JP2006303175A - Method for defining illumination brightness distribution - Google Patents

Method for defining illumination brightness distribution Download PDF

Info

Publication number
JP2006303175A
JP2006303175A JP2005122542A JP2005122542A JP2006303175A JP 2006303175 A JP2006303175 A JP 2006303175A JP 2005122542 A JP2005122542 A JP 2005122542A JP 2005122542 A JP2005122542 A JP 2005122542A JP 2006303175 A JP2006303175 A JP 2006303175A
Authority
JP
Japan
Prior art keywords
illumination
luminance distribution
exposure apparatus
illumination luminance
mask pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005122542A
Other languages
Japanese (ja)
Inventor
Kyoko Dewa
恭子 出羽
Kazuya Fukuhara
和也 福原
Satoshi Tanaka
聡 田中
Masashi Asano
昌史 浅野
Toshiya Kotani
敏也 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005122542A priority Critical patent/JP2006303175A/en
Publication of JP2006303175A publication Critical patent/JP2006303175A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To optimally set an illumination brightness distribution on an aligner, and to prevent rework, due to difference in illumination brightness distribution, to contribute to the enhancement of development efficiency and further, the enhancement of accuracy of estimation of the light exposure margin and the depth of focus in lithography, and the like. <P>SOLUTION: A method is for defining an illumination brightness distribution on an illumination light source surface in an aligner so designed that light from the illumination light source surface is guided to the mask pattern on a photomask to form the image of the mask pattern on a substrate surface. The method includes dividing an illumination light source surface into multiple illumination elements, computing an image formed on the substrate surface, with respect to each divided illumination element, selecting an illumination element, based on the performance of the computed image to obtain a design illumination luminance distribution, computing the lithographic performance of the photomask pattern image, formed on the substrate surface using a deformed illumination luminance distribution, and comparing the computed lithographic performance with a preset threshold of lithographic performance, to determine the allowable range of fluctuations in the amount of deformation of illumination brightness distribution. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体素子や液晶表示素子等を製造するための露光装置の光学条件を設定する技術に係わり、特に照明光源面の輝度分布を最適に規定するための照明輝度分布の規定方法に関する。   The present invention relates to a technique for setting optical conditions of an exposure apparatus for manufacturing a semiconductor element, a liquid crystal display element, and the like, and more particularly to a method for defining an illumination luminance distribution for optimally defining a luminance distribution on an illumination light source surface.

近年の半導体製造技術の進歩は非常に目覚しく、最小加工寸法0.13μmサイズの半導体素子が量産されている。このような微細化は、マスクプロセス技術,光リソグラフィー技術,及びエッチング技術等の微細パターン形成技術の飛躍的な進歩により実現されている。   In recent years, the progress of semiconductor manufacturing technology is very remarkable, and semiconductor elements having a minimum processing dimension of 0.13 μm are mass-produced. Such miniaturization is realized by dramatic progress in fine pattern formation techniques such as a mask process technique, an optical lithography technique, and an etching technique.

パターンサイズが十分大きい時代には、ウェハ上に形成したいLSIパターンの平面形状をそのまま設計パターンとして描き、その設計パターンに忠実なマスクパターンを作成する。そして、このマスクパターンを投影露光装置によってウェハ上に転写し、下地をエッチングすることによって、ほぼ設計パターン通りのパターンをウェハ上に形成できた。しかし、パターンの微細化が進むにつれて、各プロセスでパターンを忠実に形成することが困難になってきており、最終的な仕上り寸法が設計パターン通りにならない問題が生じてきた。   When the pattern size is sufficiently large, the planar shape of the LSI pattern to be formed on the wafer is directly drawn as a design pattern, and a mask pattern faithful to the design pattern is created. Then, this mask pattern was transferred onto the wafer by a projection exposure apparatus, and the base was etched, so that a pattern almost as designed could be formed on the wafer. However, as pattern miniaturization progresses, it has become difficult to faithfully form a pattern in each process, and a problem has arisen that the final finished dimension does not match the design pattern.

このような状況においては、パターンの転写に使用する投影露光装置に起因する誤差も、パターンの仕上がり形状を狂わせる大きな原因になる。近年では、露光装置の投影レンズの収差が原因で、ウェハ上に転写されたパターンに寸法誤差が生じたり、位置ずれが生じることが問題視され、露光装置を分解することなく投影レンズの収差を測定する方法が提案されている。   In such a situation, an error caused by the projection exposure apparatus used for transferring the pattern is also a major cause of distorting the finished shape of the pattern. In recent years, due to the aberration of the projection lens of the exposure apparatus, it has been regarded as a problem that the pattern transferred on the wafer may have a dimensional error or misalignment, and the projection lens aberration can be reduced without disassembling the exposure apparatus. A method of measuring has been proposed.

一方、照明光学系の有効な大きさを表すコヒーレンスファクタ(σ)の、露光領域内での形状・光強度の変動によって、露光領域内で寸法変動が生じることが明らかになってきた。露光領域内でコヒーレンスファクタの形状及び光強度が変動すると、レチクルを照らす光強度と向きが場所により変化する。ここで、σは像のコントラストを支配するパラメータであるので、σの上記の変動は露光性能の一括露光領域内での変動を意味する。   On the other hand, it has been clarified that the coherence factor (σ) representing the effective size of the illumination optical system varies in dimensions within the exposure region due to variations in shape and light intensity within the exposure region. When the shape and light intensity of the coherence factor vary within the exposure area, the light intensity and direction that illuminate the reticle vary depending on the location. Here, since σ is a parameter that governs the contrast of the image, the above fluctuation of σ means a fluctuation of the exposure performance within the batch exposure region.

この問題に対応するために、投影露光装置を分解せずに、露光装置のσの検査及び調整を行う技術が提案されている(例えば、特許文献1〜3参照)。最先端のデバイスの歩留まり低下を防ぐために、また投影露光装置の照明光学系の精密な評価を行うために、更に照明光学系と投影光学系を組み合わせた収差の精密な測定を可能にするために、これらの技術は必須となっている。   In order to cope with this problem, a technique for inspecting and adjusting the σ of the exposure apparatus without disassembling the projection exposure apparatus has been proposed (see, for example, Patent Documents 1 to 3). In order to prevent the yield reduction of the most advanced devices, to perform precise evaluation of the illumination optical system of the projection exposure system, and to enable precise measurement of aberrations by combining the illumination optical system and the projection optical system These technologies are essential.

