JP2006300809A - Structure inspection device - Google Patents

Structure inspection device Download PDF

Info

Publication number
JP2006300809A
JP2006300809A JP2005124775A JP2005124775A JP2006300809A JP 2006300809 A JP2006300809 A JP 2006300809A JP 2005124775 A JP2005124775 A JP 2005124775A JP 2005124775 A JP2005124775 A JP 2005124775A JP 2006300809 A JP2006300809 A JP 2006300809A
Authority
JP
Japan
Prior art keywords
hammer
vibration
concrete structure
housing
vibration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005124775A
Other languages
Japanese (ja)
Other versions
JP4694879B2 (en
Inventor
Takahiro Sakamoto
隆博 坂本
Hiroshi Yamamoto
寛 山元
Shinichi Hattori
晋一 服部
Kanji Matsuhashi
貫次 松橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MATSUHASHI TECHNO RES KK
MATSUHASHI TECHNO RESEARCH KK
Mitsubishi Electric Corp
Original Assignee
MATSUHASHI TECHNO RES KK
MATSUHASHI TECHNO RESEARCH KK
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MATSUHASHI TECHNO RES KK, MATSUHASHI TECHNO RESEARCH KK, Mitsubishi Electric Corp filed Critical MATSUHASHI TECHNO RES KK
Priority to JP2005124775A priority Critical patent/JP4694879B2/en
Publication of JP2006300809A publication Critical patent/JP2006300809A/en
Application granted granted Critical
Publication of JP4694879B2 publication Critical patent/JP4694879B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure inspection device capable of detecting reliably and exactly response vibration by applying a percussion to a concrete structure to excite it, and capable of acquiring highly reliable internal information of the structure just under side of a percussion point easily in a short time. <P>SOLUTION: A hammer housing 5 is constituted into a cylindrical shape to store a hammer 3 for striking perpendicularly a concrete structure surface 1a, a ring-like under face of the hammer housing 5 is brought surely into contact with the structure surface 1a, a vibration sensor 7 is constituted of a magnetostrictive element comprising a metal magnetostrictive material (core) 21 and a coil 22 to form vertical arrangement of arraying the vibration sensor 7 and the hammer housing 5 along an axial direction, elastic vibration excited on the structure surface 1a by the percussion is transmitted via the hammer housing 5, and the axial-directional vibration is detected on the housing 5 by the vibration sensor 7. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、コンクリート構造物の内部劣化を非破壊で検査する構造物検査装置に関するものである。   The present invention relates to a structure inspection apparatus for nondestructively inspecting internal deterioration of a concrete structure.

コンクリート構造物の内部劣化を非破壊で検査する従来の非破壊検査法としては、連続加振法および振動測定法を含む反発法があり、診断しようとする被検査体にハンマなどによって打撃を加えて加振すると共に、この加振部分から離れた位置にピックアップを設置し、加振部分からピックアップに到達する音響特性を、ピックアップによって検出し、その検出信号を分析することにより、被検査体の劣化を検出する(例えば、特許文献1参照)。   Conventional nondestructive inspection methods for nondestructive inspection of internal deterioration of concrete structures include repulsion methods including continuous vibration method and vibration measurement method, and the object to be diagnosed is hit with a hammer etc. In addition, the pickup is installed at a position away from the excitation portion, the acoustic characteristics reaching the pickup from the excitation portion are detected by the pickup, and the detection signal is analyzed to thereby detect the object to be inspected. Deterioration is detected (see, for example, Patent Document 1).

また、被測定物の健全性診断を行う従来の別例による検査装置では、コンクリート系構造物の表面に衝撃を与える打撃ハンマと、この打撃ハンマの打撃部に設けられた加速度センサと、この加速度センサと信号伝送可能に接続された解析装置とからなり、コンクリート系構造物の表面を打撃ハンマで打撃し、この衝撃信号を打撃ハンマに設けた加速度センサで採取し、測定された時刻歴加速度信号を解析装置に取り込む。そして、時刻歴加速度信号を時間積分することにより打撃ハンマの打撃初速度を算出する。また、打撃により構造物表面に発生した時刻歴打撃力Fは、ハンマ質量と計測された加速度とを乗算して求め、この時刻歴打撃力を上記ハンマの打撃初速度で除算した値を、接触インピーダンスと称し、この得られた接触インピーダンスから、被測定物の健全性診断を行う(例えば、特許文献2参照)。   Further, in another conventional inspection apparatus for diagnosing the soundness of an object to be measured, a hammer for impacting the surface of a concrete structure, an acceleration sensor provided at a hammering portion of the hammer, and the acceleration It consists of a sensor and an analysis device connected so that signal transmission is possible. The surface of a concrete structure is struck with a hammer and the impact signal is collected by an acceleration sensor provided on the hammer and measured time history acceleration signal. Into the analyzer. Then, the initial hitting speed of the hitting hammer is calculated by integrating the time history acceleration signal with respect to time. Also, the time history striking force F generated on the surface of the structure by striking is obtained by multiplying the hammer mass by the measured acceleration, and the value obtained by dividing this time history striking force by the hammer's initial striking velocity This is referred to as impedance, and the soundness of the object to be measured is diagnosed from the obtained contact impedance (see, for example, Patent Document 2).

特開平7−280779号公報(第2頁)Japanese Laid-Open Patent Publication No. 7-280797 (second page) 特開2004−144586号公報JP 2004-144586 A

上記のような従来の非破壊検査で、被検査体に打撃を加えて加振し、この加振部分からピックアップに到達する音響特性を検出するものでは、打撃機構とその加振応答を受信する検出機構が別々のモジュールで構成されており、打撃点と検出点が離間している。このため、打撃点を中心とした円周上の点で被検査体の加振応答を取得する、即ち、一方向に伝達される部分的応答のみ取得する結果となり、打撃点直下の的確な応答を得ることができない。被検査体表層部に存在するクラック等の変状を打撃点と検出点とが挟む場合、加振応答の受信および計測が不能となることもある。このように、被検査体の劣化を信頼性よく検出することは困難であった。   In the conventional non-destructive inspection as described above, the object to be inspected is struck and vibrated, and the acoustic characteristic reaching the pickup from this oscillating portion is detected, and the striking mechanism and its vibration response are received. The detection mechanism is composed of separate modules, and the strike point and the detection point are separated from each other. For this reason, the vibration response of the object to be inspected is obtained at a point on the circumference centered on the impact point, that is, only a partial response transmitted in one direction is obtained, and an accurate response just below the impact point is obtained. Can't get. When the hit point and the detection point sandwich a deformation such as a crack existing in the surface layer portion of the object to be inspected, it may be impossible to receive and measure the vibration response. Thus, it has been difficult to reliably detect deterioration of the object to be inspected.

