mlずつを自然落下により通液し、そのフィルター通過液を回収した。フィルター通過前後の細胞数をCyQUANT(モレキュラープローブ社)により、説明書に従って算出した。これをもとに算出した細胞の除去率は、陽性荷電を有する重合体2がポリイオンコンプレックスによって表面に固定化された生物粒子分離用基材充填フィルターで98.9%であり、陽性荷電を有する重合体3がポリイオンコンプレックスによって表面に固定化された生物粒子分離用基材充填フィルターで98.6%であった。比較のために、重合体2も重合体3も、いずれも表面に固定化していない、スルホン化ポリプロピレン不織布を充填したフィルターで同様の実験を行ったものでは、19.7%であった。このように陽性荷電を有する重合体2または重合体3がポリイオンコンプレックスによって表面に固定化された、本発明の生物粒子分離用基材充填フィルターにより、線維芽細胞であるNIH-3T3細胞を効果的に除去出来ることが明らかとなった。また、実施例1の各重合体の分子量の値と併せて考えると、ポリイオンコンプレックス化させるための、重合体の分子量は分離性能に影響しないことが明らかとなった。また、実施例7の表面荷電の定量値と併せて考えると、コロイド滴定法により表面荷電を測定した時の表面荷電が−30μ当量/m2 〜+10μ当量/m2であることを特徴とする、生物粒子分離用基材が特に好ましいことが明らかとなった。
(Fibroblast removal experiment)
As in Example 4, 2.5 ml each of cell suspensions (5 × 10E5 cells / ml) in which NIH-3T3 cells, which are fibroblasts, were suspended in DMEM medium containing 10% FBS were added to the filter prepared above. The solution was passed by natural dropping, and the filtered solution was recovered. The number of cells before and after passing through the filter was calculated with CyQUANT (Molecular Probes) according to the instructions. The cell removal rate calculated based on this was 98.9% for the biological particle separation base material-filled filter in which the positively charged polymer 2 was immobilized on the surface by a polyion complex, and the positively charged polymer 3 was 98.6% of a substrate-filled filter for separating biological particles immobilized on the surface by a polyion complex. For comparison, 19.7% was obtained when a similar experiment was performed using a filter filled with a sulfonated polypropylene nonwoven fabric in which neither the polymer 2 nor the polymer 3 was immobilized on the surface. Thus, NIH-3T3 cells, which are fibroblasts, can be effectively treated with the substrate-filled filter for separating biological particles of the present invention, in which the polymer 2 or polymer 3 having a positive charge is immobilized on the surface by a polyion complex. It became clear that it can be removed. Moreover, when considered together with the value of the molecular weight of each polymer of Example 1, it was revealed that the molecular weight of the polymer for polyion complex does not affect the separation performance. Also, when considered in conjunction with the quantitative value of the surface charge of Example 7, wherein a surface charge when measuring surface charge by the colloid titration method is -30μ equivalent / m 2 ~ + 10 [mu] eq / m 2 It was revealed that the biological particle separating substrate is particularly preferable.