上記投影露光装置の照明輝度分布を測定する技術を使用し、解析的な関数を用いて照明輝度分布を記述し、照明輝度分布の測定値に対するフィッティングから、関数のモデリングを行う方法が提案されている。しかしながらこのモデリングの方法は、使用する露光装置が存在し、照明輝度分布の実験データが存在して初めて実現する技術である。一方、技術開発の観点からすれば、常にデバイス世代の1〜2年前に開発がスタートすることが多く、開発初期においてはパターンの転写を行うための露光装置が存在していない場合も起こり得る。   Using the technique for measuring the illumination luminance distribution of the projection exposure apparatus described above, a method for modeling the function by describing the illumination luminance distribution using an analytical function and fitting the measured value of the illumination luminance distribution is proposed. Yes. However, this modeling method is a technique that is realized only when there is an exposure apparatus to be used and there is experimental data of illumination luminance distribution. On the other hand, from the viewpoint of technological development, development always starts one to two years before the device generation, and there may be a case where there is no exposure apparatus for transferring patterns in the early stages of development. .

さらに、デバイスの開発が開始されてから製品のパターンニングを行う際に、露光装置の横展開(露光装置の処理能力と製品規模に応じて、パターンニングを行う露光装置を変える)が行われる場合がある。現時点でははじめに製品処理を行っていた露光装置(露光装置Aとする)でテストパターンの寸法特性カーブ(特性カーブAとする)を取得し、次に処理を行う露光装置(露光装置Bとする)は、寸法特性カーブAが再現されるように照明輝度分布の調整が行われる。この際には、露光装置Bの調整後に、再び寸法特性カーブを取得することから、カーブ取得に必要なパターンニングおよび寸法計測に時間がかかるという問題点がある。
特開2000−21732号公報 特開2002−33269号公報 特開2004−72114号公報
Further, when product patterning is performed after device development is started, the lateral development of the exposure apparatus (changing the exposure apparatus that performs patterning according to the processing capability of the exposure apparatus and the product scale) is performed. There is. An exposure apparatus (referred to as exposure apparatus A) that first performs product processing at the present time acquires a dimensional characteristic curve (referred to as characteristic curve A) of the test pattern, and then performs exposure processing (referred to as exposure apparatus B). The illumination luminance distribution is adjusted so that the dimensional characteristic curve A is reproduced. In this case, since the dimensional characteristic curve is acquired again after the exposure apparatus B is adjusted, there is a problem that it takes time for patterning and dimension measurement necessary for curve acquisition.
JP 2000-21732 A JP 2002-33269 A JP 2004-72114 A

このように従来方法では、デバイスの開発初期段階において露光装置の照明輝度分布を正確に予測することは難しく、実際の照明輝度分布に対する誤差が発生し、照明輝度分布の違いによるリワークの必要性が生じ、開発の効率が低下する問題があった。さらに、照明輝度分布の誤差による寸法ずれの影響で、リソグラフィーの露光量余裕度及び焦点深度の予測精度が低下する問題があった。   As described above, in the conventional method, it is difficult to accurately predict the illumination luminance distribution of the exposure apparatus at the initial stage of device development, an error occurs with respect to the actual illumination luminance distribution, and the need for rework due to the difference in the illumination luminance distribution. As a result, there was a problem that the efficiency of development was reduced. Furthermore, there has been a problem that the exposure accuracy margin of lithography and the prediction accuracy of the focal depth are lowered due to the influence of the dimensional deviation due to the error of the illumination luminance distribution.

本発明は、上記事情を考慮してなされたもので、その目的とするところは、露光装置の照明輝度分布を最適に設定することができ、照明輝度分布の違いによるリワークを防いで開発効率の向上、更にはリソグラフィーの露光量余裕度及び焦点深度の予測精度の向上等に寄与し得る照明輝度分布の規定方法を提供することにある。   The present invention has been made in consideration of the above circumstances, and the object of the present invention is to optimally set the illumination luminance distribution of the exposure apparatus and prevent rework due to the difference in the illumination luminance distribution, thereby improving development efficiency. Another object of the present invention is to provide a method for defining an illumination luminance distribution that can contribute to improvement, further improvement of lithography exposure dose margin and focus depth prediction accuracy, and the like.

上記課題を解決するために本発明は、次のような構成を採用している。   In order to solve the above problems, the present invention adopts the following configuration.

即ち、本発明の一態様は、照明光源面からの光をフォトマスク上のマスクパターンに導き、フォトマスクから発した光を光学系を介して基板面に導くことによって像を形成する露光装置に対し、照明光源面における照明輝度分布を規定する方法であって、前記照明光源面を複数の照明要素に分割する工程と、前記分割した照明要素の各々に対し、前記マスクパターンを照明した場合に前記基板面上に形成される像を計算し、該計算した像の性能に基づき前記照明要素を選択して設計上の照明輝度分布を得る工程と、前記照明輝度分布を変形させる工程と、前記変形させた照明輝度分布を用いて、前記基板面上に形成されるマスクパターン像のリソグラフィー性能を算出する工程と、前記マスクパターンのリソグラフィー性能の閾値を設定する工程と、前記算出したリソグラフィー性能と前記設定したリソグラフィー性能の閾値とを比較することによって、前記照明輝度分布の変形量の許容変動範囲を求める工程と、前記設計上の照明輝度分布及び変形量の許容変動範囲から照明輝度分布を規定する工程と、を含むことを特徴とする。   That is, one embodiment of the present invention is an exposure apparatus that forms an image by guiding light from an illumination light source surface to a mask pattern on a photomask and guiding light emitted from the photomask to a substrate surface through an optical system. On the other hand, a method for defining an illumination luminance distribution on an illumination light source surface, the step of dividing the illumination light source surface into a plurality of illumination elements, and when the mask pattern is illuminated to each of the divided illumination elements Calculating an image formed on the substrate surface, selecting the illumination element based on the calculated performance of the image to obtain a designed illumination luminance distribution, deforming the illumination luminance distribution, The step of calculating the lithography performance of the mask pattern image formed on the substrate surface using the deformed illumination luminance distribution and the threshold of the lithography performance of the mask pattern are set. Comparing the calculated lithography performance and the set threshold value of the lithography performance to obtain an allowable variation range of the deformation amount of the illumination luminance distribution, and the design of the illumination luminance distribution and deformation amount in the design. Defining an illumination luminance distribution from an allowable variation range.

