JP2006296123A - Noncontact power supply system and power transmission method - Google Patents

Noncontact power supply system and power transmission method Download PDF

Info

Publication number
JP2006296123A
JP2006296123A JP2005115593A JP2005115593A JP2006296123A JP 2006296123 A JP2006296123 A JP 2006296123A JP 2005115593 A JP2005115593 A JP 2005115593A JP 2005115593 A JP2005115593 A JP 2005115593A JP 2006296123 A JP2006296123 A JP 2006296123A
Authority
JP
Japan
Prior art keywords
power
power transmission
control circuit
antenna
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005115593A
Other languages
Japanese (ja)
Inventor
Hiroshi Abu
裕志 阿武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2005115593A priority Critical patent/JP2006296123A/en
Publication of JP2006296123A publication Critical patent/JP2006296123A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply system by which physical wiring by a feeder cable and limitation of time of use by a battery are eliminated, additional information is transmitted simultaneously, and electric power is efficiently supplied while avoiding shields. <P>SOLUTION: In the noncontact power supply system comprising a power transmission control circuit 101 which controls an electromagnetic wave, an electromagnetic wave supply circuit 102 which supplies the power from power transmission antennae 103 using the electromagnetic wave, receiving antennae 105 which receives the electromagnetic wave, a receiving control circuit 106 which controls the power from the receiving antennae 105, and a power conversion supply circuit 108 which converts the power from the receiving control circuit 106 to a desired voltage; the system further comprises a plurality of the movable power transmission antennae 103 arranged at a power transmission portion and a plurality of the receiving antennae 105 arranged at a movable receiving portion. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、受電部が自由に移動しながら、電子機器へ電力を供給するための電力供給装置および送電方法に関する。   The present invention relates to a power supply device and a power transmission method for supplying power to an electronic device while a power reception unit moves freely.