また、衝撃信号を打撃ハンマに設けた加速度センサで採取する従来の検査装置では、センサが打撃ハンマ側に設置されているため、打撃により構造物表面に発生する振動などの構造物自身の応答信号を採取するものではない。このため、健全性診断の基準に用いている接触インピーダンスを求めて診断する解析処理が複雑となるという問題点があった。また、コンクリート構造物内部におけるクラック、ジャンカ等の変状や空洞の発生を検出できても、その表層からの発生位置を検出することは困難であった。   Moreover, in the conventional inspection device that collects the impact signal with the acceleration sensor provided on the hammer, the sensor is installed on the hammer side, so the response signal of the structure itself such as vibration generated on the structure surface by the hammer It is not something to collect. For this reason, there has been a problem that the analysis processing for obtaining and diagnosing the contact impedance used as the standard for soundness diagnosis is complicated. Moreover, even if the deformation of cracks, jumpers, etc. and the generation of cavities inside the concrete structure can be detected, it is difficult to detect the generation position from the surface layer.

この発明は、上記のような問題点を解消するために成されたものであって、被検査体であるコンクリート構造物に打撃を加えて加振し、その応答振動を信頼性よく的確に検出して、打撃点直下の構造物の信頼性の高い内部情報を短時間で容易に取得できる構造物検査装置を得ることを目的とする。   The present invention was made to solve the above-described problems. The concrete structure, which is an object to be inspected, is struck and vibrated, and its response vibration is detected accurately and accurately. Then, it aims at obtaining the structure inspection apparatus which can acquire easily the reliable internal information of the structure just under a striking point in a short time.

この発明に係る構造物検査装置は、コンクリート構造物の表面に該表面に対しほぼ垂直な方向(以下、軸方向と称す)に打撃を加えるハンマと、該ハンマにより上記コンクリート構造物表面に励起される振動を上記ハンマの打撃点周囲から均等に収集し伝達する振動伝達手段と、上記ハンマの軸方向上層に配設されて上記振動伝達手段により伝達された振動を検出する振動センサとを備える。そして、上記振動センサにて検出した振動により上記ハンマによる打撃点直下の上記コンクリート構造物の劣化を検査するものである。   A structure inspection device according to the present invention is excited on a surface of a concrete structure by a hammer that strikes the surface of the concrete structure in a direction substantially perpendicular to the surface (hereinafter referred to as an axial direction), and the hammer. Vibration transmission means for uniformly collecting and transmitting vibrations from around the hammer hit point of the hammer, and a vibration sensor for detecting the vibration transmitted by the vibration transmission means disposed in the upper axial layer of the hammer. Then, the deterioration of the concrete structure immediately below the hitting point by the hammer is inspected by the vibration detected by the vibration sensor.

この発明による構造物検査装置では、ハンマによりコンクリート構造物表面に励起される振動をハンマの打撃点周囲から均等に収集し伝達する振動伝達手段と、上記ハンマの軸方向上層に配設された振動センサとを備えるため、打撃点直下の構造物自身の応答振動を的確に収集して検出でき、打撃点直下の構造物の信頼性の高い内部情報を得ることができ、高精度な構造物検査が短時間で容易に行える。   In the structure inspection apparatus according to the present invention, vibration transmitting means for uniformly collecting and transmitting vibration excited on the surface of the concrete structure by the hammer from around the hammering point of the hammer, and vibration disposed in the axial upper layer of the hammer. Because it is equipped with a sensor, it can accurately collect and detect the response vibration of the structure itself immediately below the impact point, can obtain highly reliable internal information of the structure immediately below the impact point, and highly accurate structure inspection Can be easily done in a short time.

実施の形態1.
以下、この発明の実施の形態1について説明する。
図1は、この発明の実施の形態1による構造物検査装置の概略構成を示したブロック図である。図1に示すように、コンクリート構造物1を検査する構造物検査装置2は、構造物1を打撃するハンマ3、および該ハンマ3を初期の始動位置に引き戻す引き戻しバネ4を収納した振動伝達手段としての円筒状のハンマハウジング5と、該ハンマハウジング5の周りに配置され、ハンマハウジング5内のハンマ3を構造物1に対して加速スライドさせるコイル6と、ハンマ3の打撃により構造物表面(被計測面1a)に励起されるコンクリート構造物1の振動を検出する振動センサ7とを備える。また、コイル6を駆動するための電源装置8、打撃起動スイッチ9およびハンマ3の打撃条件を設定・制御する打撃制御装置10を備える。さらに、振動センサ7からの検出信号を受信して必要に応じて加工する受信装置11および該受信信号に基づいた検査結果を表示する表示装置12を備える。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below.
FIG. 1 is a block diagram showing a schematic configuration of a structure inspection apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, a structure inspection apparatus 2 for inspecting a concrete structure 1 includes a hammer 3 that strikes the structure 1, and a vibration transmission means that houses a pull-back spring 4 that pulls the hammer 3 back to an initial starting position. A cylindrical hammer housing 5, a coil 6 arranged around the hammer housing 5 for accelerating and sliding the hammer 3 in the hammer housing 5 with respect to the structure 1, and the structure surface ( And a vibration sensor 7 for detecting the vibration of the concrete structure 1 excited on the surface to be measured 1a). Further, a power supply device 8 for driving the coil 6, a hitting start switch 9, and a hitting control device 10 for setting and controlling hitting conditions of the hammer 3 are provided. Furthermore, a receiving device 11 that receives a detection signal from the vibration sensor 7 and processes it as necessary, and a display device 12 that displays an inspection result based on the received signal are provided.

構造物検査装置2は、ハンマ3が被計測面1aに対し垂直方向に打撃を加えるように設置され、このとき、被計測面1aに対面する円筒状のハンマハウジング5のリング状の下面は、被計測面1aに確実に接触されるものとする。振動センサ7は、ハンマ3およびハンマハウジング5の軸方向上層でハンマハウジング5に設置され、ハンマハウジング5にて伝達された振動をハンマハウジング5上で検出する。なお、ハンマ3を構成する材料は磁性体とする。   The structure inspection apparatus 2 is installed so that the hammer 3 strikes the measurement target surface 1a in the vertical direction. At this time, the ring-shaped lower surface of the cylindrical hammer housing 5 facing the measurement target surface 1a is: It is assumed that the surface to be measured 1a is surely contacted. The vibration sensor 7 is installed on the hammer housing 5 on the upper layer in the axial direction of the hammer 3 and the hammer housing 5, and detects the vibration transmitted by the hammer housing 5 on the hammer housing 5. The material constituting the hammer 3 is a magnetic material.

