JP2006317198A - Data processor for analyzer - Google Patents

Data processor for analyzer Download PDF

Info

Publication number
JP2006317198A
JP2006317198A JP2005137944A JP2005137944A JP2006317198A JP 2006317198 A JP2006317198 A JP 2006317198A JP 2005137944 A JP2005137944 A JP 2005137944A JP 2005137944 A JP2005137944 A JP 2005137944A JP 2006317198 A JP2006317198 A JP 2006317198A
Authority
JP
Japan
Prior art keywords
calibration
approximate expression
calibration curve
analyzer
approximate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005137944A
Other languages
Japanese (ja)
Other versions
JP4639940B2 (en
Inventor
Shinsuke Inoue
信介 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005137944A priority Critical patent/JP4639940B2/en
Publication of JP2006317198A publication Critical patent/JP2006317198A/en
Application granted granted Critical
Publication of JP4639940B2 publication Critical patent/JP4639940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a calibration curve of higher precision without relying on the experience or skill of an analyst. <P>SOLUTION: A standard sample for calibration containing a plurality of sample components known in molecular weight is subjected to GPC analysis to collect data and the peaks appearing in a formed chromatogram are detected. If the holding times of the peak tops of the respective peaks are decided, the relation between the molecular weights and the holding times is held to a calibration point table (S11-S15). (M) calibration points are selected from this table (S16) while the calibration points are adapted to a plurality of prepared approximation formulae to calculate a coefficient and the respective approximation formulae are determined to calculate approximation errors (S17 and S18). After the respective approximation formulae are determined by variously changing the selective combinations of the calibration points, a list wherein the approximation formulae are arranged in the smaller order of the approximation errors is displayed as a calibration curve candidate (S21 and S22). The analyst selects the calibration curve from the list. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えばゲル浸透クロマトグラフ等の分析装置で得られたデータを処理するデータ処理装置に関し、更に詳しくは、そのデータ処理の際に用いる較正曲線の作成を支援する機能を有するデータ処理装置に関する。   The present invention relates to a data processing apparatus that processes data obtained by an analyzer such as a gel permeation chromatograph, and more specifically, a data processing apparatus having a function of supporting the creation of a calibration curve used in the data processing. About.

サイズ排除クロマトグラフ(Size Exclusion Chromatography)とも呼ばれるゲル浸透クロマトグラフ(Gel Permeation Chromatography、以下GPCと略す)は液体クロマトグラフの一種であり、固定相である充填剤(ゲル)の細孔(ポア)を利用して、移動相中に溶解させた試料成分分子を分子サイズの差に基づいて分離し、分子量や分子量分布などを測定するものである(例えば特許文献1など参照)。   Gel Permeation Chromatography (GPC), also called Size Exclusion Chromatography, is a kind of liquid chromatograph, which has pores (pores) in the packing material (gel) that is a stationary phase. The sample component molecules dissolved in the mobile phase are separated based on the difference in molecular size, and the molecular weight, molecular weight distribution, and the like are measured (see, for example, Patent Document 1).

このようなGPC分析では、分析対象である未知試料の分子量を算出するために、クロマトグラム上でピークが出現する時間(保持時間又は溶出時間)と分子量との関係を示す較正曲線が利用される。従来の一般的な較正曲線の作成手順は次の通りである。   In such GPC analysis, in order to calculate the molecular weight of an unknown sample to be analyzed, a calibration curve indicating the relationship between the time when a peak appears on the chromatogram (retention time or elution time) and the molecular weight is used. . A conventional general calibration curve creation procedure is as follows.

まず、分子量が既知である1乃至複数の試料成分を含む較正用標準試料を分析して、クロマトグラムを取得する。そのクロマトグラム上で既知の試料成分によるピークのピークトップが出現する時間(保持時間)を読み取り、その結果から分子量と保持時間とを対応付けた表を作成する。一般的には分子量の異なるものが数点程度用いられる。上記表に挙げられた分子量−保持時間を較正点とし、互いに異なる数個の較正点から近似式を求めて較正曲線を作成する。   First, a calibration standard sample including one or more sample components having a known molecular weight is analyzed to obtain a chromatogram. The time (retention time) at which the peak top of a known sample component appears on the chromatogram is read, and a table in which the molecular weight is associated with the retention time is created from the result. In general, several different molecular weights are used. Using the molecular weight-retention time listed in the above table as a calibration point, an approximate expression is obtained from several different calibration points to create a calibration curve.

こうした作業に際し、分析者は自分の経験に照らして適切だと思われる2乃至3程度の近似式に上記表の関係を当てはめ、最も相関のよい(近似誤差の小さい)ものを採用することで較正曲線を求める。また、場合によっては較正点が適切でない(例えば或る較正点を得る際にノイズが混入した等)こともあるから、実測で得た全ての較正点を用いずに適宜に較正点を除外する等、その組み合わせを調整し、より近似誤差の小さな較正曲線を求めることもある。いずれにしても、こうした作業は分析者の手作業で行われており、どのような近似式を採用するのか、或いはどういった較正点を除外するのかなどの判断は、全て分析者の経験や勘に委ねられている。   In doing this, the analyst calibrates by applying the relationship shown in the above table to a few approximate equations that are considered appropriate in light of his experience, and adopting the one with the best correlation (small approximation error). Find a curve. In some cases, the calibration points may not be appropriate (for example, noise may be mixed when obtaining a certain calibration point). Therefore, the calibration points are appropriately excluded without using all the calibration points obtained by actual measurement. For example, a calibration curve with a smaller approximation error may be obtained by adjusting the combination. In any case, such work is done manually by the analyst, and all judgments such as what approximation formula to use and what calibration points to exclude are all determined by the analyst's experience and It is left to intuition.

