JP2006293522A - Straight line detection device, straight line detection method, and program for the same - Google Patents

Straight line detection device, straight line detection method, and program for the same Download PDF

Info

Publication number
JP2006293522A
JP2006293522A JP2005110873A JP2005110873A JP2006293522A JP 2006293522 A JP2006293522 A JP 2006293522A JP 2005110873 A JP2005110873 A JP 2005110873A JP 2005110873 A JP2005110873 A JP 2005110873A JP 2006293522 A JP2006293522 A JP 2006293522A
Authority
JP
Japan
Prior art keywords
straight line
detection
space
curves
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005110873A
Other languages
Japanese (ja)
Inventor
Tomoyuki Takahashi
知幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2005110873A priority Critical patent/JP2006293522A/en
Publication of JP2006293522A publication Critical patent/JP2006293522A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect straight lines even if points on the straight lines deviate largely. <P>SOLUTION: Candidate points on straight lines in a real space are detected from image data, and coordinate values of the candidate points are projected on a Hough space to produce curves LS on the Hough space. A plurality of detection intervals M each grouping a plurality of subintervals ΔD obtained by divinding the Hough space in a predetermined size are set, and curves LS passing each detection interval M are counted. The straight lines on the real space are computed from the coordinate values of any subintervals ΔD in detection intervals M in which the number of curves LS passing the detection interval M exceeds a first threshold. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、放射線撮影画像の照射野を認識する照射野判定装置、照射野判定方法およびそのプログラムに関するものである。   The present invention relates to an irradiation field determination device that recognizes an irradiation field of a radiographic image, an irradiation field determination method, and a program thereof.

従来、記録された放射線撮影画像を読み取って画像データを得、この画像データに適切な画像処理を施した後、処理済みの画像データに基づいて読影に適した可視像を再生することは種々の分野で行なわれている。   Conventionally, there are various methods of reading a recorded radiographic image to obtain image data, performing appropriate image processing on the image data, and then reproducing a visible image suitable for interpretation based on the processed image data. In the field.

ところでX線撮影において放射線撮影画像を撮影記録するに際しては、放射線の照射による生体への影響を極力小さくするためや、観察に不要な部分からの散乱光による画質性能の低下等を防止するために、放射線が被写体の必要な部分にのみ照射されるように照射域を制限する鉛などで作られた照射野絞りを使用することが多い。   By the way, when radiographic images are captured and recorded in X-ray imaging, in order to minimize the influence on the living body due to radiation irradiation, and to prevent deterioration in image quality performance due to scattered light from parts unnecessary for observation, etc. In many cases, an irradiation field stop made of lead or the like is used to limit the irradiation area so that the radiation is irradiated only to a necessary part of the subject.

照射野絞りを用いて撮影を行なった場合、蓄積性蛍光体シート等の記録媒体には、照射野絞りの開口輪郭の内部領域(照射野領域)に被写体等の画像が記録され、開口輪郭の外側領域(照射野外領域)には放射線が到達せず未露光状態となる。つまり、この開口輪郭に対応する画像の照射野輪郭はエッジ線となる。   When photographing is performed using an irradiation field stop, an image of the subject or the like is recorded in an internal region (irradiation field region) of the opening contour of the irradiation field stop on a recording medium such as a stimulable phosphor sheet. Radiation does not reach the outer region (irradiation field region) and is in an unexposed state. That is, the irradiation field contour of the image corresponding to the opening contour is an edge line.

そして、このように照射野領域内にのみ画像が記録された記録媒体から画像データを読み取って画像処理を行なう場合、照射野領域内の画像データについてのみ階調処理等を施すようにすれば、処理の回数が大幅に低減され処理負荷の低減、処理スピードの向上を図ることができる。   Then, when image processing is performed by reading image data from a recording medium in which an image is recorded only in the irradiation field region in this way, if gradation processing or the like is performed only on the image data in the irradiation field region, The number of processes can be greatly reduced, and the processing load can be reduced and the processing speed can be improved.

一方、照射野外領域は未露光状態であるため、医用X線フイルムのようなネガ画像においては最低濃度領域(画素値の低い領域)となるが、例えば医用X線フイルムをシャーカステンに掛けて蛍光灯の光による透過画像を観察するとき等には、このような最低濃度領域は非常に明るい領域となるため、照射野領域のうち特に照射野外領域に近い部分については照射野外領域の明るさに影響されて読影性能が低下する。同様にCRT等の画像表示装置にその画像を表示する場合にも、照射野外領域は高輝度となるため照射野内の画像の読影に支障を生じる。   On the other hand, since the irradiation field area is in an unexposed state, in a negative image such as a medical X-ray film, it becomes the lowest density area (area having a low pixel value). When observing a transmitted image with light, the minimum density area is very bright, so that the brightness of the irradiation field area, especially the area close to the irradiation field area, is affected. Interpretation performance is reduced. Similarly, when the image is displayed on an image display device such as a CRT, the irradiation field region has a high luminance, which causes a problem in interpretation of the image in the irradiation field.

そこで放射線画像記録再生システムにおいては、このような照射野外領域についての各画像データを一律に最高濃度(若しくは最低輝度)に相当する値に強制的に置換する処理が行なわれる。そしてこの処理は一般に黒化処理と呼ばれるが、この黒化処理を行なうためには、照射野輪郭を精度よく認識することが非常に重要である。   Therefore, in the radiographic image recording / reproducing system, processing for forcibly replacing each image data for such an irradiation field region uniformly with a value corresponding to the highest density (or lowest luminance) is performed. This process is generally called a blackening process. To perform this blackening process, it is very important to accurately recognize the irradiation field contour.

例えば、上記照射野輪郭が画像の濃度変化が急峻に変化するエッジ線になることを利用して、画像データの変化が急峻な部分を探索することによって、照射野輪郭を求める方法がよく知られているが、このエッジ線を求める具体的な方法として、画像の所定の点(たとえば画像の中心点等)から画像端部に向かう放射状の複数の直線を設定し、これらの各直線の方向に沿った画像データに基づいて各方向ごとにデータの差分が大きいエッジ上の候補点を検出し、これらの候補点に基づいてエッジとなる線を検出する方法が提案されている(例えば、特許文献1等)。   For example, it is well known to obtain an irradiation field contour by searching for a portion where the change in image data is steep, utilizing the fact that the irradiation field contour becomes an edge line in which the density change of the image changes sharply. However, as a specific method for obtaining the edge line, a plurality of radial straight lines from a predetermined point of the image (for example, the center point of the image) to the edge of the image are set, and the direction of each of these straight lines is set. A method has been proposed in which candidate points on an edge having a large difference in data for each direction are detected based on the image data along the line, and a line serving as an edge is detected based on these candidate points (for example, Patent Documents). 1).