(生物粒子分離用基材の作製)
実施例2と同様に、ポリプロピレン不織布P03040(旭化成せんい社製、平均繊維系20μm)を特開平3-269160に記載のスルホン化装置を用いてSO3ガスによりスルホン酸基を表面に導入した。このスルホン化ポリプロピレン不織布を、1N NaOH液に30分浸漬し表面のスルホン酸基をNa型とした。脱イオン水で6回洗浄後、洗浄液のpHが中性であることを確認してから、終濃度がそれぞれ0.2wt%,0.04wt%,0.008wt%,0.0016wt%,になるように、実施例1で作製した第3級アミノ基含有単独重合体である、重合体2を脱イオン水に溶解しpH=6〜8の間に調整した水溶液に浸漬し、室温で1時間反応した。脱イオン水で4回洗浄後、該不織布を凍結乾燥することによって、陽性荷電を有する重合体2がポリイオンコンプレックスによって表面に固定化され、かつ表面荷電のことなる一連の生物粒子分離用基材を製造した。これらの基材を以下順に、それぞれ、重合体2−0.2wt%, 重合体2−0.04wt%、 重合体2−0.008wt%, 重合体2−0.0016wt%と表記する。
(Preparation of biological particle separation substrate)
In the same manner as in Example 2, polypropylene nonwoven fabric P03040 (manufactured by Asahi Kasei Fibers Co., Ltd., average fiber system: 20 μm) was introduced with sulfonic acid groups on the surface by SO 3 gas using a sulfonation apparatus described in JP-A-3-269160. This sulfonated polypropylene non-woven fabric was immersed in 1N NaOH solution for 30 minutes to make the surface sulfonic acid group Na type. After washing with deionized water 6 times, after confirming that the pH of the washing solution is neutral, the final concentration is 0.2wt%, 0.04wt%, 0.008wt%, 0.0016wt%, respectively. Polymer 2 which is a tertiary amino group-containing homopolymer prepared in Example 1 was dissolved in deionized water and immersed in an aqueous solution adjusted between pH = 6 and 8, and reacted at room temperature for 1 hour. After washing with deionized water four times, the nonwoven fabric is freeze-dried, so that the polymer 2 having a positive charge is immobilized on the surface by the polyion complex, and a series of biological particle separation substrates having a different surface charge are formed. Manufactured. These base materials are represented in the following order as polymer 2-0.2 wt%, polymer 2-0.04 wt%, polymer 2-0.008 wt%, and polymer 2-0.0016 wt%, respectively.

(コロイド滴定法による基材表面荷電の定量)
実施例9で作製した、生物粒子分離用基材を12mmφに打ち抜き、透明な試験管に入れ、実施例3と同様にコロイド滴定法により、基材表面荷電を定量化した。実施例9で作製したスルホン化ポリプロピレン不織布の表面荷電は−30.24μ当量/m2であり、実施例9で作製した陽性荷電を有する重合体2がポリイオンコンプレックスによって表面に固定化された生物粒子分離用基材の表面荷電は、重合体2−0.2wt%が−0.25μ当量/m2であり、重合体2−0.04wt%が−0.73μ当量/m2であり、 重合体2−0.008wt%が−3.89μ当量/m2であり、 重合体2−0.0016wt%が−15.08μ当量/m2であった。
(Quantification of substrate surface charge by colloid titration method)
The biological particle separation base material produced in Example 9 was punched out to 12 mmφ, placed in a transparent test tube, and the substrate surface charge was quantified by colloid titration as in Example 3. The surface charge of the sulfonated polypropylene non-woven fabric prepared in Example 9 is −30.24 μeq / m 2 , and the biological particle separation in which the positively charged polymer 2 prepared in Example 9 is immobilized on the surface by a polyion complex. The surface charge of the base material for the polymer is −0.25 μeq / m 2 for the polymer 2-0.2 wt%, −0.73 μeq / m 2 for the polymer 2-0.04 wt%, and the polymer 2-0.008 wt%. % Was −3.89 μeq / m 2 , and the polymer 2-0.0016 wt% was −15.08 μeq / m 2 .

(生物粒子分離用基材充填フィルターの作製)
実施例4と同様にして、実施例9で作製した生物粒子分離用基材を直径8.5mmに打ち抜き、2.5mlのシリンジ筒(テルモ社製)に10枚重ねて充填することによって、液体導入口と液体導出口を有する容器内に生物粒子分離用基材を収納した。以上の操作によって生物粒子分離用基材充填フィルターを作製した。
(Production of base material-filled filter for bioparticle separation)
In the same manner as in Example 4, the biological particle separation base material prepared in Example 9 was punched out to a diameter of 8.5 mm, and 10 sheets were filled in a 2.5 ml syringe cylinder (manufactured by Terumo) to fill the liquid inlet. And a biological particle separation base material in a container having a liquid outlet. By the above operation, a substrate-filled filter for separating biological particles was produced.