また、本発明の別の一態様は、照明光源面からの光をフォトマスク上のマスクパターンに導き、フォトマスクから発した光を光学系を介して基板面に導くことによって像を形成する露光装置に対し、照明光源面における照明輝度分布を規定する方法であって、第1の露光装置の照明光源面を複数の照明要素に分割する工程と、前記分割した照明要素の各々に対し、前記マスクパターンを照明した場合に第1の露光装置の基板面上に形成される像を計算し、前記計算した像の性能に基づき前記照明要素を選択して設計上の照明輝度分布を得る工程と、前記照明輝度分布を変形させる工程と、前記変形させた照明輝度分布を用いて、第1の露光装置の基板面上に形成されるマスクパターン像のリソグラフィー性能を算出する工程と、前記マスクパターンのリソグラフィー性能の閾値を設定する工程と、前記算出したリソグラフィー性能と前記設定したリソグラフィー性能の閾値とを比較することによって、前記照明輝度分布の変形量の許容変動範囲を求める工程と、前記設計上の照明輝度分布及び変形量の許容変動範囲から第1の露光装置における照明輝度分布を規定する工程と、第1の露光装置に規定した照明輝度分布を用いてマスクパターンを第1の露光装置で露光した場合の寸法特性を得る工程と、第1の露光装置で使用した前記設計上の照明輝度分布及び変形量の許容変動範囲を満たすように、第2の露光装置の照明輝度分布を規定する工程と、第2の露光装置に規定した照明輝度分布を用いてマスクパターンを第2の露光装置で露光した場合の寸法特性を得る工程と、第1の露光装置で求めた寸法特性と第2の露光装置で求めた寸法特性とを比較し、これらの一致を確認して第2の露光装置の照明輝度分布と変形量の許容変動範囲を最終的に決定する工程と、を含むことを特徴とする。   Another embodiment of the present invention is an exposure for forming an image by guiding light from an illumination light source surface to a mask pattern on a photomask and guiding light emitted from the photomask to a substrate surface through an optical system. A method for defining an illumination luminance distribution on an illumination light source surface for an apparatus, the step of dividing an illumination light source surface of a first exposure apparatus into a plurality of illumination elements, and for each of the divided illumination elements, Calculating an image formed on the substrate surface of the first exposure apparatus when the mask pattern is illuminated, selecting the illumination element based on the performance of the calculated image, and obtaining a design illumination luminance distribution; A step of deforming the illumination luminance distribution, a step of calculating a lithography performance of a mask pattern image formed on the substrate surface of the first exposure apparatus using the deformed illumination luminance distribution, and the mask pattern Setting a threshold value of the lithography performance of the screen, a step of obtaining an allowable variation range of the deformation amount of the illumination luminance distribution by comparing the calculated lithography performance and the threshold value of the set lithography performance, The step of defining the illumination luminance distribution in the first exposure apparatus from the designed illumination luminance distribution and the allowable variation range of the deformation amount, and the first exposure of the mask pattern using the illumination luminance distribution defined in the first exposure apparatus The step of obtaining the dimensional characteristics when the exposure is performed by the apparatus, and the illumination luminance distribution of the second exposure apparatus so as to satisfy the design illumination luminance distribution and the allowable variation range of the deformation amount used in the first exposure apparatus. A step of defining, a step of obtaining dimensional characteristics when the mask pattern is exposed by the second exposure apparatus using the illumination luminance distribution defined by the second exposure apparatus, The dimensional characteristics obtained by the optical apparatus are compared with the dimensional characteristics obtained by the second exposure apparatus, and the coincidence between these is confirmed to finally determine the allowable variation range of the illumination luminance distribution and deformation amount of the second exposure apparatus. And a step of determining.

本発明によれば、デバイスの開発初期段階において露光装置の照明輝度分布を正確に予測することができる。従って、実際の照明輝度分布に対する誤差を最小限に抑え、照明輝度分布の違いによるリワークを防ぎ、開発の効率を上げることが可能となる。さらに、照明輝度分布の誤差による寸法ずれの影響をなくし、リソグラフィーの露光量余裕度及び焦点深度を精度良く予測することが可能となる。   According to the present invention, it is possible to accurately predict the illumination luminance distribution of the exposure apparatus at the initial stage of device development. Accordingly, it is possible to minimize errors with respect to the actual illumination luminance distribution, prevent rework due to the difference in the illumination luminance distribution, and increase the development efficiency. Furthermore, it is possible to eliminate the influence of dimensional deviation due to an error in the illumination luminance distribution, and to accurately predict the lithography exposure amount margin and the focal depth.

以下、本発明の詳細を図示の実施形態によって説明する。   The details of the present invention will be described below with reference to the illustrated embodiments.

(第1の実施形態)
図1は、本発明の第1の実施形態に係わる照明輝度分布の規定方法を説明するためのフローチャートである。
(First embodiment)
FIG. 1 is a flowchart for explaining a method for defining an illumination luminance distribution according to the first embodiment of the present invention.

本実施形態では、まず露光装置の瞳面上における有効光源のうち、照明光源形状の最適化手法を用いて、像を形成するために必要な照明要素を決定した。即ち、露光装置の有効光源を各要素に分割し、各有効光源の要素を光らせたときの像のコントラストをモニターし、像を形成するために必要なコントラストが得られる有効光源の要素を選択し、これを照明輝度分布要求値とした(S2)。このときの照明輝度分布要求値を、図2に示す。これは、例えば輪帯照明或いは二つ目照明の例である。   In the present embodiment, among the effective light sources on the pupil plane of the exposure apparatus, an illumination element necessary for forming an image is determined using an illumination light source shape optimization method. That is, the effective light source of the exposure apparatus is divided into each element, the contrast of the image when each effective light source element is illuminated is monitored, and the effective light source element that provides the contrast necessary to form an image is selected. This is the illumination luminance distribution required value (S2). FIG. 2 shows the required illumination luminance distribution value at this time. This is an example of annular illumination or second illumination.

なお、照明要素は、フォトマスクパターンの光学像の性能をもとに選択するのが望ましい。また、フォトマスクパターンの光学像の性能とは、例えば基板の面上の所定の位置における像の微分値である。   The illumination element is preferably selected based on the performance of the optical image of the photomask pattern. The performance of the optical image of the photomask pattern is, for example, a differential value of the image at a predetermined position on the surface of the substrate.