次に、コンクリート構造物1を検査する際の構造物検査装置2の動作について説明する。
検査員により打撃起動スイッチ9がオンされると、電源装置8から電力が供給され、打撃制御装置10により、一回または一定の周期で複数回、ハンマハウジング5周囲に配設されたコイル6に駆動電圧が印加される。駆動電圧がコイル6に印加されるとコイル6には電流が流れ、ハンマハウジング5内部に磁界が発生する。発生した磁界の磁力により、磁性体で構成されたハンマ3はハンマハウジング5内を被計測面1aに向かう軸方向に加速スライドし、被計測面1aを打撃する。打撃制御装置10では、駆動電圧を印加する時間タイミングを制御し、ハンマ通過位置を検出するセンサ(図示せず)等の信号入力で駆動電圧を遮断する。これにより、ハンマ3は効果的に被計測面1aを打撃し、その後ハンマ3に接続された引き戻しバネ4により引き戻され初期の位置へ戻る。
Next, the operation of the structure inspection apparatus 2 when inspecting the concrete structure 1 will be described.
When the impact activation switch 9 is turned on by the inspector, power is supplied from the power supply device 8, and the impact control device 10 applies the coil 6 disposed around the hammer housing 5 once or a plurality of times at a constant cycle. A drive voltage is applied. When a drive voltage is applied to the coil 6, a current flows through the coil 6 and a magnetic field is generated inside the hammer housing 5. Due to the magnetic force of the generated magnetic field, the hammer 3 made of a magnetic material accelerates and slides in the hammer housing 5 in the axial direction toward the surface to be measured 1a and strikes the surface to be measured 1a. The impact control device 10 controls the timing of applying the drive voltage, and cuts off the drive voltage by signal input from a sensor (not shown) that detects the hammer passing position. As a result, the hammer 3 effectively strikes the surface to be measured 1a, and then is pulled back by the pull-back spring 4 connected to the hammer 3 to return to the initial position.

ハンマ3の打撃によりコンクリート構造物1は弾性振動し、被計測面1aに励起される弾性振動は、ハンマ3の打撃点周囲に接触するハンマハウジング5のリング状の下面から円筒状の側面を介して伝達される。この伝達された振動を、ハンマハウジング5上で振動センサ7が検出する。振動センサ7による検出信号は、受信装置11に送信され受信装置11でフィルタリングを実施し、数KHz以下の設定周波数帯域での応答レベルに応じた検査結果を表示装置12にLED等の色別で表示する。なお、被計測面1aに励起されてハンマハウジング5上で検出される弾性振動の内、数KHz以下の低周波数帯域の弾性振動が異常の診断に有用であり、トンネルや道路床版等のコンクリート構造物の内部変状や、コンクリート健全性診断などの構造物検査が可能になる。   The concrete structure 1 is elastically vibrated by hitting the hammer 3, and the elastic vibration excited on the surface to be measured 1a is transmitted from the ring-shaped lower surface of the hammer housing 5 contacting the periphery of the hammering point of the hammer 3 through the cylindrical side surface. Is transmitted. The vibration sensor 7 detects the transmitted vibration on the hammer housing 5. The detection signal from the vibration sensor 7 is transmitted to the receiving device 11 and filtered by the receiving device 11, and the inspection result corresponding to the response level in the set frequency band of several KHz or less is displayed on the display device 12 according to the color such as LED. indicate. Of the elastic vibrations excited on the surface to be measured 1a and detected on the hammer housing 5, elastic vibrations in a low frequency band of several KHz or less are useful for diagnosing abnormalities, and concrete such as tunnels and road slabs are used. It is possible to inspect the structure such as internal deformation of the structure and soundness diagnosis of concrete.

この実施の形態では、円筒状のハンマハウジング5を信号伝達手段に用いると共に、振動センサ7を軸方向上層でハンマハウジング5上に設置した。このように円筒状のハンマハウジング5と振動センサ7とを軸方向に並べて縦型配置したことにより、被計測面1aに励起される弾性振動をハンマ3の打撃点周囲から均等に収集して振動センサ7設置位置まで伝達し、振動センサ7はハンマハウジング5上で振動を検出する。このため、打撃点直下の構造物自身の応答振動を、周方向で偏ることなく均等で的確に収集して検出でき、打撃点直下の構造物の信頼性の高い内部情報を得ることができる。
また、ハンマハウジング5を円筒状にしてリング状の下面を被計測面1aに確実に接触させるため、打撃点直下の構造物自身の応答振動を、周方向で偏ることなく均等に収集して側面を介して上層の振動センサ7設置位置まで伝達することが容易で確実に実現できる。
In this embodiment, the cylindrical hammer housing 5 is used as a signal transmission means, and the vibration sensor 7 is installed on the hammer housing 5 in the upper layer in the axial direction. As described above, the cylindrical hammer housing 5 and the vibration sensor 7 are arranged side by side in the axial direction, so that the elastic vibration excited on the surface to be measured 1a is evenly collected from around the hammering point of the hammer 3 and vibrated. The vibration sensor 7 detects vibration on the hammer housing 5. For this reason, the response vibration of the structure itself immediately below the hitting point can be collected and detected evenly and accurately without being biased in the circumferential direction, and highly reliable internal information of the structure immediately below the hitting point can be obtained.
In addition, in order to make the hammer housing 5 cylindrical and ensure that the ring-shaped lower surface is in contact with the surface to be measured 1a, the response vibration of the structure itself immediately below the striking point is collected evenly without being biased in the circumferential direction. It is easy and surely possible to transmit the vibration sensor 7 to the position where the vibration sensor 7 is installed.

なお、上記実施の形態では信号伝達手段として円筒状のハンマハウジング5を用いたが、被計測面1aに励起される弾性振動をハンマ3の打撃点周囲から周方向で偏ることなく均等に収集して軸方向上層の振動センサ7設置位置まで伝達できるものであればよく、ハンマハウジング5の形状を変えても良いし、信号伝達手段をハンマ3を収納するハンマハウジングと別構成にしてもよい。   In the above embodiment, the cylindrical hammer housing 5 is used as the signal transmission means. However, the elastic vibration excited on the surface to be measured 1a is collected evenly from the periphery of the hammering point of the hammer 3 without being biased in the circumferential direction. As long as it can transmit to the position where the vibration sensor 7 on the upper layer in the axial direction is installed, the shape of the hammer housing 5 may be changed, and the signal transmitting means may be configured separately from the hammer housing that houses the hammer 3.