一般に、通常の液体クロマトグラフやガスクロマトグラフなどでは、較正曲線(検量線)は直線となるか、或いは直線でなくても折れ線や低次の関数で近似できる場合が多い。そのため、分析者毎の較正曲線のばらつきはそれほど大きくなく、実際上、問題とならない場合が多い。ところが、GPC分析では、較正曲線の形状が複雑になる傾向にあり、高次の多項式や複数の関数の組み合わせで表現する必要がある場合も多い。そのため、上記のような手作業で較正曲線を作成した場合、仮に同一の較正点を用いたとしても分析者によって較正曲線のばらつきが大きくなる。そのために、目的試料の分子量の精度もばらつくおそれがある。また、採用された較正曲線よりもより適切な近似式や較正点の組み合わせが存在した場合でも、それが見逃されてしまって、最適な分析ができない可能性がある。   In general, in a normal liquid chromatograph or gas chromatograph, the calibration curve (calibration curve) is a straight line or can be approximated by a broken line or a low-order function even if it is not a straight line. Therefore, the variation of the calibration curve for each analyst is not so large, and in practice, it often does not cause a problem. However, in the GPC analysis, the shape of the calibration curve tends to be complicated, and it is often necessary to express it by a combination of a higher-order polynomial or a plurality of functions. For this reason, when the calibration curve is created manually as described above, even if the same calibration point is used, the variation of the calibration curve by the analyst increases. Therefore, the molecular weight accuracy of the target sample may vary. Even if there is a more appropriate approximate expression or combination of calibration points than the calibration curve adopted, it may be overlooked and the optimal analysis may not be possible.

特開平8−271494号公報JP-A-8-271494

本発明はかかる課題を解決するために成されたものであり、その目的とするところは、分析者の経験や技量に依存することなく高精度の較正曲線を作成することで、分析精度を高めたり良好な再現性を達成したりすることができる分析装置用データ処理装置を提供することにある。   The present invention has been made to solve such a problem, and the object of the present invention is to improve analysis accuracy by creating a highly accurate calibration curve without depending on the experience and skill of the analyst. Another object of the present invention is to provide a data processing apparatus for an analyzer that can achieve good reproducibility.

上記課題を解決するために成された本発明は、予め用意された較正曲線を用いて、分析装置により目的試料を分析して取得されたデータから前記目的試料に関する所定の指標値を導出する分析装置用データ処理装置において、
a)前記分析装置により較正用標準試料を分析して取得されたデータに基づいて、較正曲線を作成する際の元となる複数の較正点を求めて格納しておく較正点保持手段と、
b)該較正点保持手段に格納されている複数の較正点の全て又はその一部を、その組み合わせを変えながら順次選択して出力する較正点選択手段と、
c)予め用意された複数の近似式モデルのそれぞれについて、前記較正点選択手段により出力された較正点を用いて近似式モデルに含まれる係数を算出して近似式を決定する近似式決定手段と、
d)前記近似式決定手段により決定された各近似式について近似誤差又はそれに相当する値を算出する誤差情報算出手段と、
e)前記較正曲線の候補として、前記近似式決定手段により決定された近似式と前記誤差情報算出手段により算出された近似誤差又はそれに相当する値とを提示する情報提示手段と、
を備えることを特徴としている。
The present invention, which has been made to solve the above-mentioned problems, is an analysis for deriving a predetermined index value relating to the target sample from data obtained by analyzing the target sample with an analyzer using a calibration curve prepared in advance. In the data processing device for equipment,
a) calibration point holding means for obtaining and storing a plurality of calibration points as a basis for creating a calibration curve based on data obtained by analyzing a calibration standard sample by the analyzer;
b) calibration point selection means for sequentially selecting and outputting all or a part of the plurality of calibration points stored in the calibration point holding means while changing the combination thereof;
c) for each of a plurality of approximate expression models prepared in advance, approximate expression determination means for determining an approximate expression by calculating a coefficient included in the approximate expression model using the calibration points output by the calibration point selection means; ,
d) error information calculating means for calculating an approximate error or a value corresponding to each approximate expression determined by the approximate expression determining means;
e) Information presentation means for presenting the approximate expression determined by the approximate expression determination means and the approximate error calculated by the error information calculation means or a value corresponding thereto as the calibration curve candidates;
It is characterized by having.

ここで、「予め用意された複数の近似式モデル」とは、例えば低次式から高次式まで次数の異なる多項式や、或いは複数の異なる関数の組み合わせなどとすることができる。   Here, “a plurality of approximate expression models prepared in advance” can be, for example, polynomials having different orders from a lower order expression to a higher order expression, or a combination of a plurality of different functions.

また、「近似誤差又はそれに相当する値」とは、近似式とその決定の元となった較正点とのずれを表す値でありさえすればよく、近似誤差のほか相関係数などが考えられる。   Further, the “approximation error or a value corresponding to it” only needs to be a value representing a deviation between the approximate expression and the calibration point from which the determination is made, and may include a correlation coefficient in addition to the approximation error. .