従来は、接触式給電ケーブルによる電力供給装置が用いられており、この電力供給装置は、使用者の移動範囲に対して十分長さを持つ電源装置から直接接続される給電ケーブルを通じて手持ち型電子機器へ電力を供給している。また、充電式のバッテリによる電力供給装置は、手持ち型電子機器に内蔵された充電式バッテリにより電力を供給している。
また、従来の非接触電力供給装置には、2つの装置が提案されている。第1には、発信回路からアンテナを介して放射される電磁波を、アンテナを介して受け取り、これを電源回路により、電力に変換するものである(例えば、特許文献1参照)。図4に示すように、識別情報発信装置10が、識別情報記憶装置20の電源を供給するための電源供給用の電磁波を発信するための発振回路13をさらに有する構成とし、識別情報記憶装置20が、識別情報発信装置10の発振回路13から発信された電磁波を受信し、受信した電磁波を電力に変換することで、動作電源を作る電源回路23をさらに有する構成とすることができる。このようにすると、識別情報記憶装置20が動作するための電力を供給することが可能となる。
第2には、固定側と移動側の何れか一方の装置に能動モジュ−ルAを他方に受動モジュ−ルBを備え、その両者間で電磁界もしくは光による電磁波を媒体として、電力は一方向に、情報信号は相互に授受する伝送制御手段を構成するものである(例えば、特許文献2参照)。図5は、能動モジュ−ルで受信した受動側装置からの情報信号の信号強度に基づいて、電力の発送出力を自動的に制御する手段を備えた装置の従来例を説明するブロック線図である。図中、Aは能動モジュ−ル、Bは受動モジュ−ルを表わしており、能動モジュ−ルAは電力や情報信号を扱う電力送信部および情報信号を受信する信号受信部などを有し、受動モジュ−ルBは電力や情報信号を受けて処理する電力受信部および情報信号を送信する信号送受信部などを有している。能動モジュ−ルAの電力送信部は、電力発送用周波数を発振するf1発振回路1の出力を、RF(高周波)バッファアンプ2を経て受けるRFパワ−アンプ3により電力増幅し、電力送信ヘッド4(ヘッドの構成は後述)からその電磁波を放射する。この電磁波は、受動モジュ−ルBの電力受信ヘッド5に捕捉されたのち、整流平滑回路6により直流E1となり受動モジュ−ルB内の各回路および付加回路の動作用電源として供給されるので、受動側装置モジュ−ルBは見掛け上無電源で動作をする。
特開平09−220339(第6頁 図3) 特開平2001−053657(第3頁 図1)
Conventionally, a power supply device using a contact-type power supply cable has been used, and this power supply device is a handheld electronic device through a power supply cable directly connected from a power supply having a sufficient length with respect to a user's moving range. Is supplying power. In addition, a power supply device using a rechargeable battery supplies power using a rechargeable battery built in a handheld electronic device.
Two devices have been proposed as conventional non-contact power supply devices. First, an electromagnetic wave radiated from a transmission circuit via an antenna is received via the antenna, and this is converted into electric power by a power supply circuit (see, for example, Patent Document 1). As shown in FIG. 4, the identification information transmission device 10 further includes an oscillation circuit 13 for transmitting an electromagnetic wave for power supply for supplying power to the identification information storage device 20. However, the configuration may further include a power supply circuit 23 that generates an operating power source by receiving the electromagnetic wave transmitted from the oscillation circuit 13 of the identification information transmitting device 10 and converting the received electromagnetic wave into electric power. If it does in this way, it will become possible to supply the electric power for the identification information storage device 20 to operate.
Secondly, the active module A is provided on one of the fixed side and moving side devices, and the passive module B is provided on the other side. In the direction, the information signal constitutes a transmission control means for transmitting and receiving each other (see, for example, Patent Document 2). FIG. 5 is a block diagram for explaining a conventional example of a device provided with means for automatically controlling the output power output based on the signal strength of the information signal from the passive device received by the active module. is there. In the figure, A represents an active module, B represents a passive module, and the active module A has a power transmission unit that handles power and information signals, a signal reception unit that receives information signals, and the like. The passive module B has a power receiving unit for receiving and processing power and information signals, a signal transmitting / receiving unit for transmitting information signals, and the like. The power transmission unit of the active module A amplifies the power of the output of the f1 oscillation circuit 1 that oscillates the power transmission frequency by the RF power amplifier 3 that passes through the RF (high frequency) buffer amplifier 2, and the power transmission head 4 The electromagnetic waves are radiated from (the configuration of the head will be described later). Since this electromagnetic wave is captured by the power receiving head 5 of the passive module B, it becomes a direct current E1 by the rectifying and smoothing circuit 6 and is supplied as an operation power source for each circuit and additional circuit in the passive module B. The passive side device module B operates with no apparent power.
JP 09-220339 (page 6 FIG. 3) Japanese Patent Laid-Open No. 2001-053657 (page 3 FIG. 1)

ところが、従来の接触式給電ケーブルによる電力供給装置は、給電ケーブルを外す事ができないので、ケーブルが他の機器に干渉して必要な場所に届かなかったり、ケーブルが絡んで作業性を損なったり、損傷して断線したり、巻取作業に手間を要するという問題があった。
また、充電式のバッテリによる電力供給装置の場合は、バッテリの重量のための電子機器の重量増、設置体積のための電子機器の大型化という問題があり、更に使用時間の制限を受けるという致命的な問題もあった。更に、手持ち型電子機器と上位機器との情報通信を行うためには、給電ケーブルと複合される情報伝送線を通じて、あるいは電力線に重畳される情報信号による通信、あるいは送受信回路およびアンテナによる無線通信を行う必要があった。
また、従来の非接触給電方式による電力供給装置の場合は、遮蔽物がある場合、電磁波がアンテナで受信できず、電力変換できないという問題が生じていた。さらには、受信部が移動する場合、発信部からの距離や角度などによっては、電波強度が低減するために、効率的な電力変換ができないという問題も生じていた。
本発明はこのような問題点に鑑みてなされたものであり、給電ケーブルによる物理的な取り回しの制限を排除するとともに、バッテリによる使用時間の制限を排除することができ、同時に付加情報の伝送を可能とし、遮蔽物の回避を行いながら効率的な電力供給ができる電力供給装置を提供することを目的とする。
However, since the power supply device using the conventional contact type power supply cable cannot remove the power supply cable, the cable interferes with other devices and does not reach the necessary place, or the cable becomes tangled and the workability is impaired. There was a problem that it was damaged and disconnected, and that it took time and labor to take up the winding work.
In addition, in the case of a power supply device using a rechargeable battery, there are problems such as an increase in the weight of the electronic device due to the weight of the battery and an increase in the size of the electronic device due to the installation volume. There was also a problem. Furthermore, in order to perform information communication between the handheld electronic device and the host device, communication by an information signal superimposed on the power line or information signal superimposed on the power line, or wireless communication by a transmission / reception circuit and an antenna is performed. There was a need to do.
Further, in the case of a conventional power supply apparatus using a non-contact power feeding method, when there is a shield, there is a problem that electromagnetic waves cannot be received by the antenna and power conversion cannot be performed. Furthermore, when the receiving unit moves, there is a problem that efficient power conversion cannot be performed because the radio wave intensity is reduced depending on the distance and angle from the transmitting unit.
The present invention has been made in view of such problems, and it is possible to eliminate the limitation of physical handling by a power supply cable and the limitation of the usage time by a battery, and at the same time, transmission of additional information. It is an object of the present invention to provide a power supply device that can enable efficient power supply while avoiding shielding.