実施の形態2.
上記実施の形態1による構造物検査装置2において、振動センサ7に磁歪素子を用いたものを示す。
図2に示す振動センサ7は、曲げ歪みの作用により透磁率が変化する金属磁歪材を用い、薄板をコア状に成形したセンサコア21を複数枚積層し、その両脚に所定の巻数のコイル22を配置する。
このように構成される振動センサ7は、図中、矢印方向23の歪みを検出して同方向の振動を検出することができる。歪みの作用によるコア21の透磁率の変化に従ってコイル22に起電力が発生する。歪みが大きいほど透磁率の変化は大きくなり、その結果コイル22に発生する電圧も高くなる。すなわちコイル22に発生する電気信号を得ることにより、それに比例する振動を検出する。
Embodiment 2. FIG.
In the structure inspection apparatus 2 according to the first embodiment, the vibration sensor 7 using a magnetostrictive element is shown.
The vibration sensor 7 shown in FIG. 2 uses a metal magnetostrictive material whose permeability changes due to the action of bending strain, and stacks a plurality of sensor cores 21 in which thin plates are formed into a core shape, and coils 22 having a predetermined number of turns on both legs. Deploy.
The vibration sensor 7 configured as described above can detect the vibration in the direction indicated by the arrow 23 in the drawing. An electromotive force is generated in the coil 22 in accordance with the change in the magnetic permeability of the core 21 due to the action of distortion. The greater the strain, the greater the change in permeability, and the higher the voltage generated in the coil 22 as a result. That is, by obtaining an electric signal generated in the coil 22, vibration proportional to the electric signal is detected.

構造物検査装置2において、上記のような磁歪素子を用いた振動センサ7は、歪みを検出する方向23を軸方向と合致させてハンマハウジング5上に縦方向に設置する。これにより、ハンマハウジング5にて伝達される軸方向の振動を軸方向の歪みとして振動センサ7にて直接検出することができ、検出感度が良く、迅速で高精度な振動検出が実現できる。また、この磁歪素子を用いた振動センサ7は、特に10KHz以下の振動を検出感度高く得ることができ、コンクリート構造物の検査を効果的に行える。   In the structure inspection apparatus 2, the vibration sensor 7 using the magnetostrictive element as described above is installed on the hammer housing 5 in the vertical direction so that the strain detection direction 23 matches the axial direction. As a result, the vibration in the axial direction transmitted by the hammer housing 5 can be directly detected by the vibration sensor 7 as axial distortion, and the detection of the vibration with good detection sensitivity and high accuracy can be realized. In addition, the vibration sensor 7 using this magnetostrictive element can obtain vibrations of 10 KHz or less particularly with high detection sensitivity, and can effectively inspect a concrete structure.

実施の形態3.
以下、この発明の実施の形態3について説明する。
上記実施の形態1で示した構造物検査装置2において、図3に示すように、データ解析装置13を受信装置11に接続する。
上記実施の形態1と同様に、ハンマ3の打撃によりコンクリート構造物1は弾性振動し、被計測面1aに励起される弾性振動は、ハンマハウジング5のリング状の下面から円筒状の側面を介して伝達されハンマハウジング5上で振動センサ7が検出する。振動センサ7による検出信号は、受信装置11に送信され受信装置11でフィルタリングを実施して、周波数応答波形がデータ解析装置13に入力される。
Embodiment 3 FIG.
The third embodiment of the present invention will be described below.
In the structure inspection apparatus 2 shown in the first embodiment, the data analysis apparatus 13 is connected to the reception apparatus 11 as shown in FIG.
As in the first embodiment, the concrete structure 1 is elastically vibrated by the hammer 3 and the elastic vibration excited on the surface to be measured 1a is transmitted from the ring-shaped lower surface of the hammer housing 5 through the cylindrical side surface. The vibration sensor 7 is detected on the hammer housing 5. A detection signal from the vibration sensor 7 is transmitted to the receiving device 11, filtering is performed by the receiving device 11, and a frequency response waveform is input to the data analyzing device 13.

データ解析装置13に入力された周波数応答波形は周波数分析(FFT)処理がなされ、500Hz〜10KHz周波数帯城の振動の最大値検出を行い、その周波数を用いて打撃点である計測点部位の境界面までのコンクリート厚み、例えばトンネル内の覆工巻厚等を演算する。また、データ解析装置13では、特定周波数帯域間の振動の積分演算処理を実施し、その振動レベルの総和を予め設定された基準値を示すテーブルと比較し、その処理結果から打撃点直下の情報、即ち計測点部位の内部変状や、表層からの深さ情報を得て、コンクリート構造物1の劣化を診断する。また、これらの解析結果は、記録することにより検査の際に劣化の経時変化などの情報を得るのに役立ててもよい。
表示装置12は、受信装置11からの情報、およびデータ解析装置13の解析結果の双方を表示可能として、適宜選択して表示させる。
The frequency response waveform input to the data analysis device 13 is subjected to frequency analysis (FFT) processing to detect the maximum value of vibrations in the frequency band of 500 Hz to 10 KHz, and using the frequency, the boundary of the measurement point portion that is the hit point The concrete thickness up to the surface, for example, the lining thickness in the tunnel is calculated. In addition, the data analysis device 13 performs an integral calculation process of vibration between specific frequency bands, compares the total vibration level with a table indicating a preset reference value, and obtains information directly under the impact point from the process result. That is, the deterioration of the concrete structure 1 is diagnosed by obtaining the internal deformation of the measurement point part and the depth information from the surface layer. Moreover, these analysis results may be used for obtaining information such as deterioration with time during inspection by recording.
The display device 12 can select and display both the information from the receiving device 11 and the analysis result of the data analysis device 13 as displayable.

この実施の形態では、振動センサ7にて検出された振動の周波数応答波形を周波数分析(FFT)処理を用いて解析するデータ解析装置13および解析結果を表示する表示装置12を備えたため、コンクリート構造物1の劣化に係る情報の解析が速やかにその場で実施でき、検査員に知らせることができる。また、振動センサ7がハンマハウジング5上で振動を直接検出した信頼性の高い検出信号に基づいて解析するため、打撃ハンマに設けた加速度センサで情報を採取する従来の検査装置のような複雑な演算処理を要することなく解析できる。また、計測点部位の内部変状や、表層からの深さ情報を得ることができ、コンクリート構造物の高精度で信頼性の高い検査が実施できる。   In this embodiment, since the data analysis device 13 for analyzing the frequency response waveform of the vibration detected by the vibration sensor 7 using the frequency analysis (FFT) process and the display device 12 for displaying the analysis result are provided, the concrete structure is provided. Analysis of information related to the deterioration of the object 1 can be promptly performed on the spot and can be informed to the inspector. Further, since the vibration sensor 7 analyzes based on a reliable detection signal in which vibration is directly detected on the hammer housing 5, it is complicated as in a conventional inspection device that collects information with an acceleration sensor provided in the hammer. Analysis can be performed without requiring arithmetic processing. In addition, internal deformation of the measurement point region and depth information from the surface layer can be obtained, and a highly accurate and reliable inspection of the concrete structure can be performed.