あるいは、これらのエッジ候補点についてハフ(Hough)変換を適用して直線を求め、この直線で囲まれる領域を照射野領域とする方法を提案したものもある(例えば、特許文献2など)。
特開昭63-259538 号公報 特開平10-275213号公報
Alternatively, a method has been proposed in which a straight line is obtained by applying a Hough transform to these edge candidate points, and a region surrounded by the straight line is set as an irradiation field region (for example, Patent Document 2).
Japanese Unexamined Patent Publication No. 63-259538 JP-A-10-275213

しかしながら、上述の放射状の方向に沿って得られたエッジ上の候補点に基づいて、ハフ変換を用いて直線を検出して照射野輪郭を認識する場合、エッジ上の候補点が必ずしも一直線上に並んでいるとは限らず、ある程度の幅でばらつきがある。そのため、エッジとなる点が多く検出されても、ばらつきが大きい場合には正しい直線が検出されない場合がある。   However, when a straight line is detected by using the Hough transform based on the candidate points on the edge obtained along the radial direction described above, the candidate points on the edge are not necessarily in a straight line. It is not necessarily lined up, and there is some variation in width. For this reason, even if many points serving as edges are detected, a correct straight line may not be detected if the variation is large.

本発明は上記事情に鑑みなされたものであって、従来の直線検出処理よりも直線の検出確率を向上させた直線検出装置、直線検出方法およびそのプログラムを提供することを目的とするものである。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a straight line detection device, a straight line detection method, and a program therefor, in which the straight line detection probability is improved over conventional straight line detection processing. .

本発明の直線検出装置は、画像データを入力する画像データ入力手段と、
前記入力した画像データから実空間における直線上の複数の候補点を検出する候補点検出手段と、
前記複数の候補点の座標値をハフ空間に投影して、ハフ空間上の複数の曲線を求める投影手段と、
ハフ空間内に、該ハフ空間内を所定の大きさで区分けした小区間を複数まとめた検出区間を複数設定する検出区間設定手段と、
各検出区間内を通過する前記曲線の数をカウントするカウント手段と、
前記検出区間内を通過する曲線の数が第1の閾値を越えた検出区間内のいずれかの小区間の座標値を用いて前記実空間上の直線を求める直線算出手段とを備えたことを特徴とするものである。
The straight line detection device of the present invention includes an image data input means for inputting image data,
Candidate point detecting means for detecting a plurality of candidate points on a straight line in real space from the input image data;
Projecting means for projecting the coordinate values of the plurality of candidate points onto a Hough space to obtain a plurality of curves on the Hough space;
Detection interval setting means for setting a plurality of detection intervals in which a plurality of small intervals obtained by dividing the Hough space by a predetermined size are set in the Hough space;
Counting means for counting the number of the curves passing through each detection section;
Straight line calculating means for obtaining a straight line in the real space using the coordinate value of any small section in the detection section in which the number of curves passing through the detection section exceeds a first threshold value. It is a feature.

また、本願発明の直線検出方法は、
画像データを入力する画像データ入力ステップと、
前記入力した画像データから実空間における直線上の複数の候補点を検出する候補点検出ステップと、
前記複数の候補点の座標値をハフ空間に投影して、ハフ空間上の複数の曲線を求める投影ステップと、
ハフ空間内に、該ハフ空間内を所定の大きさで区分けした小区間を複数まとめた検出区間を複数設定する検出区間設定ステップと、
各検出区間内を通過する前記曲線の数をカウントするカウントステップと、
前記検出区間内を通過する曲線の数が第1の閾値を越えた検出区間内のいずれかの小区間の座標値を用いて前記実空間上の直線を求める直線算出ステップとを備えたことを特徴とするものである。
The straight line detection method of the present invention is
An image data input step for inputting image data;
A candidate point detecting step of detecting a plurality of candidate points on a straight line in real space from the input image data;
Projecting the coordinate values of the plurality of candidate points onto a Hough space to obtain a plurality of curves on the Hough space;
A detection interval setting step for setting a plurality of detection intervals in which a plurality of small intervals obtained by dividing the Hough space by a predetermined size are set in the Hough space;
A counting step for counting the number of the curves passing through each detection interval;
A straight line calculating step of obtaining a straight line in the real space using the coordinate value of any small section in the detection section in which the number of curves passing through the detection section exceeds a first threshold value. It is a feature.

また、本願発明のプログラムはコンピュータを、
画像データを入力する画像データ入力手段と、
前記入力した画像データから実空間における直線上の複数の候補点を検出する候補点検出手段と、
前記複数の候補点の座標値をハフ空間に投影して、ハフ空間上の複数の曲線を求める投影手段と、
ハフ空間内に、該ハフ空間内を所定の大きさで区分けした小区間を複数まとめた検出区間を複数設定する検出区間設定手段と、
各検出区間内を通過する前記曲線の数をカウントするカウント手段と、
前記検出区間内を通過する曲線の数が第1の閾値を越えた検出区間内のいずれかの小区間の座標値を用いて前記実空間上の直線を求める直線算出手段として機能させることを特徴とするものである。
The program of the present invention is a computer,
Image data input means for inputting image data;
Candidate point detecting means for detecting a plurality of candidate points on a straight line in real space from the input image data;
Projecting means for projecting the coordinate values of the plurality of candidate points onto a Hough space to obtain a plurality of curves on the Hough space;
Detection interval setting means for setting a plurality of detection intervals in which a plurality of small intervals obtained by dividing the Hough space by a predetermined size are set in the Hough space;
Counting means for counting the number of the curves passing through each detection section;
And functioning as a straight line calculating means for obtaining a straight line in the real space using the coordinate value of any small section in the detection section in which the number of curves passing through the detection section exceeds a first threshold. It is what.