上記問題を解決するため、本発明は、次のように構成したのである。
請求項1に記載の発明は、送電する電磁波を制御する送電制御回路と、送電アンテナから電磁波を用いて電力を供給する電磁波供給回路と、送電された電力を受信する受電アンテナと、前記受電アンテナからの電力を制御する受電制御回路と、前記受電制御回路からの電力を所望の電圧に変換する電力変換供給回路とからなる非接触電力供給装置において、送電部に複数個配置された移動可能な前記送電アンテナと、移動可能な受電部に複数個配置された前記受電アンテナとからなるものである。
また、請求項2に記載の発明は、前記電力変換供給回路が、電子機器の消費電力を検出する機能を有するものである。
また、請求項3に記載の発明は、前記受電制御回路と相互に通信する前記送電制御回路により、最適な位置に配置された前記送電アンテナへ切り替えながら、1基以上の送電アンテナより1基以上の前記受電アンテナを指向する電磁波を照射し、電磁波の供給を行うものである。
また、請求項4に記載の発明は、前記送電部からの電磁波に付加情報信号を重畳することにより、電源供給に加えて付加情報の伝送を行うものである。
また、請求項5に記載の発明は、送電する電磁波を制御する送電制御回路と、送電アンテナから電磁波を用いて電力を供給する電磁波供給回路と、送電された電力を受信する受電アンテナと、前記受電アンテナからの電力を制御する受電制御回路と、前記受電制御回路からの電力を所望の電圧に変換する電力変換供給回路とからなる非接触電力供給装置の送電方法において、受電部の移動に伴う位置と姿勢の変化を検出するステップと、電磁波の照射角度と照射電力とを最適に変化させるステップと、前記受電アンテナに指向性の高い前記送電アンテナを検出するステップと、送電する前記送電アンテナを切り替えるステップと、電磁波を送電するステップとからなるものである。
In order to solve the above problem, the present invention is configured as follows.
The invention according to claim 1 is a power transmission control circuit that controls electromagnetic waves to be transmitted, an electromagnetic wave supply circuit that supplies electric power using electromagnetic waves from a power transmission antenna, a power receiving antenna that receives transmitted power, and the power receiving antenna In a non-contact power supply device comprising a power reception control circuit that controls power from the power supply and a power conversion supply circuit that converts power from the power reception control circuit into a desired voltage, a plurality of movable power terminals arranged in a power transmission unit The power transmission antenna includes a plurality of power reception antennas arranged in a movable power reception unit.
According to a second aspect of the present invention, the power conversion supply circuit has a function of detecting power consumption of an electronic device.
According to a third aspect of the present invention, the power transmission control circuit that communicates with the power reception control circuit switches one or more power transmission antennas from one or more power transmission antennas while switching to the power transmission antenna disposed at an optimal position. The electromagnetic wave directed to the power receiving antenna is irradiated to supply the electromagnetic wave.
According to a fourth aspect of the present invention, the additional information signal is transmitted in addition to the power supply by superimposing the additional information signal on the electromagnetic wave from the power transmission unit.
The invention according to claim 5 is a power transmission control circuit that controls electromagnetic waves to be transmitted, an electromagnetic wave supply circuit that supplies power using electromagnetic waves from a power transmission antenna, a power receiving antenna that receives transmitted power, and In a power transmission method of a non-contact power supply device including a power reception control circuit that controls power from a power reception antenna and a power conversion supply circuit that converts power from the power reception control circuit into a desired voltage, accompanying the movement of a power reception unit A step of detecting a change in position and orientation; a step of optimally changing an irradiation angle and irradiation power of electromagnetic waves; a step of detecting the power transmitting antenna having high directivity for the power receiving antenna; and the power transmitting antenna for transmitting power It consists of a step of switching and a step of transmitting electromagnetic waves.