実施の形態4.
以下、この発明の実施の形態4について説明する。
上記実施の形態3で示した構造物検査装置2において、図4に示すように、ハンマハウジング5を押圧する押圧制御機構14とハンマハウジング5の下面がコンクリート構造物1の被計測面1aに圧接される押圧力を検出するセンサ15とを備える。
上記実施の形態1、3と同様に、ハンマ3の打撃によりコンクリート構造物1に弾性振動を与えるが、このとき、被計測面1aに対面する円筒状のハンマハウジング5のリング状の下面は、被計測面1aに確実に接触される必要がある。この実施の形態では、ハンマハウジング5の下面が被計測面1aに圧接されるように、押圧制御機構14は所定の押圧力でハンマハウジング5を被計測面1aに押圧する。押圧力の制御はセンサ15にて検出される圧力が所定の値となるように制御する。
Embodiment 4 FIG.
The fourth embodiment of the present invention will be described below.
In the structure inspection apparatus 2 shown in the third embodiment, as shown in FIG. 4, the pressing control mechanism 14 that presses the hammer housing 5 and the lower surface of the hammer housing 5 are pressed against the surface to be measured 1 a of the concrete structure 1. And a sensor 15 for detecting the pressing force.
Similar to the first and third embodiments, elastic vibration is applied to the concrete structure 1 by striking the hammer 3, and at this time, the ring-shaped lower surface of the cylindrical hammer housing 5 facing the surface to be measured 1a is It is necessary to be surely brought into contact with the surface to be measured 1a. In this embodiment, the pressing control mechanism 14 presses the hammer housing 5 against the surface to be measured 1a with a predetermined pressing force so that the lower surface of the hammer housing 5 is pressed against the surface to be measured 1a. The pressing force is controlled so that the pressure detected by the sensor 15 becomes a predetermined value.

このように押圧制御機構14によりハンマハウジング5を被計測面1aに押圧した状態で、ハンマ3の打撃によりコンクリート構造物1に弾性振動を与える。これにより、ハンマハウジング5のリング状の下面は、被計測面1aに確実に接触され、被計測面1aに励起される弾性振動は、ハンマハウジング5のリング状の下面から円筒状の側面を介して確実に伝達されて検出される。このため、振動センサ7による振動の検出精度が向上し、検査精度の信頼性が向上する。   In this way, elastic vibration is applied to the concrete structure 1 by hitting the hammer 3 in a state where the hammer housing 5 is pressed against the surface to be measured 1 a by the pressing control mechanism 14. Thereby, the ring-shaped lower surface of the hammer housing 5 is reliably brought into contact with the surface to be measured 1a, and the elastic vibration excited on the surface to be measured 1a is transmitted from the ring-shaped lower surface of the hammer housing 5 through the cylindrical side surface. Is reliably transmitted and detected. For this reason, the vibration detection accuracy by the vibration sensor 7 is improved, and the reliability of the inspection accuracy is improved.

なお、上記のような押圧制御機構14は、バネ等の圧縮緩衝機構を装着したものや、エアダンパ機構を装着した構造で実現できる。   The pressing control mechanism 14 as described above can be realized by a structure equipped with a compression buffer mechanism such as a spring or a structure equipped with an air damper mechanism.

また、押圧制御機構14にトリガ手段を備えて、ハンマハウジング5の下面がコンクリート構造物1の被計測面1aに圧接される押圧力が所定の圧力に達したとき、打撃起動スイッチ9をオンさせてハンマ3が被計測面1aを打撃し、検査を開始させるようにしても良い。これにより、ハンマハウジング5のリング状の下面が被計測面1aに確実に接触した状態で自動的に迅速に検査が開始できる。   Further, the pressing control mechanism 14 is provided with a trigger means, and when the pressing force at which the lower surface of the hammer housing 5 is pressed against the surface to be measured 1a of the concrete structure 1 reaches a predetermined pressure, the impact activation switch 9 is turned on. Then, the hammer 3 may strike the surface to be measured 1a and start the inspection. Thus, the inspection can be automatically and quickly started in a state where the ring-shaped lower surface of the hammer housing 5 is reliably in contact with the surface to be measured 1a.

実施の形態5.
以下、この発明の実施の形態5について説明する。
上記実施の形態1による構造物検査装置2では、コイル6を駆動するための電源装置8、打撃起動スイッチ9およびハンマ3の打撃条件を設定・制御する打撃制御装置10を備えてコイル6に駆動電圧を印加したが、この実施の形態では、図5に示すように、電源装置8から複数種(この場合3種)の電圧レベルを供給できるように設定し、スイッチとして電圧切り替え選択スイッチ16を用いて電圧レベルを選択して起動する。また、打撃制御装置10は各選択された電圧レベルに応じて打撃条件を制御する。
Embodiment 5. FIG.
The fifth embodiment of the present invention will be described below.
The structure inspection apparatus 2 according to the first embodiment includes the power supply device 8 for driving the coil 6, the impact activation switch 9, and the impact control device 10 for setting and controlling the impact condition of the hammer 3. Although a voltage is applied, in this embodiment, as shown in FIG. 5, it is set so that a plurality of types (three types in this case) of voltage levels can be supplied from the power supply device 8, and the voltage switching selection switch 16 is set as a switch. Use to select the voltage level and start. The batting control device 10 controls the batting condition according to each selected voltage level.

上記電源装置8と電圧切換選択スイッチ16とでハンマ3の打撃力を選択する手段を構成し、コンクリート構造物1の劣化を検査するための検査用打撃力と、この検査用打撃力よりも大きな打撃力でコンクリート構造物1の表面を強制的に剥離させるための剥離用打撃力とを選択して設定可能とする。この場合、電圧レベルを3種として、検査用打撃力を得るための電圧レベルと、それよりも大きな電圧レベルを剥離用打撃力を得るために2段階で備える。   The power supply device 8 and the voltage changeover selection switch 16 constitute a means for selecting a hammering force of the hammer 3, and an inspection impacting force for inspecting the deterioration of the concrete structure 1 is larger than the inspection impacting force. It is possible to select and set the peeling striking force for forcibly peeling the surface of the concrete structure 1 with the striking force. In this case, three voltage levels are provided in two stages for obtaining a striking force for peeling and a voltage level for obtaining a striking force for inspection and a voltage level higher than that.