「候補点」とは、直線上に並んでいる可能性のある点をいい、実際には直線上に並んでいない点も含むものである。   “Candidate points” refer to points that may be aligned on a straight line, and include points that are not actually aligned on a straight line.

「小区間」とは、ハフ空間を区分けした区間であり、ハフ空間上の複数の曲線が交差する交点の座標値を算出する最小の単位をいう。   The “small section” is a section obtained by dividing the Hough space, and is a minimum unit for calculating the coordinate value of the intersection where a plurality of curves on the Hough space intersect.

また、前記直線検出手段は、前記第1の閾値を越えた検出区間内の小区間のうち、該検出区間内の中心に存在する小区間を通過する曲線の数が第2の閾値を越えたときに、前記検出区間の中心に存在する小区間の座標値を用いて前記実空間上の直線を求めることを特徴とするものであってもよい。   In addition, the straight line detection means has a number of curves that pass through a small section existing in the center of the detection section among the small sections in the detection section that exceeds the first threshold exceeds the second threshold. Sometimes, a straight line in the real space may be obtained using the coordinate value of the small section existing at the center of the detection section.

さらに、また、前記直線検出手段は、前記第1の閾値を越えた検出区間内の小区間のうち、該小区間を通過する曲線の数が第3の閾値を越えた小区間の座標値を用いて前記実空間上の直線を求めることを特徴とするものであってもよい。   Further, the straight line detecting means may calculate the coordinate value of the small section in which the number of curves passing through the small section exceeds the third threshold among the small sections in the detection section exceeding the first threshold. It may be used to obtain a straight line in the real space.

本発明によれば、画像データから得たエッジなどの点が一直線上に並んでいるか否かを判定する際に、直線を検出するハフ空間上で広い範囲の検出区間を設定することにより、実空間上の直線の傾きや座標値が少し異なる線をまとめて検出を行い、その中からばらついて並んでいる点を直線で表すのに最も適した直線を求めることができる。   According to the present invention, when determining whether or not points such as edges obtained from image data are aligned on a straight line, a wide range of detection sections are set on the Hough space for detecting a straight line. It is possible to detect a group of lines with slightly different slopes and coordinate values in the space, and obtain a straight line most suitable for representing the points that are scattered and arranged in a straight line.

実空間上の点をハフ空間に投影した曲線が、ハフ空間上設定した広い範囲の検出区間の中心部を数多く通過する座標値から直線を求めるようにすれば、ばらついて並んでいる点のほぼ真ん中を通過する直線を求めることができる。   If a curve obtained by projecting points in the real space onto the Hough space obtains a straight line from the coordinate values passing through the center of a wide range of detection intervals set in the Hough space, almost all of the scattered points A straight line passing through the middle can be obtained.

実空間上の点をハフ空間に投影した曲線が、ハフ空間上設定した広い範囲の検出区間の中から数多く通過する座標値直線を求めるようにすれば、一直線上に並んでいる点の数が多い直線を求めることができる。   If a curve obtained by projecting points in real space onto the Hough space finds a coordinate value line that passes through a wide range of detection intervals set in the Hough space, the number of points aligned on the straight line Many straight lines can be obtained.

以下、本発明の放射線撮影画像の照射野認識辺を構成する直線を検出する直線検出装置の具体的な実施の形態について図面を用いて説明する。図1は本発明の直線検出装置1の一実施形態の構成を示し、図2は照射野絞りを用いた放射線撮影画像の撮影装置を示す図(図2(a)参照)および照射野絞りの開口輪郭に対応する照射野輪郭が形成された蓄積性蛍光体シートを示す図(図2(b)参照)である。   Hereinafter, a specific embodiment of a straight line detection device for detecting a straight line constituting an irradiation field recognition side of a radiographic image according to the present invention will be described with reference to the drawings. FIG. 1 shows a configuration of an embodiment of a straight line detection apparatus 1 according to the present invention, and FIG. 2 is a diagram showing a radiographic image capturing apparatus using an irradiation field stop (see FIG. 2A) and the irradiation field stop. It is a figure (refer FIG.2 (b)) which shows the stimulable fluorescent substance sheet in which the irradiation field outline corresponding to an opening outline was formed.

撮影装置で照射野絞りを用いてX線撮影を行なう場合には、まず、被写体を撮影した像が放射線撮影画像(画像データ)Pの中心なるように配置し、図2(a)に示すように、X線源と被写体との間に、矩形等の開口部のある照射野絞りを置いて撮影をする。この開口部の外側の部分は、X線が被写体および蓄積性蛍光体シートにX線が到達するのを防止する鉛板である。この状態でX線源から被写体にX線が照射されると、蓄積性蛍光体シートから得られた放射線撮影画像上には、図2(b)に示すように、照射野絞りの開口部の外側に対応する領域(照射野外領域)Pout にはX線が照射されず、一方、照射野絞りの開口部より内側に対応する領域(照射野領域)Pinには被写体を透過した部分と直接X線が照射された部分が記録される。そして、照射野絞りの開口部に対応する部分は、開口部と略同一形状となり、照射野外領域Poutは高輝度なまぶしい領域となる。照射野領域Pinと照射野外領域Poutの境には、濃度が急激に変化する複数のエッジ線からなる照射野輪郭PSが形成される。照射野絞りの開口部は通常矩形であり、照射野輪郭PSは4つの直線の照射野辺で構成される。   When performing X-ray imaging using an irradiation field stop with an imaging apparatus, first, an image obtained by imaging a subject is arranged so as to be at the center of a radiographic image (image data) P, as shown in FIG. In addition, imaging is performed with an irradiation field stop having an opening such as a rectangle between the X-ray source and the subject. The portion outside the opening is a lead plate that prevents the X-rays from reaching the subject and the stimulable phosphor sheet. In this state, when the subject is irradiated with X-rays from the X-ray source, on the radiographic image obtained from the stimulable phosphor sheet, as shown in FIG. The region corresponding to the outside (irradiation field region) Pout is not irradiated with X-rays, while the region corresponding to the inner side (irradiation field region) Pin from the opening of the irradiation field stop is directly X-rayed with the portion that has passed through the subject. The part irradiated with the line is recorded. And the part corresponding to the opening part of an irradiation field stop becomes a shape substantially the same as an opening part, and the irradiation field outside area | region Pout becomes a bright area with a high brightness | luminance. At the boundary between the irradiation field region Pin and the irradiation field outside region Pout, an irradiation field contour PS composed of a plurality of edge lines whose density changes abruptly is formed. The opening of the irradiation field stop is usually rectangular, and the irradiation field contour PS is composed of four straight irradiation field sides.