本発明に係る分析装置用データ処理装置では、較正点選択手段により複数の較正点が与えられると、近似式決定手段は上述したように予め用意された複数の各種の近似式モデルのそれぞれについて、上記較正点を用いて近似式モデルに含まれる係数を算出して近似式を決定する。したがって、例えば5種の近似式モデルが用意されている場合には、或る1つの組み合わせの較正点に対して5つの近似式が決定される。また、較正点選択手段は複数の較正点の全て又はその一部を、その組み合わせを変えながら順次選択して出力するから、その組み合わせの異なる較正点毎に上記のようにそれぞれ例えば5つの近似式を決定する。   In the data processing apparatus for an analyzer according to the present invention, when a plurality of calibration points are given by the calibration point selecting means, the approximate expression determining means, for each of the various approximate expression models prepared in advance as described above, An approximate expression is determined by calculating a coefficient included in the approximate expression model using the calibration points. Therefore, for example, when five types of approximate equations models are prepared, five approximate equations are determined for a certain combination of calibration points. Further, since the calibration point selection means sequentially selects and outputs all or a part of the plurality of calibration points while changing the combination, for example, five approximate expressions are respectively provided for each of the calibration points having different combinations as described above. To decide.

さらに誤差情報算出手段は、上記のように決定された各近似式毎に例えば近似誤差を計算する。そして情報提示手段は、上記のように決定された近似式とそれに対応する例えば近似誤差とを、例えばモニタの画面上に一覧表の形式で提示する。分析者はこのように提示された情報を見て、最適であると考えられる近似式を較正曲線として選択する。通常は、最も近似誤差が小さい(相関係数が高い)近似式を較正曲線として選択するから、本発明に係る分析装置用データ処理装置では、好ましくは、情報提示手段は近似誤差が小さい順に前記近似式を提示する構成とするとよい。これにより、分析者はより容易に較正曲線を選択できる。   Further, the error information calculation means calculates, for example, an approximation error for each approximate expression determined as described above. The information presenting means presents the approximate expression determined as described above and the corresponding approximate error, for example, in the form of a list on the monitor screen. The analyst looks at the information presented in this way and selects an approximate expression that is considered optimal as a calibration curve. Usually, an approximation formula having the smallest approximation error (high correlation coefficient) is selected as the calibration curve. Therefore, in the data processing apparatus for an analyzer according to the present invention, preferably, the information presenting means is configured so that the approximation error is in descending order. It is preferable that the approximate expression is presented. This allows the analyst to select the calibration curve more easily.

本発明は特に、較正曲線が例えば直線のように単純ではなく、比較的次数の高い多項式になる場合や複数の関数の組み合わせとなるような場合に有用である。こうした分析装置の一例としてはゲル浸透クロマトグラフ装置を挙げることができ、その場合には、前記指標値は分子量であり、前記較正曲線は保持時間と分子量との関係を示すものである。   The present invention is particularly useful when the calibration curve is not as simple as, for example, a straight line but is a relatively high-order polynomial or a combination of functions. An example of such an analyzer is a gel permeation chromatograph, in which case the index value is the molecular weight and the calibration curve shows the relationship between retention time and molecular weight.

以上のように本発明に係る分析装置用データ処理装置によれば、これまで分析者の経験や判断に依存していた、近似式の次数の選択や較正点の組み合わせの選択などを伴う較正曲線の作成作業が自動的に且つ網羅的に行われるので、分析者の経験や技量の相違による較正曲線のばらつきがなくなる。それによって、常に高精度の分析が可能となる。また、従来は必ずしも最適な較正曲線を作成できるとは限らなかったのに対し、本発明に係る分析装置用データ処理装置によれば、較正用標準試料の分析結果に対し最も近似性の高い較正曲線を求めることができるので、その点でも高精度の分析が可能となる。   As described above, according to the data processing apparatus for an analyzer according to the present invention, the calibration curve that involves the selection of the order of the approximate expression, the selection of the combination of the calibration points, etc., which has been dependent on the experience and judgment of the analyst so far. Is automatically and exhaustively performed, eliminating variations in calibration curves due to differences in analyst experience and skills. As a result, a highly accurate analysis is always possible. In addition, in the past, an optimum calibration curve could not always be created. However, according to the data processing apparatus for an analyzer according to the present invention, calibration having the highest approximation to the analysis result of the calibration standard sample is possible. Since a curve can be obtained, it is possible to perform highly accurate analysis at that point.

本発明の一実施例として、本発明に係るデータ処理装置をゲル浸透クロマトグラフ(GPC)分析装置に適用した例について以下に説明する。   As an embodiment of the present invention, an example in which the data processing apparatus according to the present invention is applied to a gel permeation chromatograph (GPC) analyzer will be described below.

図1は本実施例によるGPC分析装置の概略構成図である。このGPC分析装置は、移動相容器1、送液ポンプ2、インジェクタ3、カラム4、示差屈折率検出器5、及びデータ処理部6等から成る。カラム4には、目的試料の種類(例えばタンパク質、高分子ポリマー等)に応じたGPC用充填剤が充填される。本発明に係るデータ処理装置に相当するデータ処理部6の実体はパーソナルコンピュータであり、パーソナルコンピュータに専用の制御・処理用ソフトウエアがインストールされ実行されることにより、GPC分析に必要な各種制御やデータ処理動作が達成される。   FIG. 1 is a schematic configuration diagram of a GPC analyzer according to this embodiment. The GPC analyzer includes a mobile phase container 1, a liquid feed pump 2, an injector 3, a column 4, a differential refractive index detector 5, a data processing unit 6, and the like. The column 4 is packed with a GPC filler according to the type of target sample (for example, protein, polymer, etc.). The entity of the data processing unit 6 corresponding to the data processing apparatus according to the present invention is a personal computer. Various control and GPC analysis necessary for GPC analysis can be performed by installing and executing dedicated control / processing software in the personal computer. Data processing operations are achieved.