請求項1に記載の発明によると、接触式給電ケーブルによる物理的な取り回しの制限を排除することができ、バッテリによる使用時間の制限を排除することができる。
また、請求項2に記載の発明によると、電子機器の負荷状況に応じた最適な電力を供給することができる。
また、請求項3に記載の発明によると、複数個の送電アンテナおよび受電アンテナを備え、受電アンテナに指向する送電アンテナを選択することで遮蔽物の回避を行いながら効率的な電力供給ができる。
また、請求項4に記載の発明によると、電磁波に付加情報を重畳することにより、付加情報の伝送を非接触に実現することができる。
また、請求項5に記載の発明によると、指向性の高い送電アンテナを選択するステップを行うことで、遮蔽物の回避を行いながら効率的な電力供給ができる。
According to the first aspect of the present invention, it is possible to eliminate the limitation of physical handling by the contact type power supply cable, and it is possible to eliminate the limitation of the usage time by the battery.
Moreover, according to the invention of Claim 2, the optimal electric power according to the load condition of an electronic device can be supplied.
In addition, according to the invention described in claim 3, a plurality of power transmission antennas and power reception antennas are provided, and efficient power supply can be performed while avoiding a shield by selecting a power transmission antenna directed to the power reception antenna.
According to the invention described in claim 4, the additional information can be transmitted in a non-contact manner by superimposing the additional information on the electromagnetic wave.
Further, according to the invention described in claim 5, by performing the step of selecting a power transmission antenna having high directivity, efficient power supply can be performed while avoiding a shielding object.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の電力供給装置の構成を示すブロック図である。ここでは、電力が供給される装置に手持ち型電子機器でロボットを操作することを例に説明する。図において、101は送電制御回路であり、電磁波供給源102と3台の送電アンテナ103を制御する。2台の受電アンテナ105と受電制御回路106および電力変換供給回路108は、使用者が着用する衣服107に備えられており、3台の送電アンテナ103の中で受電アンテナ105に指向性の高い送電アンテナ103から照射された電磁波104を受電して電力変換供給回路108により電力変換し、給電コネクタ109に接続された電力供給ケーブル110を通じて手持ち型電子機器へ電力を供給する。
ここで、受電アンテナ105は、フェルト生地、アンテナパッチや地板に相当する部分は導電性布からなり、誘電体基板にフェルトを誘電材料として用い、折り曲げ可能で衣服にも縫い付けることができるマイクロストリップアンテナを例に説明する。
また、衣服の胸部に装着する例で説明したが、背部や腕部、大腿部でもよく、使用者の負荷が軽減できる場所であれば良い。さらには電子機器自体にへの内蔵や、保護帽に装着しても良い。
このように衣服や保護帽に受電アンテナを備えることにより、広い面積で電力を受電できるとともに、受電アンテナが電磁波を吸収するので使用者の電磁波シールドを兼ねており、安全に作業できる効果もある。
本発明が従来技術と異なる部分は、移動可能な複数個の送電アンテナおよび移動可能な複数個の受電アンテナを備え、受電アンテナに指向する1基以上の送電アンテナを選択する部分である。
FIG. 1 is a block diagram showing the configuration of the power supply apparatus of the present invention. Here, an example will be described in which a robot is operated with a handheld electronic device on a device to which power is supplied. In the figure, reference numeral 101 denotes a power transmission control circuit, which controls an electromagnetic wave supply source 102 and three power transmission antennas 103. The two power receiving antennas 105, the power reception control circuit 106, and the power conversion supply circuit 108 are provided in the clothes 107 worn by the user, and among the three power transmission antennas 103, the power receiving antenna 105 has high directivity. The electromagnetic wave 104 emitted from the antenna 103 is received and converted into power by the power conversion supply circuit 108, and power is supplied to the handheld electronic device through the power supply cable 110 connected to the power supply connector 109.
Here, the power receiving antenna 105 is made of felt cloth, antenna patch or ground plate is made of a conductive cloth. The felt is used as a dielectric material on a dielectric substrate, and can be bent and sewn on clothes. An antenna will be described as an example.
Moreover, although demonstrated in the example with which it mounts | wears on the chest part of clothes, a back part, an arm part, and a thigh part may be sufficient as long as it can reduce a user's load. Furthermore, it may be incorporated in the electronic device itself or attached to a protective cap.
By providing the power receiving antenna in the clothes and the protective cap in this way, power can be received in a wide area, and the power receiving antenna absorbs electromagnetic waves, so that it also serves as an electromagnetic wave shield for the user, and there is an effect that the work can be performed safely.
The present invention is different from the prior art in that it includes a plurality of movable power transmitting antennas and a plurality of movable power receiving antennas, and selects one or more power transmitting antennas directed to the power receiving antenna.