本願発明の直線検出装置1は、画像データを入力する画像データ入力手段10と、入力した画像データから実空間における直線上の候補点を検出する候補点検出手段20と、候補点の座標値をハフ(Hough)空間に投影して、ハフ空間上の曲線を求める投影手段30と、ハフ空間内に、このハフ空間内を所定の大きさで区分けした小区間を複数まとめた検出区間を複数設定する検出区間設定手段40と、各検出区間内を通過する曲線の数をカウントするカウント手段50と、検出区間内を通過する曲線の数が第1の閾値を越えた検出区間内のいずれかの小区間の座標値を用いて前記実空間上の直線を求める直線算出手段60とを備える。   The straight line detection device 1 of the present invention includes an image data input means 10 for inputting image data, a candidate point detection means 20 for detecting candidate points on a straight line in the real space from the input image data, and the coordinate values of the candidate points. Projection means 30 for projecting into a Hough space to obtain a curve in the Hough space, and a plurality of detection sections in the Hough space, in which a plurality of small sections obtained by dividing the Hough space by a predetermined size are set. Detection section setting means 40 for counting, counting means 50 for counting the number of curves passing through each detection section, and any of the detection sections within the detection section in which the number of curves passing through the detection section exceeds the first threshold Straight line calculation means 60 for obtaining a straight line in the real space using the coordinate values of the small section.

ここで、直線検出装置1の動作を図3のフローチャートに従って説明する。   Here, the operation of the straight line detection apparatus 1 will be described with reference to the flowchart of FIG.

まず、画像データ入力手段10より、撮影装置から得られた照射野絞りを用いた放射線撮影画像の画像データPを入力する(S100)。   First, image data P of a radiographic image using an irradiation field stop obtained from the imaging apparatus is input from the image data input means 10 (S100).

そこで、候補点検出手段20は、入力された画像データPについて、図4(a)に示すように、そのデータが表す画像の中心点Kを設定し、中心点Kから画像データPの端部にそれぞれ向う等角度間隔(α=1.5度)240本の放射状の直線を設定する。この放射状の直線の設定本数および間隔、放射状の直線群の中心の設定位置等は適宜変更することができる。   Therefore, the candidate point detection means 20 sets the center point K of the image represented by the input image data P as shown in FIG. 4A, and the end of the image data P from the center point K. Set 240 radial straight lines (α = 1.5 degrees) facing each. The set number and interval of the radial lines, the set position of the center of the radial line group, and the like can be changed as appropriate.

これらの240本の放射状の直線にそれぞれ沿った方向において互いに隣接する画素間の画像データを比較し、その差分が最も大きい2つの画素をその線上で探索する。この探索された2つの画素間は画素値の差が大きく、エッジ上に存在する点である可能性の高い候補点である。このようにして各直線方向ごとにそれぞれ探索された候補点Eを検出し、合計240個の候補点Eが得られる(図4(b)参照、S101)。   Image data between pixels adjacent to each other in the direction along each of these 240 radial straight lines is compared, and two pixels having the largest difference are searched on the line. There is a large difference in pixel value between the two searched pixels, and it is a candidate point that is highly likely to be a point on the edge. In this way, candidate points E searched for in each straight line direction are detected, and a total of 240 candidate points E are obtained (see FIG. 4B, S101).

投影手段30は、候補点検出手段20により検出された実空間(x−y空間)上のエッジ上の候補点Eをハフ空間(ρθ空間)に投影した曲線を求める(S102)。各候補点Eiの、図4(c)に示すxy座標系における座標を(xi ,yi )( i=1,2,…,240 )としたとき、これらのxi ,yi を定数として次式(1)で表わされる曲線LSiを各候補点ごとに求める。
ρ=xi cos θ+yi sin θ (1)
この式(1)は、図4(c)に示すように、中心座標を(xi ,yi )に固定してこの座標(xi ,yi )を通過する直線の式を表し、ρは座標(xi ,yi)を通る各直線LLとxy座標系の原点Oとの距離、θはこの直線LLとxy座標系の原点Oとを垂直に結ぶ垂線がx軸となす角度を表している。
The projection unit 30 obtains a curve obtained by projecting the candidate point E on the edge in the real space (xy space) detected by the candidate point detection unit 20 onto the Hough space (ρθ space) (S102). When the coordinates of each candidate point Ei in the xy coordinate system shown in FIG. 4 (c) is (xi, yi) (i = 1, 2,..., 240), these xi and yi are used as constants in the following formula ( A curve LSi represented by 1) is obtained for each candidate point.
ρ = xi cos θ + y i sin θ (1)
As shown in FIG. 4 (c), the equation (1) represents a straight line equation passing through the coordinates (xi, yi) with the center coordinates fixed at (xi, yi), and ρ represents the coordinates (xi). , Y i), the distance between each straight line LL passing through the origin O of the xy coordinate system and θ represents the angle between the perpendicular line connecting the straight line LL and the origin O of the xy coordinate system and the x axis.

ここで、座標(xi ,yi )を通る各直線LLは式(1)においてρ、θを徐々に変化させた得られるものであり、θρ空間(ハフ空間)では、座標(xi ,yi )を通るこれら直線LLは下式(2)に示す1本の曲線として表現される(図4(c)参照)。
ρj =xcos θj +ysin θj (2)
各エッジ候補点についてそれぞれ同様の操作を行なうと、ハフ空間に240本の曲線LSi ( i=1,2,…,240 )が表される。
Here, each straight line LL passing through the coordinates (xi, yi) is obtained by gradually changing ρ and θ in the equation (1). In the θρ space (Hough space), the coordinates (xi, yi) are changed. These passing straight lines LL are expressed as a single curve shown in the following formula (2) (see FIG. 4C).
ρj = xcos θj + ysin θj (2)
When the same operation is performed on each edge candidate point, 240 curves LSi (i = 1, 2,..., 240) are represented in the Hough space.