このGPC分析装置において分子量が未知である成分を含む目的試料を分析する際の手順を図2を用いて説明する。まず、目的試料に対するGPC分析を実行してデータを収集する(ステップS1)。即ち、送液ポンプ2は移動相容器1から移動相を吸引して略一定流量でインジェクタ3を介しカラム4に送給する。所定のタイミングでインジェクタ3により目的試料を移動相中に注入するとともに、示差屈折率検出器5での測定を開始する。注入された試料は移動相に乗ってカラム4に導入され、カラム4内の充填剤の細孔の影響により各試料成分の分子量に応じた時間だけカラム4内に留まる。そして、分子サイズの大きな(一般には分子量の大きな)試料成分から順次カラム4より溶出し示差屈折率検出器5に到達して検出される。   The procedure for analyzing a target sample containing a component whose molecular weight is unknown in this GPC analyzer will be described with reference to FIG. First, GPC analysis is performed on the target sample to collect data (step S1). That is, the liquid feed pump 2 sucks the mobile phase from the mobile phase container 1 and sends it to the column 4 through the injector 3 at a substantially constant flow rate. The target sample is injected into the mobile phase by the injector 3 at a predetermined timing, and measurement with the differential refractive index detector 5 is started. The injected sample rides on the mobile phase and is introduced into the column 4 and remains in the column 4 for a time corresponding to the molecular weight of each sample component due to the influence of the pores of the filler in the column 4. A sample component having a large molecular size (generally a large molecular weight) is sequentially eluted from the column 4 and reaches the differential refractive index detector 5 to be detected.

測定開始後、示差屈折率検出器5による検出値は時々刻々とデータ処理部6に送られ、データ処理部6では時間経過に伴ってクロマトグラムを作成する(ステップS2)。図4はクロマトグラムの一例であり、試料成分が溶出したときにその試料成分に対応したピークが現れる。こうしたクロマトグラムが取得されたならば、データ処理部6ではクロマトグラムに対して波形処理を行うことによりクロマトグラム上に出現したピークを検出する(ステップS3)。図4の例では、A,B,Cの3つのピークが検出される。   After the measurement is started, the value detected by the differential refractive index detector 5 is sent to the data processing unit 6 every moment, and the data processing unit 6 creates a chromatogram with the passage of time (step S2). FIG. 4 is an example of a chromatogram. When a sample component is eluted, a peak corresponding to the sample component appears. If such a chromatogram is acquired, the data processor 6 detects a peak appearing on the chromatogram by performing waveform processing on the chromatogram (step S3). In the example of FIG. 4, three peaks A, B, and C are detected.

それから検出された各ピークのピークトップの溶出時間(保持時間)を求める(ステップS4)。図4の例ではA,B,Cの3つのピークに対しta,tb,tcの保持時間が求まる。その後、予め作成された較正曲線を参照して、上記各保持時間からそれぞれ分子量を算出する(ステップS5)。これにより、目的試料に含まれる3つの試料成分の分子量が求まる。   Then, the elution time (retention time) of the peak top of each peak detected is obtained (step S4). In the example of FIG. 4, the holding times of ta, tb, and tc are obtained for the three peaks of A, B, and C. Thereafter, referring to a calibration curve prepared in advance, the molecular weight is calculated from each of the retention times (step S5). Thereby, the molecular weights of the three sample components contained in the target sample are obtained.

上述したようにデータ処理部6ではピークの保持時間から分子量を算出するために較正曲線を予め保持しているが、本実施例のGPC分析装置では、精度の高い較正曲線を簡便に作成するためにデータ処理部6は較正曲線作成支援処理部7を機能の1つとして備える。即ち、この較正曲線作成支援処理部7も所定のソフトウエアによりパーソナルコンピュータのCPU、ROM、RAMなどのハードウエア資源を利用して具現化される機能である。   As described above, the data processing unit 6 holds the calibration curve in advance in order to calculate the molecular weight from the peak retention time. However, in the GPC analyzer of this embodiment, in order to easily create a highly accurate calibration curve. The data processing unit 6 includes a calibration curve creation support processing unit 7 as one of the functions. That is, the calibration curve creation support processing unit 7 is also a function realized by using predetermined hardware and hardware resources such as a CPU, ROM, and RAM of a personal computer.

このGPC分析装置において較正曲線を作成する際の手順を図3を用いて説明する。較正曲線を作成するために、分子量が既知である試料成分を含む較正用標準試料を用いる。通常、1つの標準試料は分子量が既知である複数の試料成分を含むが、1つの標準試料で不足する場合には複数種の標準試料を準備する。試料成分の分子量は分析対象である上記目的試料の分子量の範囲に合わせて適当に選定するとよい。また、分子量が相違する試料成分の数も適宜に決めることができるが、多すぎると処理量が膨大になって時間が掛かりすぎ、少なすぎると較正曲線の精度が低下するおそれがある。したがって、通常は数個〜10数個程度の範囲とする。ここでは、試料成分の数は10個、つまりn=10であるとする。   A procedure for creating a calibration curve in this GPC analyzer will be described with reference to FIG. To create a calibration curve, a calibration standard sample containing sample components of known molecular weight is used. Usually, one standard sample includes a plurality of sample components having known molecular weights, but when one standard sample is insufficient, a plurality of types of standard samples are prepared. The molecular weight of the sample component may be appropriately selected according to the molecular weight range of the target sample to be analyzed. Further, the number of sample components having different molecular weights can be determined as appropriate, but if the amount is too large, the amount of processing becomes enormous and it takes too much time. If the amount is too small, the accuracy of the calibration curve may be lowered. Therefore, the range is usually from about several to about several. Here, it is assumed that the number of sample components is 10, that is, n = 10.