(線維芽細胞除去実験)
実施例4と同様に、上記で作製したフィルターに、線維芽細胞であるNIH-3T3細胞を10%FBS入りDMEM培地に懸濁した細胞懸濁液(5×10E5 cells/ml) 2.5mlずつを自然落下により通液し、そのフィルター通過液を回収した。フィルター通過前後の細胞数をCyQUANT(モレキュラープローブ社)により、説明書に従って算出した。これをもとに算出した細胞の除去率は、陽性荷電を有する重合体2がポリイオンコンプレックスによって表面に固定化された、一連の生物粒子分離用基材充填フィルターである、重合体2−0.2wt%で90.1%であり, 重合体2−0.04wt%で88.9%であり, 重合体2−0.008wt%で84.7%であり, 重合体2−0.0016wt%で71.5%であった。比較のために、重合体2を表面に固定化していない、スルホン化ポリプロピレン不織布を充填したフィルターで同様の実験を行ったものでは、10.5%であった。
(Fibroblast removal experiment)
As in Example 4, 2.5 ml each of cell suspensions (5 × 10E5 cells / ml) in which NIH-3T3 cells, which are fibroblasts, were suspended in DMEM medium containing 10% FBS were added to the filter prepared above. The solution was passed by natural dropping, and the filtered solution was recovered. The number of cells before and after passing through the filter was calculated with CyQUANT (Molecular Probes) according to the instructions. The cell removal rate calculated based on this was a series of base material-filled filters for separating biological particles, in which a polymer 2 having a positive charge was immobilized on the surface by a polyion complex. % Was 90.1%, polymer 2-0.04 wt% was 88.9%, polymer 2-0.008 wt% was 84.7%, and polymer 2-0.0016 wt% was 71.5%. For comparison, the same experiment was conducted with a filter filled with a sulfonated polypropylene nonwoven fabric in which the polymer 2 was not immobilized on the surface, and the ratio was 10.5%.

(非線維芽細胞除去実験)
実施例5と同様にしてインスリノーマ細胞であるRINr細胞での細胞分離実験を行った。実施例11で作製した生物粒子分離用基材充填フィルターに、RINr細胞を10%FBS入りDMEM培地に懸濁した細胞懸濁液(5×10E5 cells/ml) 2.5mlずつを自然落下により通液し、そのフィルター通過液を回収した以外は実施例11と全く同様に操作を行った。
(Non-fibroblast removal experiment)
In the same manner as in Example 5, a cell separation experiment was performed using RINr cells, which are insulinoma cells. The cell suspension (5 × 10E5 cells / ml) in which RINr cells are suspended in DMEM medium containing 10% FBS is passed through the substrate-filled filter for separation of biological particles prepared in Example 11 by natural dropping. Then, the same operation as in Example 11 was performed except that the filtered solution was recovered.

細胞の除去率は、陽性荷電を有する重合体2がポリイオンコンプレックスによって表面に固定化された、一連の生物粒子分離用基材充填フィルターである、重合体2−0.2wt%で30.6%であり、 重合体2−0.04wt%で37.9%であり、 重合体2−0.008wt%で57.1%であり、 重合体2−0.0016wt%で12.2%であった。比較のために、重合体2を表面に固定化していない、スルホン化ポリプロピレン不織布を充填したフィルターで同様の実験を行ったものでは、7.1%であった。   The removal rate of cells is 30.6% at 2-0.2 wt% of polymer, which is a series of substrate-filling filters for separating biological particles, in which polymer 2 having a positive charge is immobilized on the surface by a polyion complex, The polymer 2-0.04 wt% was 37.9%, the polymer 2-0.008 wt% was 57.1%, and the polymer 2-0.0016 wt% was 12.2%. For comparison, 7.1% was obtained when a similar experiment was performed using a filter filled with a sulfonated polypropylene nonwoven fabric in which the polymer 2 was not immobilized on the surface.