次に、得られた照明輝度分布要求値の変形を行った(S3)。照明輝度分布要求値は図2に示すように矩形であるが、実際の装置における照明輝度分布は矩形が変形した分布をしている。そこで、照明輝度分布要求値に図3に示すガウス関数を畳み込むことによって、図4に示すように矩形を変形した分布を再現した。この際に、照明輝度分布要求値を変形させるためのパラメータ(照明輝度分布変形パラメータ:S4)を、ガウス関数の半値全幅(301)として、本実施形態では5nmとした。   Next, the obtained illumination luminance distribution required value was transformed (S3). The required value of the illumination luminance distribution is a rectangle as shown in FIG. 2, but the illumination luminance distribution in an actual apparatus has a distribution in which the rectangle is deformed. Therefore, by convolving the Gaussian function shown in FIG. 3 with the required illumination luminance distribution value, a distribution in which a rectangle is deformed as shown in FIG. 4 is reproduced. At this time, the parameter (illumination luminance distribution deformation parameter: S4) for deforming the required illumination luminance distribution value is set to 5 nm in the present embodiment as the full width at half maximum (301) of the Gaussian function.

図5に示すように、ガウス関数の畳み込みを用いた変形では、ガウス関数の幅が大きくなるほど、元の照明輝度分布予測値(501)からの変形の度合いが大きくなる(502〜504)。そこで、照明輝度分布要求値の変形を、このガウス関数の半値全幅をパラメータとしてコントロールすることが可能である。   As shown in FIG. 5, in the deformation using the convolution of the Gaussian function, the degree of deformation from the original illumination luminance distribution predicted value (501) increases as the width of the Gaussian function increases (502 to 504). Therefore, it is possible to control the deformation of the illumination luminance distribution required value using the full width at half maximum of this Gaussian function as a parameter.

照明輝度分布を規定するためのマスクパターンとして、図6(a)(b)に示した2つのパターンを用意し、本実施形態では、図6(a)に示す55nmのピッチパターンを使用した(評価用パターン:S1)。このパターンの露光量余裕度を、露光条件NA=0.915,σ=0.9,露光波長=193nmで計算した結果、5%を得た(マージンの計算:S5)。ここで、露光装置の基板の面はベストフォーカス位置に設定されているものとした。   Two patterns shown in FIGS. 6A and 6B are prepared as mask patterns for defining the illumination luminance distribution, and in this embodiment, a 55 nm pitch pattern shown in FIG. 6A is used ( Evaluation pattern: S1). As a result of calculating the exposure amount margin of this pattern under the exposure conditions NA = 0.915, σ = 0.9, exposure wavelength = 193 nm, 5% was obtained (calculation of margin: S5). Here, the surface of the substrate of the exposure apparatus is set to the best focus position.

そして、得られた露光量余裕度と予め決められた余裕度の閾値3%(マージンのスペック:S6)とを比較した(S7)。このとき、得られた余裕度5%が閾値3%よりも大きいために、変形パラメータの値を7nmとして照明輝度分布を変形させ、再び露光量余裕度を計算した。変形パラメータと露光量余裕度との関係は、図7に示す通りである。   Then, the obtained exposure amount margin was compared with a predetermined margin threshold 3% (margin specification: S6) (S7). At this time, since the obtained margin of 5% is larger than the threshold of 3%, the illumination luminance distribution was modified with the deformation parameter value set to 7 nm, and the exposure amount margin was calculated again. The relationship between the deformation parameter and the exposure allowance is as shown in FIG.

図1のフローチャートに従って、変形パラメータの大きさを変えつつ露光量マージンの閾値と算出される露光量マージンの値とを比較していった結果、露光量余裕度の閾値を満たすパラメータの変動範囲を10nmとした。そして、使用した照明輝度分布要求値と露光量マージンの閾値を満たす変動パラメータの範囲を用いて、照明輝度分布を規定した。   As a result of comparing the exposure amount margin threshold value with the calculated exposure amount margin value while changing the size of the deformation parameter in accordance with the flowchart of FIG. The thickness was 10 nm. Then, the illumination brightness distribution is defined using the range of the variation parameter that satisfies the used illumination brightness distribution required value and the exposure amount margin threshold.

このように本実施形態によれば、照明要素の選択による照明輝度分布要求値をガウス関数の畳み込みにより変形し、この変形した照明輝度要求値を用いて露光量余裕度を計算し、これを露光量余裕度のマージンと比較することによって、露光装置の照明輝度分布を正確に予測することができる。このため、実際の照明輝度分布に対する誤差を最小限に抑え、照明輝度分布の違いによるリワークを防ぎ、開発の効率を上げることが可能となる。さらに、照明輝度分布の誤差による寸法ずれの影響をなくし、リソグラフィーの露光量余裕度及び焦点深度を精度良く予測することが可能となる。   As described above, according to the present embodiment, the required illumination brightness distribution value by selecting the illumination element is deformed by convolution of a Gaussian function, and the exposure allowance is calculated using the deformed requested illumination brightness value, and this is used as an exposure. By comparing with the margin of the amount margin, the illumination luminance distribution of the exposure apparatus can be accurately predicted. For this reason, it is possible to minimize errors with respect to the actual illumination luminance distribution, prevent rework due to the difference in the illumination luminance distribution, and increase the development efficiency. Furthermore, it is possible to eliminate the influence of dimensional deviation due to an error in the illumination luminance distribution, and to accurately predict the lithography exposure amount margin and the focal depth.

(第2の実施形態)
本実施形態では、第1の実施形態で説明した前記図6(a)(b)の両方のパターンを用い、これら二つのパターンの共通の露光量余裕度を満たす変形パラメータの変動範囲を求めた。それぞれのパターンの照明輝度分布要求値は共通のものを使用した。変形パラメータの変動範囲を求める方法は、第1の実施形態に示した方法と同様で、図1のフローチャートに示した通りである。図6(a)に示したパターンの照明輝度分布要求値の変形パラメータの変動範囲は10nmであった。一方、図6(b)に示したパターンの変形パラメータの変動範囲は7nmであった。二つの結果から、図6(a)(b)の二つのパターンの露光量余裕度を満たす変形パラメータの変動範囲は7nmであった。
(Second Embodiment)
In this embodiment, the variation range of the deformation parameter satisfying the common exposure amount margin of these two patterns is obtained by using both patterns of FIGS. 6A and 6B described in the first embodiment. . The required illumination luminance distribution values for each pattern were the same. The method for obtaining the variation range of the deformation parameter is the same as the method shown in the first embodiment, as shown in the flowchart of FIG. The variation range of the deformation parameter of the required illumination luminance distribution value of the pattern shown in FIG. 6A was 10 nm. On the other hand, the variation range of the deformation parameter of the pattern shown in FIG. 6B was 7 nm. From the two results, the variation range of the deformation parameter satisfying the exposure margin of the two patterns in FIGS. 6A and 6B was 7 nm.