まず、上記較正用標準試料に対するGPC分析を実行してデータを収集する(ステップS11)。そしてデータ処理部6は収集されたデータに基づいてクロマトグラムを作成し(ステップS12)、そのクロマトグラムに対して波形処理を行うことによりクロマトグラム上に出現したピークを検出する(ステップS13)。それから検出された各ピークのピークトップの保持時間を求める(ステップS14)。ここまでは、上述した目的試料の分析の際と同じである。   First, GPC analysis is performed on the calibration standard sample to collect data (step S11). Then, the data processing unit 6 creates a chromatogram based on the collected data (step S12), and detects a peak appearing on the chromatogram by performing waveform processing on the chromatogram (step S13). Then, the retention time of the peak top of each detected peak is obtained (step S14). The process up to this point is the same as in the analysis of the target sample described above.

10個の試料成分について分子量がそれぞれM1、…、M10であり、ピークトップの保持時間がt1、…、t10であるとすると、分子量と保持時間との組(t1,M1)、…、(t10,M10)がそれぞれ較正点となるから、これを集めて較正点テーブルを作成して記憶する(ステップS15)。この較正点テーブルに保持されている10個の較正点が較正曲線を作成する際の元データとなる。この各較正点は、図5に示すように横軸に保持時間、縦軸に分子量(通常対数目盛)をとったグラフの上でそれぞれ1点を表す。   Assuming that the molecular weight of each of the ten sample components is M1,..., M10 and the peak top retention time is t1,..., T10, a set of molecular weight and retention time (t1, M1),. , M10) are calibration points, and these are collected and stored as a calibration point table (step S15). Ten calibration points held in the calibration point table serve as original data when a calibration curve is created. As shown in FIG. 5, each calibration point represents one point on a graph in which the horizontal axis represents the retention time and the vertical axis represents the molecular weight (normal logarithmic scale).

次に、上記較正点テーブルに保持されているN個の較正点の中からM個(1≦M≦N)の較正点を選択するが、まずm=n、つまりn個全ての較正点を選択する(ステップS16)。較正曲線作成支援処理部7は、予め決められた複数の近似式モデルを保持している。具体的に言うと、例えば、直線、折れ線、3次式、3次+双曲線、5次式、5次+双曲線、7次式、7次+双曲線などの近似式モデルを持つ。各近似式モデルは未定の係数を含み、この係数が定まると近似式が確定する。そこで、較正曲線作成支援処理部7は上記のような近似式モデルを選択し、較正点テーブルより受け取った複数の較正点に基づいて各近似式モデルの係数を計算する(ステップS17)。例えば、まずn個の較正点を用いて直線の近似式を算出する。そして係数が求まり近似式が確定したならば、その近似式と較正点との相関性又は近似性を示す値として例えば近似誤差を計算する(ステップS18)。   Next, M (1 ≦ M ≦ N) calibration points are selected from the N calibration points held in the calibration point table. First, m = n, that is, all n calibration points are selected. Select (step S16). The calibration curve creation support processing unit 7 holds a plurality of predetermined approximate models. Specifically, for example, it has an approximate expression model such as a straight line, a broken line, a cubic expression, a cubic + hyperbola, a fifth order expression, a fifth order + hyperbola, a seventh order expression, and a seventh order + hyperbola. Each approximate expression model includes an undetermined coefficient, and when this coefficient is determined, the approximate expression is determined. Therefore, the calibration curve creation support processing unit 7 selects the approximate expression model as described above, and calculates the coefficient of each approximate expression model based on the plurality of calibration points received from the calibration point table (step S17). For example, first, an approximate expression of a straight line is calculated using n calibration points. When the coefficients are obtained and the approximate expression is determined, for example, an approximate error is calculated as a value indicating the correlation or closeness between the approximate expression and the calibration point (step S18).

次いで、全ての近似式モデルについて近似式を求めたか否かを判定し(ステップS19)、未確定の近似式モデルがある場合にはステップS17へ戻る。したがって、ステップS17〜S19の繰り返し処理により、上述したように予め用意された全ての近似式モデル(直線、折れ線、3次式、3次+双曲線、5次式、5次+双曲線、7次式、7次+双曲線など)について、n個の較正点を用いたときの近似式がそれぞれ求められることになる。決まった較正点に対してそれぞれ異なる近似式L1、L2、L3を作成した状態の一例を図5に示す。   Next, it is determined whether approximate equations have been obtained for all approximate equation models (step S19). If there is an uncertain approximate equation model, the process returns to step S17. Therefore, by repeating the processes of steps S17 to S19, all approximate equation models prepared in advance as described above (straight line, broken line, cubic, cubic + hyperbola, fifth degree, fifth degree + hyperbola, seventh degree) , 7th order + hyperbola, etc.), approximate expressions when n calibration points are used are respectively obtained. FIG. 5 shows an example of a state in which different approximate expressions L1, L2, and L3 are created for the determined calibration points.

n個の較正点を用いて全ての近似式モデルについての近似式が確定すると、その後に、今度はn個の較正点について全ての選択組合せが実行されたか否かを判定し(ステップS20)、未実行のものがある場合にはステップS16へ戻る。即ち、上述したようにm=nとした処理が終了したならば、次にm=n−1、つまりこの例では9個の較正点を選択する。換言すれば、全部で10個の較正点の中で1個の較正点を無効データとして扱う。但し、10個の較正点のうちのどの1個を無効とするのかで10通りの選択組合せが考え得るから、それぞれについて順番に処理してゆくことになる。   After the approximation formulas for all approximation models are determined using n calibration points, it is then determined whether or not all selected combinations have been executed for n calibration points (step S20). If there is an unexecuted item, the process returns to step S16. That is, when the process of setting m = n is completed as described above, then m = n−1, that is, nine calibration points in this example are selected. In other words, one calibration point is treated as invalid data among ten calibration points in total. However, since 10 selected combinations can be considered depending on which one of the 10 calibration points is invalidated, each of them is processed in turn.