そこで、この240本の曲線LSi が交わる各交点位置(ρj ,θj )を求めて複数の曲線LSiの交点α,βが多く重なる点から実空間上の直線を求めるが、検出区間設定手段40は、図5に示すように、ハフ空間(ρθ空間)をΔρとΔθで分けた小区間ΔDに分け、さらに、小区間ΔDを複数まとめた検出区間Mを設定する(S103)。小区間ΔD単位でハフ変換した複数の曲線LSiが交差しているか否かを判定する区間であり、この小区間のΔρ,Δθの大きさは検出する画像の分解能に応じて適宜決められ、実空間上で、一直線上に並んでいる点を検出することができるように定められる。しかし、照射野辺を構成する直線は、実際には、照射されたX線の強度や照射野辺の境となるところに撮影されている被写体の構造物などに影響されて、エッジとして検出される候補点は、ある程度の幅を持った直線上に並んでいることが多い。そのため、複数の曲線LSi が小区間ΔDで交差する数(投票数)をカウントすると、所定の小区間ΔDの近くに投票数の高い小区間ΔDが多数現れることになる。そこで、図5に示すように、各小区間ΔDを中心に5×5のマスクを用いて小区間ΔDをまとめた検出区間Mを設定する。各検出区間は、5×5のマスクを全ての小区間ΔDそれぞれを中心にして設定するようにしてもよいが、図6に示すように、数個おきの小区間ΔD(×印)を中心にして設定するようにしてもよい。あるいは、各検出区間Mが重ならないようにすることも出来る。   Accordingly, each intersection position (ρj, θj) where the 240 curves LSi intersect is obtained, and a straight line in the real space is obtained from the point where the intersections α, β of the plurality of curves LSi overlap each other. As shown in FIG. 5, the Hough space (ρθ space) is divided into small sections ΔD divided by Δρ and Δθ, and a detection section M in which a plurality of small sections ΔD are combined is set (S103). This is a section for determining whether or not a plurality of curves LSi subjected to Hough transform in units of small sections ΔD intersect. The sizes of Δρ and Δθ in these small sections are appropriately determined according to the resolution of the image to be detected. It is determined so that points arranged in a straight line in the space can be detected. However, the straight line constituting the irradiation field side is actually a candidate that is detected as an edge by being influenced by the intensity of the irradiated X-ray or the structure of the subject imaged at the boundary of the irradiation field side. The dots are often arranged on a straight line having a certain width. Therefore, when the number of intersections (number of votes) of the plurality of curves LSi intersects in the small section ΔD, a large number of small sections ΔD with a high vote count appear near the predetermined small section ΔD. Therefore, as shown in FIG. 5, a detection section M is set in which the small sections ΔD are grouped using a 5 × 5 mask around each small section ΔD. In each detection section, a 5 × 5 mask may be set centering on each of all the small sections ΔD. However, as shown in FIG. 6, every few small sections ΔD (× marks) are centered. You may make it set. Or each detection area M can also be made not to overlap.

ところで、計算機上で複数の曲線LSiが交差する交点が一致するか否かの判定は、具体的には、計算機上で得られた数値を所定の桁で丸めて判定するが、小区間ΔDはこの丸め処理をする桁と一致する区間といえる。   By the way, the determination as to whether or not the intersections at which a plurality of curves LSi intersect on the computer coincides is specifically performed by rounding the numerical value obtained on the computer with a predetermined digit, but the small section ΔD is It can be said that it is a section that matches the digit to be rounded.

具体的に、5×5のマスクを用いた検出区間Mは、ρ軸上で10mm以下、θ軸上で10°以下であればよいが、(ρ軸上で4.5mm)×(θ軸上で0.8〜1.7°)程度の矩形領域が望ましい。   Specifically, the detection section M using a 5 × 5 mask may be 10 mm or less on the ρ axis and 10 ° or less on the θ axis, but (4.5 mm on the ρ axis) × (θ axis A rectangular area of about 0.8 to 1.7 ° is desirable.

カウント手段50は、この240本の曲線LSi が交わる各交点位置(ρj ,θj )を求め、各交点位置(ρj ,θj )で交わる曲線LSiの数(投票数)を、上記検出区間Mごとにカウントを行ない(S104)、各検出区間Mを通過する個数が第1の閾値を越えた検出区間Mを抽出する(S105)。各検出区間Mは実空間上である程度の幅を持った直線(つまり、直線の方向と位置がわずかに違う直線をまとめたもの)に対応する。   The counting means 50 obtains each intersection position (ρj, θj) where the 240 curves LSi intersect, and calculates the number (voting number) of the curves LSi intersecting at each intersection position (ρj, θj) for each detection section M. Counting is performed (S104), and a detection section M in which the number passing through each detection section M exceeds the first threshold is extracted (S105). Each detection section M corresponds to a straight line having a certain width in real space (that is, a straight line having a slightly different direction and position).

そこで、この検出区間Mの中から実空間の直線と最も一致すると予測される直線を表す小区間を選択する(S106)。実空間上の直線の候補点がある程度の幅でばらつきがある場合には、図7に示めすように、ハフ空間上の曲線LSiが多く交差する小区間ΔD(●のところ)は部分的にまとまって数多くあらわれる。このような曲線LSiが多く通過する小区間ΔDがあらわれる範囲は実空間上の候補点のばらつきに対応する。そこで、実空間上の直線に対応する小区間ΔDを、検出区間M内に含まれている小区間ΔDの中から検出する。   Therefore, a small section representing a straight line that is predicted to most closely match the straight line in the real space is selected from the detection section M (S106). If the straight line candidate points in the real space vary to some extent, as shown in FIG. 7, the small section ΔD (in the circles) where many curves LSi intersect in the Hough space partially Many appear together. The range in which such a small section ΔD through which many curves LSi pass corresponds to the variation of candidate points in the real space. Therefore, the small section ΔD corresponding to the straight line in the real space is detected from the small sections ΔD included in the detection section M.