次に、このように構成される構造物検査装置2の動作について説明する。
検査員により電圧切換選択スイッチ16が検査用打撃力を得るための電圧レベルを選択してオンされると、電源装置8から電力が供給され、打撃制御装置10により制御された駆動電圧がコイル6に印加される。これによりハンマ3はハンマハウジング5内を被計測面1aに向かう軸方向に加速スライドし、検査用打撃力で被計測面1aを打撃し、引き戻しバネ4により引き戻され初期の位置へ戻る。
Next, operation | movement of the structure inspection apparatus 2 comprised in this way is demonstrated.
When the voltage selector switch 16 is turned on by the inspector selecting a voltage level for obtaining the impact force for inspection, power is supplied from the power supply device 8 and the drive voltage controlled by the impact control device 10 is applied to the coil 6. To be applied. As a result, the hammer 3 accelerates and slides in the hammer housing 5 in the axial direction toward the surface to be measured 1a, strikes the surface to be measured 1a with an inspection striking force, and is pulled back by the retracting spring 4 to return to the initial position.

ハンマ3の打撃によりコンクリート構造物1は弾性振動し、被計測面1aに励起される弾性振動は、ハンマハウジング5上で振動センサ7が検出する。振動センサ7による検出信号は、受信装置11に送信され受信装置11でフィルタリングを実施し、数KHz以下の設定周波数帯域での応答レベルに応じた検査結果を表示装置12に表示する。また、上記実施の形態3で示したように、周波数応答波形がデータ解析装置13に入力され、周波数分析(FFT)処理を用いて、解析処理を行いコンクリート構造物1の劣化を診断し、表示装置12に表示する。   The concrete structure 1 is elastically vibrated by the hammer 3 and the vibration sensor 7 detects the elastic vibration excited on the surface to be measured 1 a on the hammer housing 5. A detection signal from the vibration sensor 7 is transmitted to the receiving device 11 and filtered by the receiving device 11, and an inspection result corresponding to a response level in a set frequency band of several KHz or less is displayed on the display device 12. Further, as shown in the third embodiment, the frequency response waveform is input to the data analysis device 13, and analysis processing is performed using frequency analysis (FFT) processing to diagnose deterioration of the concrete structure 1 and display it. Display on the device 12.

表示された検査結果および解析結果から、コンクリート構造物1の表層剥離や、コンクリートかぶり部の剥落の可能性が有る場合、検査員は、コンクリート構造物1の表面を強制的に剥離させる強制剥離処理を続いて行う。
検査員により電圧切換選択スイッチ16が剥離用打撃力を得るための電圧レベルを選択してオンされると、電源装置8から電力が供給され、打撃制御装置10により制御された駆動電圧がコイル6に印加される。そしてハンマ3は打撃エネルギーが増大された剥離用打撃力で被計測面1aの該当部位を衝撃打振した後、引き戻しバネ4により引き戻され初期の位置へ戻る。このハンマ3の打撃により、表層コンクリート部をたたき落とす。
If there is a possibility that the surface of the concrete structure 1 is peeled off or the concrete cover part is peeled off from the displayed inspection results and analysis results, the inspector forcibly peels the surface of the concrete structure 1 To continue.
When the voltage selector switch 16 is turned on by the inspector selecting a voltage level for obtaining the striking force for peeling, power is supplied from the power supply device 8 and the drive voltage controlled by the striking control device 10 is applied to the coil 6. To be applied. The hammer 3 impacts and vibrates the corresponding portion of the surface to be measured 1a with the striking force with increased striking energy, and then is pulled back by the pulling spring 4 to return to the initial position. By hitting the hammer 3, the surface concrete portion is knocked down.

剥離用打撃力のための電圧レベルは、複数種有る場合には、表示された検査結果および解析結果に応じて決定する。
また強制剥離処理の場合、ハンマ3による打撃後の振動センサ7で振動検出して検査する通常の処理は必要に応じて行う。
When there are a plurality of types of voltage levels for the peeling striking force, they are determined according to the displayed inspection result and analysis result.
Further, in the case of the forced peeling process, a normal process for detecting and inspecting the vibration with the vibration sensor 7 after being hit by the hammer 3 is performed as necessary.

この実施の形態では、ハンマ3の打撃力を選択可能として、コンクリート構造物1の劣化を検査するための検査用打撃力と、表面を強制的に剥離させるための剥離用打撃力とを選択できるようにしたため、検査のための構造物検査装置2を用いて強制剥離処理を実施することができ、強制剥離のための特別な装置を必要とすることがなく容易で簡便に強制剥離処理を行える。また、同一装置を用いて、検査と強制剥離処理とを連続して実施できるため、検査箇所に表層剥離や剥落の可能性が有る場合、極めて効率的に対処できる。   In this embodiment, the striking force of the hammer 3 can be selected, and the striking force for inspecting the deterioration of the concrete structure 1 and the striking force for forcibly peeling the surface can be selected. Therefore, the forced peeling process can be performed using the structure inspection apparatus 2 for the inspection, and the forced peeling process can be easily and easily performed without requiring a special apparatus for the forced peeling. . In addition, since the inspection and the forced peeling treatment can be continuously performed using the same apparatus, it is possible to cope with the problem very efficiently when there is a possibility that the inspection portion is peeled off or peeled off.

この発明の実施の形態1による構造物検査装置の概略構成を示したブロック図である。It is the block diagram which showed schematic structure of the structure inspection apparatus by Embodiment 1 of this invention. この発明の実施の形態2による振動センサの構造を示す図である。It is a figure which shows the structure of the vibration sensor by Embodiment 2 of this invention. この発明の実施の形態3による構造物検査装置の概略構成を示したブロック図である。It is the block diagram which showed schematic structure of the structure inspection apparatus by Embodiment 3 of this invention. この発明の実施の形態4による構造物検査装置の概略構成を示したブロック図である。It is the block diagram which showed schematic structure of the structure inspection apparatus by Embodiment 4 of this invention. この発明の実施の形態5による構造物検査装置の概略構成を示したブロック図である。It is the block diagram which showed schematic structure of the structure inspection apparatus by Embodiment 5 of this invention.