例えば、1番目の較正点(t1、M1)を無効とし、残りの9個の較正点(t2,M2)、…、(t10,M10)を用いてステップS18の処理を実行し、この9個の較正点を用いて全ての近似式モデルについて近似式を確定したならば、次に2番目の較正点(t2、M2)を無効とし、残りの9個の較正点(t1,M1)、(t3,M3、)、…、(t10,M10)を用いてステップS18の処理を実行する、というように繰り返す。さらに、m=n−1についての処理が終了したならば、m=n−2として同様の処理を繰り返す。   For example, the first calibration point (t1, M1) is invalidated, and the process of step S18 is executed using the remaining nine calibration points (t2, M2),..., (T10, M10). If the approximate equations are determined for all approximate models using the calibration points, the second calibration point (t2, M2) is invalidated, and the remaining nine calibration points (t1, M1), ( The process of step S18 is repeated using t3, M3,..., (t10, M10). Further, when the process for m = n−1 is completed, the same process is repeated with m = n−2.

但し、近似式モデルの係数を算出するためには、各近似式モデル毎に最低限必要な較正点の個数が決まっている。例えば7次式では8個の係数が存在し、この8個の係数を算出するためには9個の較正点が必要である。したがって、mが8になった場合には7次式の近似式モデルは利用することができない。このように次数が高いほど必要な較正点の個数は多くなるから、mをnから順番に減らしてゆくに従い利用できる近似式モデルも減ってゆく。なお、近似式モデルを直線とした場合、2個の較正点があれば直線を引くことができるが、実際にはこのように多数の較正点を無効として近似式を求めてもあまり意味がない。したがって、無効とする較正点の個数を例えば2或いは3(mの下限値pを7又は8)等と予め制限しておくことが実用上必要である。   However, in order to calculate the coefficient of the approximate expression model, the minimum number of calibration points required for each approximate expression model is determined. For example, in the 7th order equation, there are 8 coefficients, and 9 calibration points are required to calculate these 8 coefficients. Therefore, when m reaches 8, a 7th order approximate model cannot be used. Since the number of calibration points required increases as the order increases, the number of approximate models that can be used decreases as m is decreased from n in order. If the approximate equation model is a straight line, it is possible to draw a straight line if there are two calibration points. However, in reality, it is not meaningful to obtain an approximate equation by invalidating a large number of calibration points. . Therefore, it is practically necessary to limit the number of invalid calibration points to 2 or 3 (the lower limit p of m is 7 or 8) in advance.

そして、決められた範囲で較正点の全ての選択組合わせについて近似式を確定し、各近似式の近似誤差を求めたならば、その多数の近似式を較正曲線の候補として近似誤差が小さい順に並べた一覧表を作成し(ステップS21)、これをモニタ画面上に表示する(ステップS22)。図6は較正曲線候補の一覧表の一例を示す図である。分析者が、表示された一覧表を参考にして適切な近似式を選択し指示すると(ステップS23)、選択された近似式が較正曲線として記憶部に格納されて、前述したような目的試料の分析の際に利用される。通常は、一覧表内の最高順位、つまり近似誤差の最も小さな近似式を較正曲線として選べばよい。   Then, if approximate equations are determined for all selected combinations of calibration points within a predetermined range and the approximate error of each approximate equation is obtained, the multiple approximate equations are used as calibration curve candidates in ascending order of approximate error. The arranged list is created (step S21) and displayed on the monitor screen (step S22). FIG. 6 is a diagram illustrating an example of a list of calibration curve candidates. When the analyst selects and instructs an appropriate approximate expression with reference to the displayed list (step S23), the selected approximate expression is stored in the storage unit as a calibration curve, and the target sample as described above is stored. Used for analysis. Usually, the highest order in the list, that is, the approximation formula with the smallest approximation error may be selected as the calibration curve.

以上のようにして、本実施例のGPC分析装置では、データ処理部6に備えられた較正曲線作成支援処理部7の機能を利用して、分析者の経験や判断などに依存せずに精度の高い較正曲線を自動で作成することができる。   As described above, the GPC analyzer according to the present embodiment uses the function of the calibration curve creation support processing unit 7 provided in the data processing unit 6 to perform accuracy without depending on the experience or judgment of the analyst. A high calibration curve can be created automatically.

なお、上記実施例は本発明に係るデータ処理装置をGPC分析装置に適用した例であるが、予め標準試料を測定することにより較正曲線を作成しておき、この較正曲線を用いて未知試料の測定結果から該未知試料に関する目的とする値を導出するような分析装置一般に適用することができる。但し、較正曲線が常に直線などで近似されることが決まっている場合には有用性は低く、較正曲線が複雑であるほど有用性が高い。   The above embodiment is an example in which the data processing apparatus according to the present invention is applied to a GPC analyzer. However, a calibration curve is prepared in advance by measuring a standard sample, and an unknown sample is obtained using this calibration curve. The present invention can be generally applied to an analyzer that derives a target value related to the unknown sample from the measurement result. However, when it is determined that the calibration curve is always approximated by a straight line or the like, the usefulness is low, and the more complex the calibration curve is, the higher the usefulness is.

また、上記実施例では較正曲線の候補を分析者に提示して、最終的には分析者が最も適切であると考える近似式を較正曲線として選択するようにしていたが、自動的に近似誤差が最小となる較正曲線を自動的に選択して内部メモリに記憶する構成としてもよい。   In the above embodiment, calibration curve candidates are presented to the analyst, and finally, an approximation formula that the analyst thinks is most appropriate is selected as the calibration curve. It is also possible to automatically select a calibration curve that minimizes and store it in the internal memory.