図2は処理の流れ図である。その動作は、ステップ201と202で送電制御回路101と受電制御回路106間の通信確立を行う。
次に、ステップ203から205で使用者の位置と姿勢を把握して送電アンテナ103の照射角度を変更する。
次に、ステップ206から208で電子機器の消費電力に応じて送電電力を変更する。
次に、ステップ209と210にて障害物による使用者の隠蔽を把握して送電アンテナ103を最適な位置に配置された送電アンテナ103に切り替える。
ここで、使用者の位置と姿勢を把握する方法としては、常時、複数の送電アンテナ103により電力供給を行っており、受電制御回路106が送電アンテナ103から受信した電磁波の強度の差を検出することにより、送電アンテナ103を検出する。
この一連の動作により、使用者の位置と姿勢および電子機器の消費電力に応じて最適な電力供給ができる。
FIG. 2 is a flowchart of the process. The operation establishes communication between the power transmission control circuit 101 and the power reception control circuit 106 in steps 201 and 202.
Next, in steps 203 to 205, the user's position and posture are grasped, and the irradiation angle of the power transmission antenna 103 is changed.
Next, in steps 206 to 208, the transmission power is changed according to the power consumption of the electronic device.
Next, in steps 209 and 210, the user concealment of the user due to the obstacle is grasped, and the power transmitting antenna 103 is switched to the power transmitting antenna 103 arranged at the optimum position.
Here, as a method of grasping the position and orientation of the user, power is always supplied by a plurality of power transmission antennas 103, and the power reception control circuit 106 detects a difference in intensity of electromagnetic waves received from the power transmission antennas 103. Thus, the power transmission antenna 103 is detected.
Through this series of operations, an optimal power supply can be performed according to the position and posture of the user and the power consumption of the electronic device.

図3は本発明の第2の実施例を示すブロック図である。図において、103は送電アンテナであり、受電アンテナ105に対して電力供給用の電磁波104を照射している。112は前記電磁波に重畳された付加情報信号であり、送電制御回路101と受電制御回路106の間で送受信されている。付加情報113は、送電制御回路101と上位機器114との間で授受され、また受電制御回路106と手持ち型電子機器111との間で授受される。   FIG. 3 is a block diagram showing a second embodiment of the present invention. In the figure, reference numeral 103 denotes a power transmission antenna that irradiates the power receiving antenna 105 with an electromagnetic wave 104 for supplying power. An additional information signal 112 superimposed on the electromagnetic wave is transmitted and received between the power transmission control circuit 101 and the power reception control circuit 106. The additional information 113 is exchanged between the power transmission control circuit 101 and the host device 114, and is exchanged between the power reception control circuit 106 and the handheld electronic device 111.