このように陽性荷電を有する重合体2がポリイオンコンプレックスによって表面に固定化された、一連の表面荷電の生物粒子分離用基材充填フィルターにより、線維芽細胞であるNIH-3T3細胞を効果的に除去出来ることが実施例11で明らかとなった。これに加え実施例12では、線維芽細胞ではないインスリノーマ細胞であるRINr細胞も、本発明の製造方法を用いることによって、表面荷電を変化させ、RINr細胞に最適な細胞分離挙動をしめす生物粒子分離用基材を簡便に創出しうることが明らかとなった。このように本発明は、対象とする生物粒子毎に最適な表面荷電の基材を簡便・安全・安価・迅速に提供できる。   NIH-3T3 cells, which are fibroblasts, are effectively removed by a series of surface-charged bioparticle-separating substrate-filled filters in which the positively charged polymer 2 is immobilized on the surface by a polyion complex. This can be seen in Example 11. In addition to this, in Example 12, RINr cells, which are insulinoma cells that are not fibroblasts, also change the surface charge by using the production method of the present invention, thereby separating biological particles that exhibit optimal cell separation behavior for RINr cells. It became clear that a base material for use can be easily created. As described above, the present invention can provide an optimum surface-charged base material for each target biological particle simply, safely, inexpensively, and quickly.

また、実施例10の表面荷電の定量値と併せて考えると、コロイド滴定法により表面荷電を測定した時の表面荷電が−30μ当量/m2 〜 +10μ当量/m2であることを特徴とする、生物粒子分離用基材が特に好ましいことが明らかとなった。 Also, when considered in conjunction with the quantitative value of the surface charge of Example 10, wherein a surface charge when measuring surface charge by the colloid titration method is -30μ equivalent / m 2 ~ + 10 [mu] eq / m 2 It was revealed that the biological particle separating substrate is particularly preferable.

本発明による生物粒子分離用基材は基礎科学における実験用器具や臨床医学、さらには産業用のプロセスフィルターに用いられる。特定の生物粒子が分離された細胞懸濁液は、そのまま、または必要に応じて、さらなる分離精製(洗浄を含む)、培養、活性化、増幅、遺伝子導入、凍結保存等の処理が施された後、生体への移植や細胞生物学や免疫学等の基礎科学実験に用いられる。あるいはウイルスや細菌などを含む、有用タンパク質含有液などから生物粒子を除去することによって、安全性の高い医薬品等の製造に使用することが出来る。   The substrate for separating bioparticles according to the present invention is used in laboratory instruments in basic science, clinical medicine, and industrial process filters. The cell suspension from which specific biological particles have been separated is subjected to further separation and purification (including washing), culture, activation, amplification, gene transfer, cryopreservation, etc., as is or as necessary. Later, it is used for basic science experiments such as transplantation to living bodies, cell biology and immunology. Alternatively, by removing biological particles from a useful protein-containing solution including viruses and bacteria, it can be used for the production of highly safe pharmaceuticals.

Claims (9)