このように本実施形態のように、照明輝度分布の変動範囲を複数のパターンに対して決める場合は、それぞれの変動範囲を求めて、その共通部分を求めればよい。   As described above, when the variation range of the illumination luminance distribution is determined for a plurality of patterns as in the present embodiment, each variation range may be obtained and the common part thereof may be obtained.

なお、上記の各実施形態で使用した照明輝度分布要求値は、実施形態で示した方法によるものでなくてもよい。例えば、露光装置のレンズの設計データそのものでも、さらに何らかの手法で計測した照明輝度分布の実験データでも可能である。   The required illumination luminance distribution value used in each of the above embodiments may not be based on the method shown in the embodiment. For example, the design data itself of the lens of the exposure apparatus or the experimental data of the illumination luminance distribution measured by some method can be used.

また、照明輝度分布要求値を変形させる方法は、実施形態に示した方法に限るものではない。例えば、照明輝度分布要求値の外側を段階的に傾斜させる方法でも、また湾曲させる方法でもよい。また、上記の各実施形態では、変動パラメータの範囲をパターンの露光量閾値で規定したが、この閾値は露光量余裕度に限るものではなく、焦点深度の余裕度、露光量余裕度と焦点深度の余裕度の両方など、照明輝度分布の形状の変化によって影響を受けるファクターであればよい。   Further, the method of changing the required illumination luminance distribution value is not limited to the method shown in the embodiment. For example, a method of tilting the outside of the required illumination luminance distribution value stepwise or a method of curving may be used. In each of the above embodiments, the range of the variation parameter is defined by the pattern exposure amount threshold. However, this threshold is not limited to the exposure amount margin, but the focus depth margin, the exposure amount margin, and the focus depth. Any factor that is affected by the change in the shape of the illumination luminance distribution, such as both of the margin of the image, may be used.

また、マスクパターンも実施形態で使用したパターン以外でも可能であることはいうまでもない。さらに、実施形態で使用したガウス関数は、半値全幅ひとつをパラメータとするものであるが、畳み込みを行う関数はこれに限ったものではなく、二種類のガウス関数を組み合わせて畳み込みをかけるものであってもよい。さらに、畳み込みは、必ずしもガウス関数に限ることなく、照明輝度分布要求値を変形する種種の解析関数を使用することができる。   It goes without saying that mask patterns other than those used in the embodiments are also possible. Furthermore, the Gaussian function used in the embodiment has one full width at half maximum as a parameter, but the convolution function is not limited to this, and convolution is performed by combining two types of Gaussian functions. May be. Furthermore, the convolution is not necessarily limited to a Gaussian function, and various analytical functions that modify the required illumination luminance distribution value can be used.

(第3の実施形態)
本実施形態では、照明輝度分布要求値の規定を、露光装置を横展開する(露光装置の処理能力と製品規模に応じて、パターンニングを行う露光装置を変える)際に行った。はじめに製品を処理した露光装置(露光装置A)で、テストパターンを用いた寸法特性カーブを求めた。このときのテストパターンを図8に、得られた寸法特性カーブを図9に示す。
(Third embodiment)
In the present embodiment, the required value of the illumination luminance distribution is defined when the exposure apparatus is laterally expanded (the exposure apparatus that performs patterning is changed according to the processing capability of the exposure apparatus and the product scale). First, a dimensional characteristic curve using a test pattern was obtained with an exposure apparatus (exposure apparatus A) that processed the product. The test pattern at this time is shown in FIG. 8, and the obtained dimensional characteristic curve is shown in FIG.

次に、露光装置の照明輝度分布を前記図1のフローに従って規定した。そのときの照明輝度分布要求値と、変形パラメータの変動量10nmを求めた。この製品を露光装置Bで処理することになったため、露光装置Bの照明輝度分布を、露光装置Aの照明輝度分布とパラメータの変動範囲の間に入るよう照明輝度分布の合わせ込みを行った。そして、露光装置Aで規定した照明輝度分布に露光装置Bの照明輝度分布を一致させたあと、図8のテストパターンを用いて露光装置Bの寸法特性カーブを取得すると、図10に示すように二つの寸法特性カーブがほぼ一致した。図中の1001が露光装置Aで取得した寸法特性カーブ、1002が露光装置Bで取得した寸法特性カーブである。   Next, the illumination luminance distribution of the exposure apparatus was defined according to the flow of FIG. The required value of the illumination luminance distribution at that time and the variation amount of the deformation parameter of 10 nm were obtained. Since this product was processed by the exposure apparatus B, the illumination brightness distribution of the exposure apparatus B was adjusted so that the illumination brightness distribution of the exposure apparatus B was between the illumination brightness distribution of the exposure apparatus A and the parameter fluctuation range. Then, after matching the illumination brightness distribution of the exposure apparatus B with the illumination brightness distribution defined by the exposure apparatus A, when the dimensional characteristic curve of the exposure apparatus B is acquired using the test pattern of FIG. 8, as shown in FIG. The two dimensional characteristic curves almost coincided. In the figure, 1001 is a dimensional characteristic curve acquired by the exposure apparatus A, and 1002 is a dimensional characteristic curve acquired by the exposure apparatus B.

本実施形態の処理フローと従来の処理フローとを、図11に比較して示す。(a)は従来の処理フロー、(b)は本実施形態の処理フローである。   The processing flow of this embodiment and the conventional processing flow are shown in comparison with FIG. (A) is the conventional processing flow, (b) is the processing flow of this embodiment.

従来は、露光装置Bの照明輝度分布を調整する度に新たに露光装置Bの寸法特性カーブを取得する必要があったため、テストパターンの露光及び寸法測長に大幅に労力がかかっていた。これに対し本実施形態では、照明輝度分布を合わせ込んだ後、確認のために寸法特性カーブを取得するのみであるため、これまで調整の度に行っていた露光及び寸法測定の手間が省けて、労力が大幅に軽減された。   Conventionally, since it is necessary to newly acquire a dimensional characteristic curve of the exposure apparatus B every time the illumination luminance distribution of the exposure apparatus B is adjusted, much effort is required for exposure of the test pattern and dimension measurement. On the other hand, in the present embodiment, after adjusting the illumination luminance distribution, only the dimensional characteristic curve is acquired for confirmation, so that it is possible to save the trouble of exposure and dimensional measurement that has been performed every time adjustment is performed. , Labor has been greatly reduced.