この小区間ΔDを通過する曲線LSiが多いものほど、実空間上で多くの候補点がきれいに一直線上に並んでいると推定できる。また、第1の閾値を越えた検出区間M内の中心に存在する小区間ΔD(図8の矢印が指す小区間)がばらつきの中心となると思われる。そこで、この検出区間M内の中心に存在する小区間ΔDで交差する曲線LSiの数が第2の閾値(<第1の閾値)を越える場合に、この中心に存在する小区間ΔDの座標値を用いて実空間上の直線を求める。   It can be estimated that as the number of curves LSi passing through the small section ΔD increases, more candidate points are arranged in a straight line in the real space. In addition, the small section ΔD (small section indicated by the arrow in FIG. 8) existing at the center in the detection section M exceeding the first threshold is considered to be the center of variation. Therefore, when the number of curves LSi intersecting in the small section ΔD existing in the center in the detection section M exceeds the second threshold (<first threshold), the coordinate value of the small section ΔD existing in the center To find a straight line in real space.

あるいは、前記第1の閾値を越えた検出区間M内の小区間ΔDのうち、交差する曲線LSiが多いものほど実空間上で多くの候補点がきれいに一直線上に並んでいると推定できる。そこで、各小区間ΔDで交差する曲線LSiの数をカウントして、各小区間ΔDで交差する曲線LSiの数が第3の閾値(<第1の閾値)を越えた小区間の座標値を用いて実空間上の直線を求めるようにしてもよい。   Alternatively, it can be estimated that among the small sections ΔD in the detection section M exceeding the first threshold value, the more intersecting curves LSi are, the more candidate points are arranged in a straight line in the real space. Therefore, the number of curves LSi intersecting in each small section ΔD is counted, and the coordinate values of the small sections where the number of curves LSi intersecting in each small section ΔD exceeds the third threshold (<first threshold) are obtained. It may be used to obtain a straight line in real space.

また、図9に示すように、実空間上の直線の候補点がある程度の幅でばらつきがある場合には、ハフ空間上の曲線LSiが多く交差する小区間ΔDは部分的にまとまって数多くあらわれる。そのため、閾値を少し低くすると、各小区間で交差する曲線LSiLSの数が閾値(第4の閾値)を越える小区間ΔDが連なってあらわれる。そこで、図9に示すように、この第4の閾値を越える小区間ΔDに対してラベリング処理をして、ハフ空間上で近い位置にある第4の閾値を越えた小区間群(#1,#2,#3,#4,#5)をまとめて抽出し、その小区間群(#1,#2,#3,#4,#5)の中から交差する曲線LSiの数が最も多い小区間ΔDを選択し、選択した小区間ΔDの座標値を用いて実空間上の直線を求める。   Also, as shown in FIG. 9, when the straight line candidate points in the real space vary with a certain width, a large number of small sections ΔD where many curves LSi intersect in the Hough space partially appear. . Therefore, when the threshold value is lowered slightly, small sections ΔD in which the number of curves LSiLS intersecting in each small section exceed the threshold value (fourth threshold value) appear in succession. Therefore, as shown in FIG. 9, a labeling process is performed on the small section ΔD exceeding the fourth threshold value, and the small section group exceeding the fourth threshold value (# 1,. # 2, # 3, # 4, # 5) are extracted together, and the number of intersecting curves LSi is the largest from the small section group (# 1, # 2, # 3, # 4, # 5) The small section ΔD is selected, and a straight line in the real space is obtained using the coordinate value of the selected small section ΔD.

さらに、ハフ空間上で近い位置にある直線を比較をするために、図10に示すように、曲線LSiが交差する数が第4の閾値を越える小区間ΔDに対して小区間ΔDを7×15のマスクを用いて、このマスクでまとめた区間N内に存在する小区間ΔDの中から、曲線LSiが最も多く交差する小区間ΔDを用いて実空間上の直線を求めるようにしてもよい。直線上の候補点Eのばらつきが大きい場合には、部分的にまとまって現れずに、異なる2つ照射野辺を表す直線の中間の傾きを持つような直線を検出する場合がある。そこで、それを避けるために、区間Nで分けるようにすることで、ラベリング処理した場合にはつながって現れるような小区間群を分けて検出することができる。   Further, in order to compare straight lines close to each other in the Hough space, as shown in FIG. 10, the small section ΔD is set to 7 × for the small section ΔD in which the number of intersecting curves LSi exceeds the fourth threshold. Using the 15 masks, a straight line in the real space may be obtained by using the small section ΔD where the curves LSi intersect most frequently from the small sections ΔD existing in the section N collected by this mask. . When the variation of the candidate point E on the straight line is large, a straight line having an intermediate slope between the two straight lines representing two different irradiation field sides may be detected without partially appearing together. Therefore, in order to avoid this, by dividing into sections N, it is possible to separately detect a group of small sections that appear connected in the case of labeling processing.

具体的に、7×15のマスクを用いて小区間ΔDをまとめた区間Nは、ρ軸上で10mm以下、θ軸上で10°以下であればよいが、(ρ軸上で6.3mm)×(θ軸上で2.5〜5°)程度の矩形領域が望ましい。   Specifically, the section N obtained by combining the small sections ΔD using the 7 × 15 mask may be 10 mm or less on the ρ axis and 10 ° or less on the θ axis (6.3 mm on the ρ axis). A rectangular region of about × (2.5 to 5 ° on the θ axis) is desirable.

以上、詳細に説明したように、照射野外領域の境となる照射野辺のような、実空間上である程度ばらついて表れる直線上の候補点から照射野辺を表す直線を求めるために、ハフ空間上で、ある程度の幅をもった直線に対応する領域を通過する曲線を検出した後に照射野辺である可能性の高い直線を選択するようにすることで、正確な照射野辺を検出することができる。   As described above in detail, in order to obtain a straight line representing the irradiation field side from the candidate points on the straight line that appears to some extent in the real space, such as the irradiation field side that is the boundary of the irradiation field region, By detecting a curve passing through a region corresponding to a straight line having a certain width and then selecting a straight line that is highly likely to be an irradiation field side, an accurate irradiation field side can be detected.

また、上記各手段をコンピュータ上に機能させるようなプログラムを記録した媒体を用いてコンピュータにインストールすることによって、照射野判定装置として動作させることができる。また、このプログラムはネットワークを介して提供することも可能である。   Moreover, it can be made to operate | move as an irradiation field determination apparatus by installing in a computer using the medium which recorded the program which functions each said means on a computer. This program can also be provided via a network.