下記の工程を順次行うことを特徴とする、生物粒子分離用基材の製造方法。(1)陰性荷電または陽性荷電を有する水不溶性の基材表面を調製する工程、(2)前記(1)で調製した基材表面とは逆の荷電を有する重合体の水性溶液に前記(1)で調製した基材を浸漬する工程、(3)荷電を有する重合体を含まない水性溶液で基材を洗浄する工程   The manufacturing method of the base material for biological particle separation characterized by performing the following process one by one. (1) a step of preparing a water-insoluble substrate surface having a negative charge or a positive charge, (2) the aqueous solution of the polymer having a charge opposite to that of the substrate surface prepared in (1) above (1 ) Step of immersing the substrate prepared in (3), (3) step of washing the substrate with an aqueous solution not containing a charged polymer. さらに(3)の工程の終了後に、(4)前記(2)の工程に用いた重合体とは逆の荷電を有する重合体の水溶液に浸漬、(5)荷電を有する重合体を含まない水性溶液で基材を洗浄する工程を行う請求項1に記載の生物粒子分離用基材の製造方法   Further, after completion of the step (3), (4) immersion in an aqueous solution of a polymer having a charge opposite to the polymer used in the step (2), and (5) an aqueous solution not containing a charged polymer. The manufacturing method of the base material for biological particle separation of Claim 1 which performs the process of wash | cleaning a base material with a solution. (4)及び(5)の工程を複数回繰り返すことを特徴とする請求項2に記載の
生物粒子分離用基材の製造方法
3. The method for producing a bioparticle separation substrate according to claim 2, wherein the steps (4) and (5) are repeated a plurality of times.
前記(1)で調製する基材表面の荷電が陰性荷電であることを特徴とする請求項1に記載の生物粒子分離用基材の製造方法   2. The method for producing a bioparticle separation substrate according to claim 1, wherein the surface of the substrate prepared in (1) is negatively charged. 前記(1)で調製する基材表面の荷電が陽性荷電であることを特徴とする請求項2に記載の生物粒子分離用基材の製造方法   3. The method for producing a bioparticle separation substrate according to claim 2, wherein the surface of the substrate prepared in (1) is positively charged. 請求項1から4のいずれかに記載の方法によって製造される生物粒子分離用基材であって、陽性荷電を有する重合体が、ポリイオンコンプレックスを形成して基材表面上に結合しており、且つ、コロイド滴定法により表面荷電を測定した時の表面荷電が−200μ当量/m2 〜+100μ当量/m2であることを特徴とする、生物粒子分離用基材。 A bioparticle separation substrate produced by the method according to any one of claims 1 to 4, wherein a polymer having a positive charge forms a polyion complex and is bonded onto the substrate surface, and, wherein the surface charge when measuring surface charge by the colloid titration method is -200μ equivalent / m 2 ~ + 100μ equivalents / m 2, the biological particle separation base material. コロイド滴定法により表面荷電を測定した時の表面荷電が−30μ当量/m2 〜+10μ当量/m2であることを特徴とする、請求項6に記載の生物粒子分離用基材。 Wherein the surface charge when measuring surface charge by the colloid titration method is -30μ equivalent / m 2 ~ + 10μ equivalents / m 2, the biological particle separation substrate of claim 6. 液体導入口と液体導出口を有する容器内に請求項6または7に記載の生物粒子分離用基材を収納した生物粒子分離フィルター   A biological particle separation filter in which the biological particle separation substrate according to claim 6 or 7 is housed in a container having a liquid inlet and a liquid outlet. 生物粒子含有液を、請求項8に記載の生物粒子分離フィルターで濾過することを特徴とする生物粒子の分離方法


A biological particle separation method, wherein the biological particle-containing liquid is filtered with the biological particle separation filter according to claim 8.


JP2005166039A 2005-06-06 2005-06-06 Base material for separating biological particle Pending JP2006333850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005166039A JP2006333850A (en) 2005-06-06 2005-06-06 Base material for separating biological particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005166039A JP2006333850A (en) 2005-06-06 2005-06-06 Base material for separating biological particle

Publications (1)

Publication Number Publication Date
JP2006333850A true JP2006333850A (en) 2006-12-14

Family

ID=37554930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005166039A Pending JP2006333850A (en) 2005-06-06 2005-06-06 Base material for separating biological particle

Country Status (1)