即ち、特性カーブAを取得した露光装置Aの照明輝度分布を第1及び第2の実施形態と同様の手法を用いて求め、露光装置Bを調整するときは、露光装置Aの照明輝度分布が露光装置Bで再現するように露光装置Bを調整する。これにより、露光装置Bで新たに特性カーブを取得しなくても特性カーブAを再現する調整が可能となり、調整にかかる時間が大幅に節約できる。   That is, the illumination luminance distribution of the exposure apparatus A that has acquired the characteristic curve A is obtained using the same method as in the first and second embodiments, and when adjusting the exposure apparatus B, the illumination luminance distribution of the exposure apparatus A is The exposure apparatus B is adjusted so as to be reproduced by the exposure apparatus B. Thereby, it is possible to perform the adjustment for reproducing the characteristic curve A without newly acquiring the characteristic curve by the exposure apparatus B, and the time required for the adjustment can be saved greatly.

本実施形態で使用した露光装置は2種類であるが、同様の方法を用いて複数の露光装置の合わせ込みを行うことができる。また、調整に使用するテストパターンは図8に限らず、様々なパターンを使用することができる。   Although there are two types of exposure apparatuses used in this embodiment, a plurality of exposure apparatuses can be combined using the same method. Further, the test pattern used for adjustment is not limited to FIG. 8, and various patterns can be used.

(変形例)
なお、本発明は上述した各実施形態に限定されるものではない。実施形態では、照明輝度分布の規定方法を説明したが、本発明は他のカテゴリーに適用することもできる。例えば、照明輝度分布規定方法以外のカテゴリーとしては、照明光源分布規定システム、照明光源分布規定方法を用いて作製したマスク、照明光源分布規定方法を実現するためのプログラム、照明光源分布規定方法を用いて作製した半導体装置に適用することもできる。
(Modification)
The present invention is not limited to the above-described embodiments. In the embodiment, the method for defining the illumination luminance distribution has been described, but the present invention can also be applied to other categories. For example, as a category other than the illumination luminance distribution definition method, an illumination light source distribution definition system, a mask produced using the illumination light source distribution definition method, a program for realizing the illumination light source distribution definition method, and an illumination light source distribution definition method are used. It can also be applied to a semiconductor device manufactured in this way.

また、請求項1に記載した発明の望ましい実施態様としては、次のものがあげられる。   Further, preferred embodiments of the invention described in claim 1 include the following.

(1) 露光装置の基板の面はベストフォーカス位置に設定されていること。
(2) 照明要素は、フォトマスクパターンの光学像の性能を基に選択すること。
(3) フォトマスクパターンの光学像の性能は、基板の面上の所定の位置における像の微分値であること。
(1) The substrate surface of the exposure apparatus must be set to the best focus position.
(2) The illumination element should be selected based on the optical image performance of the photomask pattern.
(3) The optical image performance of the photomask pattern is the differential value of the image at a predetermined position on the surface of the substrate.

(4) フォトマスクパターン像のリソグラフィー性能の閾値は、フォトマスクパターンの世代に要求される寸法精度を基に決定すること。
(5) 寸法精度は、露光装置の基板面上に形成されたフォトマスクパターン像の寸法を変動させる全ての要因の中で配分されていること。
(6) パターンの寸法精度は、複数種類のフォトマスクパターンの寸法の均一性、及び露光装置の露光フィールド内における寸法の均一性を含むこと。
(4) The threshold of the lithography performance of the photomask pattern image should be determined based on the dimensional accuracy required for the photomask pattern generation.
(5) The dimensional accuracy is distributed among all the factors that change the dimension of the photomask pattern image formed on the substrate surface of the exposure apparatus.
(6) The dimensional accuracy of the pattern includes the uniformity of the dimensions of a plurality of types of photomask patterns and the uniformity of the dimensions within the exposure field of the exposure apparatus.

さらに、請求項6に記載した発明の望ましい実施態様としては、上記の (1)〜(6) に加え次のものがあげられる。   Furthermore, preferable embodiments of the invention described in claim 6 include the following in addition to the above (1) to (6).

(7) 第2の露光装置の照明輝度分布を規定する工程を複数の露光装置で行うことによって、複数の露光装置の照明輝度分布を第1の露光装置の照明輝度分布に合わせて規定すること。
(8) 寸法特性カーブを、ピッチが連続的に変化するパターンを用いて得ること。
(7) Defining the illumination brightness distribution of the plurality of exposure apparatuses in accordance with the illumination brightness distribution of the first exposure apparatus by performing the process of defining the illumination brightness distribution of the second exposure apparatus with the plurality of exposure apparatuses. .
(8) Obtaining a dimensional characteristic curve using a pattern whose pitch changes continuously.

その他、本発明の要旨を逸脱しない範囲で、種々変形して実施することができる。   In addition, various modifications can be made without departing from the scope of the present invention.

第1の実施形態に係わる照明輝度分布の規定方法を説明するためのフローチャート。The flowchart for demonstrating the prescription | regulation method of the illumination luminance distribution concerning 1st Embodiment. 第1の実施形態で使用した露光装置の照明輝度分布要求値を示す図。The figure which shows the illumination luminance distribution required value of the exposure apparatus used in 1st Embodiment. 照明輝度分布要求値の変形を行うためのガウス関数の例を示す図。The figure which shows the example of the Gaussian function for deform | transforming illumination luminance distribution request value. 図2の照明輝度分布要求値を変形させた例を示す図。The figure which shows the example which deform | transformed the illumination luminance distribution request value of FIG. 図2の照明輝度分布が段階的に変形している様子を示す図。The figure which shows a mode that the illumination luminance distribution of FIG. 2 is changing in steps. 照明輝度分布を規定するための評価用パターンの例を示す図。The figure which shows the example of the pattern for evaluation for prescribing illumination luminance distribution. 照明輝度分布を変形させる変形パラメータと露光量余裕度との関係を示す図。The figure which shows the relationship between the deformation | transformation parameter which deform | transforms illumination luminance distribution, and exposure amount margin. 第3の実施形態で使用したテストパターンの例を示す図。The figure which shows the example of the test pattern used in 3rd Embodiment. 図8のパターンを用いて取得した寸法特性カーブを示す図。The figure which shows the dimensional characteristic curve acquired using the pattern of FIG. 露光装置AとBのそれぞれの寸法特性カーブを比較して示す図。The figure which compares and shows each dimensional characteristic curve of exposure apparatus A and B. FIG. 第3の実施形態を説明するためのフローチャートであり、露光装置A,B間の照明輝度分布の合わせ込みの動作を示す図。It is a flowchart for demonstrating 3rd Embodiment, and is a figure which shows the operation | movement of adjustment of the illumination luminance distribution between exposure apparatuses A and B. FIG.