符号の説明Explanation of symbols

1 コンクリート構造物、1a 構造物表面(被計測面)、2 構造物検査装置、
3 ハンマ、5 振動伝達手段としてのハンマハウジング、7 振動センサ、
8 電源装置、12 表示装置、13 解析装置、14 押圧制御機構、15 センサ、16 打撃力選択手段としての電圧切換選択スイッチ、21 磁歪材(コア)、
22 コイル。
1 Concrete structure, 1a Structure surface (surface to be measured), 2 Structure inspection device,
3 hammer, 5 hammer housing as vibration transmission means, 7 vibration sensor,
DESCRIPTION OF SYMBOLS 8 Power supply device, 12 Display apparatus, 13 Analysis apparatus, 14 Press control mechanism, 15 Sensor, 16 Voltage change selection switch as a striking force selection means, 21 Magnetostrictive material (core),
22 Coil.

Claims (8)

コンクリート構造物の表面に該表面に対しほぼ垂直な方向(以下、軸方向と称す)に打撃を加えるハンマと、該ハンマにより上記コンクリート構造物表面に励起される振動を上記ハンマの打撃点周囲から均等に収集し伝達する振動伝達手段と、上記ハンマの軸方向上層に配設されて上記振動伝達手段により伝達された振動を検出する振動センサとを備え、上記振動センサにて検出した振動により上記ハンマによる打撃点直下の上記コンクリート構造物の劣化を検査する構造物検査装置。 A hammer that strikes the surface of the concrete structure in a direction substantially perpendicular to the surface (hereinafter referred to as an axial direction), and vibrations excited by the hammer on the surface of the concrete structure from around the hammering point of the hammer A vibration transmitting means for uniformly collecting and transmitting; and a vibration sensor for detecting vibration transmitted by the vibration transmitting means disposed on an upper layer in the axial direction of the hammer, and the vibration detected by the vibration sensor A structure inspection device for inspecting deterioration of the concrete structure just below the hitting point by a hammer. 曲げ歪みにより透磁率が変化する金属磁歪材から成るコアとコイルとで構成される磁歪素子を上記振動センサに用い、該振動センサによる振動検出は、上記振動伝達手段にて伝達された振動により発生する上記磁歪素子の軸方向の歪みを検出することにより行うことを特徴とする請求項1記載の構造物検査装置。 A magnetostrictive element composed of a core and a coil made of a metal magnetostrictive material whose permeability changes due to bending strain is used for the vibration sensor, and vibration detection by the vibration sensor is generated by vibration transmitted by the vibration transmitting means. The structure inspection apparatus according to claim 1, wherein the inspection is performed by detecting an axial strain of the magnetostrictive element. 上記振動伝達手段を、上記ハンマを収納する筒状のハンマハウジングで構成し、該ハンマハウジングのリング状の下面を上記コンクリート構造物の表面に接触させて上記ハンマの打撃点周囲から振動を均等に収集し、該振動を上記ハンマハウジングの側面を介して伝達することを特徴とする請求項1または2記載の構造物検査装置。 The vibration transmitting means is constituted by a cylindrical hammer housing for housing the hammer, and the ring-shaped lower surface of the hammer housing is brought into contact with the surface of the concrete structure so that vibration is evenly distributed from around the hammer hit point. The structure inspection apparatus according to claim 1, wherein the vibration is collected and transmitted through a side surface of the hammer housing. 上記ハンマハウジングの下面が上記コンクリート構造物の表面に圧接されるように上記ハンマハウジングを押圧する押圧制御手段を備えたことを特徴とする請求項1〜3のいずれかに記載の構造物検査装置。 The structure inspection apparatus according to any one of claims 1 to 3, further comprising a pressing control means for pressing the hammer housing so that a lower surface of the hammer housing is pressed against the surface of the concrete structure. . 上記ハンマハウジングの下面が上記コンクリート構造物の表面に圧接される押圧力が所定の圧力に達したとき、上記ハンマが上記コンクリート構造物の表面を打撃して該構造物の劣化を検査するトリガ手段を上記押圧制御手段に備えたことを特徴とする請求項4記載の構造物検査装置。 Trigger means for inspecting deterioration of the structure by the hammer hitting the surface of the concrete structure when the pressing force with which the lower surface of the hammer housing is pressed against the surface of the concrete structure reaches a predetermined pressure 5. The structure inspection apparatus according to claim 4, wherein the pressure control means is provided. 上記ハンマの打撃力を選択する手段を備え、上記コンクリート構造物の劣化を検査するための検査用打撃力と、該検査用打撃力よりも大きな打撃力で表面を強制的に剥離させるための剥離用打撃力とを選択して設定可能としたことを特徴とする請求項1〜5のいずれかに記載の構造物検査装置。 A means for selecting a hammering force of the hammer, an inspection striking force for inspecting deterioration of the concrete structure, and a peeling for forcibly peeling the surface with a striking force larger than the striking force for the inspection The structural inspection apparatus according to any one of claims 1 to 5, wherein an impact force can be selected and set. 上記振動センサは、所定の周波数以下の低周波数帯域の弾性振動を検出することを特徴とする請求項1〜6のいずれかに記載の構造物検査装置。 The structure inspection apparatus according to claim 1, wherein the vibration sensor detects elastic vibration in a low frequency band equal to or lower than a predetermined frequency. 上記振動センサが検出した振動を周波数分析処理を用いて解析し上記コンクリート構造物の劣化を診断する解析装置と該解析結果を表示する表示部とを備えたことを特徴とする請求項1〜7のいずれかに記載の構造物検査装置。 8. An analysis device for analyzing vibration detected by the vibration sensor using frequency analysis processing and diagnosing deterioration of the concrete structure, and a display unit for displaying the analysis result. The structure inspection apparatus according to any one of the above.
JP2005124775A 2005-04-22 2005-04-22 Structure inspection device Active JP4694879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005124775A JP4694879B2 (en) 2005-04-22 2005-04-22 Structure inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005124775A JP4694879B2 (en) 2005-04-22 2005-04-22 Structure inspection device

Publications (2)

Publication Number Publication Date
JP2006300809A true JP2006300809A (en) 2006-11-02
JP4694879B2 JP4694879B2 (en) 2011-06-08

Family

ID=37469264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005124775A Active JP4694879B2 (en) 2005-04-22 2005-04-22 Structure inspection device

Country Status (1)