Country Link
JP (1) JP2006333850A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011193972A (en) * 2010-03-18 2011-10-06 Olympus Corp Osteoclast removing filter and osteoclast removing device
WO2016209175A1 (en) * 2015-06-25 2016-12-29 Agency For Science, Technology And Research Antimicrobial polymers formed by bulk polyaddition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242661A (en) * 1990-12-28 1992-08-31 Terumo Corp Agent for concentrating natural killer cell, concentrating device and concentrating method
JPH0584071A (en) * 1991-09-27 1993-04-06 Terumo Corp Method for capture and recovery of virus
JPH06277038A (en) * 1993-03-31 1994-10-04 Iatron Lab Inc Cell culture medium
JP2000197814A (en) * 1999-01-07 2000-07-18 Terumo Corp Leukocyte removing filter and its manufacture
JP2002161048A (en) * 2000-11-24 2002-06-04 Terumo Corp Filter for preparing platelet release factor and method for preparing platelet release factor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242661A (en) * 1990-12-28 1992-08-31 Terumo Corp Agent for concentrating natural killer cell, concentrating device and concentrating method
JPH0584071A (en) * 1991-09-27 1993-04-06 Terumo Corp Method for capture and recovery of virus
JPH06277038A (en) * 1993-03-31 1994-10-04 Iatron Lab Inc Cell culture medium
JP2000197814A (en) * 1999-01-07 2000-07-18 Terumo Corp Leukocyte removing filter and its manufacture
JP2002161048A (en) * 2000-11-24 2002-06-04 Terumo Corp Filter for preparing platelet release factor and method for preparing platelet release factor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011193972A (en) * 2010-03-18 2011-10-06 Olympus Corp Osteoclast removing filter and osteoclast removing device
WO2016209175A1 (en) * 2015-06-25 2016-12-29 Agency For Science, Technology And Research Antimicrobial polymers formed by bulk polyaddition

Similar Documents

Publication Publication Date Title
CN106457205B (en) Adsorption material for removing histone and biological source liquid purifying equipment
CN108136112B (en) Multifunctional hemocompatible porous polymer bead sorbents
Mollahosseini et al. Latest advances in zwitterionic structures modified dialysis membranes
JP2009000536A (en) Extracorporeal capturing of specific bio-macromolecular entity from extracellular body fluids
FR2480606A1 (en)
WO2006012884A1 (en) Device and method for isolating cells, bioparticles and/or molecules from liquids designed to be used for the treatment of human diseases
CN109562219B (en) Material for purifying blood
EP3202432B1 (en) Biologically-derived-fluid processing filter, and filter device
DE102005036505A1 (en) Filtration process and assembly for removing harmful substances from human blood e.g. human immunodeficiency virus, Herpes virus, or plasmodia, comprises a reactor vessel of a biocompatible material
CN110650758B (en) Material for removing activated leukocyte-activated platelet complex
JP4942015B2 (en) Ligand immobilization substrate and cell selective adsorbent
WO2019049962A1 (en) Immunosuppressive leukocyte adsorption material and adsorption column
Vorobii et al. Antifouling microparticles to scavenge lipopolysaccharide from human blood plasma
JP2002030125A (en) New hydrophilized aromatic polymer
EP3539581A1 (en) Polymer and device for capturing or separating leucocytes, manufacturing method and use thereof
JP2006333850A (en) Base material for separating biological particle
EP2679258B1 (en) Carrier for blood component adsorption and blood component adsorption column
Akande-Sholabi et al. Affinity binding macroporous monolithic cryogel as a matrix for extracorporeal apheresis medical devices
WO2023074729A1 (en) Cell adsorption material and cell adsorption column
JP2017112910A (en) Cell separation material and use therefor
JP2006158305A (en) Adsorbent for separating cell, adsorbent module for separating cell and method for separating cell
JP2006050964A (en) Method for producing cell separation material
JP2023067810A (en) Cell adsorption material and cell adsorption column
WO2023129086A2 (en) Micron-scale biocompatible materials that can bind to negatively charged biomembrane bearing species
JP4484790B2 (en) Cell adsorption material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713