符号の説明Explanation of symbols

301…ガウス関数の半値全幅
501…元の照明輝度分布要求値の形状
502…ガウス関数の半値全幅を5nmとして変形させた場合の照明輝度分布
503…ガウス関数の半値全幅を10nmとして変形させた場合の照明輝度分布
504…ガウス関数の半値全幅を15nmとして変形させた場合の照明輝度分布
1001…露光装置Aで取得した寸法特性カーブ
1002…露光装置Bで取得した寸法特性カーブ
301: Full width at half maximum of Gaussian function 501: Shape of original required value of illumination luminance distribution 502: Illumination luminance distribution when the full width at half maximum of Gaussian function is changed to 5 nm 503: When the full width at half maximum of Gaussian function is changed to 10 nm Illumination luminance distribution 504... Illumination luminance distribution when the full width at half maximum of the Gaussian function is changed to 15 nm. 1001... Dimension characteristic curve acquired by the exposure apparatus A 1002.

Claims (5)

照明光源面からの光をフォトマスク上のマスクパターンに導き、フォトマスクから発した光を光学系を介して基板面に導くことによって像を形成する露光装置に対し、照明光源面における照明輝度分布を規定する方法であって、
前記照明光源面を複数の照明要素に分割する工程と、
前記分割した照明要素の各々に対し、前記マスクパターンを照明した場合に前記基板面上に形成される像を計算し、該計算した像の性能に基づき前記照明要素を選択して設計上の照明輝度分布を得る工程と、
前記照明輝度分布を変形させる工程と、
前記変形させた照明輝度分布を用いて、前記基板面上に形成されるマスクパターン像のリソグラフィー性能を算出する工程と、
前記マスクパターンのリソグラフィー性能の閾値を設定する工程と、
前記算出したリソグラフィー性能と前記設定したリソグラフィー性能の閾値とを比較することによって、前記照明輝度分布の変形量の許容変動範囲を求める工程と、
前記設計上の照明輝度分布及び変形量の許容変動範囲から照明輝度分布を規定する工程と、
を含むことを特徴とする照明輝度分布の規定方法。
Illumination luminance distribution on the illumination light source surface for an exposure device that forms an image by guiding the light from the illumination light source surface to the mask pattern on the photomask and guiding the light emitted from the photomask to the substrate surface via the optical system A method of defining
Dividing the illumination light source surface into a plurality of illumination elements;
For each of the divided illumination elements, an image formed on the substrate surface when the mask pattern is illuminated is calculated, and the illumination element is selected based on the performance of the calculated image to design illumination. Obtaining a luminance distribution;
Deforming the illumination luminance distribution;
Calculating the lithography performance of the mask pattern image formed on the substrate surface using the deformed illumination luminance distribution; and
Setting a threshold for lithography performance of the mask pattern;
A step of obtaining an allowable variation range of the deformation amount of the illumination luminance distribution by comparing the calculated lithography performance and a threshold value of the set lithography performance;
Defining the illumination brightness distribution from the designed illumination brightness distribution and the allowable variation range of the deformation amount;
An illumination luminance distribution defining method characterized by comprising:
前記照明輝度分布を変形させる工程として、前記照明輝度分布をガウス関数により解析的に変形することを特徴とする請求項1記載の照明輝度分布の規定方法。   2. The method of defining an illumination luminance distribution according to claim 1, wherein, as the step of deforming the illumination luminance distribution, the illumination luminance distribution is analytically deformed by a Gaussian function. 前記マスクパターンのリソグラフィー性能は、露光量余裕度,焦点深度,及び寸法特性カーブであることを特徴とする請求項1記載の照明輝度分布の規定方法。   2. The method of defining an illumination luminance distribution according to claim 1, wherein the lithography performance of the mask pattern is exposure margin, depth of focus, and dimensional characteristic curve. 前記照明輝度分布の変形量の許容変動範囲の規定は、前記算出したリソグラフィー性能と前記設定したリソグラフィー性能の閾値とを比較し、前記算出したリソグラフィー性能が前記設定されたリソグラフィー性能より大きい間は照明輝度分布の変動量を更に変化させ、前記算出したリソグラフィー性能が前記設定されたリソグラフィー性能より小さくなった時点で、照明輝度分布の変動量を照明輝度分布の変形量の許容範囲として規定することを特徴とする請求項1記載の照明輝度分布の規定方法。   The regulation of the allowable variation range of the deformation amount of the illumination luminance distribution is performed by comparing the calculated lithography performance with the threshold value of the set lithography performance, and while the calculated lithography performance is larger than the set lithography performance, illumination is performed. The variation amount of the luminance distribution is further changed, and when the calculated lithography performance becomes smaller than the set lithography performance, the variation amount of the illumination luminance distribution is defined as an allowable range of the deformation amount of the illumination luminance distribution. 2. The method for defining an illumination luminance distribution according to claim 1. 照明光源面からの光をフォトマスク上のマスクパターンに導き、フォトマスクから発した光を光学系を介して基板面に導くことによって像を形成する露光装置に対し、照明光源面における照明輝度分布を規定する方法であって、
第1の露光装置の照明光源面を複数の照明要素に分割する工程と、
前記分割した照明要素の各々に対し、前記マスクパターンを照明した場合に第1の露光装置の基板面上に形成される像を計算し、前記計算した像の性能に基づき前記照明要素を選択して設計上の照明輝度分布を得る工程と、
前記照明輝度分布を変形させる工程と、
前記変形させた照明輝度分布を用いて、第1の露光装置の基板面上に形成されるマスクパターン像のリソグラフィー性能を算出する工程と、
前記マスクパターンのリソグラフィー性能の閾値を設定する工程と、
前記算出したリソグラフィー性能と前記設定したリソグラフィー性能の閾値とを比較することによって、前記照明輝度分布の変形量の許容変動範囲を求める工程と、
前記設計上の照明輝度分布及び変形量の許容変動範囲から第1の露光装置における照明輝度分布を規定する工程と、
第1の露光装置に規定した照明輝度分布を用いてマスクパターンを第1の露光装置で露光した場合の寸法特性を得る工程と、
第1の露光装置で使用した前記設計上の照明輝度分布及び変形量の許容変動範囲を満たすように、第2の露光装置の照明輝度分布を規定する工程と、
第2の露光装置に前記規定した照明輝度分布を用いてマスクパターンを第2の露光装置で露光した場合の寸法特性を得る工程と、
第1の露光装置で求めた寸法特性と第2の露光装置で求めた寸法特性とを比較し、これらの一致を確認して第2の露光装置の照明輝度分布と変形量の許容変動範囲を最終的に決定する工程と、
を含むことを特徴とする照明輝度分布の規定方法。
Illumination luminance distribution on the illumination light source surface for an exposure device that forms an image by guiding the light from the illumination light source surface to the mask pattern on the photomask and guiding the light emitted from the photomask to the substrate surface via the optical system A method of defining
Dividing the illumination light source surface of the first exposure apparatus into a plurality of illumination elements;
For each of the divided illumination elements, an image formed on the substrate surface of the first exposure apparatus when the mask pattern is illuminated is calculated, and the illumination element is selected based on the performance of the calculated image. To obtain a design illumination brightness distribution,
Deforming the illumination luminance distribution;
Calculating the lithography performance of a mask pattern image formed on the substrate surface of the first exposure apparatus using the deformed illumination luminance distribution;
Setting a threshold for lithography performance of the mask pattern;
A step of obtaining an allowable variation range of the deformation amount of the illumination luminance distribution by comparing the calculated lithography performance and a threshold value of the set lithography performance;
Defining the illumination luminance distribution in the first exposure apparatus from the designed illumination luminance distribution and the allowable variation range of the deformation amount;
Obtaining a dimensional characteristic when the mask pattern is exposed by the first exposure apparatus using the illumination luminance distribution defined in the first exposure apparatus;
Defining an illumination luminance distribution of the second exposure apparatus so as to satisfy an allowable variation range of the designed illumination luminance distribution and deformation amount used in the first exposure apparatus;
Obtaining a dimensional characteristic when the mask pattern is exposed by the second exposure apparatus using the illumination intensity distribution defined in the second exposure apparatus;
The dimensional characteristics obtained by the first exposure apparatus are compared with the dimensional characteristics obtained by the second exposure apparatus, and the coincidence between these is confirmed to determine the allowable variation range of the illumination luminance distribution and deformation amount of the second exposure apparatus. A final decision process;
An illumination luminance distribution defining method characterized by comprising:
JP2005122542A 2005-04-20 2005-04-20 Method for defining illumination brightness distribution Pending JP2006303175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005122542A JP2006303175A (en) 2005-04-20 2005-04-20 Method for defining illumination brightness distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005122542A JP2006303175A (en) 2005-04-20 2005-04-20 Method for defining illumination brightness distribution