なお、上記実施例は本発明の一例であり、本発明の趣旨の範囲で適宜変形、修正、追加などを行っても本発明に包含される。   The above-described embodiment is an example of the present invention, and modifications, corrections, additions, and the like are appropriately included in the present invention within the scope of the present invention.

本発明の一実施例によるGPC分析装置の概略構成図。1 is a schematic configuration diagram of a GPC analyzer according to an embodiment of the present invention. 本GPC分析装置における目的試料測定時の処理フローチャート。The process flowchart at the time of the target sample measurement in this GPC analyzer. 本GPC分析装置における較正曲線作成時の処理フローチャート。The processing flowchart at the time of the calibration curve preparation in this GPC analyzer. 本GPC分析装置において取得されるクロマトグラムの一例を示す図。The figure which shows an example of the chromatogram acquired in this GPC analyzer. 較正曲線作成支援処理動作の説明図。Explanatory drawing of a calibration curve creation assistance processing operation. 較正曲線作成支援処理動作の結果として表示される較正曲線候補一覧表の一例を示す図。The figure which shows an example of the calibration curve candidate list displayed as a result of a calibration curve creation assistance processing operation.

符号の説明Explanation of symbols

1…移動相容器
2…送液ポンプ
3…インジェクタ
4…カラム
5…示差屈折率検出器
6…データ処理部
7…較正曲線作成支援処理部
DESCRIPTION OF SYMBOLS 1 ... Mobile phase container 2 ... Liquid feed pump 3 ... Injector 4 ... Column 5 ... Differential refractive index detector 6 ... Data processing part 7 ... Calibration curve preparation assistance processing part

Claims (3)

予め用意された較正曲線を用いて、分析装置により目的試料を分析して取得されたデータから前記目的試料に関する所定の指標値を導出する分析装置用データ処理装置において、
a)前記分析装置により較正用標準試料を分析して取得されたデータに基づいて、較正曲線を作成する際の元となる複数の較正点を求めて格納しておく較正点保持手段と、
b)該較正点保持手段に格納されている複数の較正点の全て又はその一部を、その組み合わせを変えながら順次選択して出力する較正点選択手段と、
c)予め用意された複数の近似式モデルのそれぞれについて、前記較正点選択手段により出力された較正点を用いて近似式モデルに含まれる係数を算出して近似式を決定する近似式決定手段と、
d)前記近似式決定手段により決定された各近似式について近似誤差又はそれに相当する値を算出する誤差情報算出手段と、
e)前記較正曲線の候補として、前記近似式決定手段により決定された近似式と前記誤差情報算出手段により算出された近似誤差又はそれに相当する値とを提示する情報提示手段と、
を備えることを特徴とする分析装置用データ処理装置。
In a data processing apparatus for an analyzer that derives a predetermined index value related to the target sample from data obtained by analyzing the target sample with an analyzer using a calibration curve prepared in advance,
a) calibration point holding means for obtaining and storing a plurality of calibration points as a basis for creating a calibration curve based on data obtained by analyzing a calibration standard sample by the analyzer;
b) calibration point selection means for sequentially selecting and outputting all or a part of the plurality of calibration points stored in the calibration point holding means while changing the combination thereof;
c) for each of a plurality of approximate expression models prepared in advance, an approximate expression determining means for determining an approximate expression by calculating a coefficient included in the approximate expression model using the calibration points output by the calibration point selecting means; ,
d) error information calculating means for calculating an approximate error or a value corresponding to each approximate expression determined by the approximate expression determining means;
e) Information presentation means for presenting the approximate expression determined by the approximate expression determination means and the approximate error calculated by the error information calculation means or a value corresponding thereto as the calibration curve candidates;
A data processing apparatus for an analyzer, comprising:
前記情報提示手段は近似誤差が小さい順に前記近似式を提示することを特徴とする請求項1に記載の分析装置用データ処理装置。   The data processing apparatus for an analyzer according to claim 1, wherein the information presentation unit presents the approximation formulas in ascending order of approximation error. 前記分析装置はゲル浸透クロマトグラフ装置であり、前記指標値は分子量であり、前記較正曲線は保持時間と分子量との関係を示すものであることを特徴とする請求項1又は2に記載の分析装置用データ処理装置。
The analysis according to claim 1 or 2, wherein the analyzer is a gel permeation chromatograph, the index value is a molecular weight, and the calibration curve shows a relationship between a retention time and a molecular weight. Data processing device for equipment.
JP2005137944A 2005-05-11 2005-05-11 Data processing device for gel permeation chromatograph Active JP4639940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005137944A JP4639940B2 (en) 2005-05-11 2005-05-11 Data processing device for gel permeation chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005137944A JP4639940B2 (en) 2005-05-11 2005-05-11 Data processing device for gel permeation chromatograph

Publications (2)

Publication Number Publication Date
JP2006317198A true JP2006317198A (en) 2006-11-24
JP4639940B2 JP4639940B2 (en) 2011-02-23

Family

ID=37538016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137944A Active JP4639940B2 (en) 2005-05-11 2005-05-11 Data processing device for gel permeation chromatograph

Country Status (1)