このように、電力供給用の電磁波に付加情報信号が重畳される構成をしているので、上位機器と手持ち型電子機器との間の情報伝送を行うことができる。   As described above, since the additional information signal is superimposed on the electromagnetic wave for power supply, information transmission between the host device and the handheld electronic device can be performed.

本発明により、負荷の位置と消費電力に対して最適に制御された電磁波を照射することによって負荷機器に対して非接触で連続的に電力供給することができるので、屋外にて長期間にわたって稼働する移動体に連続的に電力供給を行うという用途にも適用できる。   According to the present invention, it is possible to continuously supply power to a load device in a non-contact manner by irradiating electromagnetic waves optimally controlled with respect to the position of the load and power consumption, so that it can be operated outdoors for a long period of time. It can also be applied to applications in which power is continuously supplied to a moving body.

本発明の第1実施例を示す非接触電源供給装置のブロック図The block diagram of the non-contact power supply device which shows 1st Example of this invention 本発明の非接触電源供給装置の動作を示す処理流れ図Process flow chart showing operation of non-contact power supply device of the present invention 本発明の第2実施例を示す非接触電源供給装置のブロック図Block diagram of a non-contact power supply apparatus showing a second embodiment of the present invention 従来の電源供給装置の構成図Configuration diagram of a conventional power supply device 従来の電力制御装置のブロック図Block diagram of a conventional power control device

符号の説明Explanation of symbols

A 能動モジュール
B 受動モジュール
1 f1発信回路
2 RFバッファアンプ
3 RFパワーアンプ
4 電力送信ヘッド
5 電力受信ヘッド
6 整流平滑回路
10 識別情報発信回路
13 発振回路
20 識別情報記憶装置
23 電源回路
101 送電制御回路
102 電磁波供給源
103 送電アンテナ
104 電磁波
105 受電アンテナ
106 受電制御回路
107 受電アンテナ装着衣服
108 電力変換供給回路
109 給電コネクタ
110 電力供給ケーブル
111 手持ち型電子機器
112 付加情報信号
113 付加情報
114 上位機器
A Active module B Passive module 1 f1 transmission circuit 2 RF buffer amplifier 3 RF power amplifier 4 Power transmission head 5 Power reception head 6 Rectification smoothing circuit 10 Identification information transmission circuit 13 Oscillation circuit 20 Identification information storage device 23 Power supply circuit 101 Power transmission control circuit DESCRIPTION OF SYMBOLS 102 Electromagnetic wave supply source 103 Power transmission antenna 104 Electromagnetic wave 105 Power receiving antenna 106 Power receiving control circuit 107 Power receiving antenna wearing clothes 108 Power conversion supply circuit 109 Power supply connector 110 Power supply cable 111 Hand-held electronic device 112 Additional information signal 113 Additional information 114 Host device

Claims (5)