Country Link
JP (1) JP4694879B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133318A (en) * 2009-12-24 2011-07-07 Shimizu Corp Inspection device, and inspection method using the same
JP2012237561A (en) * 2011-05-10 2012-12-06 Shimizu Corp Inspection device
WO2012169526A1 (en) * 2011-06-07 2012-12-13 株式会社エフテック Welding inspection device
JP2013015412A (en) * 2011-07-04 2013-01-24 Kajima Corp Physical property evaluation apparatus
JP2017032479A (en) * 2015-08-05 2017-02-09 原子燃料工業株式会社 State evaluating apparatus and state evaluating method of member
CN106610330A (en) * 2016-12-23 2017-05-03 江西飞尚科技有限公司 Long-term automatic online cable force monitoring system based on vibration method
JP2017083330A (en) * 2015-10-29 2017-05-18 古河機械金属株式会社 Hammering inspection system and hammering inspection method
KR101739192B1 (en) * 2015-07-24 2017-05-23 고려대학교 산학협력단 Nondestructive inspection device for inspecting the ground
JP6327657B1 (en) * 2017-12-13 2018-05-23 株式会社オンガエンジニアリング Solenoid type electromagnetic hammer and control method thereof
JP2019106521A (en) * 2018-03-30 2019-06-27 株式会社オンガエンジニアリング Solenoid type electromagnetic hammer
CN110082434A (en) * 2019-04-29 2019-08-02 青岛讯极科技有限公司 Adaptive pasting type sensor and its application method
JP2020056688A (en) * 2018-10-02 2020-04-09 東海旅客鉄道株式会社 Structure non-destructive test device and non-destructive test method thereof
JP2020056691A (en) * 2018-10-02 2020-04-09 東海旅客鉄道株式会社 Structure non-destructive test device
CN116136174A (en) * 2023-04-05 2023-05-19 山东钰镪地质资源勘查开发有限责任公司 Underground soil layer structure exploration equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763724A (en) * 1993-08-27 1995-03-10 Riken Corp Nitrogen oxides sensor
JP2003083942A (en) * 2001-06-27 2003-03-19 Taiheiyo Cement Corp Elastic wave-inputting apparatus, and method for prospecting defect in concrete structure using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0763724A (en) * 1993-08-27 1995-03-10 Riken Corp Nitrogen oxides sensor
JP2003083942A (en) * 2001-06-27 2003-03-19 Taiheiyo Cement Corp Elastic wave-inputting apparatus, and method for prospecting defect in concrete structure using the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133318A (en) * 2009-12-24 2011-07-07 Shimizu Corp Inspection device, and inspection method using the same
JP2012237561A (en) * 2011-05-10 2012-12-06 Shimizu Corp Inspection device
WO2012169526A1 (en) * 2011-06-07 2012-12-13 株式会社エフテック Welding inspection device
JP2012255654A (en) * 2011-06-07 2012-12-27 F Tech:Kk Weld check apparatus
JP2013015412A (en) * 2011-07-04 2013-01-24 Kajima Corp Physical property evaluation apparatus
KR101739192B1 (en) * 2015-07-24 2017-05-23 고려대학교 산학협력단 Nondestructive inspection device for inspecting the ground
JP2017032479A (en) * 2015-08-05 2017-02-09 原子燃料工業株式会社 State evaluating apparatus and state evaluating method of member
JP2017083330A (en) * 2015-10-29 2017-05-18 古河機械金属株式会社 Hammering inspection system and hammering inspection method
CN106610330A (en) * 2016-12-23 2017-05-03 江西飞尚科技有限公司 Long-term automatic online cable force monitoring system based on vibration method
JP6327657B1 (en) * 2017-12-13 2018-05-23 株式会社オンガエンジニアリング Solenoid type electromagnetic hammer and control method thereof
JP2019105552A (en) * 2017-12-13 2019-06-27 株式会社オンガエンジニアリング Solenoid type electromagnetic hammer and control method for the same
JP2019106521A (en) * 2018-03-30 2019-06-27 株式会社オンガエンジニアリング Solenoid type electromagnetic hammer
JP7113428B2 (en) 2018-10-02 2022-08-05 東海旅客鉄道株式会社 Nondestructive testing equipment for structures
JP2020056688A (en) * 2018-10-02 2020-04-09 東海旅客鉄道株式会社 Structure non-destructive test device and non-destructive test method thereof
JP2020056691A (en) * 2018-10-02 2020-04-09 東海旅客鉄道株式会社 Structure non-destructive test device
JP7125712B2 (en) 2018-10-02 2022-08-25 東海旅客鉄道株式会社 Non-destructive test equipment for structures and its non-destructive test method
CN110082434A (en) * 2019-04-29 2019-08-02 青岛讯极科技有限公司 Adaptive pasting type sensor and its application method
CN116136174A (en) * 2023-04-05 2023-05-19 山东钰镪地质资源勘查开发有限责任公司 Underground soil layer structure exploration equipment
CN116136174B (en) * 2023-04-05 2023-06-16 山东钰镪地质资源勘查开发有限责任公司 Underground soil layer structure exploration equipment

Also Published As

Publication number Publication date
JP4694879B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP4694879B2 (en) Structure inspection device
JP3813580B2 (en) Structure inspection equipment
EP3658868B1 (en) Apparatus and method for performing an impact excitation technique
JP4875589B2 (en) Panel inspection apparatus and inspection method
CN106813993B (en) Fatigue test component state monitoring method based on sound-ultrasound and sound emission technology
JPH07110289A (en) Method and device for predicting life of object to be measured
KR20160038493A (en) Acoustic resonance non-destructive testing system
JP5666334B2 (en) Quality diagnosis method for concrete structures
JP4311680B2 (en) Structure inspection device
JPS63186122A (en) Abnormality diagnosing system for structure
JP4373627B2 (en) Defect depth measurement method for structures
JP4369316B2 (en) Nondestructive inspection equipment
JP2004101413A (en) Vibration inspecting device for inside of solid
JP2005148064A (en) Device and method for detecting change or damage to pressure vessel during or after pressure test
JPH0980033A (en) Judgment method for exfoliation of wall tile from building
JP2009042099A (en) Impact testing device
JP2004085412A (en) Apparatus for inspecting vibration inside solid
JP2006008385A (en) Deterioration diagnosing method for handrail of escalator
RU2298455C1 (en) Method for determining life parameters of moving and rotating cutting tool
JP3236865B2 (en) Excitation mode identification method
KR101391772B1 (en) A indentor with a functional sensor, indentation tester and analysis system using the indentor
JPH0786451B2 (en) Impact inspection method and device
JP2003232781A (en) Apparatus for inspecting vibration inside solid
JP2002250720A (en) Equipment for inspecting architectural structure
JP2010121939A (en) Materials testing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4694879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250