Country Link
JP (1) JP4639940B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182432A1 (en) * 2014-05-29 2015-12-03 Ntn株式会社 Sensor-equipped wheel bearing
CN105445389A (en) * 2014-09-18 2016-03-30 戴安公司 An automated method of calibrating a chromatography system and analysis of a sample
JP2018096850A (en) * 2016-12-13 2018-06-21 東ソー株式会社 Quantitative and correction method by polynomial calibration curve
CN111721852A (en) * 2019-03-20 2020-09-29 日本株式会社日立高新技术科学 Data processing device and data processing method for chromatograph, and chromatograph
US10802000B2 (en) 2013-03-15 2020-10-13 Dionex Corporation Method of calibrating a chromatography system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172974A (en) * 1987-01-12 1988-07-16 Toshiba Corp Insulation deterioration diagnosing method for oil-filled electric equipment
JPH08187098A (en) * 1994-11-09 1996-07-23 Hitachi Ltd Analyzing method of gene and device therefor
JPH08271494A (en) * 1995-03-29 1996-10-18 Shimadzu Corp Size elimination chromatograph analyzer
JPH08304375A (en) * 1995-05-10 1996-11-22 Shimadzu Corp Device for determining amino acid sequence of protein
JPH1038871A (en) * 1996-07-19 1998-02-13 Shimadzu Corp Data processor for chromatography
JP2003525422A (en) * 1998-02-20 2003-08-26 ウォーターズ・インヴェストメンツ・リミテッド System and method for determining molecular weight and intrinsic viscosity of polymer distribution using gel permeation chromatography
JP2004325265A (en) * 2003-04-24 2004-11-18 National Institute Of Advanced Industrial & Technology Method and apparatus for analyzing polymer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172974A (en) * 1987-01-12 1988-07-16 Toshiba Corp Insulation deterioration diagnosing method for oil-filled electric equipment
JPH08187098A (en) * 1994-11-09 1996-07-23 Hitachi Ltd Analyzing method of gene and device therefor
JPH08271494A (en) * 1995-03-29 1996-10-18 Shimadzu Corp Size elimination chromatograph analyzer
JPH08304375A (en) * 1995-05-10 1996-11-22 Shimadzu Corp Device for determining amino acid sequence of protein
JPH1038871A (en) * 1996-07-19 1998-02-13 Shimadzu Corp Data processor for chromatography
JP2003525422A (en) * 1998-02-20 2003-08-26 ウォーターズ・インヴェストメンツ・リミテッド System and method for determining molecular weight and intrinsic viscosity of polymer distribution using gel permeation chromatography
JP2004325265A (en) * 2003-04-24 2004-11-18 National Institute Of Advanced Industrial & Technology Method and apparatus for analyzing polymer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10802000B2 (en) 2013-03-15 2020-10-13 Dionex Corporation Method of calibrating a chromatography system
WO2015182432A1 (en) * 2014-05-29 2015-12-03 Ntn株式会社 Sensor-equipped wheel bearing
CN105445389A (en) * 2014-09-18 2016-03-30 戴安公司 An automated method of calibrating a chromatography system and analysis of a sample
US9804136B2 (en) 2014-09-18 2017-10-31 Dionex Corporation Automated method of calibrating a chromatography system and analysis of a sample
CN105445389B (en) * 2014-09-18 2018-07-31 戴安公司 It calibrates chromatographic system and analyzes the automated method of sample
US10605793B2 (en) 2014-09-18 2020-03-31 Dionex Corporation Automated method of calibrating a chromatography system and analysis of a sample
JP2018096850A (en) * 2016-12-13 2018-06-21 東ソー株式会社 Quantitative and correction method by polynomial calibration curve
CN111721852A (en) * 2019-03-20 2020-09-29 日本株式会社日立高新技术科学 Data processing device and data processing method for chromatograph, and chromatograph
CN111721852B (en) * 2019-03-20 2023-09-22 日本株式会社日立高新技术科学 Data processing device and data processing method for chromatograph, and chromatograph

Also Published As

Publication number Publication date
JP4639940B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
Desharnais et al. Procedure for the selection and validation of a calibration model I—description and application
JP4639940B2 (en) Data processing device for gel permeation chromatograph
CN108508122B (en) Data processing device for chromatograph
JP2009204618A (en) Method for measuring one or more specific parameter value of chromatographic system
Gorbet et al. Multi-speed sedimentation velocity implementation in UltraScan-III
van der Veen Bayesian analysis of homogeneity studies in the production of reference materials
Hughes et al. Deconvolution of complex 1D NMR spectra using objective model selection
JP4953175B2 (en) Method for improving quantitative accuracy in chromatograph / mass spectrometer
Kahle et al. Design of experiments as a valuable tool for biopharmaceutical analysis with (imaged) capillary isoelectric focusing
CN110068639A (en) Chromatography data system and processing method
JP2021089268A (en) Method and device for detecting ionization of hydrogen flames for oxygen-containing sample
Hicks et al. Assessment of analytical testing: The impact of metrics for the sustainable measurement of pharmaceuticals
JP2017032403A (en) Controller for liquid chromatograph, method for executing liquid chromatography, and control program for liquid chromatograph
JP5954497B2 (en) Chromatograph data processing apparatus and data processing method
JP7424595B2 (en) Discriminator generation method and device
JP2019174399A (en) Chromatograph data processing device, data processing method, and chromatograph
JP6631373B2 (en) Data processing device
JPH02300660A (en) Liquid chromatography
JP2019211301A (en) Chromatograph mass analysis system and method for displaying measurement condition
JP2022178382A5 (en)
JP6048373B2 (en) Chromatograph data processing apparatus and data processing method
JP7480843B2 (en) Peak tracking device, peak tracking method, and peak tracking program
Meyer Weighted Linear Least-Squares Fit—A Need? Monte Carlo Simulation Gives the Answer
JP6269803B2 (en) Chromatograph data processing apparatus and method
JP4737428B2 (en) Gasoline density estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R151 Written notification of patent or utility model registration

Ref document number: 4639940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3