直線検出装置の概略構成図Schematic configuration diagram of straight line detection device 照射野絞りを用いて撮影する方法を説明するための図The figure for explaining the method of photographing with the irradiation field stop 直線検出装置の動作を説明するためのフローチャートFlow chart for explaining the operation of the straight line detection device 直線検出方法を説明するための図Diagram for explaining the straight line detection method ハフ空間上の小区間と検出区間を説明するための図A diagram for explaining small sections and detection sections in the Hough space 検出区間を設定する間隔を説明するための図The figure for explaining the interval which sets the detection section ハフ空間上で曲線が多く交差する小区間の分布を表した図A diagram showing the distribution of small sections where many curves intersect in the Hough space ハフ空間上の曲線が多く交差する小区間と検出区間を表した図A diagram showing small sections and detection sections where many curves in the Hough space intersect ハフ空間上で近くにある曲線が多く交差する小区間をまとめて抽出する方法を説明するための図(その1)Figure for explaining a method of extracting small sections that intersect with many nearby curves in the Hough space (part 1) ハフ空間上で近くにある曲線が多く交差する小区間をまとめて抽出する方法を説明するための図(その2)Figure for explaining how to extract small sections that intersect many curves close to each other in the Hough space (Part 2)

符号の説明Explanation of symbols

1 直線検出装置
10 画像データ入力手段
20 候補点検出手段
30 投影手段
40 検出区間設定手段
50 カウント手段
60 直線算出手段
P 画像データ
1 Straight line detector
10 Image data input means
20 Candidate point detection means
30 Projection means
40 Detection section setting method
50 counting means
60 Straight line calculation means P Image data

Claims (5)

画像データを入力する画像データ入力手段と、
前記入力した画像データから実空間における直線上の複数の候補点を検出する候補点検出手段と、
前記複数の候補点の座標値をハフ空間に投影して、ハフ空間上の複数の曲線を求める投影手段と、
ハフ空間内に、該ハフ空間内を所定の大きさで区分けした小区間を複数まとめた検出区間を複数設定する検出区間設定手段と、
各検出区間内を通過する前記曲線の数をカウントするカウント手段と、
前記検出区間内を通過する曲線の数が第1の閾値を越えた検出区間内のいずれかの小区間の座標値を用いて前記実空間上の直線を求める直線算出手段とを備えたことを特徴とする直線検出装置。
Image data input means for inputting image data;
Candidate point detecting means for detecting a plurality of candidate points on a straight line in real space from the input image data;
Projecting means for projecting the coordinate values of the plurality of candidate points onto a Hough space to obtain a plurality of curves on the Hough space;
Detection interval setting means for setting a plurality of detection intervals in which a plurality of small intervals obtained by dividing the Hough space by a predetermined size are set in the Hough space;
Counting means for counting the number of the curves passing through each detection section;
Straight line calculating means for obtaining a straight line in the real space using the coordinate value of any small section in the detection section in which the number of curves passing through the detection section exceeds a first threshold value. A characteristic straight line detection device.
前記直線検出手段が、前記第1の閾値を越えた検出区間内の小区間のうち、該検出区間内の中心に存在する小区間を通過する曲線の数が第2の閾値を越えたときに、前記検出区間の中心に存在する小区間の座標値を用いて前記実空間上の直線を求めることを特徴とする請求項1記載の直線検出装置。   When the number of curves passing through the small section existing in the center of the detection section among the small sections in the detection section exceeding the first threshold exceeds the second threshold. 2. The straight line detection device according to claim 1, wherein a straight line in the real space is obtained by using a coordinate value of a small section existing at the center of the detection section. 前記直線検出手段が、前記第1の閾値を越えた検出区間内の小区間のうち、該小区間を通過する曲線の数が第3の閾値を越えた小区間の座標値を用いて前記実空間上の直線を求めることを特徴とする請求項1記載の直線検出装置。   The straight line detecting means uses the coordinate value of the small section in which the number of curves passing through the small section exceeds the third threshold among the small sections in the detection section that exceeds the first threshold. 2. The straight line detection device according to claim 1, wherein a straight line in space is obtained. 画像データを入力する画像データ入力ステップと、
前記入力した画像データから実空間における直線上の複数の候補点を検出する候補点検出ステップと、
前記複数の候補点の座標値をハフ空間に投影して、ハフ空間上の複数の曲線を求める投影ステップと、
ハフ空間内に、該ハフ空間内を所定の大きさで区分けした小区間を複数まとめた検出区間を複数設定する検出区間設定ステップと、
各検出区間内を通過する前記曲線の数をカウントするカウントステップと、
前記検出区間内を通過する曲線の数が第1の閾値を越えた検出区間内のいずれかの小区間の座標値を用いて前記実空間上の直線を求める直線算出ステップとを備えたことを特徴とする直線検出方法。
An image data input step for inputting image data;
A candidate point detecting step of detecting a plurality of candidate points on a straight line in real space from the input image data;
Projecting the coordinate values of the plurality of candidate points onto a Hough space to obtain a plurality of curves on the Hough space;
A detection interval setting step for setting a plurality of detection intervals in which a plurality of small intervals obtained by dividing the Hough space by a predetermined size are set in the Hough space;
A counting step for counting the number of the curves passing through each detection interval;
A straight line calculating step of obtaining a straight line in the real space using the coordinate value of any small section in the detection section in which the number of curves passing through the detection section exceeds a first threshold value. Characteristic straight line detection method.
コンピュータを、
画像データを入力する画像データ入力手段と、
前記入力した画像データから実空間における直線上の複数の候補点を検出する候補点検出手段と、
前記複数の候補点の座標値をハフ空間に投影して、ハフ空間上の複数の曲線を求める投影手段と、
ハフ空間内に、該ハフ空間内を所定の大きさで区分けした小区間を複数まとめた検出区間を複数設定する検出区間設定手段と、
各検出区間内を通過する前記曲線の数をカウントするカウント手段と、
前記検出区間内を通過する曲線の数が第1の閾値を越えた検出区間内のいずれかの小区間の座標値を用いて前記実空間上の直線を求める直線算出手段として機能させるプログラム。
Computer
Image data input means for inputting image data;
Candidate point detecting means for detecting a plurality of candidate points on a straight line in real space from the input image data;
Projecting means for projecting the coordinate values of the plurality of candidate points onto a Hough space to obtain a plurality of curves on the Hough space;
Detection interval setting means for setting a plurality of detection intervals in which a plurality of small intervals obtained by dividing the Hough space by a predetermined size are set in the Hough space;
Counting means for counting the number of the curves passing through each detection section;
A program that functions as a straight line calculation unit that obtains a straight line in the real space using the coordinate value of any small section in the detection section in which the number of curves passing through the detection section exceeds a first threshold.
JP2005110873A 2005-04-07 2005-04-07 Straight line detection device, straight line detection method, and program for the same Pending JP2006293522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005110873A JP2006293522A (en) 2005-04-07 2005-04-07 Straight line detection device, straight line detection method, and program for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005110873A JP2006293522A (en) 2005-04-07 2005-04-07 Straight line detection device, straight line detection method, and program for the same