送電する電磁波を制御する送電制御回路と、送電アンテナから電磁波を用いて電力を供給する電磁波供給回路と、送電された電磁波を受信する受電アンテナと、前記受電アンテナからの電力を制御する受電制御回路と、前記受電制御回路からの電力を所望の電圧に変換する電力変換供給回路とからなる非接触電力供給装置において、
送電部に複数個配置された移動可能な前記送電アンテナと、移動可能な受電部に複数個配置された前記受電アンテナとからなることを特徴とする非接触電力供給装置。
A power transmission control circuit that controls electromagnetic waves to be transmitted, an electromagnetic wave supply circuit that supplies power using electromagnetic waves from a power transmission antenna, a power reception antenna that receives transmitted electromagnetic waves, and a power reception control circuit that controls power from the power reception antenna And a non-contact power supply device comprising a power conversion supply circuit that converts power from the power reception control circuit into a desired voltage.
A contactless power supply apparatus comprising: a plurality of movable power transmission antennas arranged in a power transmission unit; and a plurality of power reception antennas arranged in a movable power reception unit.
前記電力変換供給回路は、電子機器の消費電力を検出する機能を備えたことを特徴とする請求項1に記載の非接触電力供給装置。   The non-contact power supply apparatus according to claim 1, wherein the power conversion supply circuit has a function of detecting power consumption of an electronic device. 前記受電制御回路と相互に通信する前記送電制御回路により、最適な位置に配置された前記送電アンテナへ切り替えながら、1基以上の送電アンテナより1基以上の前記受電アンテナを指向する電磁波を照射し、電磁波の供給を行うことを特徴とする請求項1に記載の非接触電力供給装置。   The power transmission control circuit that communicates with the power reception control circuit irradiates one or more power transmission antennas with an electromagnetic wave directed to one or more power reception antennas while switching to the power transmission antenna disposed at an optimal position. The contactless power supply device according to claim 1, wherein electromagnetic waves are supplied. 前記送電部からの電磁波に付加情報信号を重畳することにより、電源供給に加えて付加情報の伝送を行うことを特徴とする請求項1記載の非接触式電力供給装置。   The non-contact power supply apparatus according to claim 1, wherein the additional information is transmitted in addition to the power supply by superimposing the additional information signal on the electromagnetic wave from the power transmission unit. 送電する電磁波を制御する送電制御回路と、送電アンテナから電磁波を用いて電力を供給する電磁波供給回路と、送電された電力を受信する受電アンテナと、前記受電アンテナからの電力を制御する受電制御回路と、前記受電制御回路からの電力を所望の電圧に変換する電力変換供給回路とからなる非接触電力供給装置の送電方法において、
受電部の移動に伴う位置と姿勢の変化を検出するステップと、電磁波の照射角度と照射電力とを最適に変化させるステップと、前記受電アンテナに指向性の高い前記送電アンテナを検出するステップと、送電する前記送電アンテナを切り替えるステップと、電磁波を送電するステップとからなることを特徴とする非接触電力供給装置の送電方法。
A power transmission control circuit that controls electromagnetic waves to be transmitted, an electromagnetic wave supply circuit that supplies power using electromagnetic waves from a power transmission antenna, a power reception antenna that receives transmitted power, and a power reception control circuit that controls power from the power reception antenna And in a power transmission method of a non-contact power supply device comprising a power conversion supply circuit that converts power from the power reception control circuit into a desired voltage,
Detecting a change in position and orientation associated with the movement of the power reception unit, optimally changing the irradiation angle and irradiation power of the electromagnetic wave, detecting the power transmission antenna with high directivity in the power reception antenna, and A power transmission method for a non-contact power supply apparatus, comprising: a step of switching the power transmission antenna to transmit power; and a step of transmitting electromagnetic waves.
JP2005115593A 2005-04-13 2005-04-13 Noncontact power supply system and power transmission method Pending JP2006296123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005115593A JP2006296123A (en) 2005-04-13 2005-04-13 Noncontact power supply system and power transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005115593A JP2006296123A (en) 2005-04-13 2005-04-13 Noncontact power supply system and power transmission method

Publications (1)

Publication Number Publication Date
JP2006296123A true JP2006296123A (en) 2006-10-26

Family

ID=37416082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005115593A Pending JP2006296123A (en) 2005-04-13 2005-04-13 Noncontact power supply system and power transmission method

Country Status (1)

Country Link
JP (1) JP2006296123A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009153056A (en) * 2007-12-21 2009-07-09 Yamaha Corp Wireless speaker apparatus
JP2010114961A (en) * 2008-11-04 2010-05-20 Sony Corp Power communication device, power communication system, power communicating method, and program
JP2010239781A (en) * 2009-03-31 2010-10-21 Fujitsu Ltd Wireless power transmission system, power receiving station device, and power transmission station device
JP2012517796A (en) * 2009-02-10 2012-08-02 クアルコム,インコーポレイテッド Wireless power transfer for portable enclosures
WO2013099879A1 (en) * 2011-12-28 2013-07-04 三菱重工業株式会社 Antenna device and wireless power transmission system
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
US8892035B2 (en) 2008-05-13 2014-11-18 Qualcomm Incorporated Repeaters for enhancement of wireless power transfer
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
JP2017135831A (en) * 2016-01-27 2017-08-03 日東電工株式会社 Power supply device and power reception and supply device
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods
CN112075008A (en) * 2018-03-27 2020-12-11 谷鲁无线股份有限公司 Condition-aware wireless power transfer