Publications (1)

Publication Number Publication Date
JP2006303175A true JP2006303175A (en) 2006-11-02

Family

ID=37471109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005122542A Pending JP2006303175A (en) 2005-04-20 2005-04-20 Method for defining illumination brightness distribution

Country Status (1)

Country Link
JP (1) JP2006303175A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205131A (en) * 2007-02-19 2008-09-04 New Japan Radio Co Ltd Manufacturing method of semiconductor device
JP2009302206A (en) * 2008-06-11 2009-12-24 Canon Inc Method of determining exposure parameter, program for determining exposure parameter, exposure method, and device manufacturing method
US9368413B2 (en) 2014-07-02 2016-06-14 Kabushiki Kaisha Toshiba Light exposure condition analysis method, nontransitory computer readable medium storing a light exposure condition analysis program, and manufacturing method for a semiconductor device
CN111277766A (en) * 2018-12-05 2020-06-12 雪力光纤有限公司 Image capturing method and image capturing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205131A (en) * 2007-02-19 2008-09-04 New Japan Radio Co Ltd Manufacturing method of semiconductor device
JP2009302206A (en) * 2008-06-11 2009-12-24 Canon Inc Method of determining exposure parameter, program for determining exposure parameter, exposure method, and device manufacturing method
US9368413B2 (en) 2014-07-02 2016-06-14 Kabushiki Kaisha Toshiba Light exposure condition analysis method, nontransitory computer readable medium storing a light exposure condition analysis program, and manufacturing method for a semiconductor device
CN111277766A (en) * 2018-12-05 2020-06-12 雪力光纤有限公司 Image capturing method and image capturing apparatus
CN111277766B (en) * 2018-12-05 2023-08-08 雪力光纤有限公司 Image photographing method and image photographing apparatus

Similar Documents

Publication Publication Date Title
US7142941B2 (en) Computer-implemented method and carrier medium configured to generate a set of process parameters and/or a list of potential causes of deviations for a lithography process
KR101059265B1 (en) How to correct mask
US7971160B2 (en) Creating method of photomask pattern data, photomask created by using the photomask pattern data, and manufacturing method of semiconductor apparatus using the photomask
JP4898419B2 (en) Method for determining exposure amount and focus position offset amount, program and device manufacturing method
KR100841729B1 (en) A method for performing full-chip manufacturing reliability checking and correction and a computer-readable recording medium for recording computer program which accomplishes thereof
JP5289343B2 (en) Exposure amount determination method, semiconductor device manufacturing method, exposure amount determination program, and exposure amount determination apparatus
KR101757743B1 (en) Flare correction method and method for fabricating EUV(Extreme Ultra Violet) mask
JP4989279B2 (en) Parameter value adjusting method, semiconductor device manufacturing method, and program
US8039177B2 (en) Method of correcting a flare and computer program product
KR20050088238A (en) Determining lithographic parameters to optimise a process window
KR100920857B1 (en) Method for predicting resist pattern shape, computer readable medium storing program for predicting resist pattern shape, and computer for predicting resist pattern shape
US7600213B2 (en) Pattern data verification method, pattern data creation method, exposure mask manufacturing method, semiconductor device manufacturing method, and computer program product
KR20090129360A (en) Method of determining exposure parameter, exposure method, method of manufacturing device and recording medium
US20050134866A1 (en) Pattern-producing method for semiconductor device
US20080304029A1 (en) Method and System for Adjusting an Optical Model
JP2000098584A (en) Correcting method of mask pattern and recording medium recording mask pattern correction program
US7966580B2 (en) Process-model generation method, computer program product, and pattern correction method
US7925090B2 (en) Method of determining photo mask, method of manufacturing semiconductor device, and computer program product
JP2006303175A (en) Method for defining illumination brightness distribution
US7575835B2 (en) Exposure method, exposure quantity calculating system using the exposure method and semiconductor device manufacturing method using the exposure method
US6261724B1 (en) Method of modifying a microchip layout data set to generate a predicted mask printed data set
KR100864934B1 (en) Method for mask layout correction, and apparatus for implementing the same
JP5673947B2 (en) Mask pattern correction method, program, and photomask using the correction method
TW201905967A (en) Device manufacturing method
JP2003318092A (en) Aligner and method for manufacturing semiconductor device