Publications (1)

Publication Number Publication Date
JP2006293522A true JP2006293522A (en) 2006-10-26

Family

ID=37414061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005110873A Pending JP2006293522A (en) 2005-04-07 2005-04-07 Straight line detection device, straight line detection method, and program for the same

Country Status (1)

Country Link
JP (1) JP2006293522A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009169696A (en) * 2008-01-16 2009-07-30 Nec Corp Image processing device, image processing system, image processing method and program
KR100975230B1 (en) 2008-03-31 2010-08-11 성균관대학교산학협력단 Image Processing Method and Apparatus for Detecting the Lines of Images
CN112419353A (en) * 2020-11-26 2021-02-26 复旦大学附属中山医院 Method and device for detecting opening-closing type tool
CN116228734A (en) * 2023-03-16 2023-06-06 江苏省家禽科学研究所 Method, device and equipment for identifying characteristics of pores of poultry

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08202876A (en) * 1995-01-30 1996-08-09 Minolta Co Ltd Picture processor
JPH0935197A (en) * 1995-07-14 1997-02-07 Aisin Seiki Co Ltd Vehicle recognizing method
JP2596744B2 (en) * 1987-04-16 1997-04-02 富士写真フイルム株式会社 Radiation field recognition method
JPH10275213A (en) * 1997-03-31 1998-10-13 Fuji Photo Film Co Ltd Radiograph picture irradiating field recognizing method, device therefor, blackening processing method, and device therefor
JPH113421A (en) * 1997-06-11 1999-01-06 Meidensha Corp Method for detecting line segment
JP2005051383A (en) * 2003-07-31 2005-02-24 Ricoh Co Ltd Image distortion corrector, image reader, image forming apparatus, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2596744B2 (en) * 1987-04-16 1997-04-02 富士写真フイルム株式会社 Radiation field recognition method
JPH08202876A (en) * 1995-01-30 1996-08-09 Minolta Co Ltd Picture processor
JPH0935197A (en) * 1995-07-14 1997-02-07 Aisin Seiki Co Ltd Vehicle recognizing method
JPH10275213A (en) * 1997-03-31 1998-10-13 Fuji Photo Film Co Ltd Radiograph picture irradiating field recognizing method, device therefor, blackening processing method, and device therefor
JPH113421A (en) * 1997-06-11 1999-01-06 Meidensha Corp Method for detecting line segment
JP2005051383A (en) * 2003-07-31 2005-02-24 Ricoh Co Ltd Image distortion corrector, image reader, image forming apparatus, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009169696A (en) * 2008-01-16 2009-07-30 Nec Corp Image processing device, image processing system, image processing method and program
KR100975230B1 (en) 2008-03-31 2010-08-11 성균관대학교산학협력단 Image Processing Method and Apparatus for Detecting the Lines of Images
CN112419353A (en) * 2020-11-26 2021-02-26 复旦大学附属中山医院 Method and device for detecting opening-closing type tool
CN112419353B (en) * 2020-11-26 2023-09-26 复旦大学附属中山医院 Method and device for detecting open-close type tool
CN116228734A (en) * 2023-03-16 2023-06-06 江苏省家禽科学研究所 Method, device and equipment for identifying characteristics of pores of poultry
CN116228734B (en) * 2023-03-16 2023-09-22 江苏省家禽科学研究所 Method, device and equipment for identifying characteristics of pores of poultry

Similar Documents

Publication Publication Date Title
JP3923131B2 (en) Radiation field irradiation method and apparatus, and blackening processing method and apparatus
EP0610605B1 (en) Method of recognising an irradiation field
US7570792B2 (en) Image processing apparatus and control method and program therefor
JP4601134B2 (en) Method and apparatus for defect detection based on shape features
KR101417696B1 (en) Pattern measuring method, pattern measuring apparatus, and recording medium
EP1729505B1 (en) Method for extracting radiation area from image data and image data processing apparatus
KR101667471B1 (en) Defect determination device, radiography system, and defect determination method
CN102096917A (en) Automatic eliminating method for redundant image data of capsule endoscope
CN108294728A (en) wound state analysis method and system
US10282826B2 (en) Despeckling method for radiographic images
US7256392B2 (en) Inspection method of radiation imaging system and medical image processing apparatus using the same, and phantom for use of inspection of radiation imaging system
JP2014020926A (en) Surface defect inspection device and surface defect inspection method
JP2006293522A (en) Straight line detection device, straight line detection method, and program for the same
JP2574181B2 (en) Abnormal shadow detector
JP2007271434A (en) Inspection apparatus, inspection method, inspection program, and inspection system
JP2007202811A (en) Radiation field recognition unit, radiation field recognition method, and program therefor
JP6525837B2 (en) Product defect detection method
JP2011107878A (en) Position detection apparatus and position detection method
JP5333607B2 (en) Radiation image processing apparatus and radiation image processing program
JP3617751B2 (en) Radiation image irradiation field recognition method and apparatus
JP2001307064A (en) Irradiation area extracting method, device and recording medium
JP5074054B2 (en) X-ray diagnostic imaging equipment
JP3945622B2 (en) Image evaluation method, apparatus, and program
JP2006288467A (en) Device and method for judging irradiation field and its program
CN114120343A (en) Certificate image quality evaluation method and terminal

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019