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
JP2009153056A (en) * 2007-12-21 2009-07-09 Yamaha Corp Wireless speaker apparatus
US9236771B2 (en) 2008-05-13 2016-01-12 Qualcomm Incorporated Method and apparatus for adaptive tuning of wireless power transfer
US9190875B2 (en) 2008-05-13 2015-11-17 Qualcomm Incorporated Method and apparatus with negative resistance in wireless power transfers
US9178387B2 (en) 2008-05-13 2015-11-03 Qualcomm Incorporated Receive antenna for wireless power transfer
US9184632B2 (en) 2008-05-13 2015-11-10 Qualcomm Incorporated Wireless power transfer for furnishings and building elements
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
US8892035B2 (en) 2008-05-13 2014-11-18 Qualcomm Incorporated Repeaters for enhancement of wireless power transfer
US8965461B2 (en) 2008-05-13 2015-02-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US9954399B2 (en) 2008-05-13 2018-04-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US9991747B2 (en) 2008-05-13 2018-06-05 Qualcomm Incorporated Signaling charging in wireless power environment
US9130407B2 (en) 2008-05-13 2015-09-08 Qualcomm Incorporated Signaling charging in wireless power environment
US8558670B2 (en) 2008-11-04 2013-10-15 Sony Corporation Electric power communication device, electric power communication system, electric power communication method, and program
JP2010114961A (en) * 2008-11-04 2010-05-20 Sony Corp Power communication device, power communication system, power communicating method, and program
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures
JP2012517796A (en) * 2009-02-10 2012-08-02 クアルコム,インコーポレイテッド Wireless power transfer for portable enclosures
JP2010239781A (en) * 2009-03-31 2010-10-21 Fujitsu Ltd Wireless power transmission system, power receiving station device, and power transmission station device
JP2013141347A (en) * 2011-12-28 2013-07-18 Mitsubishi Heavy Ind Ltd Antenna device and wireless power transmission system
WO2013099879A1 (en) * 2011-12-28 2013-07-04 三菱重工業株式会社 Antenna device and wireless power transmission system
JP2017135831A (en) * 2016-01-27 2017-08-03 日東電工株式会社 Power supply device and power reception and supply device
CN112075008A (en) * 2018-03-27 2020-12-11 谷鲁无线股份有限公司 Condition-aware wireless power transfer
JP2021519572A (en) * 2018-03-27 2021-08-10 グル ワイヤレス インコーポレーテッド Wireless power transmission according to the situation

Similar Documents

Publication Publication Date Title
JP2006296123A (en) Noncontact power supply system and power transmission method
EP3766163B1 (en) Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US10038337B1 (en) Wireless power supply for rescue devices
US20200244104A1 (en) Systems and methods for miniaturized antenna for wireless power transmissions
EP3087650B1 (en) Laptop computer as a transmitter for wireless charging
JP4510123B2 (en) Antenna device
US20150076927A1 (en) Wireless power supply for rescue devices
KR20200083110A (en) Mouse pad for supporting wireless charging
US20150022010A1 (en) Wireless charging and powering of electronic sensors in a vehicle
US20150076917A1 (en) Wireless power supply for logistic services
US20140213184A1 (en) Intra-body communication apparatus provided with magnetic induction wireless communication circuit performing wireless communications using magnetic induction
US20140376646A1 (en) Hybrid wi-fi and power router transmitter
JP3203150U (en) Wireless charging device and system with reduced electromagnetic radiation and improved charging efficiency
JP2012210056A (en) Non contact charge system, control method of the non contact charge system, portable electronic apparatus, and charger
KR20140090024A (en) Mobile terminal
JP2014093773A (en) Tracking system and tracking method
KR20110002865A (en) Communication device
KR20180137773A (en) Wireless charging support accessory attached and separated from user terminal and wireless charging system based the same
US20120086285A1 (en) Apparatus for harvesting energy from electromagnetic field
JP4823259B2 (en) Electronic circuit, wireless terminal and wireless terminal system
JP2009177644A (en) Portable device, and method of correcting directivity
KR20100019208A (en) Charge apparatus for using radio frequency
JP2018029313A (en) Wireless communication apparatus
JP3475831B2 (en) Mobile object identification device
KR100611482B1 (en) Wireless telecommunication terminal and method for controlling radiation pattern of antenna